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Operating Systems for Low-End Devices

in the Internet of Things: a Survey
Oliver Hahm, Emmanuel Baccelli, Hauke Petersen, and Nicolas Tsiftes

Abstract—The Internet of Things (IoT) is projected to soon
interconnect tens of billions of new devices, in large part also
connected to the Internet. IoT devices include both high-end
devices which can use traditional go-to operating systems (OS)
such as Linux, and low-end devices which cannot, due to stringent
resource constraints, e.g. very limited memory, computational
power, and power supply. However, large-scale IoT software
development, deployment, and maintenance requires an appro-
priate OS to build upon. In this paper, we thus analyse in detail
the specific requirements that an OS should satisfy to run on
low-end IoT devices, and we survey applicable operating systems,
focusing on candidates that could become an equivalent of Linux
for such devices i.e. a one-size-fits-most, open source OS for low-
end IoT devices.

I. INTRODUCTION

The Internet of Things (IoT) stems from the availability

of a plethora of cheap, tiny, energy-efficient communicating

devices (a.k.a. things). Multiple standard communication pro-

tocols have been developed at different layers for the IoT

networking stack, with IPv6 typically being the narrow waist

at the network layer. The availability of such protocols enables

heterogeneous devices to be interconnected, and reachable

from the Internet.

From the hardware point of view, the Internet of Things

is composed of heterogeneous hardware - even more than in

the traditional Internet. IoT devices can be classified in two

categories, based on their capability and performance. The

first category consists in high-end IoT devices, which includes

single-board computers such as the Rasberry Pi [1], and

smartphones. High-end IoT devices have enough resources and

adequate characteristics to run software based on traditional

Operating Systems (OSs) such as Linux or BSD.

The second category consists in low-end IoT devices, which

are too resource-constrained to run these traditional OSs.

Popular examples of low-end IoT devices include Arduino [2],

Econotag [3], Zolertia Z1 [4], IoT-LAB M3 nodes [5], Open-

Mote nodes [6], and TelosB motes [7], some of which are

shown in Fig. 1. In this paper, we focus on such low-end IoT

devices because they pose novel challenges for OS designers

when it comes to handling the highly constrained hardware

resources.

A. Low-End IoT Devices

Low-end IoT devices are typically very constrained in terms

of resources including energy, CPU, and memory capacity.
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Recently, the Internet Engineering Task Force (IETF) standard-

ized a classification [8] of such devices in three subcategories1

based on memory capacity2.

• Class 0 devices have the smallest resources (<<10 kB

of RAM and <<100 kB Flash); e.g., a specialized mote

in a Wireless Sensor Network (WSN).

• Class 1 devices have medium-level resources (∼10 kB of

RAM and ∼100 kB Flash), allowing richer applications

and more advanced features than rudimentary motes, e.g.

routing and secure communication protocols.

• Class 2 devices have more resources, but are still very

constrained compared to high-end IoT devices and tradi-

tional Internet hosts.

On Class 0 devices, extreme specialization and resource

constraints typically make the use of a proper OS unsuitable.

Therefore, the software running on such hardware is typically

developed bare-metal, and very hardware-specific.

IoT devices of Class 1 and above, however, are typically less

specialized. Software can alternatively transform such a device

into an Internet router [9], host, or server, with a standard net-

work stack and reprogrammable/interchangeable applications

running on top of this stack [10]. Therefore, new business

models currently emerge based (partly) on portable, hardware-

independent software and applications running on IoT devices

of Class 1 and above. Consequently, several major companies

have recently announced new OSs designed specifically to

run on IoT devices, including Huawei [11], ARM [12], and

Google [13]. Indeed, on such hardware, it is often desirable to

be provided with software primitives enabling easy hardware-

independent code production. More generally, there is a need

for Application Programming Interfaces (APIs) beyond bare-

metal programming that can cater for the wide range of

IoT use cases, to facilitate large-scale software development,

deployment and maintenance. Such software primitives are

typically provided by an OS. In this paper, we will thus focus

on OSs that are appropriate for Class 1 and Class 2 devices.

We note that, unfortunately, Moore’s law is not expected

to help in this context: it is anticipated that IoT devices

will get smaller, cheaper, and more energy-efficient, instead

of providing significantly more memory or CPU power [14].

Therefore, in the foreseeable future, low-end IoT devices with

a few kilobytes of memory, such as Class 1 and Class 2

devices, are likely to remain predominant in the IoT.

1Note that this classification is not to be confused with Electronic Product
Code (EPC). It is based on IETF standard classification as specified in
RFC 7228 [8]. The terms Class 0–2 are used according to this classification
throughout the paper.

2Other classifications, e.g. based on energy capacities, are possible, but
available memory is most crucial for the OS design.
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(a) Arduino Due. (b) Zolertia Re-Mote. (c) IoT-LAB-M3.

(d) Atmel SAM R21.

Fig. 1: Examples of low-end IoT devices.

B. Operating Systems for Low-End IoT Devices

As previously mentioned, traditional operating systems such

as Linux or BSD are not applicable on low-end IoT devices,

because they cannot run on the limited resources provided

on such hardware. In consequence, the IoT is plagued with

lack of interoperability between many incompatible vertical

silo solutions. We argue that the IoT will not fulfill its potential

until a software big-bang happens, resulting in the emergence

of a couple of de facto standard OSs providing consistent API

& SDK across heterogeneous IoT hardware platforms.

In this paper, we will thus survey OSs that could become

the de facto standard OS for low-end IoT devices. We note that

solutions providing the smallest possible memory footprint are

typically limited to a specific use case, and are therefore unfit

for becoming the generic OS for IoT devices. In contrast, we

will thus target one-size-fits-all (or at least one-size-fits-most)

solutions that provide the best level of comfort while satisfying

medium memory requirements in the order of ∼10 kB of RAM

or more, and ∼100 kB Flash or more; i.e., devices of Class 1

and above, according to the IETF classification [8].

By level of comfort, we mean interoperability with the rest

of the Internet including (i) compatibility with IP protocols

from a network point of view, and (ii) from a systems point of

view, compatibility with standard programming tools, models,

and languages used on Internet hosts. In this paper, we focus

on open source OSs, but we will also briefly survey closed

source alternatives. One reason for this focus is that several

of the most widespread OSs for low-end IoT devices are open

source, and that they offer greater possibilities to examine their

design and implementation at a thorough level, as is required

for this survey. A number of additional reasons for focussing

on open source will also be mentioned later in the paper.

The remainder of this paper is organized as follows. First,

we analyze the requirements which should be fulfilled by an

OS for IoT devices. Then, we overview the main OS design

choices and other non-technical factors in this context. Once

this background settled, we survey the OSs that are potentially

applicable, with the goal of being exhaustive, but brief. Then,

we propose a taxonomy for IoT OSs, and we analyse in

more depth one OS per identified category, chosen for being

prominent within its category.

II. REQUIREMENTS FOR AN IOT OPERATING SYSTEM

In this section we give an overview of the diverse require-

ments a generic OS for low-end IoT devices should aim to

satisfy.

A. Small Memory Footprint

Compared to other connected machines, IoT devices are

much more resource-constrained, especially in terms of mem-

ory. One of the requirements for a generic OS for the IoT

is thus to fit within such memory constraints. While PCs,

smartphones, tablets, or laptops provide Giga- or TeraBytes

of memory, IoT devices typically provide a few kilobytes of

memory, i.e. a million times less. This observation holds both

for volatile (RAM) and persistent (ROM) memory [8]. In order

to fit within memory footprint constraints, IoT application

designers must be provided with a set of optimized libraries

(potentially cross-layer) providing common IoT functionality,

and efficient data structures.

