
Abstract: A virtual-machine monitor (VMM) is a use-
ful technique for adding functionality below existing
operating system and application software. One class of
VMMs (called Type II VMMs) builds on the abstrac-
tions provided by a host operating system. Type II
VMMs are elegant and convenient, but their perfor-
mance is currently an order of magnitude slower than
that achieved when running outside a virtual machine (a
standalone system). In this paper, we examine the rea-
sons for this large overhead for Type II VMMs. We find
that a few simple extensions to a host operating system
can make it a much faster platform for running a VMM.
Taking advantage of these extensions reduces virtualiza-
tion overhead for a Type II VMM to 14-35% overhead,
even for workloads that exercise the virtual machine
intensively.

1. Introduction

A virtual-machine monitor (VMM) is a layer of
software that emulates the hardware of a complete com-
puter system (Figure 1). The abstraction created by the

VMM is called a virtual machine. The hardware emu-
lated by the VMM typically is similar or identical to the
hardware on which the VMM is running.

Virtual machines were first developed and used in
the 1960s, with the best-known example being IBM’s
VM/370 [Goldberg74]. Several properties of virtual
machines have made them helpful for a wide variety of
uses. First, they can create the illusion of multiple vir-
tual machines on a single physical machine. These mul-
tiple virtual machines can be used to run applications on
different operating systems, to allow students to experi-
ment conveniently with building their own operating
system [Nieh00], to enable existing operating systems to
run on shared-memory multiprocessors [Bugnion97],
and to simulate a network of independent computers.
Second, virtual machines can provide a software envi-
ronment for debugging operating systems that is more
convenient than using a physical machine. Third, virtual
machines provide a convenient interface for adding
functionality, such as fault injection [Buchacker01], pri-
mary-backup replication [Bressoud96], and undoable
disks. Finally, a VMM provides strong isolation
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Figure 1: Virtual-machine structures. A virtual-machine monitor is a software layer that runs on a host platform and provides
an abstraction of a complete computer system to higher-level software. The host platform may be the bare hardware (Type I
VMM) or a host operating system (Type II VMM). The software running above the virtual-machine abstraction is called guest
software (operating system and applications).
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between virtual-machine instances. This isolation
allows a single server to run multiple, untrusted applica-
tions safely [Whitaker02, Meushaw00] and to provide
security services such as monitoring systems for intru-
sions [Chen01, Dunlap02, Barnett02].

As a layer of software, VMMs build on a lower-
level hardware or software platform and provide an
interface to higher-level software (Figure 1). In this
paper, we are concerned with the lower-level platform
that supports the VMM. This platform may be the bare
hardware, or it may be a host operating system. Building
the VMM directly on the hardware lowers overhead by
reducing the number of software layers and enabling the
VMM to take full advantage of the hardware capabili-
ties. On the other hand, building the VMM on a host
operating system simplifies the VMM by allowing it to
use the host operating system’s abstractions.

Our goal for this paper is to examine and reduce
the performance overhead associated with running a
VMM on a host operating system. Building it on a stan-
dard Linux host operating system leads to an order of
magnitude performance degradation compared to run-
ning outside a virtual machine (a standalone system).
However, we find that a few simple extensions to the
host operating system reduces virtualization overhead to
14-35% overhead, which is comparable to the speed of
virtual machines that run directly on the hardware.

The speed of a virtual machine plays a large part in
determining the domains for which virtual machines can
be used. Using virtual machines for debugging, student
projects, and fault-injection experiments can be done
even if virtualization overhead is quite high (e.g. 10x
slowdown). However, using virtual machine in produc-
tion environments requires virtualization overhead to be
much lower. Our CoVirt project on computer security
depends on running all applications inside a virtual
machine [Chen01]. To keep the system usable in a pro-
duction environment, we would like the speed of our
virtual machine to be within a factor of 2 of a standalone
system.

The paper is organized as follows. Section 2
describes two ways to classify virtual machines, focus-
ing on the higher-level interface provided by the VMM
and the lower-level platform upon which the VMM is
built. Section 3 describes UMLinux, which is the VMM
we use in this paper. Section 4 describes a series of
extensions to the host operating system that enable vir-
tual machines built on the host operating system to
approach the speed of those that run directly on the
hardware. Section 5 evaluates the performance benefits

achieved by each host OS extension. Section 6 describes
related work, and Section 7 concludes.

