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Abstract – In this paper, optimal coordination of the demand side under uncertainty of the 
energy price in energy market is studied. The consumers by demand response programs 
(DRPs) have optimal role in minimization of the energy generation costs in multiple energy 
system. The consumers can participate via local generation strategy (LGS) and demand 
curtailment strategy (DCS). The optimal coordination is considered as two stage optimization, 
in which minimization of the consumers’ bills is done in first stage. In following, the 
minimization of the generation costs is performed in second stage optimization. The LGS is 
taken into accounted through optimal discharging of plug electric vehicles (PEVs). Finally, 
numerical simulation is implemented to show superiority of the proposed approach to 
minimization of the energy generation costs. 

Keywords – Demand curtailment strategy (DCS); demand response programs (DRPs); 
multiple energy system; onsite generation strategy (LGS); optimal coordination. 

Nomenclature 
t, T Time index hour 
s, S Scenario index – 
n, NC Consumer index – 
EC, NGC Electrical company (EC) and natural gas company (NGC) – 
DEn  Total electrical demand at nth kWh 
DnNCL, DnCL   Non-curtailable demand, curtailable demand, respectively kWh 

PPEV ch, PPEV dch Power charge and discharge of the PEV, respectively kWh 
PrPEV Power rate of the PEV kWh 
PEC, PCHP Power generated by EC and power of CHP, respectively kWh 
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PGAS Gas generated by NGC m3 

HCHP, HBO Heat generated by CHP and boiler, respectively kWh 
CEP, CGP Electrical price and gas price, respectively $ 
CEC, CNGC Generation costs of the EC and NGC $ 
ηch, ηdch PEV efficiency in charge and discharge modes, respectively % 
uPEV Binary variable of PEV (1 = discharge mode and 0 = otherwise) – 

1. INTRODUCTION  

Integration of the smart grids technology in energy systems have provided new revolution 
in energy systems’ infrastructures [1]–[5]. In these infrastructures, demand side have 
relevance with generation side at any times [6]–[10]. As well, energy companies using these 
infrastructures can be managed self-grids to decrease energy losses and costs [11]. On the 
other side, developing urbanization in many countries and consumption of the fossil fuels to 
energy generation are increasing in the power plants [12]–[14]. Hence, participation of the 
demand side in optimal energy consumption has direct effects on economic and technical 
indices. This participation can do by energy price signals and demand response programs 
(DRPs) in the energy markets [15]–[22]. The utilization of these strategies are various subject 
to energy system topology [23]–[25]. For instance, multiple energies like natural gas and 
electrical energy in smart grid technology with energy storage systems (ESSs) technology are 
effective strategies to optimal energy consumption [26]–[28]. In such energy systems, 
consumers can meet self-demand using multi-parallel energy resources [29]–[33]. Also, 
consumers by self-energy resource can have optimal role to the meet self-demand in high 
energy price [34]–[38]. The proposed topology of the smart multiple energy system in this 
paper is shown in Fig. 1. The proposed energy system including pparticipants as follows: 

1) Energy companies: The energy companies are electrical company (EC) and natural 
gas company (NGC). These companies have various prices at each hours in energy 
markets [39]–[41], 

2) Distributed generators (DGs): The DGs are combined heat and power (CHP) units 
and boiler units. The DGs are fed by natural gas to energy generation [42]–[45], 

3) Operator: This participant is main coordinator between generation side and demand 
side. The operator can provide optimal status of the system via informing energy 
prices to consumers at operation time [46], [47].  

The operation of the various energy systems is studied by many researchers. Authors in 
[48] optimal power management of the electrical system considering uncertainty of the 
renewable energy systems is studied. In [49], the demand management by load shifting 
strategy in smart buildings to reducing the energy costs is proposed. The energy planning in 
the hybrid energy system based on optimal sitting and sizing of the DGs is studied in [50]. 
The scheduling of the energy hub system in smart buildings without consideration of the 
DRPs is proposed in [51]. In [52], multi-objectives optimization of the multiple energy system 
is analyzed with stochastic modeling of the electrical price in energy market. In [53], the 
economic and environmental modelling of the electrical energy systems under risk assessment 
for electrical price is proposed. The assessment of the reliability index in electrical grids with 
attention to consumers’ satisfaction level and minimization of the blackouts is studied in [54]. 
The co-optimization modelling is presented in [55] to energy-saving in electrical microgrids 
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via demand shifting strategy. In [56], optimal load control is implemented in multiple energy 
systems via uncoordinated and coordinated modelling of the DGs.  
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Fig. 1. Smart multiple energy system topology. 