Identifying the right trade-off between (i) performance, (ii)

a convenient API, and (iii) a small OS memory footprint, is a

non-trivial challenge. For example, in many cases the OS de-

signer has to identify the sweet spot between RAM and ROM

usage. Furthermore, balance must be found between sensible

programming guidelines and coding conventions which must

be observed on one hand, and the high degree of modularity

and configurability which is desired to fit a wide range of use

cases on the other hand.
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B. Support for Heterogeneous Hardware

While the diversity of hardware and protocols used in

today’s Internet is relatively small from an architectural per-

spective, the degree of heterogeneity explodes in the IoT.

The large variety of use cases [15]–[19] led to the devel-

opment of a large variety of hardware and communication

technologies. IoT devices are based on various microcontroller

(MCU) architectures and families, including 8 bit (e.g. Intel

8051/52, Atmel AVR), 16 bit (e.g. TI MSP430), 32 bit (ARM7,

ARM Cortex-M, MIPS32, and even x86) architectures—64 bit

architectures might also appear in the future. On top of that,

key system characteristics vary wildly: for example some

IoT devices provide hundreds of kilobytes of RAM, but no

persistent memory to store executable code (and thus generate

the need to load both code and data into RAM). One such

board is the still popular Redwire Econotag board, which

is based on an Freescale MC13224V [3], [20]. Other IoT

devices are very limited in terms of RAM, but equipped with

a lot of ROM, such as the STM32F100VC ARM Cortex-M3

MCU [21]. Similarly, IoT devices can be equipped with a wide

variety of communication technologies, as described below in

Subsection II-C. Note that such heterogeneity may even occur

within a single deployment, whereby many different types

of devices take part in various tasks to achieve an overall

goal [22], [23]. Thus, one of the requirements—and a key

challenge—for a generic OS for the IoT is to support this

heterogeneity in hardware architectures and communication

technologies.

C. Network Connectivity

The main point of having IoT devices, is that they can

interconnect, and communicate with one another or with the

Internet. IoT devices are thus typically equipped with one (or

more) network interfaces. Communication techniques used in

the IoT encompass not only a wide variety of low-power radio

technologies (e.g., IEEE 802.15.4, Bluetooth/BLE, DASH7,

and EnOcean) but also various wired technologies (e.g., PLC,

Ethernet, or several bus systems). Contrary to WSN scenar-

ios [24] [25], it is generally expected that IoT devices seam-

lessly integrate with the Internet; i.e., can communicate end-to-

end with other machines on the Internet [23]. The combination

of (i) having to support multiple link layer technologies and

(ii) having to communicate with other Internet hosts, led to the

use of network stacks based on IP protocols directly on IoT

devices [26]. A key requirement for a generic OS for the IoT

is thus to support heterogeneous link layer technologies and a

network stack based on IP protocols relevant for the IoT [26].

Furthermore, as indicated by the evolution of Linux over the

years (which is an obvious example of future-proof design),

it is also desirable that the OS can cater for multiple network

stacks and for continuous network stack evolution.

D. Energy Efficiency

Many IoT devices will run on batteries or other con-

strained energy sources. For example, smart meters and other

home/building automation devices are required to work for

years with a single battery charge [27]. On a global level,

energy efficiency is also required due to the sheer number of

IoT devices that is expected to be deployed (tens of billions).

IoT hardware in general—MCUs, radio transceivers, sensors—

provides features to operate in an energy efficient manner.

However, there is no free lunch: this yields requirements on

IoT software. Indeed, unless IoT software makes use of these

features (e.g., putting devices into the deepest sleep mode as

often as possible), energy efficiency is not achieved. Therefore,

a key requirement for OSs for the IoT is (i) to provide

energy saving options to upper layers, and (ii) to make use

of these functions itself as much as possible, for example by

using techniques such as radio duty cycling, or by minimizing

the number of periodic tasks that need to be executed. For

instance, a periodic system timer that schedulers use for time

slicing leads to a system that never goes to deep power-down

modes, and should thus be avoided if possible.

E. Real-Time Capabilities

Precise timing, and timely execution are crucial in various

IoT use-cases e.g., smart health applications such as body

area networks (BAN) with pacemakers providing wireless

monitoring and control [28], [29], or in other scenarios

including actuators and/or robots in industrial automation

contexts, or a Vehicular Ad-Hoc Network (VANET). An OS

that can fulfill timely execution requirements is called a Real-

Time Operating System (RTOS), and is designed to guarantee

worst-case execution times and worst-case interrupt latencies.

Therefore, another requirement for a generic OS for the IoT is

to be an RTOS, which typically implies that kernel functions

have to operate with a deterministic run-time. The Japanese

open standard for a real-time operating system, ITRON, is

popular in this field, though it aims mostly for consumer

electronics [30].

F. Security

On one hand, some IoT systems are part of critical infras-

tructure or industrial systems with life safety implications [31].

On the other hand, since they are connected to the Internet,

IoT devices are in general expected to meet high security and

privacy standards. Beyond the overarching trust management

challenge, IoT security challenges includes data integrity,

authentication, and access control in various parts of the IoT

architecture. Thus, a requirement (and challenge) for an OS for

the IoT is to provide the necessary mechanisms (cryptographic

libraries and security protocols) while retaining flexibility and

usability. Last but not least, since software with a certain

degree of complexity can never be expected to be 100%

bug-free, and security standards evolve (driven by various

stake holders such as industry, government, consumers etc.)

it is crucial to provide mechanisms for software updates on

already-deployed IoT devices—and to use open source as

much as possible [32].

III. KEY DESIGN CHOICES

The success and applicability of an OS for the IoT are

influenced by technical as well as political or organizational
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factors. In this section, we will overview key technical OS

design alternatives, as well as relevant non-technical consid-

erations.

A. Technical Properties

Design choices concerning, e.g., the general OS model, the

scheduling strategy, or hardware abstraction, have a major

impact on the capabilities and flexibility of the system. In this

section, we will overview such choices and how they affect

OS applicability for IoT use cases.

General Architecture and Modularity. The first design

decision that has to be made for any OS is the choice of

the kernel type. This choice has a major impact on the

overall architecture of the system and its modularity. A generic

architecture for an IoT OS is depicted in Figure 2. One can

differentiate between an exokernel approach, a microkernel

approach, a monolithic approach, or a hybrid approach. The

main idea behind the exokernel approach is to put as few

abstractions as possible between the application and the hard-

ware, and to mostly focus on avoiding resource conflicts and

checking access levels. The microkernel approach aims for

more functionalities (minimalistic set of features) in the kernel,

while still requiring very little memory, and providing a lot of

space and flexibility for the rest of the system, as well as

robustness (since a crashing device driver will not affect the

stability of the whole system). However, due to the typical

absence of an Memory Management Unit (MMU) on low-

end IoT devices, buffer and stack overflows can still happen

and have severe impact on the system. Finally, the main idea

behind a monolithic approach is that all components of the

system are developed together, which may lead to a simpler

and overall more efficient design.

Synopsis: One has to choose between the more robust and

more flexible microkernel or a less complex and more efficient

monolithic kernel — or go for a hybrid approach.

Scheduling Model. Another crucial part of any OS is the

scheduler, which affects other important properties such as

energy efficiency, real-time capabilities, or the programming

model. There are typically two types of schedulers: preemptive

schedulers, and non-preemptive (or cooperative) schedulers.

An OS may provide different schedulers, that can be selected

at build time. A preemptive scheduler can interrupt any (non-

kernel) task at any given point to allow another task to execute

for a limited time. In a cooperative model, each thread is

responsible to yield itself, because no other task, and in some

cases not even the kernel, is able to interrupt a task.

In many cases a preemptive scheduler requires a periodic

timer tick, sometimes called a systick, in order to assign time

slices to each task. This requirement usually prevents the IoT

device to enter the deepest power-save mode, since at least one

hardware timer needs to stay active. Additionally, the MCU

enters full active mode at each systick. Time-sliced scheduling

is often used for OSs with a User Interface (UI) to mimic

a parallelized execution of multiple tasks. For IoT OSs this

is mostly unnecessary because they do not have a direct user

and, thus, do not require a UI.