2. Virtual machines

Virtual-machine monitors can be classified along
many dimensions. This section classifies VMMs along
two dimensions: the higher-level interface they provide
and the lower-level platform they build upon.

The first way we can classify VMMs is according
to how closely the higher-level interface they provide
matches the interface of the physical hardware. VMMs
such as VM/370 [Goldberg74] for IBM mainframes and
VMware ESX Server [Waldspurger02] and VMware
Workstation [Sugerman01] for x86 processors provide
an abstraction that is identical to the hardware under-
neath the VMM. Simulators such as Bochs [Boc] and
Virtutech Simics [Magnusson95] also provide an
abstraction that is identical to physical hardware,
although the hardware they simulate may differ from the
hardware on which they are running.

Several aspects of virtualization make it difficult or
slow for a VMM to provide an interface that is identical
to the physical hardware. Some architectures include
instructions whose behavior depends on whether the
CPU is running in privileged or user mode (sensitive
instructions), yet which can execute in user mode with-
out causing a trap to the VMM [Robin00]. Virtualizing
these sensitive-but-unprivileged instructions generally
requires binary instrumentation, which adds significant
complexity and may add significant overhead. In addi-
tion, emulating I/O devices at the low-level hardware
interface (e.g. memory-mapped I/O) causes execution to
switch frequently between the guest operating system
accessing the device and the VMM code emulating the
device. To avoid the overhead associated with emulating
a low-level device interface, most VMMs encourage or
require the user to run a modified version of the guest
operating system. For example, the VAX VMM security
kernel [Karger91], VMware Workstation’s guest tools
[Sugerman01], and Disco [Bugnion97] all add special
drivers in the guest operating system to accelerate the
virtualization of some devices. VMMs built on host
operating systems often require additional modifications
to the guest operating system. For example, the original
version of SimOS adds special signal handlers to sup-
port virtual interrupts and requires relinking the guest
operating system into a different range of addresses
[Rosenblum95]; similar changes are needed by User-
Mode Linux [Dike00] and UMLinux [Buchacker01].

Other virtualization strategies make the higher-
level interface further different from the underlying



hardware. The Denali isolation kernel does not support
instructions that are sensitive but unprivileged, adds sev-
eral virtual instructions and registers, and changes the
memory management model [Whitaker02]. Microker-
nels provide higher-level services above the hardware to
support abstractions such as threads and inter-process
communication [Golub90]. The Java virtual machine
defines a virtual architecture that is completely indepen-
dent from the underlying hardware.

A second way to classify VMMs is according to
the platform upon which they are built [Goldberg73].
Type I VMMs such as IBM’s VM/370, Disco, and
VMware’s ESX Server are implemented directly on the
physical hardware. Type II VMMs are built completely
on top of a host operating system. SimOS, User-Mode
Linux, and UMLinux are all implemented completely
on top of a host operating system. Other VMMs are a
hybrid between Type I and II: they operate mostly on the
physical hardware but use the host OS to perform I/O.
For example, VMware Workstation [Sugerman01] and
Connectix VirtualPC [Con01] use the host operating
system to access some virtual I/O devices.

A host operating system makes a very convenient
platform upon which to build a VMM. Host operating
system provide a set of abstractions that map closely to
each part of a virtual machine [Rosenblum95]. A host
process provides a sequential stream of execution simi-
lar to a CPU; host signals provide similar functionality
to interrupts; host files and devices provide similar func-
tionality to virtual I/O devices; host memory mapping
and protection provides similar functionality to a virtual
MMU. These features make it possible to implement a
VMM as a normal user process with very little code.

Other reasons contribute to the attractiveness of
using a Type II VMM. Because a Type II VMM runs as
a normal process, the developer or administrator of the
VMM can use the full power of the host operating sys-
tem to monitor and debug the virtual machine’s execu-
tion. For example, the developer or administrator can
examine or copy the contents of the virtual machine’s
I/O devices or memory or attach a debugger to the vir-
tual-machine process. Finally, the simplicity of Type II
VMMs and the availability of several good open-source
implementations make them an excellent platform for
experimenting with virtual-machine services.

