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e consider a firm that invests in capacity under demand uncertainty and thus faces two related but distinct

types of risk: mismatch between capacity and demand and profit variability. Whereas mismatch risk can
be mitigated with greater operational flexibility, profit variability can be reduced through financial hedging.
We show that the relationship between these two risk mitigating strategies depends on the type of flexibility:
Product flexibility and financial hedging tend to be complements (substitutes)—i.e., product flexibility tends to
increase (decrease) the value of financial hedging, and, vice versa, financial hedging tends to increase (decrease)
the value of product flexibility—when product demands are positively (negatively) correlated. In contrast to
product flexibility, postponement flexibility is a substitute to financial hedging as intuitively expected. Although
our analytical results assume perfect flexibility and perfect hedging and rely on a linear approximation of the
value of hedging, we validate their robustness in an extensive numerical study.
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1. Introduction

This paper studies the relationship between finan-
cial hedging and operational flexibility when both are
used to mitigate a firm’s exposure to demand uncer-
tainty. Most operations are exposed to two related
yet distinct risks. Mismatch risk is an operational risk
that refers to the expected cost of supply (capacity or
inventory) differing from demand. To mitigate mis-
match risk, firms may invest in various flexibilities
that enable them to better adapt to volatile market
conditions.

The other type of risk relates to profit variability. The
finance literature identifies several rationales explain-
ing why value-maximizing firms may benefit from
reducing profit variability and should thus engage
in financial hedging. Smith and Stulz (1985) show
that financial hedging can reduce expected tax liabil-
ities, bankruptcy costs, or compensation paid to risk-
averse managers. Stulz (1990), Bessembinder (1991),
and Froot et al. (1993) show that financial hedging
can increase firm value by leading to more efficient
capital investment outcomes. To capture these various
market imperfections in a parsimonious and tractable
fashion, we assume that the firm value is a concavely

increasing exponential function of the pretax profit.
Thus, even though the firm is an expected value max-
imizer, the nonlinearity of taxes, bankruptcy cost, etc.
induces behavior similar to risk aversion.

Although there is a considerable amount of litera-
ture both on flexibility and on financial hedging, rel-
atively little research examines their relationship, and
most of it considers financial hedging against currency
exposure rather than product demand exposure. This
paper attempts to fill this gap by showing that, con-
trary to initial intuition, flexibility and financial hedg-
ing can be complements (as well as substitutes) in the
firm’s overall risk management strategy.

We consider a value-maximizing firm whose oper-
ating profit depends on an exogenous random shock,
which we refer to as “demand vector.” Given that the
firm value is a concave function of pretax profit, profit
variability reduces the expected firm value, so the firm
has an incentive to use financial hedging. Specifically,
the firm enters a financial hedging contract whose
payoff depends on some commonly observable under-
lying variable(s) such as stock indices, commodity
prices, or weather-related variables that are (imper-
fectly) correlated with the demand vector. We assume
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that the firm uses an optimal hedging contact that is
fairly priced.!

Flexibility is the ability to adapt to change and
may take many forms. This paper addresses two of
them: product flexibility and postponement flexibility.
To study product flexibility, we follow Van Mieghem
(1998) and consider a two-product firm that invests
in a mix of one product-flexible and two product-
dedicated resources while product demands are
uncertain. We measure the firm’s product flexibility
by the ratio of the unit cost of the flexible resource
relative to the unit cost of dedicated resources. As this
ratio decreases from 2 to 1, the firm’s product flexibil-
ity increases from none (only dedicated resources are
acquired) to full (only flexible resource is acquired).
We show that product flexibility and financial hedg-
ing tend to be complements (substitutes)—i.e., prod-
uct flexibility tends to increase (decrease) the value
of financial hedging, and, vice versa, financial hedg-
ing tends to increase (decrease) the value of product
flexibility—when demands are positively (negatively)
correlated. This is because product flexibility increases
(decreases) profit variance when demands are posi-
tively (negatively) correlated. Although our analytical
results assume perfect flexibility and perfect hedging
and rely on a linear approximation of the value of
hedging, we validate their robustness in an extensive
numerical study.

The second type of flexibility is postponement flex-
ibility. We consider a two-product newsvendor with
no product flexibility and measure its postponement
flexibility by the fraction of the unit product cost
that is incurred after demand realization. Higher post-
ponement flexibility means a smaller up-front unit
capacity cost. This not only reduces the cost of excess
capacity when demand is low but also stimulates the
firm to invest in a larger capacity level, which in turn
mitigates capacity shortage when demand is high. We
show that, as intuitively expected, postponement flex-
ibility and financial hedging are substitutes.

As an illustration of our model, consider the follow-
ing example. A U.S. sportswear retailer sells at two
ski resorts, one on each coast, where the amount of
snowfall (and hence demand for its products) varies
considerably each year. Most of the retailer’s products
have short life cycles but long lead times and must be
ordered several months before the selling season. The
retailer orders some “dedicated” units of a particular
product that are shipped directly to each retail loca-
tion. In addition, she orders some “flexible” units to
be kept at a central warehouse and shipped to a par-
ticular location only after demand has been observed.

! There exists empirical evidence that firms do use financial deriva-
tives to hedge, although most nonfinancial firms hold derivatives
positions that are small in magnitude relative to entity-level risks
(Guay and Kothari 2003).

The lower the cost of relying on the central ware-
house, the more units will be stored centrally, and the
higher the retailer’s product flexibility.?

Alternatively, the retailer may reduce the mismatch
cost by increasing its postponement flexibility. Instead
of ordering all inventory ahead of the selling season,
the retailer only reserves quick-response capacity and
orders after demand is known. (In reality, the retailer
may order some units ahead of the selling season and
use quick-response capacity to reorder once demand
is known with high accuracy. In that case, our results
may overstate the value of flexibility).

Finally, to protect profit against the possibility of
low snowfall, which hurts sales, the retailer enters
into a financial hedging contract whose payoff is a
decreasing function of the amount of snowfall at the
ski resort(s). Such a contract mitigates uncertainty in
the retailer’s profit to the extent that demand is cor-
related with the amount of snowfall.

Although not yet on a large scale, firms are increas-
ingly experimenting with weather-related derivatives.
The modern market for weather derivatives was born
in the mid 1990s in the United States with innovative,
but ultimately failed, energy trader Enron in the van-
guard. Japan followed several years later with Mitsui
Sumitomo Insurance selling a contract to a retail ski
shop to hedge against low snowfall (Kao 2006). Other
weather conditions sometimes specified in weather
derivatives include temperature, rainfall, and wind.
In 2002, Mitsui Sumitomo Insurance issued a weather-
derivative contract to a soft drink wholesaler based
on the number of hours of sunshine. If the num-
ber of sunshine hours recorded in the July—September
quarter fell below a certain predetermined threshold,
Mitsui Sumitomo Insurance would pay the company
a predetermined amount (Sumitomo Group 2002).
Since that time, the weather-derivative market has
expanded rapidly. According to a survey by Weather
Risk Management Association and Pricewaterhouse-
Coopers, the notional value of weather-derivative
contracts transacted globally from April 2007 through
March 2008 amounted to $32 billion. Whereas most of
the volume comes from energy companies, the share
of the retail sector amounted to 7% in 2006.?