Synopsis: A preemptive scheduler assigns CPU time to each

Fig. 2: Typical components of an OS for low-end IoT devices,

including a common low-power IPv6 protocol stack.

task, while the different tasks have to yield themselves in the

cooperative model.

Memory Allocation. As described in Section II, memory

is usually a very scarce resource on IoT devices. Hence, a

sophisticated handling of memory is required. One important

question is whether memory is allocated in a static or dynamic

manner, and this choice also affects other criteria of the

system design. Static memory allocation typically requires

some over-provisioning and makes the system less flexible

to changing requirements during run-time. Dynamic memory

allocation makes the system design more complicated for

two main reasons. First, functions such as malloc() and

related functions are usually implemented in a time-wise non-

deterministic fashion in the standard C libraries and, thus, will

break any real-time guarantees. Hence, in order to make use

of dynamic memory allocation for applications with real-time

requirements, the OS has to provide special implementations

for deterministic malloc() like TLSF [33]. Second, dynamic

memory allocation creates the need to handle out-of-memory

situations and the like at runtime, which may be difficult to

deal with. Additionally, heap-based malloc implementations

usually induce memory fragmentation, which cause systems

to run out of memory even faster.

Synopsis: Static memory allocation introduces some mem-

ory overhead due to over-provisioning and results in less

flexible systems, while dynamic memory allocation leads to

a more complex system and may conflict with real-time

requirements.

Network Buffer Management. A central component of an

IoT OS is the network stack where chunks of memory, e.g.,

packets, has to be shared between the layers. Two possible

solutions to achieve this are copying of memory (memcpy())

or passing of pointers between the several layers. While the

first solution is expensive from a resource point of view, the
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latter generates the question who is responsible to allocate the

memory. Delegating this task to the upper layers, make the

application development more complex and less convenient.

Leaving this task for the lower layers, such as the device driver,

make the system less flexible. A possible approach to solve

this conflict is the design of a central memory manager as

proposed for TinyOS or RIOT [34], [35].

Synopsis: Memory for packet handling in the network stack

may be allocated by each layer or passed as a reference

between the layers.

Programming Model. The programming model defines

how an application developer can model the program. The

typical programming models in the domain of IoT OSs can be

divided into event-driven systems and multi-threaded systems.

In an event-driven system which is, for example, widely used

for WSN OSs, every task has to be triggered by an (external)

event, such as an interrupt. This approach is often accompanied

by a simple event loop (instead of a more complex scheduler)

and a shared-stack model. A programming model based on

multi-threading gives the developer the opportunity to run each

task in its own thread context, and communicate between the

tasks by using an Inter Process Communication (IPC) API.

Synopsis: Event-driven systems can be more memory-

efficient, while multi-threading systems eases the application

design.

Programming Languages. The main choice for the pro-

gramming language of an OS is to decide between (i) a

standard programming language, typically ANSI C or C++,

and (ii) an OS-specific language or dialect. On the one hand,

providing OS-specific language features allows performance-

or safety-relevant enhancements that low level languages like

C do not support. On the other hand, they prevent the use of

well-established and mature development tools. The specifi-

cation of standards for programming languages, most notably

the ANSI specifications for C and C++, meant a significant

boost for the evolution of software in general and for OSs in

particular. Despite its age (and the rise of newer programming

languages), the C programming language is still the most

important and most widely used programming language (along

with Assembler) when it comes to OS programming, and

to lower level parts such as scheduling or device drivers.

However, more sophisticated languages with a bigger feature

set may be available on top of that, at higher levels, to ease

application programming.

Synopsis: Standard programming languages simplify porta-

bility and enable the use of well-known development tools.

OS-specific languages and language extensions can increase

the system performance and safety.

Driver Model and Hardware Abstraction Layer. IoT

systems will interact with the environment in many ways,

either in a passive way by sensing through all kind of sen-

sors or actively through actuators such as motors or lighting

systems. Consequently, MCUs for these systems are usually

equipped with a variety of different peripheral devices, like

ADCs/DACs, interfaces like SPI, I2C, CAN bus, or serial lines,

and GPIOs. Thus, a flexible and reasonably convenient driver

interface is crucial for an IoT OS.

In addition to the driver model for connecting external

devices, e.g., sensors, actuators, transceivers, the model may

also abstract from the underlying hardware in general. A

hardware abstraction layer can provide a well-defined interface

to CPU, memory, and interrupt handling in order to make

porting to new platforms a straightforward task.

Synopsis: A well-defined hardware abstraction layer and

driver model can significantly improve the system design, but

introduces a certain amount of overhead—either in terms of

lines of code or in terms of runtime overhead.

Debugging Tools. As mentioned before, the choice of

programming languages also predetermines the possible tools

to use, including the ones for debugging. Well-established

toolchains such as the one around the GNU Compiler Col-

lection (GCC) usually include corresponding debugging tools,

e.g., the GNU Debugger (GDB). However, in order to run a

live debugging system, the target board has to provide an ade-

quate interface, such as JTAG or Spy-Bi-Wire. Unfortunately,

not every IoT device provides such an interface, and therefore

other debugging facilities are needed.

A common auxiliary tool is the use of printf() and

the like for simple debugging over a serial interface, e.g., a

USART. In some cases, even a simple LED blinking algorithm

can sometimes be found as a primitive debugging substitute.

If one lacks access to the devices, as is often the case with

deployed IoT networks, it is necessary to provide other means

for accessing debug information. For instance, this can be

achieved through periodic diagnostic messages sent over the

network, or through logs written on external flash memory.

Synopsis: Using standard programming languages in gen-

eral allows for using standard debugging tools, but hardware

limitations may pose the need for other, simpler debugging

facilities via serial output or even LED blinking.

Feature Set. An OS can be split into kernel and higher

level functionalities. Typically the kernel provides a scheduler,

a model for tasks, mutual exclusion (mutex) and other forms

of synchronization, and timers. In case the OS supports multi-

threading, the API will usually also comprise functions for

IPC. On higher layers, system libraries can be found, such as a

shell, logging, cryptographic functions, or network stacks. Due

to typically missing MMUs on IoT devices, such applications

and application libraries will usually run in the same address

space as kernel operations and can therefore decrease the

system’s stability.

In addition to network protocols, features in higher layers

that are of particular interest in an OS for low-end IoT devices

include over-the-air updates, dynamic loading and linking, or

libraries for lightweight encryption and decryption.

Synopsis: The overall feature set of an OS may be described

by the size of its API.

Testing. As for all software systems, testing plays a crucial

role for the development of IoT OSs. In particular, for highly

distributed development workflows, as can often be found in

bigger open source projects, deploying a continuous integra-

tion (CI) environment is inevitable [36]. This CI will usually

include build and integration tests as well as unit and regres-

sion tests. The specific challenges of testing for IoT systems

arise from the distributed nature of these systems, and the fact

that they are deeply embedded and often very constrained. A
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widely used approach to deal with the hardware-related part

of the testing, such as the testing of device drivers, is to use

hardware emulation tools, e.g., MSPSim or Emul8 [37], [38].

Network emulators and simulators such as Cooja or ns-2/ns-3,

that allow for the integration of OS code, are of great help in

this context [39].

Synopsis: The distributed nature and constraints of the

hardware makes thorough testing a challenging, but crucial

task.

B. Non-Technical Properties

The applicability of a technically fit OS—in particular for

commercial usage—is also influenced by aspects such as the

license, maintainability, the workflow, or the provider of the

OS. In this section we overview such non-technical aspects.

(Open) Standards. A crucial characteristic for any OS is

its ability to provide applications portability across hardware

platforms and architectures—ideally, without any additional

effort. Standardized APIs (such as POSIX, specified by IEEE

and the Open Group) were also developed to simplify soft-

ware porting between several OSs. However, on low-end IoT

devices, implementing a standard API designed for general

purpose operating systems such as Linux may be difficult

because of software size constraints (and in fact, even on PCs,

few OSs can claim full POSIX compliance). For seamless

software porting between multiple OSs, additional support for

programming language standards such as ANSI C99 or C++11

should nevertheless be provided. Finally, standards are not

only important on the system level, but unavoidable on the

network level. For standards at the network level, experience

shows that the use of open-access specifications, such as those

standardized by the Internet Engineering Task Force (IETF)

for instance, is preferable by default over other approaches.

