OPERATION OF RESTRUCTURED POWER SYSTEMS

THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE

Power Electronics and Power Systems

Series Editor M. A. Pai

Other books in the series:

TRANSIENT STABILITY OF POWER SYSTEMS: A Unified Approach to
Assessment and Control
Mania Pavella, Damien Ernst and Daniel Ruiz-Vega, ISBN 0-7923-7963-2
MAINTENANCE SCHEDULING IN RESTRUCTURED POWER SYSTEMS
M. Shahidehpour and M. Marwali, ISBN: 0-7923-7872-5
POWER SYSTEM OSCILLATIONS
Graham Rogers, ISBN: 0-7923-7712-5
STATE ESTIMATION IN ELECTRIC POWER SYSTEMS: A Generalized
Approach, A. Monticelli, ISBN: 0-7923-8519-5
COMPUTATIONAL AUCTION MECHANISMS FOR RESTRUCTURED
POWER INDUSTRY OPERATIONS
Gerald B. Sheblé, ISBN: 0-7923-8475-X
ANALYSIS OF SUBSYNCHRONOUS RESONANCE IN POWER SYSTEMS
K.R. Padiyar, ISBN: 0-7923-8319-2
POWER SYSTEMS RESTRUCTURING: Engineering and Economics
Marija Ilic, Francisco Galiana, and Lester Fink, ISBN: 0-7923-8163-7
CRYOGENIC OPERATION OF SILICON POWER DEVICES
Ranbir Singh and B. Jayant Baliga, ISBN: 0-7923-8157-2
VOLTAGE STABILITY OF ELECTRIC POWER SYSTEMS, Thierry
Van Cutsem and Costas Vournas, ISBN: 0-7923-8139-4
AUTOMATIC LEARNING TECHNIQUES IN POWER SYSTEMS, Louis A.
Wehenkel, ISBN: 0-7923-8068-1
ENERGY FUNCTION ANALYSIS FOR POWER SYSTEM STABILITY,
M. A. Pai, ISBN: 0-7923-9035-0
ELECTROMAGNETIC MODELLING OF POWER ELECTRONIC
CONVERTERS, J. A. Ferreira, ISBN: 0-7923-9034-2
MODERN POWER SYSTEMS CONTROL AND OPERATION, A. S. Debs,
ISBN: 0-89838-265-3
RELIABILITY ASSESSMENT OF LARGE ELECTRIC POWER SYSTEMS,
R. Billington, R. N. Allan, ISBN: 0-89838-266-1
SPOT PRICING OF ELECTRICITY, F. C. Schweppe, M. C. Caramanis, R. D.
Tabors, R. E. Bohn, ISBN: 0-89838-260-2
INDUSTRIAL ENERGY MANAGEMENT: Principles and Applications,
Giovanni Petrecca, ISBN: 0-7923-9305-8
THE FIELD ORIENTATION PRINCIPLE IN CONTROL OF INDUCTION
MOTORS, Andrzej M. Trzynadlowski, ISBN: 0-7923-9420-8
FINITE ELEMENT ANALYSIS OF ELECTRICAL MACHINES, S. J. Salon,
ISRN: 0-7923-9594-8

OPERATION OF RESTRUCTURED POWER SYSTEMS

by

Kankar Bhattacharya

Math H.J. Bollen

Jaap E. Daalder

Chalmers University of Technology

SPRINGER SCIENCE+BUSINESS MEDIA, LLC

ISBN 978-1-4613-5567-0 ISBN 978-1-4615-1465-7 (eBook) DOI 10.1007/978-1-4615-1465-7

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available from the Library of Congress.

Copyright © 2001 Springer Science+Business Media New York Originally published by Kluwer Academic Publishers in 2001 Softcover reprint of the hardcover 1st edition 2001

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher, Springer Science+Business Media, LLC

Printed on acid-free paper.

Contents

List of Acronyms	xi
Preface	xiii

CHAPTER-1: DEREGULATION OF THE ELECTRICITY SUPPLY INDUSTRY

1.	Introduction	1
2.	What is Deregulation?	2
	2.1 Different Entities in Deregulated Electricity Markets	4
3.	Background to Deregulation and the Current Situation	
	Around the World	6
	3.1 Industrialized Countries	6
	3.2 Developing Countries	15
4.	Benefits from a Competitive Electricity Market	19
5.	After-Effects of Deregulation	21
6.	Concluding Remarks	25
	References	25
	Further Reading	26
	List of Related Web-Sites	27