2. Relation to the Literature

The operations literature on product flexibility is
extensive and mostly assumes expected profit max-
imization (see, e.g., Fine and Freund 1990, Van
Mieghem 1998). The literature addressing postpone-
ment flexibility is less abundant. Our model of post-
ponement flexibility is similar to the one considered

2The assumption here is that ex post inventory transshipment
between the stores is not economical, e.g., because of high trans-
portation and coordination costs.

3 For further details, see http://www.wrma.org.
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by Chod et al. (2006), who study its relationship with
other types of flexibility. A notion closely related to
flexibility is operational hedging, which refers to risk
mitigation using operational instruments and typi-
cally focuses on mitigating exchange rate risk. A clas-
sic example is Huchzermeier and Cohen (1996), who
study the option value of shifting production among
countries based on currency fluctuations.

The seminal work on resource investment under
risk aversion is Eeckhoudt et al. (1995). This study
demonstrates that the optimal resource level of
a single-resource newsvendor-type firm decreases
in risk aversion for any concave utility function.
Other papers studying single-resource investment
under risk aversion include Lau (1980), Bouakiz and
Sobel (1992), and Agrawal and Seshadri (2000). Van
Mieghem (2007) studies how risk-averse managers
can use resource diversification, sharing, and flexibil-
ity in newsvendor networks to mitigate risk. Tomlin
and Wang (2005) consider product flexibility and dual
sourcing in unreliable newsvendor networks under
both loss aversion and conditional value at risk.

The operations management literature address-
ing financial hedging includes the following several
papers. Gaur and Seshadri (2005) consider a risk-
averse newsvendor that hedges its risk exposure with
financial options and show that financial hedging
results in a larger order quantity. Caldentey and
Haugh (2006) extend the work of Gaur and Seshadri
by allowing continuous trading in the financial mar-
ket. Chen et al. (2007) incorporate risk aversion and
financial hedging in multiperiod inventory and pric-
ing models. Zhou and Rudi (2007) study the pricing
of over-the-counter financial hedging contracts used
by firms to protect against demand risk by modeling
the interaction between a hedging firm and the con-
tract issuer.

Recently, several papers have considered the joint
use of financial hedging and risk pooling. Ding et al.
(2007) and Zhu and Kapuscinski (2006) study risk-
averse multinational firms that rely on risk pooling
(allocation flexibility and transshipment, respectively)
as well as financial hedging to mitigate risk. Our
work differs from both Ding et al. (2007) and Zhu
and Kapuscinski (2006) in that they consider finan-
cial hedging against exchange rate exposure whereas
we study financial hedging against demand exposure.
Furthermore, they do not explicitly address the ques-
tion of complementarity/substitution between flexi-
bility and financial hedging.

The issue of complementarity /substitution between
product flexibility and financial risk management
(FRM) has been addressed by Boyabatli and Toktay
(2006b). They consider a firm that uses FRM to
influence the distribution of its budget available for
investment in production technology, which may be

dedicated or flexible. In their work, the link between
FRM and flexibility stems from the fact that flexible
technology is more expensive and thus requires more
financing, which can be generated externally at a cost
and/or from an internal budget that is affected by
FRM. The relationship between flexibility and FRM
thus depends on factors such as the firm size. Specif-
ically, flexibility and FRM tend to be complements
for large firms. This is because with FRM, a large
firm may be able to secure enough financing to pur-
chase flexible technology without relying on costly
external financing. In contrast, we consider a situation
in which flexibility and financial hedging are used
simultaneously to manage a firm’s exposure to uncer-
tain demand. Thus, the relationship between flexibil-
ity and financial hedging in our context depends on
their joint impact on the operating profit variability,
which we show depends on demand correlation.

Boyabatli and Toktay (2006a) is an extension of
their other work (Boyabatli and Toktay 2006b), which
endogenizes the cost of external financing by mod-
eling the interaction between the firm and the cred-
itor as a Stackelberg game. Finally, there exists some
finance and economics literature (Mello et al. 1995,
Chowdhry and Howe 1999, Hommel 2003) that inte-
grates operational flexibility and financial hedging,
where the latter is used to mitigate exchange rate
risk.

3. Optimal Financial Hedging and
Its Value

3.1. Firm Value

We consider a value-maximizing firm whose profit
depends on uncertain demand and thus is itself
uncertain. As discussed in the introduction, there exist
several market imperfections such as taxes, the cost
of financial distress, and costly external financing, as
a result of which the firm value is a concave func-
tion of pretax profit (Smith and Stulz 1985). Rather
than modeling these market imperfections explicitly,
we assume for tractability and parsimony that the
firm value v has the following form as a function of
pretax profit x:

v(x) =y =y exp(—yx). 1)

The concavity of the firm value implies that there
exists a positive risk premium r that the firm is will-
ing to pay to eliminate (pretax) profit variability; i.e.,
Ev(x) = v(Ex — r), where E denotes the expectation
operator with respect to the true (physical) probability
measure. This risk premium

r=7y"InEexp(—y(x — Ex) ()
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depends on the distribution of x as well as on the con-
cavity of the value function captured in the “curva-
ture parameter” y = —v"(x)/v'(x). A higher value of
parameter y corresponds to a stronger effect of taxes,
financial distress, and other agency costs that result
in concavity of the firm value.*° ¢

3.2. Financial Hedging

Let 11,(D) be the firm’s operating profit (of a general
functional form) that depends on stochastic demand
vector D. To mitigate operating profit variability, the
firm enters into a financial hedging contract that
is designed to generate a positive cash flow when
demand is low. In practice, demand depends on the
firm’s effort, which may create agency problems in
contracting. Therefore, the hedging contract payoff
is typically based on another “underlying” vector 0
that is exogenous and commonly verifiable, such as
the amount of snowfall at a certain location during
a certain period of time, a commodity price, or a
stock index. As a result, financial hedging is typically
imperfect: it counterbalances operating profit variabil-
ity only partially.

Let I1,,(0) denote the payoff of the financial hedging
contract. Following Froot et al. (1993), we assume that
this contract is “fairly priced,” i.e., its expected payoff
EIT,(0) is zero.” In reality, financial hedging is likely to
be costly; therefore, we will also examine how much
a firm should be willing to pay for financial hedging.
The firm chooses a hedging contract to maximize its
expected value:

max Ev(IL,(D) +11,(0)) subject to EII,(0) =0.
h

We define IT =11, +II; as the total profit when the
optimal hedging contract 11 is used.

Before developing any managerial insights, it is
useful to establish several technical results. We start
by characterizing the optimal hedging contract.