Synopsis: The use of standards improves portability and

interoperability.

Certification. For some use cases, in particular for critical

systems in applications such as building automation, crucial

properties of the system include real-time capabilities, ro-

bustness, or determinism. In these cases, certification through

independent institutions becomes an inevitable requirement

for the OS. A typical and widely established example for

such a certification is the IEC 61508 standard, which is ti-

tled ”Functional Safety of Electrical/Electronic/Programmable

Electronic Safety-related Systems”. Additional certifications

that are relevant for OSs on IoT devices are the IPv6 Forum’s

”IPv6 Ready” logo program, and the recently started IPSO

Alliance compliance and certification program.

Synopsis: Especially for the deployment in industrial and

safety-critical applications, certification of the entire software

running on an IoT system might be mandatory.

Documentation. Complete and easy-to-understand docu-

mentation is important for any piece of software. For an OS

this requirement becomes even more important as the OS is

the foundation of every other piece of software running on

the system. Furthermore, need for thorough documentation is

exacerbated for embedded software, as such software often has

to make compromises for reasons that are difficult to grasp at

first sight, due to constraints that are only partly apparent.

A typical indicator for thoroughly documented code (but not

necessarily the most meaningful measure) is the percentage of

documentation per lines of code.

Synopsis: In order to make the best use of an OS and ease

application design, a complete and comprehensible documen-

tation is required.

Maturity of the Code. Even more difficult to measure than

the quality of documentation is the maturity of software. A

very rough indicator is the age of the project combined with

the number of contributors and users. While certification is

in many cases mainly a legal safeguard, the actual robustness

and correctness of a system is much more difficult to assess.

Synopsis: In many cases thorough testing and wide de-

ployment in commercial applications is a better indicator for

the maturity of an OS than the mere age of the project or

certifications.

License of the Code. In general, one can distinguish

between three license categories: (i) non-free, (ii) permissive

open source, and (iii) copyleft licenses. If an OS is released

under a non-free license, the OS is either only available as

binary data, or customers are charged extra fees to obtain

the source code, which hampers bug fixes and improvements

by third parties by limiting the number of contributors [32].

Permissive licenses, e.g. BSD, MIT, or Apache License, give

developers and users a high degree of freedom, and are often

more easily accepted by industry than copyleft licenses—

although for some companies, quite the contrary is true.

A possible downside of permissive licences is the potential

fragmentation of the community and code base, which often

leads to a situation where not all features are accessible—or at

least not within one repository. By contrast, copyleft licenses

such as GPL (with or without linking exception) and LGPL,

are less easily accepted by some industry branches, but can

lead to a much more integrative community and a common

code base, as can be seen with the outstanding example of

Linux.

Synopsis: Open source—particularly copyleft licenses—

may not always be the first choice of industry, but offers

chances for higher code quality and more secure code due

to the increased numbers of contributors and reviewers.

Provider of the OS. The code of the OS may be provided

in different forms and by differing entities (depending on

the chosen license type). It might be either provided by the

vendor that actually develops the software, or by a third

party, which may also provide commercial support. In case

of open source solutions, the code is often provided by the

developer community itself through repositories of version

control systems such as Git, Subversion, or Mercurial. The

community typically provides best-effort support via online

forums, open issue trackers, and mailing lists for these type of

projects. This support is crucial in practice and it is thus highly

recommended to prefer an open source project with a currently

active community, over an open source project with no active

community, or with a formerly active community. Note that

sometimes, professional software consulting is offered not

only for commercial OSs, but also for free open source OSs.

Synopsis: The way of distribution and degree of support for
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an OS is highly dependent on its license.

IV. CANDIDATE OS FOR THE IOT

In this section, we briefly review OSs that represent the

most promising approaches towards a generic IoT OS. The

goal in this section is exhaustiveness rather than in-depth

analysis (which is the focus of the next section). We will

distinguish between (i) open source OSs, (ii) closed source

OSs, and (iii) other software libraries or middleware for the

IoT. If not mentioned otherwise, all OSs are written in the

C programming language, while some hardware-specific parts

may be implemented in assembly language.

A. Open Source OSs

This section lists the predominant open source OSs targeting

for IoT devices.

1) Contiki [40], [41]: Contiki was originally developed as

an OS for WSNs running on very memory-constrained 8-bit

MCUs, but now also runs on 16-bit MCUs and modern IoT

devices based on the ARM 32-bit MCUs. It is based on an

event-driven, cooperative scheduling approach, with support

for lightweight pseudo-threading. While being written in the

C programming language, some parts of the OS make use

of macro-based abstractions (e.g., Protothreads [42]), and in

effect require developers to consider certain restrictions as to

what type of language features they can use. Contiki code is

available under BSD license on GitHub3 and other platforms,

while a large variety of forks are developed independently

(including many closed source versions of the OS). Contiki

features several network stacks, including the popular uIP

stack, with support for IPv6, 6LoWPAN, RPL, and CoAP;

and the Rime stack, which provides a set of distributed

programming abstractions. Contiki is developed since 2002,

and is so far one of the most used open source OSs for

constrained nodes.

2) RIOT [43]–[45]: RIOT was developed with the partic-

ular requirements of IoT in mind and aims for a developer-

friendly programing model and API, e.g. similar to what is

experienced on Linux. RIOT is a microkernel-based RTOS

with multi-threading support, using an architecture inherited

from FireKernel [46]. While the OS is written in C (ANSI99),

applications and libraries can also be implemented in C++.

The source code is available on GitHub4 under LGPLv2.1.

RIOT features several network stacks, including its own im-

plementation of the full 6LoWPAN stack (the gnrc stack), a

port of the 6TiSCH stack OpenWSN [47], and a port of the

information centric networking stack CCN-lite [48]. RIOT is

developed as such since 2012, by a growing, world-wide open

source community.

3) FreeRTOS [49]: FreeRTOS is a popular RTOS which

has been ported to many MCUs. Its preemptive microkernel

has support for multi-threading. It is now developed by Real

Time Engineers Ltd. and its code is available on the project

page under a modified GPL that allows commercial usage

3see https://github.com/contiki-os/contiki
4see https://github.com/RIOT-OS/RIOT

with closed source applications (only the kernel has to remain

open source). Although it does not provide its own network

stack, third-party network stacks can be used for Internet

connectivity. FreeRTOS is developed since 2002, and is so

far one of the most used open source RTOSs for constrained

nodes.

4) TinyOS [50]: Together with Contiki, TinyOS is the

most prominent OS for WSN applications, targeting very

constrained 8 bit and 16 bit platforms and is known for its

sophisticated design. TinyOS and nesC evolved language prim-

itives and programming abstractions to prevent as many bugs

as possible through software structure and enhance memory

efficiency by reducing the actual linked code to a minimum.

However, the rather complex design in combination with a

customized programming language makes it hard to learn,

and it is thus lacking a bigger developer community [51]. It

follows an event-driven approach, where several components

or modules can be virtually wired, as described by configu-

rations according the requirements. It is written in a dialect

of the C programming language, called nesC. Its source code

is available online under the BSD license on GitHub5. The

included BLIP network stack implements the 6LoWPAN stack.

TinyOS is developed since 2000, and is so far one of the most

used open source OSs for constrained nodes, with Contiki.

5) OpenWSN [47]: OpenWSN comprises a 6TiSCH net-

work stack, a basic scheduler, and a Board Support Package

(BSP) i.e., a simple hardware abstraction, making it possible to

run OpenWSN on a dozen IoT hardware platforms. As such,

OpenWSN is more of a network stack than a full-fledged OS.

