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ABSTRACT We propose a designing of multi-layer neural networks using 2D NAND flash memory cell

as a high-density and reliable synaptic device. Our operation scheme eliminates the waste of NAND

flash cells and allows analogue input values. A 3-layer perceptron network with 40,545 synapses is

trained on a MNIST database set using an adaptive weight update method for hardware-based multi-layer

neural networks. The conductance response of NAND flash cells is measured and it is shown that the

unidirectional conductance response is suitable for implementing multi-layer neural networks using NAND

flash memory cells as synaptic devices. Using an online-learning, we obtained higher learning accuracy

with NAND synaptic devices compared to that with a memristor-based synapse regardless of weight update

methods. Using an adaptive weight update method based on a unidirectional conductance response, we

obtained a 94.19% learning accuracy with NAND synaptic devices. This accuracy is comparable to 94.69%

obtained by synapses based on the ideal perfect linear device. Therefore, NAND flash memory which

is mature technology and has great advantage in cell density can be a promising synaptic device for

implementing high-density multi-layer neural networks.

INDEX TERMS Neuromorphic, NAND flash memory, deep neural networks (DNNs), synaptic device,

deep learning, multi-layer neural networks, hardware-based neural network.

I. INTRODUCTION

The neuromorphic computing that mimics neuro-biological

architectures present in the nervous system has been emerged

as an attractive field of research because of its power

efficiency [1]. Until now, spike-timing-dependent plastic-

ity (STDP) algorithm [2], [3] motivated by learning process

of real brains has actively been researched. However, STDP

learning algorithm is still improving but not yet mature,

resulting in poor performance compared to backpropagation

algorithm [4].

Unlike STDP, backpropagation is a widely used, well-

studied method in training deep neural networks (DNNs),

offering outstanding performance on datasets such as hand-

written digits (MNIST) [5]. Multi-layer neural networks

based on synaptic devices can reduce power consump-

tion greatly by replacing the vector-by-matrix mul-

tiplication with a dense crossbar array of analog

devices such as PCM, RRAM [6], and NOR flash

memory [7], [8].

However, several problems need to be addressed before

memristive crossbar arrays can be widely adopted, such as

high device variability, absence of precise device models and

stochastic behavior of devices [9].

In order to evade above problems, we can use Si-

based devices such as NOR flash memory and SRAM [10].

However, these memories have limitation of density because

of bit lines and word lines contact in each cell device. On

the other hand, NAND flash memory reduces ground wires
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and bit lines considerably, which allows a denser layout and

greater storage capacity per chip than those devices [11].

In the meantime, most of the works have been studied

about synaptic devices using PCM, RRAM [6] and NOR

flash memory [7], [8]. Another group used the measured

characteristics of a single device to implement vector matrix

multiplication in the NAND flash memory architecture [12].

However, all cells in NAND flash memory cannot be fully

used as synaptic devices because the size of all synapse

layers is determined by the number of word lines and the

number of bit lines [12]. In addition, in the scheme of

applying input voltages to word-lines [12], it is very dif-

ficult to allow analogue input values because of nonlinearity

of IBL − VWL characteristics. In this work, we propose

a new operation scheme for implementing multi-layer neural

networks using 2-D NAND flash memory cells as high-

density, reliable synaptic devices. NAND flash memory is

a mature technology and has great advantages in cell density

and large storage capacity per chip because the cell string

in the array can be fabricated vertically (vertical NAND

flash) [13] and each cell string has many cells connected in

series between the bit line and the source line. Unlike [12],

we apply input values (voltage) into bit-line to allow ana-

logue input value satisfying weighted sum output equation.

In addition, the operation scheme in this work eliminates the

waste of NAND flash cells. Negative synaptic weight can

be represented using the difference in conductance (synaptic

weight, Wij = G+
ij − G−

ij ) between a pair of adjacent cells.

In our operation scheme, the current subtractor subtracting

the current from two adjacent synaptic strings can be reused

for all synapses in the synapse string, which reduces the

burden of circuits. We measured floating-gate 2-D (planar)

NAND flash cell strings fabricated with 26 nm technol-

ogy. We also investigated the device variation by measuring

NAND flash cells and checked the reliability of NAND flash

cells by measuring endurance and retention characteristics.