* Reflecting all the aforementioned motives for hedging by assum-
ing a relatively simple concave objective function is not uncom-
mon in the literature. For example, Brown and Toft (2002) assume
that the deadweight cost of tax liabilities, financial distress, and
external financing can be represented by an exponential function of
the profit. Bessembinder and Lemmon (2002) reflect the same mar-
ket imperfections by assuming that the firm maximizes the mean-
variance criterion.

®In Online Appendix 2 (provided in the e-companion), we numer-
ically examine the robustness of our main results under an alterna-
tive objective function that models the effect of corporate profit tax
and costly external financing more explicitly.

¢ For all practical purposes, y plays the same role as the coefficient
of absolute risk aversion, although our firm is risk neutral.

7 Technically, this is the case when the expectation is taken with
respect to the risk-neutral probability measure. Thus, we are
implicitly assuming that the risk-neutral and the true probability
measures are equivalent, which is the case when all agents are
risk-neutral.

ProrosITION 1. The optimal hedging contract is

IT;(0) = £(6) —Ef(0),
where £(8) =y~ InE[exp(—yI1,(D)) | 6]

and results in the following expected firm value:

Eo(II(D, 0)) =y ™' — y~' exp(YEf(0)). ®)

Proor. Maximizing the expected firm value
Ev(I1,(D) +I1,,(0)) is equivalent to minimizing

Eexp(—y(I1,(D) +11,(6)))
= E[exp(=vI1,(D)) exp(—yI1,(8))]
=E{E[exp(—yIL,(D)) exp(—v11,(0)) | 6]}
=E{E[exp(—yIL,(D)) | 8] exp(—yI1,(8))}
=Eexp(yf(0) — vII,(8)). 4)

We show by contradiction that (4) is minimized
by II;(0) = f(0) — Ef(8) among all IT,(8) such that
EI1,(8) = 0. Suppose that there exists a better hedging
payoff ¢(0) such that Eg(0) =0 and

Eexp(yf(0) —vg(0)) < Eexp(vf(8) — ¥II;(6))
< Eexp(yf(0) —vg(8)) < exp(Eyf(8))
& Eexp(X) < exp(EX),

where X = yf(0) — vg(0),

which contradicts Jensen’s inequality. Hence, there
cannot be such g, and II; is indeed optimal. [

The payoff of the optimal hedging contract depends
on a conditional expectation and thus can be rather
complex. However, as any continuous derivative, it
can be arbitrarily closely approximated by a portfolio
of simple options (Ross 1976). Obviously, the presence
of financial hedging will impact the firm’s operations,
which we consider next.

3.3. Optimal Capacity

Suppose that the firm’s operating profit depends, in
addition to the demand vector D, on a vector K of
resource or capacity levels that must be chosen prior
to uncertainty resolution (together with the finan-
cial hedging contract). Reflecting decreasing marginal
returns, we assume that the operating profit 11, (D, K)
is jointly concave in the capacity vector K, as is the
case for a variety of operations models, including any
newsvendor network (Van Mieghem and Rudi 2002).
The next proposition characterizes the optimal capac-
ity vector.
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ProrosITION 2. The optimal capacity vector K* that
maximizes the expected firm value (3) is uniquely charac-
terized by the following first-order condition:

v'(I1,(D, K))

E(o/(IL,(D, K)) [ 0) Oﬂ =0 6

Proor. We assumed that Il (D, K) is jointly con-
cave in K for any D, and it is well known that
InEexp(-) is a convex function. Thus, the expected
firm value (3) is strictly concave and the optimal
capacity is the unique solution of the first-order nec-
essary and sufficient condition, VgxEv(1I(D, 0)) =0,
which can be rewritten as (5). O

Note that the operating profit gradient Vi1l (D, K)
is a vector, and thus the covariance in (5) should be
interpreted componentwise.

EV,I1,(D, K) + E[Cov <VKHO(D, K),

3.4. Contract Correlation

In general, the efficacy of financial hedging depends
on the entire joint distribution of D and 6. How-
ever, we simplify our analysis by assuming that (D, 0)
follows a multivariate normal distribution and, fur-
thermore, that D and 0 have the same number of
components; i.e., there is an underlying variable cor-
responding to each demand class. We also assume
that the correlation coefficient between D; and 6, is the
same for all i and is denoted by p. Thus, the efficacy
of financial hedging depends on a single parameter
p, which we assume, without loss of generality, to be
nonnegative and refer to as “contract correlation.” As
contract correlation increases from 0 to 1, the efficacy
of financial hedging increases from none (no finan-
cial hedging available) to perfect (financial hedging
eliminates all profit variability). Finally, whenever we
resort to numerical analysis, we assume the following
structure of (D, 0):

D~ N(HD/ 2\'D)/ 0~ N(uDr pZED)r and
D[6~ (6, (1-p")Zp),

where (Xp);; = 0 and (Xp); = ppop, i=1,2, j=3—i.
(In this, D and 6 can be thought of as the states of
a multidimensional Brownian motion at times 1 and
p <1, respectively; ie., 8 captures p? x 100% of the
variability of D.)

3.5. An Illustration: Optimal Hedging of
Newsvendor Profit

Although the optimal hedging contract characterized

in Proposition 1 does not assume any functional form

of the operating profit, it is instructive to illustrate

what this contract looks like when the firm’s operat-

ing profit has the standard newsvendor form,

11,(K; D) = —cK + pmin(K, D), (6)

where K is capacity, ¢ is the unit capacity cost, and
p is the unit contribution margin (price minus unit
production cost). There are two special cases in which
the optimal hedging contract simplifies considerably:
(i) when the firm has ample capacity (c = 0) and
(ii) under perfect contract correlation (p = 1). We
characterize these special cases in the following two
corollaries to Proposition 1.

CoROLLARY 1. When the firm has ample capacity, i.e.,
the operating profit is I1,(D) = pD, the optimal hedg-
ing contract has a payoff that is linear in the underlying
variable:

g,
IL,(0) = —pp—2(0 — y).-
Oy

The contract characterized in Corollary 1 corre-
sponds to linear contracts such as a simple forward,
swap, or futures contract.

COROLLARY 2. When the operating profit is given by
(6) and contract correlation is perfect, the optimal hedging
contract is to buy pop /o, European call options with spot
price —6 and strike price —py — (0y/0p)(K* — up), where
the optimal capacity K* = up + op®~((p — ¢)/p) and ®
denotes the standard normal cdf. The payoff of this hedging
contract is

I1,(6) = —I1,(D) + EII,(D)
= —pmin(K, D) + pEmin(K, D),
where D and 6 are related by D = pp + (0p/09) (6 — wy)-

When the contract correlation is less than perfect,
the optimal hedging contract is more exotic as illus-
trated in Figure 1. This figure shows the payoff of

Figure 1 Payoff of the Optimal Hedging Contract IT; (6) as a Function

of the Underlying Variable 6 for a Newsvendor

(6)

*
h

Hedging contract payoff I

p

° S

—

-0.2 L
024 K=1 2

Underlying variable 6

Note. Newsvendor has p=1,¢=0.5, yp=p,=1,0p=0,=0.25, y=1,
given capacity K =1, and contract correlation p € [0, 1].
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the optimal hedging contract of a newsvendor with
a given capacity at different levels of contract corre-
lation p. With zero contract correlation, there is no
financial hedging, i.e., I1,(0) = 0. As contract correla-
tion increases and approaches 1, the optimal hedging
contract approaches the option contract that is opti-
mal when contract correlation equals 1 (as indicated
by the bold graph).

