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In the framework of quantum thermodynamics preparing a quantum system in a general state requires the
consumption of two distinct resources, namely, work and coherence. It has been shown that the work cost of
preparing a quantum state is determined by its free energy. Considering a similar setting, here we determine the
coherence cost of preparing a general state when there are no restrictions on work consumption. More precisely,
the coherence cost is defined as the minimum rate of consumption of systems in a pure coherent state, that is
needed to prepare copies of the desired system. We show that the coherence cost of any system is determined by
its quantum Fisher information about the time parameter, hence introducing a new operational interpretation of
this central quantity of quantum metrology. Our resource-theoretic approach also reveals a previously unnoticed
connection between two fundamental properties of quantum Fisher information.

Information-theoretic approach to quantum thermodynam-
ics and, more specifically, the resource-theoretic approach [1]
has proven to be extremely fruitful. This, for instance, has
lead to the discovery of new aspects of quantum coherence in
thermodynamics (See, e.g., [2–9]). In this approach, which
is partly inspired by the entanglement theory, one studies the
inter-convertability of systems under a limited set of opera-
tions, which presumably can be implemented with negligible
thermodynamic costs (this assumption relies on certain ideal-
izations about available resources and achievable control of
quantum systems). A popular choice is the set of thermal
operations, i.e., those that can be implemented by coupling
the system to a thermal bath via energy-conserving unitaries
[10, 11].

From a thermodynamics point of view, preparing a general
quantum state requires consumption of both work and ener-
getic coherence, i.e., coherence between states with different
energies, which can also be understood as asymmetry with re-
spect to time translations [3, 12–14]. In the resource-theoretic
framework of quantum thermodynamics, it has been shown
that the work cost of preparing many independent and iden-
tically distributed (iid) copies of any quantum system is de-
termined by its free energy [11]. On the other hand, charac-
terizing the coherence cost of preparing quantum systems has
remained an open question [9, 15].

In this Letter we settle this question and show that the co-
herence cost of preparing a quantum system in a general state
is determined by the Quantum Fisher Information (QFI) [16–
18] of the system about the time parameter. More precisely,
to prepare copies of the desired system in the iid regime, the
minimum rate of consumption of systems in a fixed pure co-
herent state is determined by the ratio of QFI’s of the desired
system to the input pure system (See Fig.1). Interestingly, a
similar result does not hold for the reverse process, called co-
herence distillation: for generic mixed input states the rate of
conversion to pure coherent states is zero [6].

Hence, our result reveals a novel operational interpretation
of QFI, which is the central quantity of quantum metrology
[19, 20]. Remarkably, our resource-theoretic approach also
clarifies a close connection between two different fundamen-
tal properties of QFI, namely QFI as a convex roof of variance
and QFI as the variance of purification of state. While QFI has

been extensively studied in quantum metrology, to our knowl-
edge this connection has not been appreciated before.

To focus on coherence as a resource independent of work,
one can supplement thermal operations with a battery or work
reservoir that can provide an unlimited amount of work (In
other words, one can make work a free resource). It turns
out [6, 21, 22] that in this way one can implement all and only
time-Translationally Invariant (TI) operations, i.e., completely
positive trace-preserving maps satisfying the covariance con-
dition,

e−iHoutt ETI(σ) eiHoutt = ETI
(
e−iHintσeiHint

)
, (1)

for all density operators σ and all times t [23–26]. Here, Hin
and Hout are, respectively, the input and output Hamiltoni-
ans. TI operations can not generate (energetic) coherence: to
prepare systems containing coherence via TI operations, one
needs an input that contains coherence. On the other hand,
preparing incoherent states, i.e., those that commute with the
system Hamiltonian, does not require consuming coherence.
In summary, to understand coherence as a resource indepen-
dent of work, we study state conversions under TI opera-
tions. It is also worth noting that going beyond TI operations
makes coherence a free resource: using any non-TI operation
it is possible to generate energetic coherence from incoherent
states, albeit this may require correlation between the input of
the operation and an auxiliary system [6].

TI operations and the notion of coherence cost also arise
in the study of quantum clocks. While coherent states and
non-TI operations should be defined relative to a back-
ground reference clock, Eq.(1) means that TI operations can
be defined and implemented without access to this clock
[6, 23, 24]. Suppose one does not have access to the reference
clock, but is given quantum clocks that are synchronized with
it. What is the minimum rate of consumption of quantum
clocks in pure states, that is needed to prepare copies of a
desired system (See Fig.1)? Again, we find that the answer is
given by the QFI of the system about the time parameter.

Pure states in the iid regime—We study systems with finite-
dimensional Hilbert spaces. Each system is specified by
its Hamiltonian H and density operator ρ. We assume the
systems under consideration have periodic dynamics with a
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FIG. 1: Preparing a quantum system in a general state requires con-
sumption of both work and coherence. Here, we study the coherence
cost of preparing state, when there are no limitations on work con-
sumption. Equivalently, we characterize the minimum rate of con-
sumption of quantum clocks that is needed to prepare a general state,
when one does not have access to the standard reference clock.

fixed but arbitrary period τ such that τ = inf{t > 0 :
e−iHtρeiHt = ρ}. Under TI operations, a system with pe-
riod τ can only be converted to systems with period τ/k, for
an integer k. In the following, we consider n copies of a sys-
tem with Hamiltonian H and state ρ, which means their joint
state is ρ⊗n and their total Hamiltonian is

∑n−1
j=0 I

⊗j ⊗H ⊗
I⊗(n−j−1).

Consider many copies of a system with Hamiltonian H1,
pure state ψ1 and period τ . Is it possible to convert these sys-
tems to many copies of another system with the same period
τ , in pure state ψ2 and Hamiltonian H2, using TI operations?
Since exact conversions are often impossible and physically
intractable, as usual we allow a vanishing error quantified,
e.g., in terms of the trace distance D(ρ, σ) = ‖ρ − σ‖1/2.
In the following, VH(ψ) = 〈ψ|H2|ψ〉 − 〈ψ|H|ψ〉2 denotes
the energy variance of pure state ψ with respect to Hamilto-
nian H . Our first main result is

Theorem 1. Consider a pair of systems with pure states ψ1
and ψ2 and Hamiltonians H1 and H2, with equal periods.
Using TI operations the state conversion

|ψ1〉⊗n
TI−−→

εn≈ |ψ2〉⊗dRne as n→∞ , εn → 0 ,

with vanishing error εn in trace distance is possible if
rate R ≤ VH1(ψ1)/VH2(ψ2) and is impossible if R >
VH1(ψ1)/VH2(ψ2).

Hence, in the iid regime oscillators in pure states with the
same frequencies are equivalent resources, in the sense that
by adding or absorbing sufficient amount of energy their co-
herence content, or equivalently, their information content
about time, can be converted from one form to another. Note
that the maximal achievable rate from system 1 to 2, namely
VH1(ψ1)/VH2(ψ2), is the inverse of the maximal rate from

system 2 to 1. In this sense the process is reversible. Conse-
quently, in this regime the usefulness of a clock can be quan-
tified by a single number, namely its energy variance. In other
words, we can pick a standard clock-bit (coherence-bit) or c-
bit with period τ and quantify the amount of resource of a
general state relative to this standard. A convenient choice is
a two-level system with HamiltonianHc-bit = πσz/τ and state
|Θ〉c-bit = (|0〉+ |1〉)/

√
2, with the energy variance π2/τ2.

This theorem, which is proven in the Supplementary Ma-
terial (SM), strengthens and generalizes a previously known
result [24, 27, 28] in multiple ways. The common intuition
behind all these results, first discussed in [27, 28], is based on
the Central Limit Theorem which implies that the total energy
distribution of many copies of a state converges to a Gaussian
distribution, and hence is characterized by its variance and
mean, which are both additive. Then, as the mean energy can
be changed arbitrarily by TI operations, the conversion rate is
determined by the ratio of variances.