Using a matched computer simulation, a 3-layer perceptron

network with 40,545 synapses is trained using the weight

update method in [14] appropriate for our device and the

MNIST data set.

II. OPERATION SCHEME OF MULTI-LAYER NEURAL

NETWORKS

To implement multi-layer neural networks using a synap-

tic device array, adaptive learning rule for hardware-based

multi-layer neural networks different from software-based

algorithm is needed as shown in Table 1. The input signal

(a
(l−1)
i for the ith neuron in the l−1 layer) and the weight

(Wij for the weight of the synapse between the ith neuron in

l−l layer and the jth neuron in l layer) can be represented by

voltage (Vi
(l−1)) and the conductance difference of a pair of

synaptic devices (G+
ij − G−

ij ), respectively. In forward eval-

uation of a multi-layer perceptron, each layer’s inputs (Vi)

drive the next layer’s neurons through weightsWij and activa-

tion function f. For backward propagation, each layer‘s error

TABLE 1. Learning rule of software-based and hardware-based neural

networks.

FIGURE 1. 3-layer perceptron in which synapse can be implemented using
NAND flash memory. Synaptic weight is encoded by the conductance
difference between a pair of adjacent NAND cells.

values (V lj ) drive the preceding layer’s error value using gra-

dient descent method. By using sign of �Wij, we can update

the conductance of synaptic devices. Weight (Wij) of synap-

tic device can be modified by one step (|�G−
ij |,−|�G+

ij |)

at each iteration according to sign of �Wij to reduce the

burden of periphery circuit [14].

As shown in Fig. 1, to use NAND flash memory cells as

synaptic devices, we apply input values (voltages) to the bit-

lines for the following reasons. The scheme which applies

input to the bit-lines allows analogue input values satisfy-

ing weighted sum output equation, I =
∑

(G+ − G−)V ,

because output current is zero when the bit-line voltage is

zero and bit-line current increases linearly with increasing

bit-line bias in linear region. However, in the scheme of

applying input voltage to the word-lines [12], it is very dif-

ficult to allow analog input values because output current

may not be zero when the word-line voltage is zero and bit-

line current increases exponentially with increasing word-line

bias. In addition, as shown in Fig. 1, by using conductance
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difference between a pair of adjacent cells to represent synap-

tic weight (Wij = G+
ij − G−

ij ), negative synaptic weight can

be represented [4]. Note two cells in the same position in

two adjacent cell strings have nearly identical device char-

acteristics, so we can minimize the mismatch between two

cells that represent one synapse.

Forward propagation simply subtracts read current

between a pair of bit lines and sums the total currents through

electronic devices such as capacitor as shown in Fig. 2 (a).

Fig. 2 (a) represents 785 × 51 × 2 synapse array between

the l-1th neuron layer and the lth neuron layer. The output

currents for all neurons in lth layer are produced sequen-

tially when the read pulse sequentially enters the word line

as shown in Fig. 2 (b). When the kth pulse is applied to the

kth word-line, the output current flows for the kth neuron in

the lth layer. During this process pass bias is applied to the

unselected word-lines to read the kth cell current as shown

in Fig. 2 (c) and (d). Since the resistance of the selected cell

is always much greater than that of the unselected cells with

large pass bias applied, the output current primarily depends

on the threshold voltage of the kth word-line cell. Then,

the overall current for the kth row is summed as shown in

Fig. 2 (c). When the overall output current for all neurons in

lth layer is sequentially produced, the output current stored

in computing system is passed to l layer neurons.

Another research group has proposed an operation scheme

to implement vector matrix multiplication (VMM) in the

NAND flash memory architecture [12]. In [12], the size of

all synapse layers is determined by the number of word-

lines and the number of bit-lines, so that NAND flash cells

cannot be fully used as synaptic devices. On the other hand,

there is no waste of NAND flash cells in our scheme. In

addition, using this scheme, the current subtractor subtracting

the synaptic string can be reused for all synapse in synapse

string as shown in Fig. 2 (a), which reduces the burden

of circuits. In addition, program inhibition by boosting the

channel potential is used to program only one cell in a row

by applying a high bias to the unselected bit-lines and a low

bias to the selected bit-line [15].