3.6. The Value of Financial Hedging

In reality, financial hedging is likely to come at a
cost, so it is useful to examine how much a firm
should be willing to pay for it. We define the value of
financial hedging A(p, y) as the maximum amount of
money a firm is willing to pay for the optimal hedg-
ing contract, i.e.,

Alp,y)= {A: mI?X[EU(H —A)= mKax[Ev(Ho)}. (7)

The value of financial hedging is similar to the risk
premium (2) with two distinctions. First, financial
hedging reduces but generally does not eliminate all
profit variability. Second, financial hedging not only
reduces profit variability but also affects the optimal
capacity vector and thereby expected profit.

To derive some of our analytical results, we rely on
the first-order (linear) approximation of the value of
hedging; i.e.,, we approximate the value of hedging
A(y) by the first two terms of its Taylor expansion
around 0:®

dA(0)

A(y) = A(0) + W?’- 8)

Because A(vy) is a continuous function, all the com-
parative statics of the approximate value of hedging
are guaranteed to hold for the exact value of hedging
for any vy € (0, ¥) for some y > 0.

As we show in Online Appendix 1 (provided in the
e-companion),” the value of hedging A(y) is roughly
linear and thus can be estimated by the first-order
approximation for a wide range of y. Most impor-
tantly, an extensive numerical study (summarized in
§5) demonstrates that our key managerial insights
based on (8) remain valid even as y becomes large.
The next proposition shows that for small vy, the value
of financial hedging depends on how much it reduces
the operating profit variance.

PRroPOSITION 3. The value of financial hedging can be
written as

Ap, y) = 3y[VarI1,(K°) — E(Var(IL,(K") | 0))] + o(7),

8 A similar analytical approach is used by Pratt (1964), who relies
on the first-order approximation of the utility function u(x) in
arguing that the risk premium for a “small risk” is approximately
—u(x)/u'(x) times half the variance of this risk.

¢ An electronic companion to this paper is available as part of the on-
line version that can be found at http://mansci.journal.informs.org/.

where K° is the optimal capacity vector at y =0, and
o(y)/y—0as y—07.

Proor. Using Proposition 1, the value of financial
hedging defined by (7) can be expressed as

Eexp(—yI1,(K*(0))) }
Efexp(—yI1,(K*(p))) | 8] ]
where K*(p) is the optimal capacity vector as a func-

tion of the contract correlation. Because A(p,0) =0,
the first-order Taylor expansion around y =0 gives

dA(p,
A(p,y)= %7“(7)-

Ap, y) = v‘le[ln

Differentiating A(p, v) with respect to vy yields
dA(p, y)
dy

1 [[E(Y[E[HO(K*(P)) exp (=11, (K*(p))) | 9])
E[exp(—vIL,(K*(p))) | 6]

,},2

- RO )
E[exp (=1L, (K*(p))) | 6]
_ y[E[Ho(K*«)))exp(—vno<l<*(0>>>1] o
Eexp(—I1,(K*(0))) '
Using 'Hoépital’s rule to evaluate (9) at y =0 gives
dA(p, 0)/dy = [VarIl,(K°) — E(Var(IT,(K) | 8))] and
the result follows. O

3.7. Operational Flexibility and Its Value

In addition to financial hedging, the firm’s ability
to handle demand risk depends on its operational
flexibility. We denote the degree of the firm’s opera-
tional flexibility by a continuous parameter ¢ € [0, 1]
and use subscripts N and F to refer to a nonflexi-
ble firm (¢ =0) and a flexible firm (¢ > 0), respec-
tively. (We give parameter ¢ a specific meaning in the
subsequent sections, in which we consider two partic-
ular forms of flexibility: product flexibility and post-
ponement flexibility). We define the value of flexibility
A(p, v) as the maximum amount of money a nonflexi-
ble firm is willing to pay for a given level of flexibility
in the presence of the optimal hedging contract, i.e.,

Alp, v) = {A: Bo(llx(Kp) — A) =Fo(Ily (KR))}.  (10)

3.8. Relationship Between Flexibility and
Financial Hedging

To assess the relationship between financial hedging
and flexibility, we examine (i) how a firm’s flexibil-
ity affects the value of financial hedging and (ii) how
financial hedging affects the value of flexibility. In
the case of perfect financial hedging, these are two
sides of the same coin, as formalized in the following
lemma.
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LEmMA 1. Perfect financial hedging increases the value
of flexibility if and only if flexibility increases the value of
perfect financial hedging, i.e.,

AL, y)> A, ) & Ap(1,7)>Ay(1, 7).
Proor. It follows from (10) that
AL y) = T(KE; 1, ) = Ty (KR 1, 9),
A(0,7) = ¥~ InEexp(—yIT,y (K})
— v InEexp(—yI¢(Kp)).
Note that in case of p =1, profits are evaluated at

K" because a perfectly hedged firm chooses the risk-
neutral capacity vector. It further follows from (7) that

Ap(1, y) =TI(K}; 1, v) + vy ' InEexp(—yI1,-(K})),
Ay(1,y) =Ty (KY; 1, 9) + 7 InEexp(—yI1L,y (K3))-

Combining these facts implies A(1,y) — A(0,y) =
Ap(1,v) —AN(1, ), and the result follows. O

In the next section, we present analytical results on
the relation between financial hedging and two types
of operational flexibility. All results that rely on par-
ticular parametric assumptions are then numerically
tested for robustness in §5.

4. Financial Hedging and Operational
Flexibility

4.1. Product Flexibility

We consider a newsvendor-like firm that chooses
capacity of three resources while facing uncer-
tain demand for its two products, as analyzed in
Van Mieghem (1998). Two resources are dedicated to
the two products, whereas the third resource is prod-
uct flexible. For simplicity, we assume all parameters
to be equal for the two products. Let K = (K, K,, K¢)’,
c=(cy, ¢y, cr), and p denote the capacity vector, the
vector of unit capacity costs, and the unit net revenue,
respectively. The firm’s operating profit equals

M,(D, K) = max p(x; +% +1; +1,) — K,

x,yeR2
subject to x;+y; <D;,i=1,2,
x<K,i=1,2,
VitV <K, (11)

where x; and y,; represent the amounts of nonflexi-
ble and flexible capacity, respectively, that are used to
satisfy demand for product i, i =1, 2. The operating
profit (11) depends on the realized demand as follows:

p(D; + D,) if D e Qy(K),
p(K; + Ky +D,) if De Q,(K),

I,(D, K) = K+
p(D; + K, +Kp) if D € Q,(K),

p(K; + K, + Kp) if D e Q4(K),

where

QyK)={D>0:D,+D, <K, +K,+Kp, D; <K; + K,
i=1,2),
0(K) ={D>0:D;, > K, +Kp, D, =K},
0,(K) = (D>0:D,> K, + K;, D, <K},
0,(K) = [D>0:D, + D, > K, + K, + Kz, D, > K;,
i=1,2).