A potential disadvantage of Type II VMMs is per-
formance. Current host operating systems do not pro-
vide sufficiently powerful interfaces to the bare
hardware to support the intensive usage patterns of
VMMs. For example, compiling the Linux 2.4.18 kernel
inside the UMLinux virtual machine takes 18 times as

long as compiling it directly on a Linux host operating
system. VMMs that run directly on the bare hardware
achieve much lower performance overhead. For exam-
ple, VMware Workstation 3.1 compiles the Linux 2.4.18
kernel with only a 30% overhead relative to running
directly on the host operating system.

The goal of this paper is to examine and reduce the
order-of-magnitude performance overhead associated
with running a VMM on a host operating system. We
find that a few simple extensions to a host operating sys-
tem can make it a much faster platform for running a
VMM, while preserving the conceptual elegance of the
Type II approach.

3. UMLinux

To conduct our study, we use a Type II VMM
called UMLinux [Buchacker01]. UMLinux was devel-
oped by researchers at the University of Erlangen-Nürn-
berg for use in fault-injection experiments. UMLinux is
a Type II VMM: the guest operating system and all
guest applications run as a single process (the guest-
machine process) on a host Linux operating system.
UMLinux provides a higher-level interface to the guest
operating system that is similar but not identical to the
underlying hardware. As a result, the machine-depen-
dent portion of the guest Linux operating system must
be modified to use the interface provided by the VMM.
Simple device drivers must be added to interact with the
host abstractions used to implement the devices for the
virtual machine; a few assembly-language instructions
(e.g. iret and in/out) must be replaced with function
calls to emulation code; and the guest kernel must be
relinked into a different address range [Hoxer02]. About
17,000 lines of code were added to the guest kernel to
work on the new platform. Applications compiled for
the host operating system work without modification on
the guest operating system.

UMLinux uses functionality from the host operat-
ing system that maps naturally to virtual hardware. The
guest-machine process serves as a virtual CPU; host
files and devices serve as virtual I/O devices; a host
TUN/TAP device serves as a virtual network; host sig-
nals serve as virtual interrupts; and host memory map-
ping and protection serve as a virtual MMU. The virtual
machine’s memory is provided by a host file that is
mapped into different parts of the guest-machine pro-
cess’s address space. We store this host file in a memory
file system (ramfs) to avoid needlessly writing to disk
the virtual machine’s transient state.

The address space of the guest-machine process
differs from a normal host process because it contains



both the host and guest operating system address ranges
(Figure 2). In a standard Linux process, the operating
system occupies addresses [0xc0000000,
0xffffffff] while the application is given [0x0,
0xc0000000). Because the UMLinux guest-machine
process must hold both the host and guest operating sys-
tems, the address space for the guest operating system
must be moved to occupy [0x70000000,
0xc0000000), which leaves [0x00000000,
0x70000000) for guest applications. The guest kernel
memory is protected using host mmap and munmap sys-
tem calls. To facilitate this protection, UMLinux main-
tains a virtual current privilege level, which is analogous
to the x86 current privilege level. This is used to differ-
entiate between guest user and guest kernel modes, and
the guest kernel memory will be accessible or protected
according to the virtual privilege level.

Figure 3 shows the basic system structure of
UMLinux. In addition to the guest-machine process,
UMLinux uses a VMM process to implement the VMM.

The VMM process serves two purposes: it redi-
rects to the guest operating system signals and system

calls that would otherwise go to the host operating sys-
tem, and it restricts the set of system calls allowed by
the guest operating system. The VMM process uses
ptrace to mediate access between the guest-machine
process and the host operating system. Figure 4 shows
the sequence of steps taken by UMLinux when a guest
application issues a system call.

The VMM process is also invoked when the guest
kernel returns from its SIGUSR1 handler and when the
guest kernel protects its address space from the guest
application process. A similar sequence of context
switches occurs on each memory, I/O, and timer excep-
tion received by the guest-machine process.