For an M x N synapse array, the time complexity

of VMM using NAND flash memory is O(N) and it is

larger than O (1) which is the time complexity of VMM

using memristor array. However, recent state-of-the-art DNN

algorithms typically require enormous parameter size. As

a way to accommodate this, NAND flash memory which

has great advantages in cell density can be a promising

candidate for synaptic device. Because NAND flash architec-

ture reduces ground wires and bit-lines considerably, which

allows a denser layout and greater storage capacity per

chip than other memory devices. In addition, it can be

fabricated vertically, which allows great density [16]–[18].

Furthermore, by using sequential reading method, the cur-

rent subtractor subtracting the current of synaptic string

which consists of two adjacent cell strings can be reused

for all synapses in the synapse string, which significantly

reduces the burden of circuits. In addition, 3-D NAND flash

FIGURE 2. (a) Schematic of forward propagation of multi-layer neural
networks using NAND flash memory. (b) Pulse-timing diagraph which is
applied to word-lines. (c) Schematic of Forward propagation for producing
the output current for kth neuron in lth layer. (d) Pulse-timing diagraph for
producing the output current for each neuron in lth layer.

memory has been demonstrated as technologically mature

and cost-competitive technology among the various non-

volatile memory technologies [16]–[18]. Therefore, NAND
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FIGURE 3. (a), (b) Weight update method when G− reaches its minimum
value.

flash can be a promising synaptic device for implementing

high-density multi-layer neural networks.

As the synaptic device has discrete and finite conduc-

tance, we need adaptive weight update method. Conductance

of synaptic device can be modified by one step at each

iteration according to sign of error value to reduce the bur-

den of periphery circuit which updates the conductance of

synaptic devices by applying programming/erasing pulses.

In software-based multi-layer neural networks, weight can

be modified to exact target value according to the calcu-

lated error values. However, in hardware-based multi-layer

neural networks, as the synaptic weight has discrete values,

the weight can be modified to approximate target values. If

multiple pulses are required for updating synaptic weight to

approximate target value, we need to check the current con-

ductance of the device and calculate the number of pulses

required to reach the target conductance. It imposes big bur-

den to periphery circuit. Therefore, updating the synaptic

weight value by one step at each iteration reduces burden

of external circuit.

As two synaptic devices are required to represent negative

weight value (Wij = G+
ij − G−

ij ), there are several ways to

update synaptic weight. In other words, both increasing G+

and/or decreasing G− result in increasing the weight. As

NAND flash memory has higher learning accuracy when

the conductance response is unidirectional as shown in

Fig. 4(c) than when the conductance response is bidirec-

tional, we can only decrease the G− to increase the weight

value (Wij). However, as devices have finite conductance

response, there is a case when weight needs to be increased

(�Wij >0) but G− reaches its minimum conductance value

(Gmin), and G
− can no longer be decreased. In this case, there

are two ways to update weight values. First, it is possible to

initialize both G+ and G−, with a subsequent decrease in G−

as shown in Fig. 3 (a) [19]. Second, G+ should be reset to

Gmax and decreased to the target value by applying a series

of program pulses sequentially as shown in Fig. 3 (b) [14].

III. EXPERIMENTAL MEASUREMENT

In this work, we used floating gate 2D (planar) NAND flash

cell strings fabricated with the 26 nm technology. One cell

string consists of 64 cells, two dummy cells, a drain select

FIGURE 4. (a) Measured IBL-VBL curves when selected cell is programmed
30 times. (b) Bidirectional conductance response when selected cell is
programmed 30 times and erased 30 times. (c) Unidirectional conductance
response for 3 cycles when selected cell is programmed 30 times and
erased at once.

line (DSL) transistor, and a source select line (SSL) tran-

sistor. The channel length and width are 26 and 20 nm,

respectively [20].

Fig. 4 (a) shows the decreasing bit-line current (IBL)

curves when selected cell is programmed 30 times in a VBL

range of 0 V 1 V at a pass bias of 6.5 V. As device has

higher accuracy when it has large dynamic range [21], we

used voltage pulse of 14 V which is minimum voltage for

programming for a given program time of 100 µs. Electrons

are emitted from channel and injected into floating gate by

applying programming pulse, which increase the threshold
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voltage and decrease the bit-line current (IBL). Using iden-

tical programming pulse (14 V, 100 µs) reduces the burden

of periphery circuit, because different pulse size accord-

ing to present conductance state needs enormous amount

of calculation.