This paper presents two-stage energy optimization of the smart multiple energy system with 
DRPs and uncertainty of the electricity price (EP) and gas price (GP) in the energy market. 
The consumption costs of the consumers at first stage are optimized via demand curtailment 
strategy (DCS). As well, local generation strategy (LGS) is implemented by plug electric 
vehicles (PEVs) in second stage. The optimized load demand at first stage is considered in 
second stage alongside LGS to minimizing the generation costs. Thus, contributions and 
novelties of this work can be summarized as follow: 

1. A modelling two-stage energy optimization is proposed in smart multiple energy system. 
2. The DCS and LGS of the DRPs are considered in first and second stages to minimizing 

generation costs. 
3. The PEVs are proposed to meet demand in peak time via LGS and optimal participation in 

second stage. 
4. The energy prices including EP and GP are modelled under uncertainty approach. 

2. UNCERTAINTY MODELLING 

The uncertainty of the energy prices including EP and GP in energy market is modelled by 
lognormal probability density function Eq. (1) as follow [49]: 

       

( )( )2
2

Ln
21( )

2

p

f p e
p

 −µ −
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,                                                 (1)  
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where p, μ and σ are distribution function parameter, mean value and standard deviation, 
respectively.  

By Monte Carlo technique, scenarios or random variables for distribution function 
parameter (p) are generated at day-ahead. In this modelling, EP and GP are distribution 
function parameters (p). On the other side, probability in each scenario can be modelled by 
Eq. (2) [56]: 

EP GP
s s sπ = π ×π ,                                                        (2) 

where πs, πs
EP and πs

GP are probability of scenario s, probability of EP and GP at scenario s, 
respectively. 

3. PEV MODELLING 

The PEVs can be used by consumers as energy resource to feed self-demand. The PEV is 
taken into account as LGS in second stage optimization. The LGS modelling by PEVs is as 
follow [50]: 

                             ch
PEV PEV PEV0 ( , ) 1 ( , ) ,rP s t u s t P s t ≤ ≤ − × ∀  ,                       (3) 

dch
PEV PEV PEV0 ( , ) ( , ) ,rP s t u s t P s t≤ ≤ × ∀ ,                                  (4) 

dch ch ch
PEV PEVdch

1( , ,lg) ( , ) η 0 , ,
ηt T t T

P s t P s t s t
∈ ∈

   
   
    

× − × = ∀∑ ∑            (5) 

where charging power and discharging power of the PEV are modelled by Eq. (3) and Eq. (4), 
respectively. LGS by PEV are modelled by Eq. (5).  

 4. OPTIMIZATION APPROACH MODELLING 

The two-stage optimization problem of the proposed approach is modelled in this section. 
The mathematical modeling for proposed approach is as follow. 

4.1. First stage  

The DCS in first stage optimization is modelled. In this strategy, consumers’ bill subject to 
EP is minimized. Hence, electrical demand using DCS can be optimized. The objective 
function of the DCS is modelled by Eq. (6): 

{ }E
EP

1 1 1
min π ( , ) ( ) , , ,

S T NC

fs s n
s t n

f C s t D t s t n
= = =

= × ∀∑ ∑∑                 (6) 

subject to: 
E

EC ( , ) ( , ) , ,nP s t D s t s t n= ∀ ,                                   (7) 

E E E
NCL CL( , ) ( , ) ( , ) , ,nD s t D s t D s t s t n= − ∀ ,                        (8) 

E E,max
CL CL0 ( , ) , ,D s t D s t n≤ ≤ ∀ ,                               (9) 
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where Eqs. (7)–(9) are power balance, electrical demand modelling and bound of the 
curtailable demand in DCS, respectively. 