4. Host OS support for Type II VMMs
A host operating system makes an elegant and con-

venient base upon which to build and run a VMM such
as UMLinux. Each virtual hardware component maps
naturally to an abstraction in the host OS, and the
administrator can interact conveniently with the guest-
machine process just as it does with other host pro-
cesses. However, while a host OS provides sufficient
functionality to support a VMM, it does not provide the
primitives needed to support a VMM efficiently.

In this section, we investigate three bottlenecks
that occur when running a Type II VMM, and we elimi-
nate these bottlenecks through simple changes to the
host OS.

We find that three bottlenecks are responsible for
the bulk of the virtualization overhead. First,
UMLinux’s system structure with two separate host pro-
cesses causes an inordinate number of context switches
on the host. Second, switching between the guest kernel
and the guest user space generates a large number of

Figure 2: UMLinux address space. As with all Linux
processes, the host kernel address space occupies
[0xc0000000, 0xffffffff], and the host user address
space occupies [0x0, 0xc0000000). The guest kernel
occupies the upper portion of the host user space
[0x70000000, 0xc0000000), and the current guest
application occupies the remainder of the host user space
[0x0, 0x70000000).
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memory protection operations. Third, switching
between two guest application processes generates a
large number of memory mapping operations.

4.1. Extra host context switches

The VMM process in UMLinux uses ptrace to
intercept key events (system calls and signals) executed
by the guest-machine process. ptrace is a powerful
tool for debugging, but using it to create a virtual
machine causes the host OS to context switch frequently
between the guest-machine process and the VMM pro-
cess (Figure 4).

We can eliminate most of these context switches
by moving the VMM process’s functionality into the
host kernel. We encapsulate the bulk of the VMM pro-
cess functionality in a VMM loadable kernel module.
We also modified a few lines in the host kernel’s system
call and signal handling to transfer control to the VMM

kernel module when the guest-machine process executes
a system call or receives a signal. The VMM kernel
module and other hooks in the host kernel were imple-
mented in 150 lines of code (not including comments).

Moving the VMM process’s functionality into the
host kernel drastically reduces the number of context
switches in UMLinux. For example, transferring control
to the guest kernel on a guest system call can be done in
just two context switches (Figure 5). It also simplifies
the system conceptually, because the VMM kernel mod-
ule has more control over the guest-machine process
than is provided by ptrace. For example, the VMM
kernel module can change directly the protections of the
guest-machine process’s address space, whereas the
ptracing VMM process must cause the guest-machine
process to make multiple system calls to change protec-
tions.

Figure 4: Guest application system call. This picture shows the steps UMLinux takes to transfer control to the guest operating
system when a guest application process issues a system call. The mmap call in the SIGUSR1 handler must reside in guest user
space. For security, the rest of the SIGUSR1 handler should reside in guest kernel space. The current UMLinux implementation
includes an extra section of trampoline code to issue the mmap; this trampoline code is started by manipulating the guest machine
process’s context and finishes by causing a breakpoint to the VMM process; the VMM process then transfers control back to the
guest-machine process by sending a SIGUSR1.

VMM process guest operating system

guest
application

host operating system

1

1. guest application issues system call; intercepted by VMM process via ptrace
2. VMM process changes system call to no-op (getpid)
3. getpid returns; intercepted by VMM process
4. VMM process sends SIGUSR1 signal to guest SIGUSR1 handler
5. guest SIGUSR1 handler calls mmap to allow access to guest kernel data; intercepted by VMM process
6. VMM process allows mmap to pass through
7. mmap returns to VMM process
8. VMM process returns to guest SIGUSR1 handler, which handles the guest application’s system call

234

5

678



4.2. Protecting guest kernel space from
guest application processes

The guest-machine process switches frequently
between guest user mode and guest kernel mode. The
guest kernel is invoked to service guest system calls and
other exceptions issued by a guest application process
and to service signals initiated by virtual I/O devices.
Each time the guest-machine process switches from
guest kernel mode to guest user mode, it must first pre-
vent access to the guest kernel’s portion of the address
space [0x70000000, 0xc0000000). Similarly, each
time the guest-machine process switches from guest
user mode to guest kernel mode, it must first enable
access to the guest kernel’s portion of the address space.
The guest-machine process performs these address
space manipulations by making the host system calls
mmap, munmap, and mprotect.