Fig. 4 (b) and (c) show measured bidirectional con-

ductance response and unidirectional conductance response

of selected cell, respectively. Conductance is measured as

IBL/VBL at VBL of 0.2 V. The selected cell is programmed

(14 V, 100 µs) 30 times and erased (−9 V, 100 µs) 30 times

to represent bidirectional conductance response. On the other

hand, selected cell is programmed (14 V, 100 µs) 30 times

and erased (−10 V, 100 µs) once to represent unidirectional

conductance response as shown in Fig. 4 (c).

For comparing our synaptic device with other devices

reported up to date, we use the behavior model for NAND

flash cell, ideal perfect linear device, and memristive device.

Fig. 5 shows normalized conductance versus the number

of pulses in three devices, using behavior model [22] in

equations (1) and (2)

δGp = αp exp

(

−βp
G− Gmin

Gmax − Gmin

)

(1)

δGd = αd exp

(

−βd
Gmax − G

Gmax − Gmin

)

(2)

where αp is a fitting parameter and βp is a nonlinearity factor

of the potentiation characteristic, similarly αd and βd for the

depression characteristic. In addition, G is the conductance of

electronic synapse devices. Gmax and Gmin are the maximum

and minimum conductance, respectively.

Equation (1) can be expressed as follows

δGp =
G(n+ 1) − G(n)

1
=

�G

�n

= α exp

(

−β
G(n) − Gmin

Gmax − Gmin

)

(3)

where, n is the number of pulse, α and β represent αp and βp,

respectively. We can approximate above equation as follows

to be transformed into the derivative form

dG

dn
= α exp

(

−β
G(n) − Gmin

Gmax − Gmin

)

. (4)

Integrating the above equation yields the following equation

GLTP(n) = Gmin +
Gmax − Gmin

β
ln

(

αβ

Gmax − Gmin

)

+
Gmax − Gmin

β
ln

(

n− 1 +
Gmax − Gmin

αβ

)

.

(5)

Therefore, the conductance logarithmically increases as

the number of pulses increases in the behavior model.

In memory devices, the amount of the stored charge

increases logarithmically as the number of potentiation

pulses increases [23], because the previously stored charge

reduces the amount of charge stored by the additional

pulses by the Coulomb repulsion. The charge stored in the

FIGURE 5. (a) Bidirectional conductance responses of NAND flash, ideal
perfect linear device, and memristor [26]. (b) Unidirectional conductance
responses of NAND flash, ideal perfect linear device, and memristor [26].

floating-gate below the gate acts as a gate bias to induce

carriers (electrons or holes) in the channel. Thus, the effec-

tive gate bias increases logarithmically as the number of

potentiation pulses increases. Furthermore, previous works

using physical modeling have shown that the threshold volt-

age logarithmically increases as the time of program pulse

increases [24], [25]. An increase in the program time corre-

sponds to an increase in the number of pulses. In addition,

we measured the conductance in the linear region. In the

linear region, the current linearly decreases with increasing

threshold voltage. Consequently, the current logarithmically

increases as the number of erase pulses increases, and log-

arithmically decreases as the number of program pulses

increases.

Since both the physical modeling of floating gate device

and the behavior model in [22] mean that the conductance

logarithmically increases as the number of erase pulses

increases, we used the behavior model to fit the conductance

behavior of NAND flash memory cells.

Because the maximum value of conductance for real

devices is limited, the dynamic range of conductance is

important for learning performance. In this case, we assumed

that the conductance of each device reaches minimum con-

ductance from the maximum conductance after 30 pulses.

Fig. 5 (a) and (b) show bidirectional and unidirectional

conductance response of devices, respectively.