One aspect of theorem 1 that makes it stronger than the
previous result is the requirement of convergence in the trace
distance, whose significance arises from Helstrom’s theorem
[16, 29, 30]. According to this theorem states with vanishing
trace distance are indistinguishable and therefore equivalent
resources. Another new aspect of the above result is the rig-
orous upper bound on the achievable rate R. Since variance is
additive for uncorrelated systems and is non-increasing in ex-
act state conversions under TI operations, it is straightforward
to show that the rate R > VH1(ψ1)/VH2(ψ2) is not achiev-
able in exact state conversions [24]. However, this argument
fails in the presence of error εn: For a pair of output states
with trace distance εn, the energy variances can differ by or-
der εndRne2‖H‖2. Hence, the variance per copy can differ by
order εndRne‖H‖2, which does not necessarily vanish, even
if εn → 0 in the limit n → ∞. We overcome this complica-
tion and show that with R > VH1(ψ1)/VH2(ψ2), error cannot
vanish in the limit n→∞ (See Eq.(4) below for a more gen-
eral result).

Theorem 1 only applies to pure states. In the rest of this
paper we consider a variant of this scenario where the output
are mixed states. But, first we need to discuss the physical
significance of the energy variance in this theorem.

Quantum Fisher Information (QFI) – Consider the family of
states {e−iHtρeiHt}t corresponding to the time-evolved ver-
sions of a system in the initial state ρ and HamiltonianH . The
QFI relative to the time parameter t for this family of state is

FH(ρ) = 2
∑
j,k

(pj − pk)2

pj + pk
|〈φj |H|φk〉|2 , (2)

where ρ =
∑
j pj |φj〉〈φj | is the spectral decomposition of ρ.

Equivalently, QFI can be expressed as the second derivative
of the fidelity of states ρ and e−iHtρeiHt with respect to the
parameter t [31]. According to the standard interpretation of
this quantity in quantum estimation, FH(ρ) determines how
well one can estimate the unknown parameter t, by measur-
ing n � 1 copies of state e−iHtρeiHt: the mean squared er-
ror 〈δt2〉 for any unbiased estimator satisfies the Cramér-Rao
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bound 〈δt2〉 ≥ [nFH(ρ)]−1, which is attainable in the asymp-
totic regime [16–18, 32]. QFI has found extensive applica-
tions in different areas of physics, beyond quantum metrology
(See, e.g. [13, 33–43]). In particular, it has been studied as a
measure of asymmetry and coherence [44, 45].

QFI has various nice properties, including (i) Faithfulness:
It is zero if, and only if, state is incoherent. (ii) Mono-
tonicity: It is non-increasing under any TI operation ETI,
i.e., FH(ETI(ρ)) ≤ FH(ρ). In particular, it remains invari-
ant under energy-conserving unitaries. (iii) Additivity: For a
composite non-interacting system with the total Hamiltonian
Htot = H1 ⊗ I2 + I1 ⊗ H2, QFI is additive for uncorrelated
states, i.e., FHtot(ρ1⊗ρ2) = FH1(ρ1)+FH2(ρ2). (iv) Convex-
ity: For any p ∈ [0, 1] and states ρ and σ, FH(pρ+(1−p)σ) ≤
pFH(ρ) + (1− p)FH(σ).

For pure states, QFI reduces to the energy variance, namely
FH(ψ) = 4VH(ψ). Therefore, theorem 1 means that in
the iid regime, the maximal rate of conversion between
pure states is determined by the ratio of their QFI’s. This
interpretation suggests that to generalize the result to mixed
states, the role of variance should be replaced by QFI. As we
show below, this conjecture is partially correct, namely when
the output states are mixed but the input states are still pure.
On the other hand, the result of [6] shows that this conjecture
fails for generic mixed input states. It is also worth noting
that the state conversion described in theorem 1 requires
coherent interactions between the input and output systems:
unless the output ψ2 is an energy eigenstate, it is not possible
to achieve a positive rate R > 0 with a vanishing error,
using measure-and-prepare (i.e., entanglement-breaking)
TI operations [6]. This again suggests that the operational
interpretation of QFI in the context of parameter estimation
cannot fully explain the special role of variance in theorem 1.

Coherence cost—Consider a system with state ρ and Hamil-
tonian H with period τ . We define the coherence cost CTI

c (ρ)
of this system as the minimal rate at which c-bits with period
τ (i.e., two-level systems with state |Θ〉c-bit = (|0〉+ |1〉)/

√
2

and Hamiltonian Hc-bit = πσz/τ ) have to be consumed for
preparing copies of this system in the iid regime, i.e.,

CTI
c (ρ) = inf R : Θ⊗dRnec-bit

TI−−→
εn≈ ρ⊗n as n→∞, εn → 0 ,

where the vanishing error εn is quantified in the trace dis-
tance. This quantity can be thought of as the counterpart of
the entanglement cost in entanglement theory [46] (Note that
a different notion of coherence cost for speakable coherence
is previously studied in [15, 47]). Our second main result is

Theorem 2. The coherence cost of a system with Hamiltonian
H , state ρ, and period τ is propositional to its QFI. That is

CTI
c (ρ) = FH(ρ)

Fc-bit
= ( τ2π )2 × FH(ρ) . (3)

The lower boundCTI
c (ρ) ≥ FH(ρ)/Fc-bit is a special case of

a more general result, which is of independent interest: Con-
sider a pairs of systems with states ρ1 and ρ2 and Hamiltoni-
ans H1 and H2. If there exists a sequence of TI operations

converting copies of system 1 to 2 with rate R(ρ1 → ρ2) and
with a vanishing error in the trace distance (in the sense de-
fined above), then

R(ρ1 → ρ2) ≤ FH1(ρ1)
FH2(ρ2) . (4)

Although this bound might be expected from the mono-
tonicity and additivity of QFI, as we discussed in the case
of variance, in the presence of a non-zero vanishing error
these properties do not necessarily imply Eq.(4). In SM,
we prove this bound using the connection between QFI and
Bures distance. At the end of this Letter we sketch the proof
of the other side of theorem 2. But, first we discuss how QFI
appears in the single-copy regime.

From pure to mixed states in single-copy regime– A natural
way to quantify the coherence content of a mixed state ρ is
to find the minimum QFI of a purification of ρ. More pre-
cisely, consider an auxiliary system A with Hamiltonian HA

and let |Φρ〉SA be a pure joint state of SA, with the reduced
state TrA(|Φρ〉〈Φρ|SA) = ρ. What is the minimum possible
energy variance, or, equivalently the QFI of such pure states
with respect to the total Hamiltonian of systems S and A?

Theorem 3. QFI of system S with state ρ and Hamiltonian
HS , is four times the minimum energy variance of all purifi-
cations of ρ with auxiliary systems not interacting with S, i.e.

FHS (ρ) = min
Φρ,HA

FHtot(Φρ) = 4× min
Φρ,HA

VHtot(Φρ) , (5)

where Htot = HS ⊗ IA + IS ⊗HA, and the minimization is
over all pure states |Φρ〉SA satisfying TrA(|Φρ〉〈Φρ|SA) = ρ,
and all Hamiltonians HA of system A.

This theorem is closely related to the result of [48, 49] in
the context of quantum metrology (See SM for further dis-
cussion). In SM we present two different proofs of theorem
3; one proof is based on Uhlmann’s theorem [29, 30] and
the connection between fidelity and QFI (which is similar to
the argument of [48]) and the second proof is via direct min-
imization. The latter approach implies that for purification
|Φρ〉SA =

∑
j

√
pj |φj〉S |φj〉A of state ρ =

∑
j pj |φj〉〈φj |

the minimum in Eq.(5) is achieved for Hamiltonian

HA = −2
∑
j,k

√
pjpk

pj + pk
|φj〉〈φk|HS |φj〉〈φk| . (6)

For this Hamiltonian we find FHS (ρ) = 4(VHS (ρ)−VHA(ρ)),
i.e., QFI of system S is 4 times the difference between the en-
ergy variances of systems S and A. Furthermore, the QFI of
A is non-zero, provided that the QFI of S is non-zero and ρ
is full-rank. This means that starting from |Φρ〉SA by dis-
carding A, one does not loose any QFI, even though the dis-
carded system itself carries non-zero QFI. This immediately
implies that the rate of distilling pure coherent states from
mixed ones cannot be determined by the ratio of their QFI’s.
Otherwise, by distilling coherence from both systems A and
S, we could increase QFI unboundedly, which is in contradic-
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tion with the general bound in Eq.(4). In fact, the distillation
rate for generic mixed states is zero [6].