Unfortunately, calling mmap, munmap, or mpro-
tect on large address ranges incurs significant over-

head, especially if the guest kernel accesses many pages
in its address space. In contrast, a standalone host
machine incurs very little overhead when switching
between user mode and kernel mode. The page table on
x86 processors need not change when switching
between kernel mode and user mode, because the page
table entry for a page can be set to simultaneously allow
kernel-mode access and prevent user-mode access.

We developed two solutions that use the x86 paged
segments and privilege modes to eliminate the overhead
incurred when switching between guest kernel mode
and guest user mode. Linux normally uses paging as its
primary mechanism for translation and protection, using
segments only to switch between privilege levels. Linux
uses four segments: kernel code segment, kernel data
segment, user code segment, and user data segment.
Normally, all four segments span the entire address
range. Linux normally runs all host user code in CPU
privilege ring 3 and runs host kernel code in CPU privi-
lege ring 0. Linux uses the supervisor-only bit in the
page table to prevent code running in CPU privilege ring
3 from accessing the host operating system’s data (Fig-
ure 6).

Our first solution protects the guest kernel space
from guest user code by changing the bound on the user
code and data segments (Figure 7). When the guest-
machine process is running in guest user mode, the
VMM kernel module shrinks the user code and data seg-
ments to span only [0x0, 0x70000000). When the
guest-machine process is running in guest kernel mode,
the VMM kernel module grows the user code and data
segments to its normal range of [0x0, 0xffffffff].
This solution added only 20 lines of code to the VMM
kernel module and is the solution we currently use.

One limitation of the first solution is that it
assumes the guest kernel space occupies a contiguous
region directly below the host kernel space. Our second
solution allows the guest kernel space to occupy arbi-
trary ranges of the address space within [0x0,
0xc0000000) by using the page table’s supervisor-
only bit to distinguish between guest kernel mode and
guest user mode (Figure 8). In this solution, the VMM
kernel module marks the guest kernel’s pages as accessi-
ble only by supervisor code (ring 0-2), then runs the
guest-machine process in ring 1 while in guest kernel
mode. When running in ring 1, the CPU can access
pages marked as supervisor in the page table, but it can-
not execute privileged instructions (such as changing the
segment descriptor). To prevent the guest-machine pro-
cess from accessing host kernel space, the VMM kernel
module shrinks the user code and data segment to span

Figure 5: Guest application system call with VMM kernel
module. This picture shows the steps taken by UMLinux with
a VMM kernel module to transfer control to the guest
operating system when a guest application issues a system
call.
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only [0x0, 0xc0000000). The guest-machine process
runs in ring 3 while in guest user mode, which prevents
guest user code from accessing the guest kernel’s data.
This allows the VMM kernel module to protect arbitrary
pages in [0x0, 0xc0000000) from guest user mode
by setting the supervisor-only bit on those pages. It does
still require the host kernel and user address ranges to
each be contiguous.

4.3. Switching between guest application
processes

A third bottleneck in a Type II VMM occurs when
switching address spaces between guest application pro-
cesses. Changing guest address spaces means changing
the current mapping between guest virtual pages and the
page in the virtual machine’s “physical” memory file.
Changing this mapping is done by calling munmap for
the outgoing guest application process’s virtual address
space, then calling mmap for each resident virtual page

in the incoming guest application process. UMLinux
minimizes the calls to mmap by doing it on demand, i.e.
as the incoming guest application process faults in its
address space. Even with this optimization, however,
UMLinux generates a large number of calls to mmap,
especially when the working sets of the guest applica-
tion processes are large.