CH	APTI	ER-2: POWER	SYSTEM	ECONOMIC	OPERATION
		OVERVIE	EW		
1.	Intr	oduction			29
2.	Eco	nomic Load Disp	30		
	2.1	The Economic L	oad Dispatch	Problem	30
	2.2	Conditions for th	ne Optimum		32
	2.3	A Review of Red	cent Developm	nents in ELD	34
	2.4	Example			35

3.	Optimal Power Flow as a Basic Tool	37
	3.1 The Basic OPF Model	38
	3.2 Example	41
	3.3 Characteristic Features of OPF	44
4.	Unit Commitment (UC)	47
	4.1 UC: The Basic Model	48
	4.2 UC: Additional Issues	50
5.	Formation of Power Pools	53
	5.1 Power Pools	54
	5.2 The Energy Brokerage System	61
6.	Concluding Remarks	69
	References	69

CHAPTER-3: POWER SYSTEM OPERATION IN COMPETITIVE ENVIRONMENT

1.	Introduction	73
2.	Role of the Independent System Operator (ISO)	74
	2.1 Structure of UK and Nordic Electricity Sector Deregulati	on 75
3.	Operational Planning Activities of ISO	80
	3.1 The ISO in Pool Markets	80
	3.2 The ISO in Bilateral Markets	91
4.	Operational Planning Activities of a Genco	95
	4.1 The Genco in Pool Markets	95
	4.2 The Genco in Bilateral Markets	96
	4.3 Market Participation Issues	97
	4.4 Unit Commitment in Deregulated Environment	100
	4.5 Competitive Bidding	107
5.	Concluding Remarks	114
	References	115

CHAPTER-4: TRANSMISSION OPEN ACCESS AND PRICING ISSUES

1.	Introduction	119
	1.1 The US and the European Perspective: Transco vis-à-vis	
	the Transmission System Operator	120
2.	What is Power Wheeling?	121
3.	Transmission Open Access	121
	3.1 Types of Transmission Services in Open Access	122
4.	Cost Components in Transmission	123
5.	Pricing of Power Transactions	125

	5.1	Embedded Cost Based Transmission Pricing	127
	5.2	Incremental Cost Based Transmission Pricing	134
6.	Tra	nsmission Open Access and Pricing Mechanisms in	Various
		ntries	138
	6.1	United Kingdom	138
	6.2	Chile	138
	6.3	Sweden	139
7.	Dev	elopments in International Transmission Pricing	
	in E	urope	142
	7.1	Example	143
8.	Secu	urity Management in Deregulated Environment	145
	8.1	Scheduling of Spinning Reserves	147
	8.2	Interruptible Load Options for Security Management	148
9.	Con	gestion Management in Deregulation	157
	9.1	Economic Instruments for Handling Congestion	158
10.	Con	cluding Remarks	166
	Refe	rences	167

СН	АРТІ	ER-5: ANCILLARY SERVICES MANAGEMENT	
1.	Wh	at Do We Mean by Ancillary Services?	171
	1.1	General Description of Some Ancillary Services	172
2.	Anc	illary Services Management in Various Countries	175
	2.1	The US	175
	2.2	UK	178
	2.3	Australia	179
	2.4	Sweden	182
	2.5	Check-List of Ancillary Services Recognized by Various	
		Markets	185
3.	Rea	ctive Power as an Ancillary Service	186
	3.1	Reactive Power Management in Some Deregulated	
		Electricity Markets: A Review	187
	3.2	Defining Scope of the Service is Important	198
	3.3	Synchronous Generators as Ancillary Service Providers	200
4.	Con	cluding Remarks	202
	Refe	rences	203

CH	APTER-	6: RELIABILITY AND DEREGULATION	
1.	Termir	ıology	205
2.	Reliabi	ility Analysis	206
	2.1 Th	he Interruption Criterion	208

	2.2	Stochastic Components	209
	2.3	Component Models	210
	2.4	Calculation Methods	216
3.	The	Network Model	218
	3.1	Stochastic Networks	218
	3.2	Series and Parallel Connections	220
	3.3	Minimum Cut-Sets	222
4.	Reli	iability Costs	223
5.	Hie	rarchical Levels	227
	5.1	Generation Reliability	227
	5.2	Transmission Reliability	229
	5.3	Distribution Reliability	231
6.	Reli	ability and Deregulation	232
	6.1	Is There a Conflict?	232
	6.2	Reliability Analysis	236
	6.3	Effects on the Actual Reliability	237
	6.4	Regulation of the Market	241
7.	Perf	formance Indicators	246
8.	Con	clusions	248
	Refe	erences	249
	Furi	ther Reading	250