OpenWSN code is available online under the BSD license on

GitHub6. The main focus of OpenWSN is the 6TiSCH network

stack, including an implementation of the IEEE 802.15.4e

MAC amendment [26]. OpenWSN is developed since 2010,

by a growing, world-wide open source community.

6) nuttX [52]: The nuttX OS aims for full POSIX and

ANSI compliance and supports MCUs ranging from 8 bit up

to 32 bit architectures. NuttX can be built as a microkernel as

well as a monolithic version. It is highly modular and features

real-time capabilities as well as a tickless scheduler. The

source code is available under BSD license on Sourceforge7.

The integrated network stack includes support for IPv4 and

IPv6 with various upper layer protocols. NuttX is developed

since 2007.

7) eCos [53]: The embedded configurable operating system

(eCos) supports 16, 32, and 64 bit embedded hardware. eCos

code is available under a custom license based on GPL with

linking exception (acknowledged by FSF). While the open

source version of eCos seems rather inactive, the commercial

version (eCosPro by eCosCentric) is under active develop-

ment. eCos does not provide an own network stack per se, but

supports third-party network stacks (lwIP and the FreeBSD

network stack). The source code is available in a Mercurial

repository8. eCos is developed since 2002, but parts of the

code-base are older.

5see https://github.com/tinyos/tinyos-main
6see https://github.com/openwsn-berkeley/openwsn-fw
7see http://git.code.sf.net/p/nuttx/git
8see http://hg-pub.ecoscentric.com/ecos/
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8) mbedOS [12]: ARM recently released a technology pre-

view release (labeled 15.11) of their upcoming OS for low-end

IoT devices, called mbed OS. Based on this preview, mbedOS

focuses exclusively on 32 bit ARM embedded architecture,

and supports a small number of platforms (5 so far, though

we can expect many more in the near future). Among the

experimental features show-cased in the preview are a (closed-

source) 6LoWPAN implementation that claims to implement

the Thread 1.0 specification, several interface definitions, a

port of PolarSSL, and support for Bluetooth Low Energy.

mbed is developed since 2009, but had so far focused on

providing a hardware abstraction layer rather than an OS.

9) L4 microkernel family [54], [55]: L4 OSs follow a strict

microkernel design and were originally created to overcome

the poor performance of earlier microkernel-based OSs in

the mid-1990s. Later implementations have been designed

for platform independence, improved security, isolation, and

robustness. A well-known representative of this family is seL4,

developed in 2006 by the NICTA group with a particular focus

on security, reliability, and formal verification [56]. However,

most L4 microkernel based OSs do not match the constraints

of Class 1 devices. An exception is the F9 microkernel that

targets particular ARM Cortex-M3/M4 based devices. While

many members of this family are licensed under GPL or BSD

license, not all of them are open source.

10) uClinux [57]: This is a port of the Linux 2.x kernel

for CPUs without an MMU and with a much smaller memory

footprint than Linux. While uClinux benefits from the rich

feature set of Linux (including APIs, a full TCP/IP stack, and

excellent file system support), it has the drawback of memory

requirements that do not fit low-end IoT devices, such as Class

1 devices [8], which are the focus of this survey. The source

code is available on Sourceforge9. uClinux is developed since

1998.

11) Android [58] and Brillo [59]: This mobile OS An-

droid, developed by Google, is a variant of Linux, targeting

mostly smartphones and tablets, but has also been used in

cars, watches, TVs, and other consumer electronics. The

concept of apps, accessible through online stores where users

can purchase and download application software, boosted the

evolution of smartphones. While the core of Android is open

source—as required by Linux’ GPL—many of the device

drivers and hardware support is proprietary closed source code.

Similarly to other Linux-based systems, Android is unable to

run on low-end IoT devices such as Class 1 devices.

In 2015, Google announced Brillo [59], a slimmed-down

version of Android that will be able to run on IoT devices

offering a few tens of megabytes of memory. Hence, Brillo

requires considerably less hardware resources than Android.

Because it is still a variant of Linux, however, it cannot be

used on the low-end IoT devices that are the focus of this

survey, and we will therefore not expound its technical details.

12) Other open source OS: For sake of completeness, we

mention below other open source OSs. However, since they

are not as prominent, we describe them in less detail.

9see http://sourceforge.net/projects/uclinux/files/

• ChibiOS/RT [60] is an RTOS is developed since 2007

under a modified GPL with linking exception and aims

for high performance on 8, 16, and 32 bit MCUs.

• CooCox CoOS [61] is a free and open RTOS specially

designed for ARM Cortex-M platforms which comes

along with a full-fledged IDE, developed since 2009.

• ERIKA Enterprise [62] is an RTOS targeted for auto-

motive embedded systems. It supports 8, 16, and 32 bit

MCUs, has support for multi-core systems and is licensed

under GPL v2 with linking exception.

• MansOS [63] is another WSN OS that aims for easy

developing and debugging and supports currently 8 bit

AVR and 16 bit MSP430 MCUs.

• NanoQplus [64] developed at ETRI targets WSN Class 0

devices and provides multi-threading and a memory pro-

tection mechanism.

• nanoRK [65] is an RTOS for WSNs with a focus on

resource reservation for tasks, developed since 2005 for

MSP430 platforms.

• Nut/OS [66] emerged from an RTOS called

Liquorice [67], Nut/OS focusses on constrained

devices with wired (Ethernet) connections.

• RTEMS [68] is an open RTOS with focus on open

standard APIs, multiprocessor support, and hard real-time

guarantees.

• There are other open source OSs from the domain of

WSNs, such as SOS [69], MANTIS OS [70], [71], Lo-

rien [72] or LiteOS [73], but they are mostly inactive and

never targeted IoT scenarios.

A detailed tabular overview of the open source OS listed

above is given in Table I. On the other hand, Table II

summarizes why OSs like Contiki, FreeRTOS, or RIOT are a

good match to most of the requirements derived in Section II,

while other approaches such as uClinux, Arduino and Android

fail to fulfill them.

B. Closed Source OSs

In addition to the aforementioned open source OSs, sev-

eral closed-source OSs have characteristics suitable for IoT

domain. Albeit being proprietary, some vendors offer limited

access to their source code for customers, registered users, or

academic institutes. These OSs, however, are often originally

designed for other domains, and typically lack important

features such as energy-saving mechanisms or recently stan-

dardized IoT protocols. Still, some of the closed-source OSs

can be adapted to run on Class 0 and Class 1 devices, and we

the list some of the more relevant examples below.

1) ThreadX [74]: ThreadX is an RTOS developed by

Express Logic, Inc. which has recently been acquired by

ARM (and might become the core of mbed OS 3.0) [75].

ThreadX is based on a microkernel RTOS (sometimes referred

to as a picokernel) which supports multi-threading and uses

a preemptive scheduler. The kernel provides two techniques

to eliminate priority inversion: (i) priority inheritance that

elevates the priority level of a task while executing a critical

section and (ii) preemption threshold that disable preemption

of threads below a specified priority. Additional features such
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as a network stack, USB support, a file system, or a GUI can

be purchased as separate products.

2) QNX [76]: Originally developed by Quantum Software

Systems in 1982, QNX was acquired by Research in Mo-

tion (RIM) in 2010. It was one of the first commercially

successful microkernel-based RTOSs and provides a UNIX-

like API. QNX’s powerful IPC served as inspiration for many

subsequent OSs, such as RIOT. The current version, called

QNX Neutrino, supports numerous architectures, but none of

them matching the requirements of Class 1 devices.

3) VxWorks [77]: Developed initially in 1987 by Wind

River (which is now owned by Intel), VxWorks is a mono-

lithic kernel that mostly supports ARM platforms and Intel

platforms, including the new Quark SoC. VxWorks supports

IPv6 and other IoT features, but lacks support for a 6LoWPAN

stack, and cannot fit on constrained IoT devices as defined by

RFC 7228 [8] which are the focus of this survey.