To improve the speed of guest context switches,
we enhance the host OS to allow a single process to
maintain several address space definitions. Each address
space is defined by a separate set of page tables, and the
guest-machine processes switches between address
space definitions via a new host system call switch-
guest. To switch address space definitions, switch-
guest needs only to change the pointer to the current
first-level page table. This task is much faster than
mmap’ing each virtual page of the incoming guest
application process. We modify the guest kernel to use
switchguest when context switching from one guest
application process to another. We reuse initialized

Figure 6: Segment and page protections when running a
normal Linux host processes. A normal Linux host process
runs in CPU privilege ring 3 and uses the user code and data
segment. The segment bounds allow access to all addresses,
but the supervisor-only bit in the page table prevents the host
process from accessing the host operating system’s data. In
order to protect the guest kernel’s data with this setup, the
guest-machine process must munmap or mprotect
[0x70000000, 0xc0000000) before switching to guest
user mode.
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0xffffffff].
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address space definitions to minimize the overhead of
creating guest application processes. We take care to
prevent the guest-machine process from abusing
switchguest by limiting it to 1024 different address
spaces and checking all parameters carefully. This opti-
mization added 340 lines of code to the host kernel.

5. Performance results

This section evaluates the performance benefits
achieved by each of the optimizations described in Sec-
tion 4.

We first measure the performance of three impor-
tant primitives: a null system call, switching between
two guest application processes (each with a 64 KB
working set), and transferring 10 MB of data using TCP
across a 100 Mb/s Ethernet switch. The first two of these
microbenchmarks come from the lmbench suite
[McVoy96].

We also measure performance on three mac-
robenchmarks. POV-Ray is a CPU-intensive ray-tracing
program. We render the benchmark image from the
POV-Ray distribution at quality 8. kernel-build compiles
the complete Linux 2.4.18 kernel (make bzImage).
SPECweb99 measures web server performance, using
the 2.0.36 Apache web server. We configure
SPECweb99 with 15 simultaneous connections spread
over two clients connected to a 100 Mb/s Ethernet
switch. kernel-build and SPECweb99 exercise the vir-
tual machine intensively by making many system calls.
They are similar to the I/O-intensive and kernel-inten-
sive workloads used to evaluate Cellular Disco
[Govil00]. All workloads start with a warm guest file
cache. Each results represents the average of 5 runs.
Variance across runs is less than 3%.

All experiments are run on an computer with an
AMD Athlon 1800+ CPU, 256 MB of memory, and a
Samsung SV4084 IDE disk. The guest kernel is Linux
2.4.18 ported to UMLinux, and the host kernels for
UMLinux are all Linux 2.4.18 with different degrees of
support for VMMs. All virtual machines are configured
with 192 MB of “physical” memory. The virtual hard
disk for UMLinux is stored on a raw disk partition on
the host to avoid double buffering the virtual disk data in
the guest and host file caches and to prevent the virtual
machine from benefitting unfairly from the host’s file
cache. The host and guest file systems have the same
versions of all software (based on RedHat 6.2).

We measure baseline performance by running
directly on the host operating system (standalone). The
host uses the same hardware and software installation as
the virtual-machine systems and has access to the full
256 MB of host memory.

We use VMware Workstation 3.1 to illustrate the
performance of VMMs that are built directly on the host
hardware. We chose VMware Workstation because it
executes mostly on host hardware and because it is
regarded widely as providing excellent performance.
However, note that VMware Workstation may be slower
than a Type I VMM that is ideal for the purposes of
comparing with UMLinux. First, VMware Workstation
issues I/O through the host OS rather than controlling
the host I/O devices directly. Second, unlike UMLinux,
VMware Workstation can support unmodified guest
operating systems, and this capability forces VMware
Workstation to do extra work to provide the same inter-
face to the guest OS as the host hardware does. The con-
figuration for VMware Workstation matches that of the
other virtual-machine systems, except that VMware

Figure 8: Segment and page protections when running the
guest-machine process (solution 2). This solution protects
the guest kernel space from guest application processes by
marking the guest kernel’s pages as accessible only by code
running in CPU privilege ring 0-2 and running the guest-
machine process in ring 1 when executing guest kernel code.
To prevent the guest-machine process from accessing host
kernel space, the VMM kernel module shrinks the user code
and data segment to span only [0x0, 0xc0000000).
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Workstation uses the host disk partition’s cacheable
block device for its virtual disk.