CHAPTER-7: POWER QUALITY ISSUES: Voltage Dips And Other Disturbances

1.	Pow	ver Quality	253
	1.1	Terminology	253
	1.2	Interest in Power Quality	255
	1.3	Events and Variations	256
2.	Vol	tage Dips	257
	2.1	Magnitude and Duration	257
	2.2	Origin of Voltage Dips	259
	2.3	Magnitude, Duration and Fault Location	264
	2.4	Three-phase Unbalanced Dips	266
	2.5	Voltage Dip Performance Indicators	271
	2.6	The Responsibility Question	279
	2.7	Voltage Dip Mitigation	281
3.	Oth	er Power Quality Issues	286
	3.1	Short Interruptions	286
	3.2	Harmonic Distortion	288
	3.3	Transient Overvoltages	289
	3.4	Voltage Variations	290

	3.5 Voltage Steps	290
	3.6 Voltage Fluctuations	290
	3.7 Load Currents	291
4.	Conclusions	291
	References	292
	Further Reading	293
	Appendix A: IEC Standards on Power Quality	294
	Appendix B: IEEE Standards on Power Quality	296

INDEX

List of Acronyms

ACE	Area Control Error
ATSOI	Association of Transmission System Operators in Ireland
BTM	Bilateral Transaction Matrix
Cal-ISO	California Independent System Operator
CEGB	Central Electricity Generating Board (UK)
CIL	Contracted Interruptible Load
DED	Dynamic Economic Dispatch
DISCO	Distribution Company
DSB	Demand Side Bidding (UK)
DVR	Dynamic Voltage Restorer
ELBAS	Nordpool Short-term Market
ELD	Economic Load Dispatch
ELSPOT	Nordpool Spot Market
EMC	Electromagnetic compatibility
EPACT	Energy Policy Act (US)
EPRI	Electric Power Research Institute (US)
ERPS	Enhanced Reactive Power Service (UK)
ETSO	European Transmission System Operators
EU	European Union
FERC	Federal Energy Regulating Authority (US)
GAMS	Generalized Algebraic Modeling Systems
GENCO	Generating Company
IEEE	Institute of Electrical and Electronics Engineers
IEC	International Electrotechnical Commission
IPP	Independent Power Producer
ISO	Independent System Operator
	macpendent eystem operator

ITM	Interruptible Tariff Mechanism		
LNG	Liquefied Natural Gas		
LPG	Liquefied Petroleum Gas		
LOLP	Loss of Load Probability		
LRMC	Long-run Marginal Cost		
LSE	Load Serving Entity (New York pool)		
MC	Marginal Cost		
NEMMCO	National Electricity Market Management Company		
NEIMINCO	(Australia)		
NERC	North American Electric Reliability Council		
NETA	New Electricity Trading Arrangements (UK)		
NGC	National Grid Company (UK)		
Nordel	A body for cooperation between ISOs of Nordic countries		
Nordic	Norway, Sweden, Finland, Denmark and Iceland		
NUG	Non-Utility Generator		
NYISO	New York Independent System Operator (US)		
NZEM	New Zealand Electricity Market		
OFFER	Office of Electricity Regulation (UK)		
OFGEM	Office of Gas and Electricity Markets (UK)		
OPF	Optimal Power Flow		
ORPS	Obligatory Reactive Power Service (UK)		
PGCIL	Power Grid Corporation of India		
PJM	Pennsylvania, Jersey, Maryland power pool (US)		
	Plant Load Factor		
PLF	Pool Purchase Price		
PPP PSP	Pool Selling Price		
PSP PURPA	Power Utilities Regulating Policy Act (US)		
REC	Regional Electricity Company (UK)		
	Regional Transmission Organizations (US)		
RTO	Security Constrained Economic Dispatch		
SCED	System Marginal Price		
SMP	Spot Price Difference		
SPD	L		
SRMC TRANSCO	Short-run Marginal Cost		
TSO	Transmission Company Transmission System Operator (Europe)		
UC	Unit Commitment		
UCTE	Union for Coordination of Transmission of Electricity		
UCIE			
UKTEON	(Europe) United Kingdom Transmission System Operators'		
UKTSOA	United Kingdom Transmission System Operators' Association		
	Uninterruptible Power Supply		
UPS WDATES	Wheeling Rate Evaluation Simulator		
WRATES	Wheeling Rate Evaluation Simulator		

Preface

Deregulation is a fairly new paradigm in the electric power industry. And just as in the case of other industries where it has been introduced, the goal of deregulation is to enhance competition and bring consumers new choices and economic benefits. The process has, obviously, necessitated reformulation of established models of power system operation and control activities. Similarly, issues such as system reliability, control, security and power quality in this new environment have come in for scrutiny and debate.