Because II,(D,K) is jointly concave in K (Van
Mieghem and Rudi 2002), the optimal capacity vec-
tor is characterized by Proposition 2. The assump-
tion of symmetric product parameters together with
the uniqueness of the solution imply that the optimal
solution is also symmetric. Hence, we can simplify
notation by letting K; = K, = K.

4.1.1. Level of Flexibility. To study the relation-
ship between flexibility and financial hedging, we
need an unambiguous measure of flexibility. Because
the relative levels of flexible and nonflexible capacities
depend on the relative costs of these two capacities,
we can define the firm’s product flexibility as

¢=2cy —cp)/en-

To study the effect of flexibility, we vary c; € [cy, 2cy]
while keeping cy constant. If ¢ =0, a unit of flexible
capacity has the same cost as two units of nonflexible
capacity, ¢y = 2cy; therefore, it is optimal to acquire
only nonflexible capacity, K* = (K}, K}, 0)’, and the
firm has no product flexibility. If ¢ =1, flexible and
nonflexible capacities are equally expensive, c; = cy,
and, therefore, it is optimal to acquire only flexible
capacity, K*=(0, 0, K})’, and the firm has full product
flexibility. In general, as ¢ increases from 0 to 1, the
unit cost of flexible capacity c; decreases from 2cy to
cy, and the firm substitutes nonflexible capacity with
flexible capacity.

The effect of flexibility is illustrated in Figure 2,
which shows the partitioning of demand state space
into four events: if D € ), both demands are fully
satisfied; if D € ; (£,), only demand for product 2
(1) is fully satisfied; and, finally, if D € 3, neither
demand is fully satisfied (assuming flexible capac-
ity is split between the two products proportionally
to the residual demands after using product-specific
capacities). As shown in the figure, product flexibility
increases sales when one demand is “high” while the
other one is “low.” (Note that all panels in Figure 2
are plotted for the same total capacity 2Ky + Ky,
although flexibility may increase or decrease total
capacity, depending on problem parameters.)
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Figure 2 Product Flexibility Increases the Probability That Both Demands Will Be Fully Met, Which Happens When D € (, (Shaded Region)
(a) No flexibility (¢ = 0) (b) Partial flexibility (0 < ¢ < 1) (c) Full flexibility (¢ = 1)
D, 4 D, 4 D, 4
2Ky +Ke | K
Q, Qg Ky + Ke ] Q,
K
Q) Q
Q Q Ky -
| et
K, D, Ky Ky+Ke 2Ky+Kp D, K. D,

4.1.2. Product Flexibility and Financial Hedging.
To assess whether flexibility and financial hedging
are complements or substitutes, we examine whether
flexibility increases or decreases the value of financial
hedging. In the next proposition, we compare the val-
ues of perfect financial hedging under no flexibility
and under full flexibility. We use subscripts N and F
to denote the cases of no flexibility (¢ =0) and full
flexibility (¢ = 1), respectively.

ProrosITION 4. When demand correlation is positive
(negative), there exists ¥ > 0 such that full product flex-
ibility increases (decreases) the value of perfect financial

hedging, i.e., Ap(1,y) > (<) Ay(1, ) for any y € (0, ¥).

Proor. Proposition 3 implies that at sufficiently
small y and p=1, Ar > Ay if and only if

Var HDF (Kg) = Var HDN (KI?I)
2
< Varmin(D, +D,, K})>Var)_ min(D;, K},)

i=1

& Varmin(Ru+Z,0pv/2+2pp, 21 +2z"0p/24+2pp)

2
>Var ) min(p+Z0p, u+2z"0p)
i=1

& (24-2pp)Varmin(Z,,2°)
>2Var min(Z,,z°) +2Cov[min(Z,, z°), min(Z,, z°)]
Cov[min(Z,,z%), min(Z,, z°)]

Varmin(Z,, z°)

p=4 pDE ’
where z° = ®((p — ¢y)/p), and Z = (D — pp)/0op is
a bivariate standard normal vector with correlation
coefficient pj,. Thus, the last inequality compares the
correlation of two standard normal random variables
with the correlation of the same standard normal ran-
dom variables right censored at z°. (If X is a ran-
dom variable, we say that the distribution of min(X, x)
is right censored at x.) It is straightforward to ver-
ify that the inequality holds if and only if p, > 0 for
any z°. O

It follows from Proposition 3 that for sufficiently
small y, product flexibility increases the value of per-
fect financial hedging if and only if it increases the
operating profit variance, i.e.,

AF(ll 7) P AN(lr 7) < \/arHoF(Kg) = \/arHoN(KIQI)‘

Proposition 4 shows that this is the case if and only
if demands are positively correlated. To gain some
intuition for this effect, consider Figures 3 and 4,
which illustrate the effect of flexibility on operat-
ing profit distribution under negative and positive
demand correlation, respectively. When demands are
negatively correlated, relative to the dedicated capac-
ity constraints, the flexible capacity constraint allows
more uneven product sales (sales falling into shaded
triangles in Figure 3(b)), which reduces operating
profit variance. To put it differently, although prod-
uct flexibility increases the upside profit variability
while decreasing the downside profit variability, neg-
ative demand correlation makes the latter effect more
pronounced (Figure 3(c)). The “operational hedging”
effect of flexibility is strongest when demands are per-
fectly negatively correlated, in which case, full prod-
uct flexibility eliminates operating profit variability
entirely (given our symmetry assumption).

When demands are positively correlated, relative to
the dedicated capacity constraints, the flexible capac-
ity constraint allows more symmetrical product sales
(sales falling into shaded triangles in Figure 4(b)),
which increases operating profit variance. In other
words, with positive demand correlation, the effect of
product flexibility on increasing the upside variabil-
ity is more pronounced than its effect on reducing the
downside variability (Figure 4(c)).

Our numerical study (presented in §5) shows that
the relationship between product flexibility and the
value of hedging characterized in Proposition 4 con-
tinues to hold when hedging is imperfect and tends
to hold when the curvature parameter 7y is large.
Specifically, we show that as vy increases, the demand
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Figure 3
p=1, ¢=0.5, and Total Capacity K + 2K, =2

(a) Sales with no flexibility
Ke

Product 2

2>§
Product 2

(b) Sales with full flexibility

Effect of Product Flexibility on Sales and Operating Profit Distribution Under Negative Demand Correlation p, = —0.5, up, =1, g, = 0.25,

(c) Operating profit distribution

== No flexibility
= Full flexibility

Frequency

K Product 1

correlation threshold above which A; > Ay slightly
decreases; i.e., the range of demand correlations for
which full flexibility increases the value of hedging
includes positive as well as slightly negative values.
We also show that the value of hedging may not be
monotone in ¢ over the entire range of ¢ € [0, 1].