Does this theorem determine the coherence cost of ρ? From
theorem 1 one may expect that purification Φρ can be obtained
by consuming c-bits at rate (τ/2π)2FHtot(Φρ), which in turn
would imply ρ can be obtained with this coherence cost. And
the above theorem implies that FHtot(Φρ) can be as low as
FHS (ρ). However, there is a problem with this argument: the-
orem 1 only applies to periodic systems, whereas in general,
the dynamics of Φρ under Hamiltonian Htot is not periodic.
Imposing the requirement of periodicity, in general increases
the minimum variance of purification. For instance, suppose
for the same purification Φρ instead of Hamiltonian in Eq.(6)
one chooses HA = −H∗S , that is the complex conjugate of
HS in the basis {|φj〉}. Then, the period of the joint system
will be generally τ . But, now the energy variance is equal to
2WHS (ρ) ≥ FHS (ρ), where WHS (ρ) = −Tr([√ρ,HS ]2)/2
is the Wigner-Yanase skew information, which is another
quantifier of coherence and asymmetry [26, 50–52].

To overcome this issue, instead of purification, we use a
different approach for preparing ρ: we consider ensemble of
pure states with density operator ρ. Interestingly, it turns out
that there exists an optimal ensemble for which the average
QFI is equal to the QFI of state ρ.

Theorem 4. QFI is four times the convex roof of variance.
That is

FH(ρ) = min
{qk,ηk}

∑
k

qkFH(ηk) = 4× min
{qk,ηk}

∑
k

qkVH(ηk) ,

(7)
where the minimization is over all ensembles of pure states
{qk, ηk} satisfying

∑
k qk|ηk〉〈ηk| = ρ. Furthermore, assum-

ing the dynamics of ρ under H is periodic, then the optimal
ensemble can be chosen such that each ηk is either an eigen-
state of Hamiltonian H or its period under H is an integer
fraction of the period of ρ under H .

In analogy with the entanglement theory, the right-hand
side of Eq.(7) can be called coherence of formation [53]. The
first part of this theorem was originally conjectured by Toth
and Petz [54] and was later proven by Yu [55]. Since then
this result has found various applications in quantum metrol-
ogy (See, e.g. [56]). Note that the convexity of FH imme-
diately implies that if

∑
k qk|ηk〉〈ηk| = ρ then FH(ρ) ≤∑

k qkFH(ηk), and the achievability of this bound is estab-
lished in [55]. Our resource-theoretic approach reveals a
simple and more intuitive proof of this fundamental prop-
erty of QFI, via theorem 3: Let |Φρ〉SA and HA be, respec-
tively, an optimal purification of ρ, and the corresponding
Hamiltonian of the auxiliary system A satisfying Eq.(5). Let
{|Ek〉} be an eigenbasis of Hamiltonian HA. By measur-
ing system A in this basis, one obtains the average joint state
σSA =

∑
k qk |ηk〉〈ηk|S ⊗ |Ek〉〈Ek|A, where qk is the prob-

ability of observing |Ek〉 and |ηk〉S = 〈Ek|Φ〉SA/
√
qk is the

corresponding state of S. Then,

FHS (ρ) ≤ FHtot(σSA) ≤ FHtot(Φρ) . (8)

Here, both bounds follow from the monotonicity of QFI

under TI operations: State ρ of system S can be obtained from
σSA by discarding system A, and σSA is obtained from Φρ,
by measuring A in the energy eigenbasis; both operations are
clearly TI. Then, the fact that FHtot(Φρ) = FHS (ρ), implies
that both bounds hold as equality. Finally, since energy
eigenstates {|Ek〉} have zero QFI and are orthogonal, QFI of
σSA is equal to the expected QFI of the ensemble {qk, |ηk〉},
i.e.,

∑
k qkFHS (ηk) = FHtot(σSA) = FHS (ρ). Thus, Eq.(7)

holds with |ηk〉 = (
∑
j Ukj

√
pj |φj〉)/

√
qk, and probability

qk = 〈Ek|ρ|Ek〉 =
∑
j pj |Ukj |2, where Ukj = 〈Ek|φj〉

are the matrix elements of the unitary that diagonalizes HA

in Eq.(6) in the eigenbasis of ρ (Interestingly, this is the
ensemble found by Yu [55]). In summary, the fact that QFI is
the minimum variance of purifications (Theorem 3) implies
that QFI is also the convex roof of variance (Theorem 4). The
second part of theorem 4 is shown in SM.

Sketch of Proof of Theorem 2– By combining theorems 1 and
4 with the standard typicality arguments (e.g., in [15, 57]),
we show that the coherence cost of any state is determined
by its QFI. Let (qk, |ηk〉) : k ∈ S be the optimal ensemble
satisfying Eq.(7). As we saw in the above proof, S is a finite
set. Then, ρ⊗m =

∑
k qk|ηk〉〈ηk|, where k = k1 · · · km, qk =

qk1 · · · qkm and |ηk〉 = |ηk1〉 · · · |ηkm〉. For any k ∈ S let
nl(k) be the number of occurrence of state |ηl〉 in |ηk〉. Then,
for δ > 0 define the set of typical strings as those for which
the relative frequency of any l ∈ S is between ql−δ and ql+δ,
i.e., {k = k1 · · · km| ∀l ∈ S : |nl(k)

m − ql| ≤ δ}. Then,

ρ⊗m =
∑

k∈typical

qk|ηk〉〈ηk|+
∑

k/∈typical

qk|ηk〉〈ηk| . (9)

Based on this decomposition, we define a sequence of TI
operations that prepare state ρ⊗m with a vanishing error as
m → ∞: We sample string k with probability qk. If k is not
a typical string, we prepare a fixed incoherent state, which
does not consume any c-bits. By the law of large numbers,
as m → ∞ the probability of such events goes to zero and
therefore this introduces a vanishing error. For typical k, up
to a permutation, |ηk〉 can be written as

⊗
l |ηl〉⊗nl(k), and

typicality implies nl(k) ≤ m(ql + δ). Therefore, |ηk〉 can
be obtained from

⊗
l |ηl〉⊗dm(ql+δ)e, which has the energy

variance
∑
ldm(ql + δ)eVH(ηl). Using the second part

of theorem 4, one can show that the period of this state is
equal to τ , the period of ρ. Then, using a simple variant
of theorem 1 we show that as m → ∞, by consuming
(τ/π)2∑

ldm(ql + δ)eVH(ηl) c-bits, we can prepare state
|ηk〉 with a vanishing error (Note that the energy variance of
c-bit is π2/τ2). Using the facts that

∑
l qlVH(ηl) = FH(ρ)/4

and VH(ηl) ≤ ‖H‖2, where ‖H‖ is the operator norm, we
conclude that for any δ > 0, by consuming c-bits at rate
(τ/2π)2 × (FH(ρ) + 4δ‖H‖2) per copy, one can prepare
copies of the desired system with vanishing error. This proves
one direction of theorem 2. See SM for further details and the
proof of the other direction.

Conclusion– In summary, preparing a general state requires
consumption of both work and coherence. When coherence is
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a free resource, the work cost is determined by the free energy
of the system, and when work is a free resource the coherence
cost is determined by QFI. In a more complete picture both
of these resources should be taken into account, and this can
lead to a tradeoff between the resources costs. Understanding
this tradeoff remains an open question. Also, generalizing
the present results to the case of non-Abelian groups, such as
SO(3) will be interesting (See, e.g., [58, 59] for progress in
this direction). Our resource-theoretic approach enabled us to
clarify a previously unnoticed relation between fundamental
properties of QFI, which is arguably the most studied quantity
in quantum metrology and estimation theory. As QFI has

found extensive applications in different areas of physics,
it will be interesting to explore possible implications of
theorems 2 and 3 in these areas.
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Supplementary Material:

Operational Interpretation of Quantum Fisher information in Quantum Thermodynamics

Contents

• Section A: Pure state transformations in the asymptotic (iid) regime
In this section we prove the first part of theorem 1 in the paper, which determines the rate of interconversion between pure
states.