IV. SIMULATION RESULT OF MNIST PATTERN

RECOGNITION

We designed a 3-layer perceptron networks using NAND

flash as synaptic devices and evaluated classification accu-

racy for MNIST hand written digit sets using matched

computer simulation. Fig. 6 shows full learning procedure

for designed neural networks. We adopt the online learn-

ing updating the weight of synaptic device at each training

sample to reduce the burden of synapse array and periph-

eral circuits. In addition, weight (W) of synaptic device

can be modified by one step (|�G−
ij |,−|�G+

ij |) at each

iteration according to sign of �W to reduce the burden of

periphery circuit. In this simulation work, the conductance

response data from Fig. 5 are used for multi-layer percep-

tron. Fig. 7 represents activation function. Black and red line

indicates hard-sigmoid function and differential value of it,
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FIGURE 6. Online learning procedure for hardware-based multi-layer
neural networks.

FIGURE 7. Activation function. Black line indicates hard-sigmoid function.

respectively. 60000 sets of MNIST are used for training

and 10000 sets are used for testing accuracy. Input neu-

rons are driven by pixels transformed to gray scale digital

pulse (0 to 1 V). After forward propagation and computing

error values, weight can be changed by one step at each

iteration using identical pulse. The sign of weight (�Wij) is

used to determine whether the weight should be increased

or decreased.

Fig. 8 shows simulated classification accuracy using con-

ductance response in Fig. 5. Using bidirectional conductance

response in Fig. 5 (a), the simulated accuracies for NAND

flash, perfect linear, and memristor devices are 87.92%,

94.14% and 85.99% respectively as shown in Fig. 8 (a).

In Fig. 5 (a), the NAND flash has more linear conductance

response than memristor during programming, but has more

nonlinear conductance during erasing. Therefore, in bidirec-

tional conductance case, accuracy obtained by using NAND

flash is similar to accuracy obtained with a memristor-based

synapse.

On the other hand, using unidirectional conductance

response in Fig. 5 (b) and weight update method in Fig. 3 (a),

the simulated accuracies for NAND flash, perfect linear,

and memristor devices are 86.14%, 93.89% and 72.58%

respectively as shown in Fig. 8 (b).

FIGURE 8. (a) Simulated classification accuracy obtained by using the
bidirectional conductance response in Fig. 5 (a). (b) Simulated
classification accuracy obtained by using the unidirectional conductance
response in Fig. 5 (b) and weight update method in Fig. 3 (a). (c) Simulated
classification accuracy obtained by using the unidirectional conductance
response in Fig. 5 (b) and weight update method in Fig. 3 (b).

Even if the weight update method changes, the ideal

synapse with a linear conductance response has almost the

same accuracy. However, when the weight update method

shown in Fig. 3 (a) is applied, a network composed of

synapses with a large nonlinearity is greatly degraded in

accuracy. Since the NAND synapse device has a more

linear conductance response than the memristor device as

shown in Fig. 5 (b), a network composed of NAND synapse

devices has higher accuracy than that composed of memristor

devices.

Fig. 8 (c) shows accuracy obtained by using unidirectional

conductance response in Fig. 5 (b) and weight update method

1090 VOLUME 7, 2019
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FIGURE 9. Conductance responses of 30 NAND flash cells for 30 states.

in Fig. 3 (b). The simulated accuracies for NAND flash, per-

fect linear, and memristor devices are 94.19%, 94.69% and

93.53% respectively. The learning accuracy obtained by the

unidirectional conductance response and the weight update

method in Fig. 3 (b) is higher than that obtained by the bidi-

rectional conductance response. This is because the weight

update method in Fig. 3 (b) reduces the asymmetry between

weight increase and weight decrease, which is an important

factor for high learning accuracy [14]. Therefore, when the

weight update method in Fig. 3 (b) is applied, the accuracy

obtained using NAND flash cells is similar to that obtained

with ideal perfect linear devices. Thus, the unidirectional

conductance response is suitable to implement multi-layer

neural networks using NAND flash cells as synaptic devices.

NAND flash cells were measured for 30 conductance

states to investigate the device variation as shown in Fig. 9. In

addition, drain current has a linear relationship with threshold

voltage in linear region and threshold voltage in NAND flash

follows Gaussian distribution [27]. Therefore, we assumed

the conductance distribution of NAND flash memory cells

follows a Gaussian distribution, X ∼ N (1.25, 0.04). Learning

accuracy with respect to device-to-device variation and cycle-

to-cycle variation is investigated to check the effect of device

variation on learning accuracy. Fig. 10 (a) shows the effect

of device-to-device variation on learning accuracy when the

weights are updated on off-chip and the weights are updated

on synaptic devices. We assumed the distribution of the

conductance of synaptic devices follows the Gaussian distri-

bution X(1, σ ) and the standard deviation varies from 0 to 1.