An alternative approach to assessing the same rela-
tionship is to ask how financial hedging affects the
value of flexibility. The next result simply mirrors
Proposition 4.

CoOROLLARY 3. When demand correlation is positive
(negative), there exists y > 0 such that perfect financial
hedging increases (decreases) the value of full product flex-
ibility, i.e., A(1,y) > (<) A0, y) for any y € (0, ¥).

Proor. The result follows directly from Lemma 1
and Proposition 4. [

4.2. Postponement Flexibility

We consider again a two-product newsvendor-like
firm with identical cost, revenue, and demand param-
eters for both products. Whereas capacity is chosen

Figure 4
¢ =0.5, and Total Capacity K + 2K, =2

(a) Sales with no flexibility
Ke

Product 2

=
Product 2

Product 1

(b) Sales with full flexibility

Ke Operating profit

under demand uncertainty, actual output is deter-
mined after demand has been observed. Let K be the
capacity dedicated to each product, and let cx be the
unit capacity cost. The output of product i, denoted
as Q;, is constrained by capacity as well as realized
demand, i.e., Q; = min(K, D;). The output is produced
at a unit output cost ¢, and sold at a predetermined
price p. The firm’s operating profit is thus

I,(K,D) = (p—cp) Y min(K, D;) —2¢x K
i=1,2

i=1,2

where ¢ = cg + cg is the total unit cost, and G(D) =
ek Xim1,2(K=D) "+ (p — ¢) Xy, 2(D; — K)™ is the mis-
match cost. Because the expected operating profit
is concave in K, the optimal capacity is uniquely
determined by the first-order condition stated in
Proposition 2.

4.2.1. Level of Flexibility. We measure the firm’s
postponement flexibility as the ability to postpone
some of its decisions that impact cost until demand is

Effect of Product Flexibility on Sales and Operating Profit Distribution Under Positive Demand Correlation p, = 0.5, up =1, 0, =0.25, p =1,

(c) Operating profit distribution

—— No flexibility
= [yl flexibility

Frequency

Ky Product 1

Product 1 K

Operating profit
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known. Formally, we define postponement flexibility
as the fraction of the total unit cost ¢ that is incurred
after demand is observed:

b=cg/c.

To study the effect of flexibility, we vary parame-
ter ¢ € [0,1] while keeping the total product cost
c fixed. With zero flexibility (¢ = 0), all costs are
incurred before demand is known, as in a pure
make-to-stock production environment. With full flex-
ibility (¢ = 1), the firm does not need to reserve
any capacity before observing demand, so output is
always equal to demand. This corresponds to a pure
make-to-order scenario in which the cost of capacity
excess, ¢y Y. ,(K—D;)*, as well as the cost of capac-
ity shortage, (p —c) >, »(D; — K)*, are completely
eliminated.

In general, greater flexibility corresponds to a lower
unit cost of capacity, cx = (1 —¢)c, and thus to a lower
expected cost of capacity excess cxEY",_; ,(K—D,)*.
Furthermore, because greater flexibility means a
lower unit cost of capacity excess cy without affect-
ing the unit cost of capacity shortage, p — c, it results
in a higher capacity level and thus a lower expected
cost of capacity shortage (p—c)EY,_; ,(D;—K)*.
(Although greater flexibility always reduces the
expected mismatch cost, it might result in a greater real-
ized mismatch cost. This is because the lower unit cost
of capacity results in a larger optimal capacity level,
and thus, might result in a larger excess capacity.)

4.2.2. Relationship to Other Flexibilities. As
shown in Figure 5(a), postponement flexibility de-
creases the average total cost at low output levels

Figure 5 Average Total Cost and Operating Profit Distribution
K A
(a) Average total cost = S+ CaQ;
i

\

\ |

| I e

‘\ No flexibility

\

while making large outputs feasible. This makes
postponement flexibility closely related to volume
flexibility, which is typically defined as the ability to
operate profitably at different output levels (Sethi and
Sethi 1990). Postponement flexibility is also similar to
how flexibility is often interpreted in the economics
literature. In the seminal work on the topic, Stigler
(1939) considers a plant to be flexible if it has a
relatively flat average cost curve and thus incurs
relatively smaller losses when deviating from the
minimum average cost output.

4.2.3. Postponement Flexibility and Financial
Hedging. The relationship between flexibility and
financial hedging depends, again, on how flexibil-
ity impacts operating profit variability. The impact
of postponement flexibility on operating profit vari-
ability is a result of two opposite effects. The fact
that greater postponement flexibility corresponds to a
lower unit cost of excess capacity mitigates the down-
side variability. At the same time, greater postpone-
ment flexibility results in a higher capacity level and
thereby increases the upside variability. This is illus-
trated in Figure 5(b), which shows the operating profit
distribution with zero and full postponement flexibil-
ity. Proposition 5 characterizes the effect of full post-
ponement flexibility on the value of perfect financial
hedging for sufficiently small y. The subscripts N
and F denote the cases of no postponement flexibil-
ity (¢ =0) and full postponement flexibility (¢ = 1),
respectively.

ProrosITION 5. There exists ¥ > 0 such that full post-
ponement flexibility decreases the value of perfect financial

hedging, ie., Ap(1, v) < Ay(1, ) for any y € (0, ).

(b) Operating profit distribution

C— No flexibility
mmmm Full flexibility

Partial flexibility
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Full flexibility

Output Q;

Notes. (a) The average total cost of product / as a function of output under zero, partial and full postponement flexibility, respectively. (b) The operating profit
distribution under zero and full postponement flexibility, respectively, for p =1, ¢ =0.5, uy =1, 0, =0.25, p, =0, y =1, and no hedging.

Operating profit
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Proor. Proposition 3 implies that at sufficiently
small y and p=1, A <Ay if and only if

Var I,z < Var I, (KY)

& \/ar((p—c) > Di>

i=1,2

< \/ar(p >~ min(Ky, Di))

i=1,2
& (p—c)opVar(Z, +Z,)
<p?o3Var(min(z°, Z,) + min(z°, Z,))
& d*(Z)Var(Z, + Z,)
<Var(min(z°, Z,) + min(z°, Z,)),

where z° = @ ((p — ¢)/p) and Z = (D — pup)/op is
a bivariate standard normal vector with correlation
coefficient pp. It is straightforward to verify that the
last inequality holds for any z° and p,. O

As shown in Figure 5(b), full postponement flexi-
bility reduces the left tail of the profit distribution (by
eliminating excess capacity in low-demand states),
but it also increases its right tail (by eliminating the
capacity constraint). According to Proposition 5, the
former effect is always dominating in the sense that
full postponement flexibility always reduces the oper-
ating profit variance. As a result, full postponement
flexibility diminishes, at least for sufficiently small vy,
the value of perfect financial hedging. As we show in
§5, the result continues to hold for large values of v,
imperfect hedging, and partial flexibility.

To look at the same issue from another perspective,
we can show that perfect financial hedging reduces
the value of full postponement flexibility.