• Section B: Quantum Fisher Information: Preliminaries

• Section C: Quantum Fisher Information as the minimum variance of purification
In this section we prove theorem 3 in the paper, and present a new proof of theorem 4.

• Section D: Monotonicity of Fisher information in the iid regime
In this section we prove that Fisher information cannot increase in the iid regime (Eq.(4) in the paper). This implies that
Quantum Fisher information is a lower bound on coherence cost. It also proves the second part of theorem 1 in the paper.

• Section E: Quantum Fisher Information as the coherence cost: iid regime
In this section we prove prove theorem 2 in the paper which states that the coherence cost is equal to Quantum Fisher
Information.
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Appendix A: Pure state transformations in the asymptotic (iid) regime (Proof of the first part of Theorem 1)

In this section we study pure state conversions in the many-copy (iid) regime and prove the first part of theorem 1, namely the
fact that the interconversion between pure states is possible with a rate less than or equal to the ratio of the energy variances of
the input to the output. Then, in Appendix D we prove the second part of this theorem, which implies that the conversion is not
possible with a higher rate.

1. Review of single-copy pure state transformations

We start by reviewing a few useful results about the single-copy pure state to pure state conversions under TI operations. A
fundamental fact about such conversions is that the only relevant property of a pure state is its energy distribution. Let

H =
∑
E

E ΠE (A1)

be the spectral decomposition of the system Hamiltonian H , where ΠE is the projector to the subspace with energy E. Consider
a state ψ with periodic time evolution under Hamiltonian H with period τ , such that

τ = inf
t
{t > 0 : |〈ψ|e−iHt|ψ〉| = 1} . (A2)

This means that the set of energy levels E with nonzero probability, i.e., the set {E : 〈ψ|ΠE |ψ〉 6= 0}, can be written as

E = n
2π
τ

+ E0 n ∈ Z , (A3)

for a fixed energy E0, satisfying

0 ≤ E0 <
2π
τ
. (A4)

Then, we can describe the energy distribution of state |ψ〉 relative to HamiltonianH , by a probability distribution pψ over integer
numbers Z, defined by

pψ(n) ≡
∫ 2π

0

dθ

2π exp[i(E0τ

2π + n)θ]× 〈ψ| exp(−iH θτ

2π )|ψ〉 . (A5)

If E0 + 2πn/τ is an eigenvalue of H , then pψ(n) = 〈ψ|ΠE0+2πn/τ |ψ〉 is the probability that state |ψ〉 has energy E0 + 2πn/τ ,
and pψ(n) = 0, otherwise. In the following, we sometimes refer to pψ as the energy distribution of ψ.

Consider two different pure states ψ and φ of a system with Hamiltonian H . It can be shown [24, 25, 60] that ψ can be
transformed to φ via an energy-conserving unitary V such that V |ψ〉 = |φ〉 and [V,H] = 0, if and only if they have the same
energy distributions, i.e.,

∀n ∈ Z : pψ(n) = pφ(n) , (A6)

or equivalently, if and only if, they have the same characteristic functions [25, 60], i.e.

∀θ ∈ (0, 2π] : 〈ψ|e−iHτ θ
2π |ψ〉 = 〈φ|e−iHτ θ

2π |φ〉 . (A7)

Therefore, for a given Hamiltonian H , the probability distribution pψ specifies all the relevant information about state ψ from
the point of view of state conversion under TI operations.

Remark 5. (Shifting energy levels by a constant) It is worth noting that from the point of view of state interconversions under
TI operations, a system with Hamiltonian H and a system with the Hamiltonian H − E0I , which is the shifted version of H ,
have exactly the same properties. This is because adding or subtracting a constant energy to all energy levels, is a TI operation
(i.e., can be realized without interaction with a synchronized clock). Hence, in the following discussion we always assume E0 in
Eq.(A3) is zero. That is, for a system with period τ the energy levels with non-zero probability are all in the form of an integer
times 2π/τ , E = n2π/τ for n ∈ Z. This condition is equivalent to e−iτH |ψ〉 = |ψ〉.

The above result can be generalized to the case of approximate state conversions: if the energy distributions pψ and pφ are
close to each other in the total variation distance (trace distance) then there exists a unitary transformation that converts ψ to a
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state close to φ [25]. In particular, there exists a unitary V which commuting with the system Hamiltonian H such that

|〈φ|V |ψ〉| =
∑
n

√
pψ(n)pφ(n) ≥ 1− 1

2‖pψ − pφ‖1 , (A8)

≡ 1− dTV(pψ, pφ) , (A9)

where

dTV(pψ, pφ) ≡ 1
2‖pψ − pφ‖1 = 1

2
∑
n

|pψ(n)− pφ(n)| , (A10)

is the total variation distance (trace distance) between the two distributions (Theorem 3 in [25]). Here, the bound follows from
the Fuchs-van de Graaf inequality 1−

√
Fid(ρ, σ) ≤ 1

2‖ρ− σ‖1.
In terms of trace distance, this means that there exists an energy-conserving unitary V such that

1
2‖V |ψ〉〈ψ|V

† − |φ〉〈φ|‖1 =
√

1− |〈φ|V |ψ〉|2 =
√

1−
[∑

n

√
pψ(n)pφ(n)

]2 ≤√2dTV(pψ, pφ) , (A11)

where the bound again follows from the Fuchs-van de Graaf inequality 1 −
√

Fid(ρ, σ) ≤ 1
2‖ρ − σ‖1, which implies 1 −

Fid(ρ, σ) ≤ ‖ρ− σ‖1 .
In summary, if the energy distributions are close in the total variation distance, then the pair of states can be converted to each

other, with good approximation.
In addition to the energy-conserving unitaries, TI operations also include operations that do not conserve the system energy.

In particular, consider two systems with Hamiltonian H1 and H2 and states ψ1 and ψ2, respectively, and assume both states
have period τ . Let pψ1 and pψ2 be the energy distributions for these two states defined via Eq.(A5). Then, these states are
interconvertable to each other via TI operations if, and only if there exists an integer k such that

∀n ∈ Z : pψ1(n) = pψ2(n+ k) . (A12)

In the special case where the input and output Hamiltonians are identical, i.e., H1 = H2 this operation adds energy −k2π/τ to
the system. Again, if Eq.(A12) holds approximately, then the conversion can be implemented approximately via a TI operation,
with an error determined by the total variation distance between the probability distribution pψ1(n) and pψ2(n+ k).

The following proposition summarizes these results

Proposition 6. (based on [24, 25, 60] ) Suppose two systems with Hamiltonian H1 and H2 and states ψ1 and ψ2 both have
period τ . Let pψ1 and pψ2 be, respectively, the energy distributions for pure state ψ1 and ψ2, defined in Eq.(A5). Then, for any
integer k, there exists a TI operation ETI such that ETI(|ψ1〉〈ψ1|) is a pure state that satisfies

〈ψ2|ETI(|ψ1〉〈ψ1|)|ψ2〉 =
(∑
n∈Z

√
pψ1(n)pψ2(n+ k)

)2
, (A13)

and

1
2

∥∥∥ETI(|ψ1〉〈ψ1|)− |ψ2〉〈ψ2|
∥∥∥

1
=
√

1−
[∑

n

√
pψ1(n)pψ2(n+ k)

]2
(A14)

≤
√∑

n

∣∣pψ1(n)− pψ2(n+ k)
∣∣ . (A15)

2. State conversions in the iid regime

Next, we consider the iid regime: Suppose we are given m copies of a system with Hamiltonian H and state ψ, i.e., non-
interacting systems with the joint state ψ⊗m and the total (non-interacting) Hamiltonian Htot =

∑m
i=1H

(i), where H(i) =
I⊗(i−1) ⊗ H ⊗ I⊗(m−i). The total energy for these systems is the sum of the energy of the individuals. Therefore, for state
ψ⊗m the probability distribution over energy eigenspaces of Htot is equal to the probability distribution for the random variable
ntot = n1 + · · · + nm, where each integer random variables nk has the probability distribution pψ . Hence, the probability
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distribution of the total energy for state ψ⊗m is given by the m-fold convolution of the probability distribution pψ , i.e.

pψ⊗m = pψ ∗ · · · ∗ pψ︸ ︷︷ ︸
m times

. (A16)

Ref. [24, 27, 28] argue that in the limit of large number of copiesm� 1, the central limit theorem implies that the distribution
of energy for ψ⊗m converges to a Gaussian distribution. Any such distribution is determined by only two parameters, namely
the variance and the mean. It follows that if the energy variances for two states ψ⊗m and φ⊗dRme match approximately, then by
adding or subtracting energy, which is a TI operation, we can shift the center of the distributions and overlap them. This is the
main intuition in the arguments of [24, 27, 28].