4) Wind River Rocket [78]: Another OS developed by Wind

River is Rocket which targets particular IoT scenarios. So far,

Rocket supports a single hardware platform: Intel’s Galileo

Gen 2 board which offers several megabytes of RAM and

ROM. The OS is tightly bound to using Wind River’s cloud

platform Helix.

5) PikeOS [79]: PikeOS is developed since 1991 by a

company called SYSGO AG (now owned by Thales). PikeOS

is a microkernel-based RTOS, which provides safety and

security, and acts as a hypervisor for other OSs. Originally

called P4, PikeOS is a descendent of the L4 microkernel

family. PikeOS provides multiple APIs, can host various guest

OSs, and is certified according to several relevant standards

including IEC 61508 or EN 50128.

6) embOS [80]: embOS is developed by Segger Micro-

controller Systems, a company providing development and

programming tools as well as software for embedded devices.

embOS is an acrtos written in ANSI C, featuring a priority-

based, tickless, preemptive scheduler, and targeting various

constrained 8 bit, 16 bit, and 32 bit MCUs. A network stack

(including ZigBee), USB support, a GUI, and a file system

are available as separate add-on products.

7) Nucleus RTOS [81]: Nucleus is an RTOS developed by

Mentor Graphics, an electronic design automation company,

which acquired the former provider of Nucleus, Accelerated

Technology, in 2002. Nucleus enables C++ programming, is

POSIX-compliant, and compatible with the Micro ITRON

interface. Nucleus has a rich feature set, including an IP

network stack, and can be scaled down to tens of kilobyte,

but it is not among the RTOSs with the smallest memory

footprints, however.

8) Sciopta [82]: Sciopta is an RTOS provided by SCIOPTA

Systems AG, with a focus on safety-critical applications. Its

microkernel (with a direct message passing IPC) and scheduler

are written in assembler. The supported architectures comprise

ARM7, ARM9, ARM Cortex-M, ARM Cortex-A, and Pow-

erPC. SCIOPTA Systems also offers additional modules for,

e.g. a FAT file system or an IP-based network stack.

9) µC/OS-II and µC/OS-III [83], [84]: µC/OS-II and

µC/OS-III are two versions of an RTOS provided by Micrium

Inc.. These RTOSs are based on a microkernel with multi-

threading and IPC capabilities. In comparison to µC/OS-II, the

version released in 2009, µC/OS-III comprises some enhanced

features such as unlimited number of tasks and priorities.

Additional software packages such as a GUI, a file system,

or a TCP/IP network stack are also provided by Micrium, and

can be integrated into µC/OS-III.

10) µ-velOSity [85]: µ-velOSity is a royalty-free RTOS

developed by Green Hills Software (GHS). Well integrated

into Green Hills’ IDE (called MULTI), µ-velOSity is written

in MISRA-compliant ANSI C and based on a microkernel.

Similarly to other commercial IoT OSs, additional required

features (e.g., a network stack) are provided separately. Note

however that a 6LoWPAN stack is not available.

11) Windows CE [86]: Windows CE is a version of the

Windows OS for constrained devices, and has been developed

by Microsoft since 1996. Windows CE is real-time capable and

has a rich feature set. However, it requires ROM and RAM in

the order of megabytes, and therefore targets devices that are

less resource-constrained than low-end IoT devices, which are

the focus of this survey.

12) LiteOS Huawei [87]: In 2015, Huawei announced [11]

that they will release LiteOS, an operating system for IoT

devices. The announcement claimed Huawei’s LiteOS will fit

within 10 kBytes of memory, and will be the most lightweight

IoT operating system. For now the code is not available [87]

and it is unclear if the OS will indeed be open source, hence

we list it in the present category. Furthermore the technical

characteristics of this OS are unknown, and in particular, it is

unclear how it relates to the open source OS called LiteOS

[73] which we mentioned in the previous section.

C. Other Software

For the sake of completeness, we also summarize in this

section a collection of other pieces of software that are

sometimes mentioned as potential contenders, but in fact are

not full-fledged OSs, or are not applicable on Class 1 devices.

1) Arduino [88]: Originating from a university project,

Arduino is an open source hardware and software company.

Bundled with an IDE targeting people unfamiliar with pro-

gramming, it enables easy prototyping. Good support for

hardware features is achieved by the fact that Arduino provides

both platforms and software. Arduino does not, however, pro-

vide a real scheduler, support for threading, or any higher layer

functionality, thus making it suitable primarily for simpler

applications.

2) Espruino [89]: Espruino provides several embedded

platforms and an open source software environment. The

software part is a very efficient interpreter for JavaScript that

makes it feasible to run JavaScript code on constrained devices

with less than 100 kB of RAM. However, similar to Arduino,

the Espruino does not aim to replace a full-featured OS, but

rather to provide a scripting framework for hobbyists and

makers. It does not provide basic OS functionality such as

a scheduler or thread management. Due to the nature of a

scripting language, it is furthermore not capable of fulfilling

real-time guarantees or fit on low-end IoT devices, but rather

devices such as Tessel [90].
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3) node OS [91]: Node OS is a toolset written entirely

in Javascript. Although its name suggests it is an OS, node

OS is rather a middleware than an OS itself. It does not

operate directly on the hardware, but runs on top of the Linux

kernel. The requirement for Linux, coupled with the overhead

of Javascript, make Node OS inappropriate for low-end IoT

devices such as Class 1 devices.

V. CATEGORIZATION OF OS RELEVANT FOR IOT

In the following, we will focus on open source OSs. The

reasons for this are (i) security and trustworthiness through

transparency of code running on IoT devices, and (ii) the

anticipated need to spread development costs between multiple

parties (similarly to Linux). The open source OSs surveyed

in Section IV can be categorized by their architectural con-

cept into three main categories: (i) event-driven OSs, multi-

threading OSs, and (iii) pure RTOSs. Although there is some

overlap between these categories, they will define the main

characteristic of an OS. This section will describe in more

details the characteristics of each category, and identify the

most prominent, representative OS for each category, which

we will then study in more depth in Section VI.

A. Event-driven OSs

This is the most common approach for OSs initially de-

veloped to target the domain of WSNs, such as Contiki or

TinyOS for instance. The key idea of this model is that all

processing on the system is triggered by an (external) event,

typically signaled by an interrupt. As a consequence the kernel

is roughly equivalent to an infinite loop handling all occurring

events within the same context. Such an event handler typically

runs to completion. While this approach is efficient in terms

of memory consumption and low complexity, it imposes some

substantial constraints to the programmer e.g., not all programs

are easily expressed as a finite state machine [40]. OSs that

fall in this category include Contiki, TinyOS, and OpenWSN.

Because of its wider deployment and use (to the best of our

knowledge), Contiki is arguably a good representative of this

category of OS.

B. Multi-Threading OSs

Multi-threading is the traditional approach for most modern

OSs (e.g. Linux), whereby each thread runs in its own con-

text and manages its own stack. With this approach, some

scheduling has to perform context switching between the

threads. Each process is handled in its own thread and can, in

general, be interrupted at any point. Stack memory can usually

not be shared between threads. Hence, a multi-threading OS

usually introduces some memory overhead due to stack over-

provisioning and runtime overhead due to context switching.

Operating systems that fall in this category include RIOT,

nuttX, eCos, or ChibiOS. Because of its stronger focus on IoT

requirements (to the best of our knowledge), RIOT is arguably

a good representative of this category of OS.

C. Pure RTOSs

An RTOS focuses primarily on the goal of fulfilling real-

time guarantees, in an industrial/commercial context. In this

context, formal verification, certification, and standardization

are usually of crucial importance. To allow model checking

and formal verification, the programming model used in such

OSs typically imposes strict constraints for developers. These

restrictions often makes the OS rather inflexible and porting to

other hardware platforms may become rather difficult. Oper-

ating systems for IoT devices that fall in this category include

FreeRTOS, eCos, RTEMS, ThreadX, and a collection of other

commercial products (generally closed source). FreeRTOS

is to the best of our knowledge the most prominent open

source RTOS for IoT devices, due to its wider use in various

environments.