Learning accuracy is degraded from 94.3% to 13.11% when

the weights are updated on off-chip. However, learning accu-

racy is negligibly degraded from 94.19% to 93.12% when the

weights are updated on synaptic devices as the standard devi-

ation increases from 0 to 1. In other words, neural network

is robust to device-to-device variation when the weights are

updated on synaptic devices. Fig. 10 (b) shows the effect of

cycle-to-cycle variation on learning accuracy. As shown in

Fig. 10 (b), the learning accuracy is degraded from 94.3%

to 10.11% as the standard deviation increases from 0 to 1.

Therefore, the cycle-to-cycle variation has a more detrimen-

tal effect on the learning accuracy than the device-to-device

variation.

FIGURE 10. Simulated classification accuracy with respect
to (a) device-to-device variation and (b) cycle-to-cycle variation. The
variation is assumed to have a Gaussian distribution.

FIGURE 11. Retention characteristics of conductance states. NAND flash
memory cells fabricated with 26 nm technology are measured.

FIGURE 12. Conductance response of fresh, 100 and 1k cycled cell.

To check the reliability of NAND flash cells, endurance

and retention properties are measured. Fig. 11 shows

the retention characteristics of conductance states at

25◦C. Compared to conventional NAND flash memory,

a smaller program bias is used and the amount of electrons

stored in the floating-gate is relatively smaller. Therefore,

synaptic devices using NAND flash cells have excellent

retention characteristics as shown in Fig. 11. We also inves-

tigated the cycle-to-cycle variation of NAND flash memory

cells. As shown in Fig. 12, we can observe the conduc-

tance of the cell is almost the same up to 1k cycles. In

one cycle, the cell is programmed 30 times by applying

30 pulses with a width of 100 µs and a voltage of 14 V

and erased by applying 1 pulse with a width of 100 µs and

a voltage of −10 V. The cycle-to-cycle variation is expressed

as a percentage of the entire weight range. The calculated

cycle-to-cycle variation is 1.7%. Fig. 13 illustrates the pass

bias disturbance. One program pulse reduces conductance

by 130 nS, while conductance is reduced by 4nS, after 105
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FIGURE 13. Conductance change after applying 105 pass bias pulses.
When one pulse is applied for the program, the conductance changes
significantly, whereas the pass bias pulses of 105 have a negligible effect
on the conductance.

FIGURE 14. Learning accuracy with the dynamic range of synaptic device.

pass bias pulses are applied. Therefore, pass disturbance has

a negligible effect on the conductance of synaptic devices.

We investigate the effect of dynamic range on learn-

ing accuracy. Fig. 14 shows the learning accuracy over the

dynamic range of synaptic devices.When the dynamic range

is above 32, the learning accuracy remains above 94% and

the accuracy drops significantly when the dynamic range

is less than about 30. When learning MNIST data, it can

be said that 30 levels of dynamic range are sufficient. It is

expected that higher dynamic range is required for learning

more complex images.

V. CONCLUSION

In this paper, we have proposed an operation scheme of

multi-layer neural networks using 2D NAND flash memory

cell as a high-density and reliable synaptic device. Our

scheme eliminates the waste of NAND flash cells and

allows analogue input values satisfying weighted sum out-

put equation. The conductance response of NAND flash

cell is compared with those of memristor and perfect lin-

ear device. By using the conductance response and suitable

weight update methods for hardware-based multi-layer neu-

ral networks, we implemented a 3-layer perceptron networks.

A 3-layer perceptron network with 40545 synapses was

trained on a MNIST database set. By comparing bidirec-

tional with unidirectional conductance responses in terms of

classification accuracy, it has been shown that unidirectional

conductance response is suitable to implement multi-layer

neural networks using NAND flash cells as synaptic devices

with adaptive weight update method. Simulated classifica-

tion accuracy using NAND flash cells is comparable to

that obtained by perfect linear device. Finally, NAND flash

memory which is cost-competitive, mature technology and

has great advantage in cell density and large storage capac-

ity can be a promising synaptic device for implementing

multi-layer neural networks.
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