Although this intuition is correct, there are some crucial details which require more careful analysis. Most importantly,
the standard central limit theorems do not guarantee the convergence in the total variation distance , which requires stronger
assumptions. To prove this stronger notion of convergence, we need to use more advanced results on the limit theorems, which
are reviewed in the following section. Furthermore, the argument of [24, 27, 28], is restricted to the case of states with gapless
spectrum, i.e., those for which the the support of distribution pψ is a single connected interval of integers. As we will see in the
following, this assumption is not necessary.

3. A local limit theorem and convergence in the total variation distance

In this section we review a result of [61], which shows that under certain conditions, sum of integer-valued random variables
converges to a translated Poisson distribution, in the total variation distance (See also [62]).

In the following Y ∼ P (σ2) means the integer-valued random variable Y has Poisson distribution with variance σ ≥ 0, such
that any integer l ≥ 0 occurs with probability e−σσl/l!. The Poisson distribution is specified by only one parameter σ, which
determines both the variance and the mean of the distribution. We are interested in the more general family of integer-valued
distributions obtained by translating Poisson distributions with integers, such that the variance and mean can be independent
of each other. However, by translating with an integer we can only change the mean of the distribution in a discrete fashion.
It follows that using this family of distributions we cannot really achieve arbitrary mean and variance. Nevertheless, for any
desired mean µ and variance σ2 we can find a translated Poisson distribution whose mean is exactly µ and its variance is close
to σ2, such that their difference is less than one.

Translated Poisson Distribution: For any given µ and σ2 > 0, let Z ∼ TP (µ, σ2) be a random variable which satisfies
Z − s ∼ P (σ2 + γ) where the shift s := bµ− σc is an integer, and γ := µ− σ2 − bµ− σ2c, satisfies 0 ≤ γ < 1. This means
Z − s has Poisson distribution with variance σ2 + γ, i.e.,

Z ∼ TP (µ, σ2) ⇐⇒ Z − bµ− σc ∼ P (σ2 + γ) . (A17)

It follows that the random variable Z ∼ TP (µ, σ2) has mean µ, i.e. EZ = µ, and its variance is EZ2 − (EZ)2 = σ2 + γ,
which is between σ2 and σ2 + 1.

Let

W =
m∑
i=1

Xi , (A18)

be the sum of m independent integer-valued random variables Xi, with mean µi = EXi and variance σ2
i = VarXi, and bounded

third moment, i.e. E|X3
i | <∞. Let µ = EW ≡

∑m
i=1 µi, and σ2 ≡

∑m
i=1 σ

2
i be the variance of W . Finally, define

φi ≡ σ2
i E{Xi(Xi − 1)}+ |µi − σ2

i | E{(Xi − 1)(Xi − 2)}+ E|Xi(Xi − 1)(Xi − 2)| . (A19)

Note that if σ2
i and the third moment EX3

i are both finite, then φi is also a finite number.
Let L(Xi) be the distribution of the random variable Xi. In the following result we assume

dTV(L(Xi),L(Xi + 1)) < 1, (A20)

which means Xi is not perfectly distinguishable from its translated version. This is true if there is n ∈ Z such that Xi takes both
values n and n+ 1, with non-zero probabilities.

Roughly speaking, the following theorem states that if all random variablesXi : i = 1, · · ·m satisfy the condition in Eq.(A20)
and have bounded third moments and nonzero variances, then the sumW =

∑
iXi converges to a translated Poisson distribution.
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Theorem 7. (Corollary 3.2 in Barbour-Cekanavicius[61]) Consider random variables Xi : i = 1, · · · ,m with mean µi = EXi

and variance σ2
i = VarXi. Let

a = min
i=1,··· ,m

σ2
i , b = min

i=1,··· ,m
νi , c = max

i=1,··· ,m

φi
σ2
i

, (A21)

where νi = min{ 1
2 , 1 − dTV(L(Xi),L(Xi + 1))}, and φi is defined in Eq.(A19). Assume a, b > 0 and c < ∞. Then, the total

variation distance of the distribution of W =
∑m
i=1Xi and the translated Poisson distribution TP (µ, σ2) is bounded by

dTV(L(W ), TP (µ, σ2)) = 1
2‖L(W )− TP (µ, σ2)‖1 ≤

c√
mb− 1/2

+ 2
ma

. (A22)

We end this section by recalling another useful result on the total variation distance between Poisson distributions (See [63]).

Lemma 8. [63] The total variation distance between two Poisson distributions with variances σ2 + x and σ2, for x ≥ 0, is
bounded by

dTV(P (σ2), P (σ2 + x)) = 1
2‖P (σ2)− P (σ2 + x)‖1 (A23)

= 1
2
∑
n

∣∣∣∣∣e−σσnn! −
e−
√
σ2+x

√
(σ2 + x)n

n!

∣∣∣∣∣ (A24)

≤ min{x,
√

2
e

(
√
σ2 + x− σ)} . (A25)

Therefore, for variance σ2 > 0, we find that the total variation distance between P (σ2) and P (σ2 +x) is bounded by the ratio
of the difference between the two variances to the square root of the variance, i.e.

dTV(P (σ2), P (σ2 + x)) ≤ x

σ
. (A26)

4. State conversion in the iid regime (Proof of the first part of Theorem 1)

Next, we apply this result to study the conversion of pure states in the iid regime using TI operations. As we saw before, for
m copies of a system with state ψ and Hamiltonian H , the total energy is 2πntot/τ , where

ntot = n1 + · · ·+ nm , (A27)

and ni has distribution pψ . We denote the distribution of this random variable by pψ⊗m , which is the m-fold convolution of pψ ,
as in Eq.(A16). Applying theorem 7 we find that, provided that certain conditions (listed below) are satisfied, this distribution
can be approximated by a translated Poisson distribution TP (µ, σ2) with the mean

µ = E{ntot} = m× E{n} = m× τ

2π 〈ψ|H|ψ〉 , (A28)

and the variance

σ2 = m× (E{n2} − E2{n}) = m( τ2π )2 × VH(ψ) , (A29)

where VH(ψ) = 〈ψ|H2|ψ〉−〈ψ|H|ψ〉2 is the energy variance of state ψ for Hamiltonian H (Recall that ψ has only components
on the eigen-subspaces of H with eigenvalue in the form of an integer times 2π/τ . See remark 5).

In particular, theorem 7 implies

dTV(pψ⊗m , TP (µ, σ2)) ≤ c√
mb− 1/2

+ 2
m[(τ/2π)2 × VH(ψ)] . (A30)
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Here,

b = min
{1

2 , 1−
1
2
∑
l

|pψ(l)− pψ(l + 1)|
}
, (A31)

where 1
2
∑
l |pψ(l) − pψ(l + 1)| is the total variation distance between pψ and the translated version of pψ , and c, defined in

theorem 7 is a finite number (independent of m), provided that the energy variance of ψ is nonzero and it has bounded third
moment of energy.

It follows that in the limitm goes to infinity the two distributions pψ⊗m and TP (µ, σ2) converge in the total variation distance,
if the following conditions are all satisfied:

1. The distribution pψ has a nonzero variance, which means ψ is not an eigenstate of the system Hamiltonian H .

2. The distribution pψ has a finite third moment (This also guarantees that coefficient c in Eq.(A30) is finite).

3. The total variation distance between pψ and the translated version of pψ satisfies

1
2
∑
n

|pψ(n)− pψ(n+ 1)| < 1 , (A32)

which means the two distributions pψ and p̃ψ , defined by p̃ψ(n) = pψ(n+ 1), have overlapping supports. This condition
is satisfied if there exists, at least, an integer n0 ∈ Z such that both pψ(n0) and pψ(n0 + 1) are non-zero.