4.2. Second stage 

The minimization of the generation costs as objective function in second stage optimization 
is considered. The modelling generation costs is formulated by Eq. (10) [2]: 

EC GAS CHP BO
1 1 1 1

,min π ( , ) ( , ) ( , , ) ( , , )
S T CHP BO

ss s
s t chp bo

f C s t C s t C s t CHP C s t BO
= = = =

  
 

 
= + + +∑ ∑ ∑ ∑     (10) 

where: 
EC EP EC( ) ( , ) ( , ) ,C t C s t P s t s t= × ∀ ,                                            (11) 

NGC GP GAS( , ) ( , ) ( , ) ,C s t C s t P s t s t= × ∀ ,                                (12) 

{ }CHP CHP( , , ) ( , ) ( ( , , ) ( , , )) , ,GP CHPC s t CHP C s t H s t CHP P s t CHP s t CHP= × + ∀ ,        (13) 

{ }BO GP BO( , , ) ( , ) ( ( , , ) , ,C s t BO C s t H s t BO s t BO= × ∀ .          (14) 

Here, Eqs. (11)–(14) are generation costs of the EC, NGC, CHP units and boilers units, 
respectively [2]. It should be mentioned, we assumed that efficiency of DGs are equal to 
100 %. 

4.2.1. Constraints 

In second stage optimization, implementation of some constraints is necessary. These 
constraints are modelled as follow. 

      GAS CHP
1

GAS
CHP BO

1 1

( , ) ( , , )

( , , ) ( , , ) ( , ) ,

CHP

chp

CHP BO

n
chp bo

P s t P s t CHP

H s t CHP H s t BO D s t s t

=

= =

− −

− = ∀

∑

∑ ∑

        (15) 

H
BO

1 1
( , , ) ( , , ) ( , ) ,

CHP BO

CHP n
chp bo

H s t CHP H s t BO D s t s t
= =

+ = ∀∑ ∑               (16) 

 dch ch E
PEV PEVEC CHP

1 1 1
( , ) ( , , ) ( , ) ( , ) ( , ) ,

CHP PEV PEV

n
chp pev pev

P s t P s t CHP P s t P s t D s t s t
= = =

+ + = + ∀∑ ∑ ∑       (17) 

min max
CHP CHP CHP( , , ) , ,P P s t CHP P s t CHP≤ ≤ ∀                          (18) 

min max
CHP CHP CHP( , , ) , ,H H s t CHP H s t CHP≤ ≤ ∀                            (19) 

min max
BO BO BO( , , ) , ,H H s t BO H s t BO≤ ≤ ∀                               (20) 

The gas energy balance, heat energy balance and electrical energy balance are constrained 
by Eqs. (15)–(17), respectively. Constraints (18)–(20) are electrical and heat generation by 
DGs. 
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5. NUMERICAL SIMULATION AND CASE STUDIES 

To validation and confirmation of the proposed approach, numerical simulation based on 
two case studies are done. The case studies are as follows: 1) Optimization of the proposed 
approach without DCS and LGS; 2) Optimization of the proposed approach with DCS and 
LGS. 

The 15-node test system as proposed energy grid is depicted in Fig. 2. In Fig. 3, flowchart 
of the optimization approach is shown. In Fig. 4, the gas price and electrical price at 5 
scenarios are simulated by Monte Carlo technique. In order to reduction of the computations 
time and computational burden; the optimization approach is solved at fourth scenario. The 
DGs data are given in Table 1 [48]–[51]. It should be mentioned that all DGs are feed by 
natural gas. The PEV data is provided in Table 2 [52]–[55]. As well, energy demand of the 
consumers is shown in Fig. 5. The maximum curtailable demand for implementation of the 
DCS at each node is 25 kWh [5], [56]–[69]. The GAMS software is employed to solving 
numerical simulation.  

 
Fig. 2. 15-node test system. 

 

Uncertainly modelling of EP and GP by 
lognormal probability density function 

Generate scenarios or random variables for 
EP and GP by Monte Carlo technique 

 

Input data: Electrical demand and EP in 
scenario s 

Minimazing Consumers’ bill in scenario s 

Subject to equations (7)-(9) 

Output: Optimized electrical demand in 
scenario s 

First stage optimization 

 

 

Input data: Optimized electrical demand, 
PEV data, DGs data, EP and GP in in 

scenario s 

Minimazing generation costs 

Subject to constraints (3)-(5) and (15)-(20) 

Output: Optimal energy dispatch of DGs, 
EC and NGC  

Second stage optimization 

 

 
Fig. 3. Flowchart of the proposed approach. 
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(a) 

 
(b) 

Fig. 4. Energy price in energy market: (a) Electrical price, and (b) Gas price. 