COROLLARY 4. There exists ¥y > 0 such that perfect
financial hedging decreases the value of full postponement
flexibility, i.e., A(1, y) < A(0, y) for any y € (0, ¥).

Proor. The result follows directly from Lemma 1
and Proposition 5. [

5. Robustness Analysis

Our main results, namely Proposition 4 for product
flexibility and Proposition 5 for postponement flex-
ibility, assume that financial hedging is perfect and
the curvature parameter y does not exceed a thresh-
old. In this section, we examine the robustness of
these two propositions to both of these assumptions
via an extensive numerical study. Unless stated other-
wise, the figures illustrating our numerical results are
representative of all parameter combinations that we
examined.

5.1. Product Flexibility

5.1.1. Numerical Study Design. Our numerical
study relies on optimization via simulation with

10,000 demand scenarios and the following base-case
parameter values: up, =1, op =0.5, and p =1. The
remaining parameter values are varied as follows:
cy €{0.25,0.5,0.75} (because our results are qualita-
tively similar at different values of cy, all our fig-
ures are plotted only for cy = 0.5), flexibility ¢ €
[0,1] (i.e., c; ranges from 2cy to cy), contract corre-
lation p € [0, 1], and demand correlation p, € [-1, 1].
Most important, we vary the curvature parameter y
from 0 to 4. In the absence of financial hedging, as
v increases from 0 to 4, the total capacity, K} + 2K},
declines by roughly 75% (50%, 25%) when demand
correlation p, =0.5 (0, —0.5) at any level of flexibility.
Such a strong decline in the optimal capacity invest-
ment indicates that, in our setting, y =4 represents a
rather extreme curvature of the value function.'

5.1.2. The Effect of Large y. The reason Propo-
sition 4 assumes y to be “sufficiently small” is that
it relies on the first-order approximation of the value
of hedging A(y) around y =0 (which can be made
arbitrarily accurate by making vy sufficiently small).
In general, the accuracy of this approximation, and
therefore, our confidence that Proposition 4 holds for
moderate and large values of vy, depends on the cur-
vature of A(y). As we show in Online Appendix 1,
the value of hedging A(y) is roughly linear and thus
can be estimated by the first-order approximation for
a wide range of ys. In particular, as y varies from
0 to 4, the approximation accuracy decreases from
100% to roughly 90%-95%, depending on the param-
eter values. This is a first indication that the range
of s for which Proposition 4 holds is rather large.
To verify whether this is indeed the case, we exam-
ine the relationship between flexibility and hedging
as 7y increases from 0 up to 4. We focus on the case of
perfect hedging first.

Figure 6, which plots the value of perfect hedging
as a function of flexibility at different levels of vy, con-
firms that, at least for p, € {—0.5, 0.5}, Proposition 4
continues to hold under large values of y: A fully
flexible firm values perfect hedging more (less) than
a nonflexible firm when demands are positively (neg-
atively) correlated. Note that at pp = —0.5, the rela-
tionship between the value of hedging and flexibility
is not monotone over the entire range of ¢. Namely,

1" When profit is normally distributed, in which case the firm value
becomes Eu(IT) = EIT— (y/2)Var(II), and when y =4, the certainty
equivalent of a profit with mean $1 and the coefficient of variation
0.2 is 92 cents, whereas the certainty equivalent of a profit with
mean $10 and the same coefficient of variation is only $2. Thus,
v =4 corresponds to a “moderate curvature” of the value function
when stakes are low but an extreme curvature when stakes are
high. In other words, the range of “realistic values” of parameter
v depends on the problem parameters. This is why our choice of
v is based on its impact on the capacity decision. See Rabin (2000)
for more discussion.
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Figure 6 Value of Perfect Hedging as a Function of Product Flexibility, c; € [cy, 2¢,], for y € [0, 4] and p, € {—0.5, 0.5}
(a) Demand correlation = -0.5 (b) Demand correlation = +0.5
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when flexibility is nearly perfect (c; is very close to
cy), the value of hedging slightly increases in ¢. At
pp = 0.5, in contrast, the relationship between the
value of hedging and flexibility is monotone over the
entire range of ¢.!!

To verify whether Proposition 4 holds for any pp,
consider the value of perfect hedging as a func-
tion of demand correlation p, € [-1, 1] as plotted in
Figure 7(a). Proposition 4 stipulates that at sufficiently
small vy, full flexibility and perfect hedging are com-
plements if and only if demand correlation p, > 0.
Figure 7(a) shows that as vy increases, the demand cor-
relation threshold determining the relation between
hedging and flexibility slightly decreases. Specifically,
when y =2, full flexibility increases the value of per-
fect hedging (i.e, A; > Ay) if and only if demand
correlation pp > —0.05.12

The relative magnitude of the effect of product
flexibility on the value of hedging is illustrated in
Figure 7(b), which mirrors Figure 7(a) except that
the value of hedging is expressed as a percent-
age of its level at zero flexibility, Ay. As flexibility
increases from 0 to 1, the value of perfect hedg-
ing drops by 100% (70%, 40%, 20%, 6%) at pp, = —1
(—0.8, —0.6, —0.4, —0.2) and increases by 2% (6%, 7%,
6%, 4%) at pp, =0 (0.2, 0.4, 0.6, 0.8). Whereas Fig-
ure 7(b) is based on y = 2, the relative effect of flexi-
bility on the value of perfect hedging at other values

' Note that at p, = 0.5, after ¢; reaches approximately 1.25¢y, a
further increase in ¢; has no impact on the value of hedging. This
is because the flexible capacity becomes so expensive that K =0,
and further increase in ¢; is irrelevant.

12 Although not apparent from the graph, when p, < —0.05 and
¢ ~1, A marginally increases in ¢, as illustrated in Figure 6(a).

Flexible capacity unit cost cg

of vy is similar. (Recall that A(y) is nearly linear and
A(0) =0. Thus, Ap(y)/Ayx(y) does not vary much as a
function of vy.)

5.1.3. The Effect of Imperfect Contract Correla-
tion p < 1. To examine the effect of imperfect contract
correlation, we replicated all numerical experiments
but with p varying between 0 and 1. The numerical
analysis confirmed that the main insight from Propo-
sition 4 remains intact when hedging is imperfect. As
shown in Figure 8, a fully flexible firm values imper-
fect hedging more (less) than a nonflexible firm when
demand correlation is positive (negative).

5.1.4. The Magnitude of the Value of Financial
Hedging. To assess economic significance of finan-
cial hedging, we calculated its value relative to the
value of unhedged profit (defined as the cash equiv-
alent of the uncertain operating profit in the absence
of hedging). At vy =2, the value of perfect hedging
ranges between roughly 10% and 70% of the value of
unhedged profit, depending on other parameters, in
particular, demand correlation. This indicates that at
v =2, the economic significance of financial hedging
is indeed considerable.