From the discussion in Sec.A 1 and, in particular, proposition 6 we know that the interconvertability of pure states under
TI operations are determined by their energy distribution. Combining this proposition with the above result, we can study
interconversion of systems in the iid regime.

Consider two systems with states ψ1 and ψ2 and Hamiltonians H1 and H2, respectively. Suppose both systems have period
τ . Then, assuming the above conditions are satisfied, in the limit m goes to infinity the energy distribution of ψ⊗m1 , denoted by
pψ⊗m1

, converges to TP (µ1, σ
2
1), where µ1 and σ1 are the mean and energy variance of ψ⊗m1 , defined via Eq.(A28), i.e.,

µ1 = m( τ2π )× 〈ψ1|H1|ψ1〉 , σ2
1 = m( τ2π )2 × VH1(ψ1) . (A33)

Similarly, consider dRme copies of system with Hamiltonian H2 and state ψ2, where

R = VH1(ψ1)
VH2(ψ2) . (A34)

Let p
ψ
⊗dRme
2

be the energy distribution for state ψ⊗dRme2 . Then, in the limit of large m the energy distribution for state ψ⊗dRme2

converges to the translated Poisson distribution TP (µ2, σ
2
2), where

µ2 = dRme × ( τ2π )〈ψ2|H2|ψ2〉 , σ2
2 = dRme × ( τ2π )2 × VH2(ψ2) . (A35)

Recall that the distribution TP (µ, σ) is the distribution obtained from translating a Poisson distribution with variance σ2 + γ
with an integer, where 0 ≤ γ ≤ 1 (See Eq.(A17)). Therefore, up to a translation by integers TP (µ1, σ

2
1) and TP (µ2, σ

2
2) are,

respectively, equal to the Poisson distributions P (σ2
1 + γ1) and P (σ2

2 + γ2), where 0 ≤ γ1,2 ≤ 1.
In summary, up to translations by integers, the distributions pψ⊗m1

and p
ψ
⊗dRme
2

are equal to Poisson distributions P (σ2
1 + γ1)

and P (σ2
2 + γ2), respectively, whose total variation distance is bounded by

dTV
(
P (σ2

1 + γ1), P (σ2
2 + γ2)

)
≤ |σ

2
2 − σ2

1 + γ2 − γ1|
σ1

(A36a)

≤ 1
σ1

(
|σ2

1 − σ2
2 |+ |γ1 − γ2|

)
(A36b)

≤ 1√
q ×m

(
q ×

∣∣∣m− dR×me
R

∣∣∣+ 2
)

(A36c)

≤ 1√
q ×m

( q
R

+ 2
)

= 1√
mτVH1(ψ1)/2π

(τVH2(ψ2)
2π + 2

)
, (A36d)
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where q = τVH1(ψ1)/2π and the first bound is obtained by applying lemma 8. In conclusion, if q = τVH1(ψ1)/2π > 0, then in
the limit m goes to infinity, the total variation distance between distribution p

ψ
⊗dRme
2

and a properly translated version of pψ⊗m1

goes to zero, with an error upper bounded by (qR−1 + 2)/√qm. Note that the required amount of translation is an integer.
Next, we apply proposition 6. According to this proposition, if by translating with an integer we can convert the distribution

pψ⊗m1
to a distribution close to p

ψ
⊗dRme
2

, with the total variation distance ε, then there exists a TI operation that converts state

ψ⊗m1 to state ψ⊗dRme2 with trace distance
√

2ε. Therefore, we arrive at the following result:

Proposition 9. Consider two systems with Hamiltonian H1 and H2 and states ψ1 and ψ2, respectively. Assume:

1. Both systems have period τ , such that

τ = inf
t
{t > 0 :

∣∣〈ψl|e−iHlt|ψl〉∣∣ = 1} : l = 1, 2 . (A37)

2. Suppose the systems have non-zero energy variances VH1(ψ1) and VH2(ψ2) and their third moments of energy is finite,
i.e., |〈ψl|H3

l |ψl〉| <∞ for l = 1, 2.

3. The energy distributions pψ1,2 satisfy the condition

1
2
∑
n

|pψl(n)− pψl(n+ 1)| < 1 : l = 1, 2 . (A38)

where pψl(n) = 1
2π
∫ 2π

0 dθ eiθn〈ψl|e−iHlτ
θ

2π |ψl〉 , is the probability that state ψl has energy 2πn/τ with respect to
Hamiltonian Hl, where we have defined the energy references for Hamiltonians H1 and H2 such that e−iHlτ |ψl〉 = |ψl〉 .

Let R = VH(ψ1)
VH(ψ2) be the ratio of energy variances. Then, for any integer m there exists a TI operation Em that maps ψ⊗m1 to a

state close to ψ⊗dRme2 , such that their trace distance vanishes in the limit m goes to infinity, i.e.,

lim
m→∞

‖Em(ψ⊗m1 )− ψ⊗dRme2 ‖1 = 0 . (A39)

It turns out that the last condition in the above proposition, i.e., Eq.(A38) is not necessary. We explain this with the following
example. Consider the energy distributions associated to states

|η〉 = |0〉+ |2〉√
2

, and |γ〉 = |0〉+ |2〉+ |5〉√
3

,

with the HamiltonianH = 2πτ−1∑∞
k=0 k|k〉〈k|. One can easily see that although neither the distribution pη nor the distribution

pγ do not satisfy the condition in Eq.(A38), there is an important distinction between them: Suppose instead of one copy of state
|γ〉 we look at the energy distribution for two copies of this state, which is given by the distribution pγ⊗2 = pγ ∗ pγ . This
distribution has support on n = 0, 2, 4, 5, 7, 10. It follows that, even though the energy distribution for one copy of γ does not
satisfy Eq.(A38), energy distribution for two copies of this state does satisfy this condition. That is the total variation distance
between pγ ∗ pγ(n) and its translated version pγ ∗ pγ(n+ 1) is less than one,

1
2
∑
n

|pγ ∗ pγ(n+ 1)− pγ ∗ pγ(n)| < 1 . (A40)

Thus, we can apply the above result to two copies of this state and conclude that, in the limit m goes to infinity, the energy
distribution for (γ⊗2)⊗m converges to a translated Poisson distribution.

On the other hand, this will not happen for state |η〉: Since the support of pη is restricted to even integers n = 0, 2, for any
integer L, the support of pη⊗L is also restricted to even integers. Therefore, in the limit of large L, the energy distribution will
not converge to a translated Poisson distribution (In fact, it converges to a translated Poisson distribution defined only on even
integers).

It turns out that the distinction between these two examples have a simple physical interpretation, in terms of the period
of dynamics. Recall that the period of dynamics for a system with state ψ and Hamiltonian H is defined as inft{t > 0 :∣∣〈ψ|e−iHt|ψ〉∣∣ = 1} . It can be easily seen that for state |η〉 the period of dynamics is τ/2, whereas for state |γ〉 the period is
τ . Using the following lemma, we can show that, in general, having the full period τ is the necessary and sufficient condition to
guarantee that condition in Eq.(A38) is satisfied for a finite number of copies of state.
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Lemma 10. Consider a system with Hamiltonian H , state |ψ〉 and period τ = inft{t > 0 :
∣∣〈ψ|e−iHt|ψ〉∣∣ = 1}. Let pψ(n)

defined in Eq.(A5) be the probability that state ψ has energy 2πn/τ (Recall that we assume E0 = 0, which can be always
achieved by a proper shift of the Hamiltonian). Then, there is a finite L such that the distribution pψ⊗L = pψ ∗ · · · ∗ pψ︸ ︷︷ ︸

L times

,

corresponding to the energy distribution of ψ⊗L, satisfies

1
2
∑
n∈Z
|pψ⊗L(n)− pψ⊗L(n+ 1)| < 1 . (A41)

We prove this lemma at the end of this section, using Bezout’s theorem.
In conclusion, if the system has period τ , then there exists a finite positive integer L, such that ψ⊗L satisfies the condition in

Eq.(A38) of proposition 9. Therefore, we can apply this proposition to state ψ⊗L. Note that the energy variance of this state
L× VH(ψ), and if ψ has finite third moment, then so does ψ⊗L. In summary, we find

Theorem 11. Consider a pair of systems with Hamiltonians H1 and H2 and states ψ1 and ψ2, respectively. Assume both
systems have period τ , and finite non-zero energy variances VH1(ψ1), VH2(ψ2) > 0, and finite third moments of energy. Let
R ≤ VH(ψ1)

VH(ψ2) . Then, for any integer m there exists a TI operation Em that converts ψ⊗m1 to a state close to ψ⊗dRme2 , such that
their trace distance vanishes in the limit m goes to infinity, as stated in Eq.(A39.)