In this book, we attempt to present a comprehensive overview of the deregulation process that has developed till now, focussing on the operation aspects. As of now, restructured electricity markets have been established in various degrees and forms in many countries. This book comes at a time when the deregulation process is poised to undergo further rapid advancements.

It is envisaged that the reader will benefit by way of an enhanced understanding of power system operations in the conventional vertically integrated environment vis-à-vis the deregulated environment. The book is aimed at a wide range of audience- electric utility personnel involved in scheduling, dispatch, grid operations and related activities, personnel involved in energy trading businesses and electricity markets, institutions involved in energy sector financing. Power engineers, energy economists, researchers in utilities and universities should find the treatment of mathematical models as well as emphasis on recent research work helpful. The book may be used for a one-semester graduate or under-graduate course, as well.

OUTLINE OF THE BOOK

Chapter-1 discusses the motivating factors behind deregulation of the power sector and the after-effects of the same. In this context it looks at issues specific to developed and developing nations.

Chapter-2 focuses on the established models of operational planning activities such as economic load dispatch, unit commitment and optimal power flow. Topics such as inter-utility power transactions, power pools, power wheeling and energy brokerage systems have been discussed. This chapter lays the foundation for the discussions in the subsequent chapters.

Chapter-3 analyzes different market models, and the operational planning issues specific to these, from the perspective of, both, the independent generator and the system operator. The requisite model development and reformulation demanded by a competitive environment is then discussed.

Chapter-4 identifies transmission management issues and then discusses the mechanisms by which these are addressed in the various forms of deregulated structures. The issues covered here are pricing, security and congestion management.

Chapter-5 focuses on ancillary service management, their categorization, and pricing mechanisms as practiced in different electricity markets. Reactive power management in deregulated markets has been examined in detail.

Chapter-6 on reliability and deregulation treats the basics of reliability analysis of power systems. Both system reliability and reliability experienced by the customer is discussed. The chapter also presents ways of characterizing the observed reliability of supply. The role of the office of electricity regulation (OFFER) in the UK system has been discussed.

Chapter-7 presents an overview of the various power quality issues. Emphasis is on issues strongly related to both the utility and the customer such as short interruptions, voltage dips and harmonics. For each of these phenomena an overview of available analysis techniques is given. The possible effect of deregulation on these aspects of power quality is discussed.

ACKNOWLEDGEMENTS

We are grateful to Professor M. A. Pai of the University of Illinois at Urbana-Champaign, USA, for proposing this monograph and then providing us with his invaluable guidance at every stage.

The material used in this book has been taught at graduate level courses at the Chalmers University of Technology as well as for short industrial courses. Several research projects related to the material covered in this book were generously sponsored by the Swedish power industries and we are indebted to them. In particular, we are grateful to ABB Automation Products, ABB Corporate Research, ABB Power Systems, Elektra Program of Elforsk, Energimyndigheten, Göteborg Energi, Svenska Kraftnät, Sydkraft Research Foundation and Vattenfall.

Our thanks are also due to many persons from the Swedish power industries for their participation and collaboration in our research efforts. In particular, we would like to thank Dr. Daniel Karlsson and Dr. Murari Saha of ABB Automation Products, Mr. Sture Larsson and Mr. Klas Roudén of Svenska Kraftnät, Mr. Lars Sjunnesson, Mr. Alf Larsen and Mr. Gunnar Ridell of Sydkraft and Mr. Bernt Hansson of SWECO Energuide.

We would also like to thank Mr. Alastair Ferguson (Scottish Power), Mr. Rober Olofsson (Unipower), Mr. Christian Roxenius (Göteborg Energi), Mr. Helge Seljeseth (SINTEF Energy Research) and Mr. Mats Häger (Swedish Transmission Research Institute) for supplying us with the measurement data required for the work on power quality.

The Department of Electric Power Engineering at Chalmers University of Technology has always provided a very congenial atmosphere to carry out our work and we are grateful to all the staff of the department. Ph.D. students Adrian Andreou, Mattias Jonsson, Johan Lundquist, Manos Styvaktakis, Le Anh Tuan, Lidong Zhang and Jin Zhong provided critical inputs for various chapters and we gratefully acknowledge their contributions.

We are thankful for the cooperation and help received from the Publishing Department of Kluwer Academic Publishers, in particular Mr. Alex Greene.

Finally, we are very grateful to our families - our wives Rajendrani, Irene and Inga-Britt - for bearing with us all the while and for their support and patience with us. Rajendrani also helped in editing and proofreading the manuscript.

Gothenburg, Sweden March 21, 2001 Kankar Bhattacharya Math Bollen Jaap Daalder