5.2. Postponement Flexibility

5.2.1. Numerical Study Design. Our numerical
examination of postponement flexibility relies on
the following base-case parameter values: up =1,
op =05, and p = 1. The remaining parameter val-
ues are varied as follows: p, € {—0.5,0,05}, ¢ €
{0.25,0.5, 0.75} (because our results are qualitatively
similar at different values of p, and c, all our fig-
ures are plotted only for pp, =0and ¢ =0.5), ¢ €[0, 1],
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Figure 7 Value and Relative Value of Perfect Hedging as Functions of Demand Correlation p, € [—1, 1] for Product Flexibility ¢ € [0, 1] and y =2
(a) Value of perfect financial hedging A (b) Relative value of perfect financial hedging A/Ay x 100%
0.4 . . . 120 . . .
Ap< Ay Ap> Ay
100
80
< 60
Ay 40
¢
= 20
Ap
0 1 1 1 O 1 1 1
-1 -0.5 0 05 1.0 —1 -0.5 0 0.5 1
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pe€[0,1], and y€]0,4]. In the absence of financial
hedging and at ¢ =0 (i.e., when risk-neutral critical
fractile equals 0.5), as vy increases from 0 to 4, the
optimal capacity declines by 72% (50%, 25%) when
demand correlation pp, = 0.5 (0, —0.5), indicating again
that vy = 4 represents very strong curvature of the
value function.

5.2.2. The Effect of Large y and Imperfect Contract
Correlation. Our numerical experiments confirmed
that Proposition 5 remains robust when v is large or
when financial hedging is imperfect. In particular, the

Figure 8
pp€1-0.5,0.5}, and y=2

(a) Demand correlation = -0.5
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value of hedging A decreases monotonically in post-
ponement flexibility at any level of y € [0, 4] (Figure
9(a)) and any level of p € [0, 1] (Figure 9(b)). As flex-
ibility ¢ increases from 0 to 1, the value of perfect
hedging declines by approximately 25% (30%, 50%)
when demand correlation p, = 0.5 (0, —0.5), at any
v €[0, 4].

To summarize this section, all numerical exper-
iments confirmed that our key results regarding
the relation between the two types of flexibility
and financial hedging, namely Propositions 4 and 5,

Value of Hedging as a Function of Product Flexibility, ¢; < [cy, 2c, ], for Contract Correlation p < [0, 1], Demand Correlation

(b) Demand correlation = +0.5
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Figure 9

(a) Value of Perfect Hedging as a Function of Curvature Parameter y [0, 4] for Postponement Flexibility ¢ < [0, 1]; (b) Value of Hedging as

a Function of Contract Correlation p < [0, 1] for Postponement Flexibility ¢ < [0,1] and y =2

(a) Value of perfect hedging A

(b) Value of imperfect hedging A

0.35

A J
Fléxibility ¢

0.18

Curvature parameter y

remain qualitatively robust for large y as well as for
imperfect contract correlation.

6. Discussion and Limitations
The key contribution of this paper is to provide a
better understanding of the relationship between flex-
ibility and financial hedging when both are used
to mitigate demand risk. We show that the type of
flexibility matters. Product flexibility and financial
hedging tend to be complements (substitutes) when
product demands are positively (negatively) corre-
lated. Thus, when demands are positively (negatively)
correlated, (i) product-flexible firms should be will-
ing to spend more (less) on financial hedging, and
(i) in the presence of financial hedging, firms should
be willing to invest more (less) in product flexibility.

In contrast to product flexibility, postponement flex-
ibility follows intuition: postponement flexibility and
financial hedging are substitutes.

Our results also provide empirical predictions.

PrepICTION 1. When demands are positively (nega-
tively) correlated, product flexibility is positively (nega-
tively) related to the firm’s propensity to hedge.

PrREDICTION 2. Postponement flexibility is negatively
related to the firm’s propensity to hedge.

Although most empirical measures of product flex-
ibility used in the extant literature rely on primary
data such as changeover times (e.g.,, Upton 1995),
there are exceptions. For example, the recent empiri-
cal analysis of product flexibility in the U.S. automo-
tive industry by Goyal et al. (2006) relies entirely on
secondary data found in industry reports (the num-
ber of models versus the number of assembly lines

Contract correlation p

per plant). As for postponement flexibility, potential
measures could be based on capital intensity or aver-
age capacity utilization (the larger the capital inten-
sity, or the higher the average capacity utilization, the
lower the postponement flexibility). A survey of the
empirical literature on flexibility that discusses vari-
ous methodological issues regarding validity and reli-
ability of flexibility measurements can be found in
Vokurka and O’Leary-Kelly (2000). As far as empiri-
cal measures of financial hedging are concerned, there
are public data on firms’ derivative positions as well
as a large body of empirical literature on the subject
(e.g., Guay and Kothari 2003). Any empirical test of
these predictions would obviously need to control for
industry-specific factors, such as demand uncertainty,
that influence firms’ flexibility as well as their hedg-
ing activities.

Our model has several limitations. Most impor-
tant, it assumes that market imperfections such as
taxes, bankruptcy costs, and agency costs result in an
exponential value function. An important property of
the exponential value function, besides its tractability,
is that its curvature parameter, y = —v"(x)/v'(x), is
independent of its argument x. This means that the
firm’s willingness to pay for financial hedging is inde-
pendent of its current wealth or its expected profit.
As a result, flexibility affects the value of hedging by
affecting the shape of the operating profit distribution,
but its effect on the mean profit is irrelevant. With
all other objective functions, the relationship between
flexibility and the value of hedging will be driven not
only by the fact that flexibility increases or decreases
profit variability (variability effect) but also by the fact
that flexibility shifts the entire profit distribution to
the right (wealth effect).
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We examine how the existence of a wealth effect
impacts the relationship between flexibility and finan-
cial hedging in Online Appendix 2, in which we con-
sider a concave, piecewise-linear objective function.
We explain how such objective function can model
corporate tax and costly external financing. We then
show, using a numerical analysis, that although the
existence of the wealth effect can tilt the relation
between flexibility and financial hedging either way,
depending on the model parameters, the key insight
from our base-case model remains intact: product
flexibility and financial hedging are more likely to
be complements (substitutes) when product demands
are positively (negatively) correlated, ceteris paribus.

The exponential value function could be alterna-
tively interpreted as the exponential utility function
of a risk-averse manager-owner, as is commonly done
in the operations literature (Bouakiz and Sobel 1992,
Van Mieghem 2007, Chen et al. 2007, etc.). Assuming
risk neutrality, however, makes the model applicable
to publicly held corporations. Furthermore, it consid-
erably simplifies the pricing of the hedging contract
and hence our analysis. Finally, our model of product
flexibility assumes symmetrical product parameters,
which undervalues the revenue-maximizing option
embedded in product flexibility.

Another limitation of our study is that it examines
product and postponement flexibilities separately. In
reality, these two as well as other dimensions of flex-
ibility affect the value of financial hedging jointly.
To assess this joint impact in practice, a simulation
study fitting the firm'’s specific operational structure
is likely to be required.

7. Electronic Companion

An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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