Figures 9 and 10 summarize results from all per-
formance experiments.

The original UMLinux is hundreds of times slower
for null system calls and context switches and is not able
to saturate the network. UMLinux is 8x as slow as the
standalone host on SPECweb99, 18x as slow as the stan-
dalone host on kernel-build and 10% slower than the
standalone host on POV-Ray. Because POV-Ray is com-
pute-bound, it does not interact much with the guest ker-
nel and thus incurs little virtualization overhead. The
overheads for SPECweb99 and kernel-build are higher
because they issue more guest kernel calls, each of
which must be trapped by the VMM kernel module and
reflected back to the guest kernel by sending a signal.

VMMs that are built directly on the hardware exe-
cute much faster than a Type II VMM without host OS
support. VMware Workstation 3.1 executes a null sys-
tem call nearly as fast as the standalone host, can satu-
rate the network, and is within a factor of 5 of the
context switch time for a standalone host. VMware
Workstation 3.1 incurs an overhead of 6-30% on the
intensive macrobenchmarks (SPECweb99 and kernel-
build).

Our first optimization (Section 4.1) moves the
VMM functionality into the kernel. This improves per-
formance by a factor of about 2-3 on the microbench-
marks, and by a factor of about 2 on the intensive
macrobenchmarks.

Our second optimization (Section 4.2) uses seg-
ment bounds to eliminate the need to call mmap, mun-
map, and mprotect when switching between guest
kernel mode and guest user mode. Adding this optimiza-
tion improves performance on null system calls and con-
text switches by another factor of 5 (beyond the
performance with just the first optimization) and enables
UMLinux to saturate the network. Performance on the
two intensive macrobenchmarks improves by a factor of
3-4.

Our final optimization (Section 4.3) maintains
multiple address space definitions to speed up context
switches between guest application processes. This opti-
mization has little effect on benchmarks with only one
main application process, but it has a dramatic affect on
benchmarks with more than one main application pro-
cess. Adding this optimization improves the context
switch microbenchmark by a factor of 13 and improves
kernel-build by a factor of 2.

With all three host OS optimizations to support
VMMs, UMLinux runs all macrobenchmarks well
within our performance target of a factor of 2 relative to
standalone. POV-Ray incurs 1% overhead; kernel-build
incurs 35% overhead; and SPECweb99 incurs 14%
overhead. These overheads are comparable to those
attained by VMware Workstation 3.1.

The largest remaining source of virtualization
overhead for kernel-build is the cost and frequency of
handling memory faults. kernel-build creates a large
number of guest application processes, each of which
maps its executable pages on demand. Each demand-
mapped page causes a signal to be delivered to the guest
kernel, which must then ask the host kernel to map the
new page. In addition, UMLinux currently does not sup-
port the ability to issue multiple outstanding I/Os on the
host. We plan to update the guest disk driver to take
advantage of non-blocking I/O when it becomes avail-
able on Linux.

6. Related work

User-Mode Linux is a Type II VMM that is very
similar to UMLinux [Dike00]. Our discussion of User-
Mode Linux assumes a configuration that protects guest
kernel memory from guest application processes (jail
mode). The major technical difference between the
User-Mode Linux and UMLinux is that User-Mode
Linux uses a separate host process for each guest appli-
cation process, while UMLinux runs all guest code in a
single host process. Assigning each guest application
process to a separate host process technique speeds up
context switches between guest application processes,
but it leads to complications such as keeping the shared
portion of the guest address spaces consistent and diffi-
cult synchronization issues when switching guest appli-
cation processes [Dike02a].

User-Mode Linux in jail mode is faster than
UMLinux (without host OS support) on context
switches (157 vs. 2029 microseconds) but slower on
system calls (296 vs. 96 microseconds) and network
transfers (54 vs. 39 seconds). User-Mode Linux in jail
mode is faster on kernel-build (1309 vs. 2294 seconds)
and slower on SPECweb99 (200 vs. 172 seconds) than
UMLinux without host OS support.