VI. CASE STUDIES

Our case studies cover a representative OS from each of the

three categories described above. Each case study describes

concisely the different properties of the operating systems, as

listed in Section III.

A. Case Study: Contiki

Contiki was originally developed by Adam Dunkels in 2003

as an OS around the uIP stack, targeting resource-constrained

embedded systems. Over time, Contiki evolved into a more

general OS that is used in areas such as the IoT, wireless

sensor networks, and even retro computing. It supports a wide

range of resource-constrained devices, including 8-bit AVR

platforms, 16- and 20-bit MSP430 platforms, and 32-bit ARM

Cortex M3 platforms.

Contiki has a monolithic architecture, in which there is

a core system and a set of processes that are combined

into a single system image during compilation. At runtime,

all processes share the same memory space and privileges

with the core system. The scheduling model employed by

Contiki is cooperative thread scheduling, which requires that

Contiki processes explicitly yield control back to the scheduler.

For memory allocation, Contiki is designed primarily for

static allocation. It has a few libraries that simplify memory

management, such as memb and mmem. However, we are also

aware of third-party dynamic allocation modules for Contiki,

which implement the standard C malloc API.

There are two different network stacks that can be used to

enable Contiki devices with network connectivity: the uIP

stack, which was first developed as a standalone stack and

was merged into Contiki after version 0.9; and the more light-

weight Rime stack, which is oriented toward sensor network

applications. uIP supports multiple protocols, such as 6LoW-

PAN, IPv4, IPv6, IPv6 neighbor discovery, IPv6 multicasting,

RPL, TCP, and UDP. The network buffer management

is made through a separate module called Queuebuf, which

allocates packet buffers from a static pool of memory.

The programming model is based on Protothreads, which

is a sort of light-weight, cooperative threading concept similar

to continuations [42]. The main programming language sup-

ported by Contiki is C, but there exist runtime environments
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name category MCU w/o
MMU

< 32 kB
RAM

6LoWPAN RTOS
scheduler

HAL energy-efficient
MAC layers

Contiki event-driven ✓ ✓ ✓ ✘ ✓ ✓

RIOT multi-
threading

✓ ✓ ✓ ✓ ✓ ✘
a

FreeRTOS RTOS ✓ ✓ ✘
b

✓ ✘ ✘
c

uClinux multi-
threading

✓ ✘ ✓ ✘ ✓ ✘

Android multi-
threading

✘ ✘ ✘ ✘ ✓ ✘

Arduino other ✓ ✓ ✘ ✘ ✓
d

✘

TABLE II: Key features of representatives of several categories. (✓) full support, (✘) no support. The table compares the OS

for support of MCUs without MMU, MCUs with less than 100 kB of RAM, a 6LoWPAN network stack, a real-time capable

scheduler, a hardware abstraction layer (HAL), and energy-efficient MAC layers.

aso far only as part of the OpenWSN stack, more implementations are planned
bavailable from third parties
cavailable from third parties
dlimited portability

that enable development in languages such as Java [92] and

Python [93]. Contiki provides a hardware abstraction layer,

in which hardware-specific functionality is put in separate

components, and each supported Contiki platform implements

a common API for using that hardware. For instance, clocks,

radio drivers, and sensors each have their own API that is

implemented differently depending on the platform.

The debugging facilities available to Contiki develop-

ers consist primarily of the Cooja/MSPsim simulator, which

combines network simulation with cycle-accurate emulation

of the hardware platforms. This simulator contains standard

debugging features such as setting breakpoints, reading from

and writing to specific memory addresses, and single-stepping

through instructions. Contiki also conveniently supports hard-

ware used on several open testbeds, e.g., IoT-LAB [5] and

Indriya [94].

Beside the networking capabilities and the core system func-

tionality, Contiki has an ample feature set. It provides features

such as a shell, a file system, a database management system,

runtime dynamic linking, cryptography libraries, and a fine-

grained power tracing tool. To enhance the quality of all these

features, Contiki provides certain testing facilities, including

unit testing, regression testing, and full system integration

testing. Contiki code contributions are automatically tested

with a test suite using Travis CI [95].

A number of standards—primarily related to networking—

are supported by Contiki. For instance, Contiki implements

several IETF standards for low-power IPv6 networking, in-

cluding 6LoWPAN and RPL. Contiki has also gotten its core

IPv6 functionality certified in the IPv6 Ready Logo Program,

attaining a silver certification. The documentation of Contiki

is of varying detail for different parts of the system. The

source code is documented using the open-source Doxygen

tool, and other things such as tutorials and high-level technical

descriptions are provided through a project Wiki.

Today, the core parts of Contiki have reached a high matu-

rity of the code, but there are also less used experimental parts

of Contiki. The latter are primarily applications or libraries,

which may have been developed as part of research projects.

Multiple real-world deployments are based on Contiki, and

it is widely used in commercial IoT products, as well as in

academic research on WSN and other types of constrained

wireless multi-hop networks. Along with TinyOS, Contiki has

become one of the most well-known and widely used OSs for

WSN.

Contiki is developed by a large community of professional

developers, researchers, and hobbyists. The development is

organized around a GitHub repository, through which anyone

can submit pull requests containing code contributions. All

source code in Contiki must have a 3-clause BSD license,

or another license with similar terms. The source code is

maintained by a merge team, which review incoming code

contributions from the Contiki community, and make larger

decisions such as architectural changes and release cycles. A

number of source code forks exist, in which new features are

developed by independent teams, or in which companies main-

tain their own versions of Contiki, possibly with support for

their own hardware. Furthermore, because Contiki has many

academic users, research projects are frequently developed for

specific versions of Contiki. An active official mailing list for

the project is the main source of support for most users.

B. Case Study: RIOT

RIOT development was launched in 2013, based on a

microkernel architecture inherited from FireKernel [46], a

microkernel initially developed for WSN scenarios with real-

time requirements. RIOT development has so far focused on

widening IoT hardware support (8, 16, 32 bit MCUs), efficient

cross-platform code, and the development and maintenance of

several networks stacks.

RIOT is based on a microkernel architecture with full

multi-threading. Since multi-threading typically introduces
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run-time as well as memory overhead, particular efforts were

put into designing efficient context switching, IPC (blocking

and non-blocking), and a small thread control block (TCB).

As a result, context switching in RIOT is achieved in a small

number of CPU cycles (e.g., less than 100 CPU cycles on

an ARM platform when triggered from interrupt context)

and the TCB is reduced to 46 bytes on 32 bit platforms,

for instance. RIOT provides a tickless scheduler that works

without any periodic events. Whenever there are no pending

tasks, RIOT will switch to the idle thread, which can use the

deepest possible sleep mode, depending on peripheral devices

in use. Only interrupts (external or kernel-generated) wake

up the system from idle state. RIOT supports both dynamic

and static memory allocation. However, only static methods

are used within the kernel, which enables RIOT to fulfill

deterministic requirements, by enforcing constant periods for

kernel tasks (e.g., scheduler run, inter-process communication,

timer operations).

Several stacks are available in RIOT to support network

connectivity. The gnrc network stack is based on standard

IP protocols, supporting 6LoWPAN, IPv6, RPL (non-storing

and storing mode), UDP, and CoAP, implemented in a mod-

ular fashion, leveraging generic, well-defined interfaces and

IPC [35]. Other network stacks include for example CCN-

lite, implementing the Information Centric Networking (ICN)

paradigm, and OpenWSN, implementing the full 6TiSCH [26],

[47] protocol suite, each available via BSD-like packages.

The default network stack of RIOT is gnrc, within which

packets, headers, and other networking meta data is stored in

a centralized network buffer structure, whereby only pointers

are being passed between the layers. Beside several network

stacks, RIOT provides a wide range of diverse features,

such as a shell, various crypto libraries, or sophisticated data

structures.