 
Fig. 5. Energy demand. 

TABLE 1. DGS DATA 

           Parameters    
 
Units 

Pmin 

kWh 
Pmax 

kWh 
Hmin 

kWh 
Hmax 

kWh 
Location, Node 

Boiler 1 – – 0 100 3 
Boiler 2 – – 0 120 8 
CHP 1 0 125 0 100 10 
CHP 2 0 120 0 110 12 
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TABLE 2. PEV DATA 
 
 
 
 

 
 
 

5.1. Discussion and results analysis 

The results analysis of the mentioned case studies are discussed in this subsection. As well, 
results are compared than each other for showing superiority of the DCS and LGS. As 
mentioned before, optimization is done in fourth scenario and results are analysed in this 
scenario.  

In Fig. 6, electrical demand in first stage is optimized by DCS. In this figure, optimized 
electrical demand is curtailed at high EP. The total consumers’ bill without DCS and with 
DCS is equal to $ 894 182.6 and $ 790 441.2, respectively. Also, total demand curtailment is 
710 kWh. In Fig. 7, electrical generation in Case 1 are depicted.  

 

 
 

Fig. 6. Electrical demand with DCS and without DCS. 

In Fig. 7(a), electrical energy generation without DCS and LGS is shown. As shown, EC 
has more participation in meet demand at than DGs. The generation cost of the NGC, EC and 
DGs in Case 1 are equal to $ 357 795.6, $ 467 163.4 and $ 147 220.1, respectively. It’s 
visible, EC in Case 1 has most generation cost in comparison with NGC and DGs. The 
maximum electrical generation by EC in Case 1 at high EP and peak demand is done. In 
Fig. 7(b), power generation in Case 2 with implementing LGS and DCS is shown. In Case 2, 
cost of the EC is reduced by 12.3 % in comparison to Case 1. The power generation of the 
EC in Fig. 7(b) at peak demand is less than Fig. 7(a). Also, electrical demand is meet at hours 
10 and 18 with high EP by PEV. The PEV is feed at low EP, and power of the PEV is used 
to meet demand at peak. The total discharging power and total charging power of PEV are 
equal to 98 kWh and 100 kWh in total operation time, respectively.  

In Fig. 8, heat generation by CHPs and boilers in Cases 1 and 2 are operated. The heat 
generation by DGs at all times is done and generation cost to heat generation in both case are 
almost same.  

The results obtained in case studies are listed in Table 3. As shown, generation cost in Cases 
1 and 2 are equal to $ 967 465.2 and $ 879 323.4, respectively. In Case 2, minimum 
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generation cost in energy system are provided, due to implementing DCS and LGS. The 
reduction value of the generation cost in Case 2 than Case 1 is equal to $ 88 141.8. 

TABLE 3. RESULTS OF THE CASE STUDIES 

Case study Case 1 Case 2 

Generation cost, $ 972 179.1 879 323.4 

 

 
(a) 

 
(b) 

Fig. 7. Electrical generated: (a) Case 1, and (b) Case 2. 
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(b) 

Fig. 8. Heat generated: (a) Case 1, and (b) Case 2. 

6. CONCLUSION 

In this paper, optimal operation of the multiple energy system is studied based on 
uncertainty of the EP and GP in energy market. The LGS and DCS are utilized as optimal 
solution to consumers’ participation in energy market. The optimization is modelled as two 
stage problem in proposed approach. The consumes’ bill is minimized in first stage by DCS, 
whereby energy demand is optimized. Thus, optimized energy demand is taken into accounted 
in second stage to minimizing generation cost. The obtained results of the numerical 
simulation in two case studies are expressed as follow: 

Case 1) In this case, LGS and DCS are not taken into account. The generation cost is equal 
to $ 972 179.1. 

Case 2) The DCS and LGS are implemented in Case 2. The reduction rate of the generation 
cost in this case than Case 1 is equal to 9.55 %. 

With attention to obtained results, participation of the consumers in energy market leads to 
decrease generation cost, and economic status of the system is provided.   
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