Concurrently with our work on host OS support
for VMMs, the author of User-Mode Linux proposed
modifying the host OS to support multiple address space
definitions for a single host process [Dike02a]. Like the
optimization in Section 4.3, this would speed up
switches between guest application processes and allow
User-Mode Linux to run all guest code in a single host



Figure 9: Microbenchmark results. This figure compares the performance of different virtual-machine monitors on three
microbenchmarks: a null guest system call, context switching between two 64 KB guest application processes, and receiving 10
MB of data over the network. The first four bars represent the performance of UMLinux with increasing support from the host OS.
Each optimization level is cumulative, i.e. it includes all optimizations of the bars to the left. The performance of a standalone
host (no VMM) is shown for reference. Without support from the host OS, UMLinux is much slower than a standalone host.
Adding three extensions to the host OS improves the performance of UMLinux dramatically.
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Figure 10: Macrobenchmark results. This figure compares the performance of different virtual-machine monitors on three
macrobenchmarks: the POV-Ray ray tracer, compiling a kernel, and SPECweb99. The first four bars represent the performance
of UMLinux with increasing support from the host OS. Each optimization level is cumulative, i.e. it includes all optimizations
of the bars to the left. The performance of a standalone host (no VMM) is shown for reference. Without support from the host
OS, UMLinux is much slower than a standalone host. Adding three extensions to the host OS allows UMLinux to approach the
speed of a Type I VMM.
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process. Implementation of this optimization is cur-
rently underway [Dike02b], though User-Mode Linux
still uses two separate host processes, one for the guest
kernel and one for all guest application processes. We
currently use UMLinux for our CoVirt research project
on virtual machines [Chen01] because running all guest
code in a single host process is simpler, uses fewer host
resources, and simplifies the implementation of our
VMM-based replay service (ReVirt) [Dunlap02].

The SUNY Palladium project used a combination
of page and segment protections on x86 processors to
divide a single address space into separate protection
domains [Chiueh99]. Our second solution for protecting
the guest kernel space from guest application processes
(Section 4.2) uses a similar combination of x86 features.
However, the SUNY Palladium project is more complex
because it needs to support a more general set of protec-
tion domains than UMLinux.

Reinhardt, et al. implemented extensions to the
CM-5’s operating system that enabled a single process
to create and switch between multiple address spaces
[Reinhardt93]. This capability was added to support the
Wisconsin Wind Tunnel’s parallel simulation of parallel
computers.

7. Conclusions and future work

Virtual-machine monitors that are built on a host
operating system are simple and elegant, but they are
currently an order of magnitude slower than running
outside a virtual machine, and much slower than VMMs
that are built directly on the hardware. We examined the
sources of overhead for a VMM that run on a host oper-
ating system.

We found that three bottlenecks are responsible for
the bulk of the performance overhead. First, the host OS
required a separate host user process to control the main
guest-machine process, and this generated a large num-
ber of host context switches. We eliminated this bottle-
neck by moving the small amount of code that
controlled the guest-machine process into the host ker-
nel. Second, switching between guest kernel and guest
user space generated a large number of memory protec-
tion operations on the host. We eliminated this bottle-
neck in two ways. One solution modified the host user
segment bounds; the other solution modified the seg-
ment bounds and ran the guest-machine process in CPU
privilege ring 1. Third, switching between two guest
application processes generated a large number of mem-
ory mapping operations on the host. We eliminated this
bottleneck by allowing a single host process to maintain
several address space definitions. In total, 510 lines of

code were added to the host kernel to support these three
optimizations.

With all three optimizations, performance of a
Type II VMM on macrobenchmarks improved to within
14-35% overhead relative to running on a standalone
host (no VMM), even on benchmarks that exercised the
VMM intensively. The main remaining source of over-
head was the large number of guest application pro-
cesses created in one benchmark (kernel-build) and
accompanying page faults from demand mapping in the
executable.

In the future, we plan to reduce the size of the host
operating system used to support a VMM. Much of the
code in the host OS can be eliminated, because the
VMM uses only a small number of system calls and
abstractions in the host OS. Reducing the code size of
the host OS will help make Type II VMMs a fast and
trusted base for future virtual-machine services.
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