In Section D, theorem 15, we prove a converse bound, that is we show that the state conversion is impossible with a vanishing
error with rate R > VH(ψ1)

VH(ψ2) . In theorem 15, the result is presented in terms of QFI. Note that for pure states, the energy variance
is one fourth of QFI, i.e. FH(ψ) = 4VH(ψ). We finish this section by proving lemma 10.

Proof of lemma 10

Let nmin2π/τ be the minimum occupied energy level by state ψ (Note that any Hamiltonian has a lowest energy level). In
other words, let

nmin = min{n : pψ(n) 6= 0} , (A42)

be the minimum n for which pψ(n) 6= 0. Let

Nψ = {n− nmin : pψ(n) 6= 0} (A43)

be the set of all occupied levels shifted by nmin. The fact that the period is τ implies that the greatest common divisor of this set
is 1, i.e.

gcd(Nψ) = 1 . (A44)

This can be seen by noting that if k = gcd(Nψ), then for any n either pψ(n) = 0 or n− nmin = jk for an integer j. Therefore,
since energy levels are related to integer n via relation E = 2πn/τ , we find

|〈ψ|e−iHτ/k|ψ〉| = |
∑
n

pψ(n)e−i2π(jk+nmin)/k| = |
∑
n

pψ(n)e−i2πnmin/k| = 1 , (A45)

which implies the period is smaller than τ . Therefore, assuming the period is τ , we have gcd(Nψ) = 1.
Next, we use Bezout’s theorem:

Lemma 12. (Bezout’s theorem) Suppose the greatest common divisor of a set integers {a1, · · · , an} is one, i.e.
gcd({a1, · · · , an}) = 1. Then, there exists integers {x1, · · · , xn}, such that

∑n
i=1 xiai = 1.

We apply this result to the set of integers {ni}i = Nψ . Then, the fact that the greatest common divisor of this set is one
implies that there exists a set of integers {xi}i such that ∑

i

xini = 1 . (A46)
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Partitioning the set {x1, · · · , xn} to two subsets which only include positive and negative elements of this set, we find∑
i:xi>0

xini = 1−
∑
i:xi<0

xini = 1 +
∑
i:xi<0

|xi|ni . (A47)

Let L =
∑
i |xi| and consider the probability distribution

pψ⊗L = pψ ∗ · · · ∗ pψ︸ ︷︷ ︸
L times

corresponding to the total energy distribution for state ψ⊗L. This is the probability distribution for the random variable
∑L
r=1 Zr,

assuming each Zr has the distribution pψ . We show that for this distribution

1
2
∑
n∈Z
|pψ⊗L(n)− pψ⊗L(n+ 1)| < 1. (A48)

To show this we argue that the random variable
∑L
r=1 Zr takes both values K and K − 1, with a non-zero probability, where

K = nminL+
∑
i:xi>0

xini = nminL−
∑
i:xi<0

xini + 1 . (A49)

To see this, first consider the following event: For each ni ∈ Nψ with xi > 0, suppose xi different random variables in the set
{Zr : 1 ≤ r ≤ L} take the value nmin + ni, and the rest of the random variables, i.e. L−

∑
i:xi>0 xi random variables, take the

value nmin. In this event, the sum
∑L
r=1 Zr will be equal to K = nminL+

∑
i:xi>0 xini. It follows that

pψ⊗L(K) > 0 . (A50)

Next, consider a different event in which for each xi < 0, |xi| different random variables in the set {Zr : 1 ≤ r ≤ L} take the
value nmin + ni, and the rest of the random variables in this set, i.e. L−

∑
i:xi<0 |xi|, take the value nmin. In this event the sum∑L

r=1 Zr will be equal to K − 1 = nminL+
∑
i:xi<0 |xi|ni. It follows that

pψ⊗L(K − 1) > 0 . (A51)

We conclude that the distribution pψ⊗L = pψ ∗ · · · ∗ pψ︸ ︷︷ ︸
L times

is nonzero for both K and K − 1. This immediately implies

1
2
∑
n

|pψ⊗L(n)− pψ⊗L(n+ 1)| < 1 , (A52)

and proves lemma 10.
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Appendix B: Quantum Fisher Information: Preliminaries

Here, we briefly review some useful properties of Quantum Fisher Information (QFI). See e.g. [16–18, 32, 64] for further
details.

QFI for a general family of states ρt labeled by the real continuous parameter t is defined by

IF (t) = Tr(ρtL2
t ) , (B1)

where Lt is the symmetric logarithmic derivative, defined via equation

ρ̇t = 1
2(ρtLt + Ltρt) . (B2)

In the special case of ρt = e−itHρeitH for a Hermitian operator H , we find

ρ̇(t) = −i[H, ρt] = 1
2(ρtLt + Ltρt) . (B3)

Using the spectral decomposition of state ρ, as ρ =
∑
k pk|φk〉〈φk| we find

2i× pk − pj
pk + pj

〈φk|Lt|φj〉 = 〈φk|eiHtLte−iHt|φj〉 . (B4)

Putting this back into Eq.(B1) we find

IF (t) = Tr(ρtL2
t ) = Tr(ρL2

0) = IF , (B5)

i.e., the QFI is independent of the parameter t, and therefore we denote it by IF . Then, it can be easily seen that

IF = IF (t) = Tr(ρtL2
t ) (B6a)

=
∑
k,j

pk|〈φk|L0|φj〉|2 (B6b)

= 4
∑
k,j

pk
(pk − pj)2

(pk + pj)2 |〈φk|H|φj〉|
2 (B6c)

= 2
∑
k,j

(pk + pj)
(pk − pj)2

(pk + pj)2 |〈φk|H|φj〉|
2 (B6d)

= 2
∑
k,j

(pk − pj)2

pk + pj
|〈φk|H|φj〉|2 . (B6e)

Note that if ρ is not full rank, we can apply the above formula to the state ρε = (1 − ε)ρ + εI/d for a vanishing ε → 0, where
I/d is the totally mixed state. Using this technique, or applying the definition in Eq.(B3) we find that for pure states QFI is four
time the variance of state ψ with the respect to the observable H , i.e.

IF = 4× (〈ψ|H2|ψ〉 − 〈ψ|H|ψ〉2) = 4VH(ψ) . (B7)

In the following, we use the notation FH(ρ) to denote QFI for the family of state e−iHtρeiHt : t ∈ R. In summary, for a system
with state ρ and Hamiltonian H , QFI is given by

FH(ρ) = 2
∑
i,j

(pk − pj)2

pk + pj
|〈φk|H|φj〉|2 . (B8)

QFI is closely related to fidelity. Let

Fid(ρ, σ) ≡ Tr
(√√

ρσ
√
ρ
)2

= ‖√ρ
√
σ‖21 , (B9)

be the fidelity of states ρ and σ. Consider the fidelity of state ρ and e−iHtρeiHt as a function of t. For t = 0 fidelity takes its
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maximum value, which is one. Therefore, its first derivative with respect to t vanishes, i.e.

d

dt
Fid(ρ, e−iHtρeiHt)

∣∣∣
t=0

= 0. (B10)

Furthermore, it turns out that the second derivative is given by QFI, i.e.