The programming model in RIOT follows a classical

multi-threading concept with a memory-passing IPC between

threads. Its kernel is written in C (with minor parts being

implemented in assembler). However, both C and C++ are

available as programming language for applications and

application libraries. RIOT has a well defined hardware

abstraction layer for peripheral interfaces as well as for

networking, sensor, and actuator devices. Leveraging the fact

that RIOT is written in ANSI C, well-known, established

debugging tools can be used, such as GDB, Valgrind etc.

RIOT also provides a way to run instances of the OS as

processes on Linux or Mac OS, which allows both easy

debugging of embedded code, and virtual network emulation

using either nativenet to emulate a single ethernet link, or

the desvirt framework [96] for more complex topologies.

Furthermore, Cooja can also be used to simulate platforms

supported by this simulator. RIOT provides a set of unittests

and applications for smoke and regression testing. Continuous

integration testing is performed on the web-based service

platform Travis. Additionally, a distributed test framework

was designed, in order to conduct the tests on all supported

platforms [36]. Tests can also be carried out on a number of

open testbeds supported by RIOT e.g., IoT-LAB [97] [5] or

DES-Testbed [98].

On the system side, RIOT focusses on implementing stan-

dard interfaces like POSIX. For the networking part, RIOT

focusses on open standard protocols specified by bodies such

as IETF, IRTF, W3C, OMA and the like. As an open source

project stemming mostly from academia so far, no certifica-

tion efforts have been conducted on the code base, to date.

RIOT is driven by an open source community which strives

to provide a comprehensive documentation, both on the API

level as well as on the architectural level. While the inter-

face and inline documentation of the code itself has already

achieved a good standard (using Doxygen), example code and

high-level descriptions are currently being overhauled by the

community. Core parts of RIOT have been used for years

by a community of users and developers – so far mostly

academics, but recently also industry is using RIOT, primarily

for more convenient prototyping. For instance, the kernel can

be considered mature, as only minor bugs have been revealed

during the last years. Other parts of RIOT (for example the

network stack) are comparably younger and still subject to

changes, e.g. as a result of co-evolving with new IoT protocol

standards, as they appear. However, the use of standard and

generic interfaces (such as POSIX sockets or netapi [35]) are

stabilizing the usage of the code base.

The source code is openly available and licensed under

LGPL. RIOT’s master branch on GitHub is currently main-

tained by several tens of developers that are in charge of

reviewing and merging external contributions that are provided

through pull requests. A lively official mailing list is also used

by the community to discuss various technical and community-

related matters.

C. Case Study: FreeRTOS

Originally developed by Richard Barry in 2002, FreeRTOS

is now maintained and distributed by Real Time Engineers

Ltd. FreeRTOS is deployed in various industrial/commercial

environments, and is the base of several research projects.

In contrast to many other RTOSs, FreeRTOS is designed to

be small, simple, portable, and easy to use. Therefore, it is

supported by a large community and has been ported to a

big number of MCUs, including hardware available on open

testbeds (e.g. IoT-LAB [5]). There are several forks of the

FreeRTOS code-base available: for instance, SafeRTOS (fo-

cusing on safety) and OpenRTOS (removing all all references

to GPL).

FreeRTOS itself implements a fairly simple architecture,

as it comprises of only four C files and is more a threading

library than a full-fledged operating system. The only provided

functionalities are thread handling, mutexes, semaphores, and

software timers. In the default configuration FreeRTOS uses

a preemptive, priority based round-robin scheduler, which is

triggered by a periodic timer tick interrupt. Since version 7.3.0

(released October 31 2012) the scheduler further supports

a tickless mode. In order to fulfill real-time guarantees, it

is ensured that FreeRTOS uses only deterministic operations

from inside a critical section or interrupt. In FreeRTOS,

queues are used for IPC which support blocking and non-

blocking insert (using deep copy), as well as remove functions.
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FreeRTOS defines five different memory allocation schemes:

(i) allocate only, (ii) allocate and free with a simplistic, fast

algorithm, (iii) wrapping C library malloc() and free()

for thread safety, (iv) a more complex but fast allocate and

free algorithm with memory coalescence, and (v) a more

advanced version of (iv) that allows to span the heap over

several memory sections.

FreeRTOS itself does not provide any networking capabili-

ties. However, many additional tools and libraries are available

in the FreeRTOS ecosystem (mostly through third-parties).

Most notable Real Time Engineers Ltd. offers an official

FreeRTOS+TCP add-on supporting an Ethernet-based IPv4

stack with support for UDP, TCP and supporting protocols.

Furthermore ports of third-party embedded network stacks as

lwIP [99] or older versions of Nanostack [100] are available.

The network buffer management depends on the stack used.

The official FreeRTOS+TCP for example can be configured to

use a statically pre-allocated buffer or to allocate buffer space

dynamically on-demand.

FreeRTOS supports a multi-threading programming model

with statically instantiated tasks. The programming language

used for the OS itself is C, which enables users to integrate

it seamlessly also in any C++ application. As stated above,

the feature set of the basic system is limited to scheduling,

threading and SW timers. FreeRTOS does not define a portable

driver model or MCU peripheral abstraction interfaces.

Instead it works together with vendor supplied board support

packages. For testing and debugging the system also depends

on third-party solutions, though the design of the OS makes

it possible to be integrated in most existing development

processes.

In order to comply with regulations and requirements of in-

dustrial use cases, FreeRTOS emphasizes on strict coding stan-

dards, quality management, and certification. Consequently,

FreeRTOS has become part of various formal verification

efforts [101], [102]. SafeRTOS has been certified by TÜV

SÜD as IEC 61508 compliant and against the EN 62304 and

FDA 540(k) regulatory requirements. Real Time Engineers

Ltd. provides extensive documentation in terms of books,

trainings, and commercial support. The code is licensed under

GPL with an optional linking exception that allows to link

proprietary, closed source code.

VII. CONCLUSION

In this survey, we have analyzed the various requirements

that should be fulfilled by an OS for low-end IoT devices,

which are too resource-constrained to run traditional operating

systems such as Linux. We have overviewed key aspects for

such an OS, both from technical and non-technical points

of view. Considering these aspects, we have then surveyed

available OSs that could qualify to become the go-to OS for

IoT devices.

We have mostly focused on open source operating systems

because, in the context of IoT, acute privacy and security con-

cerns are to be anticipated. Such concerns present an immense

challenge that is easier to address with open source code,

which offers higher potential for transparency, trustworthiness,

and security. We note that, in order to benefit fully from the

advantages of open source in terms of trustworthiness, it is

also necessary to use open source toolchains to produce and

deploy binaries on IoT devices (and to rule out dependency

on untrusted third-party servers/cloud services to produce and

deploy these binaries). In the long run, the collaborative nature

of most open source development increases the probability that

bugs are found and fits better the needs of SMEs. According

to recent studies [103], such companies will be driving IoT

innovation in the near future, but are more likely than bigger

companies to need IoT software development and maintenance

costs sharing.

In this survey, we have identified three categories of OSs,

within which some have the potential to become the equivalent

to Linux in the IoT. Multi-threaded OSs are technically closest

to Linux, and within this category, RIOT is currently the most

prominent open source OS. Event-driven OSs use a different

programming paradigm to fit on devices with even less re-

sources, and within this category, Contiki is currently the most

prominent open source OS. RTOSs focus on guarantees for

worst-case execution times and worst-case interrupt latency.

In this category, FreeRTOS is currently the most prominent

open source OS.

Our conclusions are that there are a plethora of different OSs

for the IoT, allowing users to select an OS that fits their criteria

best. Our survey has covered many of the trade-offs being

made by system designers regarding the requirements and

constraints of current IoT applications and hardware platforms.

As the IoT field is developing at a rapid pace, however, the

final word is yet to be made regarding what type of architecture

and capabilities an ideal OS for the IoT should have.
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