FH(ρ) = −4 d
2

dt2

√
Fid(ρ, e−iHtρeiHt)

∣∣∣
t=0

. (B11)

Therefore, roughly speaking, QFI determines how fast states ρ and e−iHtρeiHt become distinguishable.
QFI has the following important properties [16–18, 32, 64]:

1. Faithfulness: It is zero if, and only if, state is incoherent, i.e., diagonal in the energy eigenbasis. This can be seen using
the fact that [ρ,H] = 0 if and only if for all i and j,

〈φi|[ρ,H]|φj〉 = (pi − pj)〈φi|H|φj〉 = 0 , (B12)

where ρ =
∑
j pj |φj〉〈φj | is the spectral decomposition of ρ. Using the formula

FH(ρ) = 2
∑
i,j

[
(pi − pj)|〈φi|H|φj〉|

]2
pi + pj

, (B13)

we can easily see that this is the case if, and only if, FH(ρ) = 0.

2. Monotonicity: It is non-increasing under any TI operation ETI, i.e.

FH(ETI(ρ)) ≤ FH(ρ). (B14)

In particular, it remains invariant under energy-conserving unitaries. This can be easily seen, e.g., using the connection
between QFI and the fidelity, and the fact that fidelity satisfies information processing inequality, i.e.

Fid(ρ, σ) ≤ Fid(E(ρ), E(σ)) , (B15)

for any trace-preserving completely positive map E .

3. Additivity: For a composite non-interacting system with the total Hamiltonian Htot = H1⊗ I2 + I1⊗H2, QFI is additive
for uncorrelated states, i.e. FHtot(ρ1 ⊗ ρ2) = FH1(ρ1) + FH2(ρ2). This can be seen, e.g., from the multiplicativity of the
fidelity for tensor products, together with the connection between fidelity and QFI in Eq.(B11).

4. Convexity: For any 0 ≤ p ≤ 1 and states ρ and σ, FH(pρ+ (1− p)σ) ≤ pFH(ρ) + (1− p)FH(σ). This also can be seen
from the concavity of the fidelity together with the connection between fidelity and QFI in Eq.(B11).
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Appendix C: Quantum Fisher Information in the single-shot regime

In this section we prove theorem 3 in the paper. For completeness we repeat the statement of this theorem.

Theorem (Restatement of theorem 3) QFI of system S with state ρ and Hamiltonian HS , is four times the minimum energy
variance of all purifications of ρ with auxiliary closed systems not interacting with S, i.e.

FHS (ρ) = min
Φρ,HA

FHtot(Φρ) = 4× min
Φρ,HA

VHtot(Φρ) , (C1)

where the minimization is over all pure states |Φρ〉SA satisfying TrA(|Φρ〉〈Φρ|SA) = ρ, and all Hamiltonians of the purifying
system A.

Previous Result: We note that a closely related result has been previously obtained in the context of quantum metrology [48]
(See also [49]). This reference considers a general family of states ρx of system S and shows that there exists a purification
|Ψx〉SA of this system, such that the QFI of ρx is equal to QFI of |Ψx〉SA. Applying this result together with the Uhlmann’s
theorem for the family of states ρt = e−iHStρeiHSt, one finds that there is a purification of ρ, denoted by |Ψ〉SA, and a family
of unitaries UA(t) on the purifying system A such that the QFI of the family of states ρt = e−iHtρeiHt is equal to the QFI of
the family of states [e−iHSt ⊗ UA(t)]|Ψx〉SA [49]. However, note that this argument does not imply that UA(t) itself can be
written as e−iHAt for a time-independent Hamiltonian HA. In particular, the family of unitaries UA(t) found by applying the
Uhlmann’s theorem is not necessarily differentiable and, in fact, is not unique for degenerate ρ .

In the following we present two different proofs of this theorem, one proof is via direct minimization and the second proof,
similar to the approach of [48], is based on the connection of fidelity and QFI together with Uhlmann’s theorem. However, in
the second proof we assume ρ is non-degenerate and full-rank.

1. First proof of theorem 3 via direct minimization

Consider system S with Hamiltonian HS and state ρ with the spectral decomposition ρ =
∑
i pi|φi〉〈φi|. Consider an

auxiliary system A with Hamiltonian HA. Let |Φρ〉 be a pure state of systems A and S which purifies state ρS , such that

ρS = TrA(|Φρ〉〈Φρ|), (C2)

where the partial trace is over system A.
Let Htot be the total Hamiltonian of the system S and auxiliary system A, i.e.

Htot = HS ⊗ IA + IS ⊗HA . (C3)

We are interested in finding the purification |Φρ〉 and Hamiltonian HA for which the total energy variance

VHtot(|Φρ〉) = 〈Φρ|H2
tot|Φρ〉 − 〈Φρ|Htot|Φρ〉2 (C4)

is minimized. Since all purifications of ρ are equal up to a unitary on system A we can fix the purification to be

|Φρ〉 =
∑
i

√
pi|φi〉|φi〉 = (√ρ⊗ I)

∑
i

|φi〉|φi〉 , (C5)

and only vary the Hamiltonian HA. For this purification the reduced state on system A is also state ρ, i.e.

TrS(|Φρ〉〈Φρ|) = ρ. (C6)

Next, note that by adding a proper multiple of the identity operator to HA, we can always make the expectation value of the total
energy zero, such that

〈Φρ|Htot|Φρ〉 = 0. (C7)

But, adding a multiple of the identity operator to the Hamiltonian does not change the energy variance. Therefore, in the
following, without loss of generality, we assume the expectation value of the total Hamiltonian Htot is zero. This means that the
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energy variance is given by the following expectation value

VHtot(|Φρ〉) = 〈Φρ|H2
tot|Φρ〉 (C8)

= 〈Φρ|H2
S ⊗ IA|Φρ〉+ 〈Φρ|IS ⊗H2

A|Φρ〉+ 2〈Φρ|HS ⊗HA|Φρ〉 . (C9)

Then, using |Φρ〉 = (√ρ⊗ I)
∑
i |φi〉|φi〉 we find

VHtot(|Φρ〉) = Tr(ρH2
S) + Tr(ρH2

A) + 2Tr(√ρHS
√
ρHT

A) (C10a)

= Tr(ρH2
S) + Tr(ρ(HT

A)2) + 2Tr(√ρHS
√
ρHT

A) , (C10b)

where T denotes the transpose relative to the eigenbasis of ρ, i.e. {|φj〉}j . Here, to get the second line we have used
Tr(ρ(HT

A)2) = Tr(ρH2
A), which follows from the fact that the trace of any operator remains invariant under transpose, together

with the fact that ρ is diagonal in {|φj〉}j basis, and so ρT = ρ.

Next, we consider small variations of HT
A , denoted by δHT

A . At the point where the variance VHtot(|Φρ〉) is minimized, we
have

δVHtot(|Φρ〉)
δHT

A

= δ〈Φρ|H2
tot|Φρ〉

δHT
A

= 0 . (C11)

Using Eq.(C10) it can be easily seen that

δVHtot(|Φρ〉) = δ〈Φρ|H2
tot|Φρ〉 (C12a)

=
[
Tr(ρ(δHT

A)HT
A) + Tr(ρHT

AδH
T
A) + 2Tr(√ρHS

√
ρδHT

A)
]

(C12b)

+O((δHT
A)2). (C12c)

At the point where the variance is minimized, this variation vanishes up to the first order with respect to δHT
A , for all variations

δHT
A . This leads to the equation

HT
Aρ+ ρHT

A

2 = −√ρHS
√
ρ , (C13)

which should be satisfied by HT
A for which the variance is minimized.

Next, we find HT
A which satisfies this equation. To solve this equation we vectorize both side, using the relation

Y =
∑
i,j

Yi,j |φi〉〈φj | ←→ vec(Y ) =
∑
i,j

Yi,j |φi〉|φj〉 , (C14)

which implies

vec(XY Z) = (X ⊗ ZT )vec(Y ). (C15)

Using this notation we can rewrite Eq.(C13) as

[I ⊗ ρT + ρ⊗ I]vec(HT
A) = −2[√ρ⊗√ρT ]vec(HS) . (C16)

This equation implies

vec(HT
A) = −2[I ⊗ ρT + ρ⊗ I]−1[√ρ⊗√ρT ]vec(HS) . (C17)
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Using the decomposition ρ =
∑
i pi|φi〉〈φi| we find

vec(HT
A) = −2[I ⊗ ρT + ρ⊗ I]−1[√ρ⊗√ρT ]vec(HS) (C18)

= −2
[∑
i,j

(pi + pj)|φi〉〈φi| ⊗ |φj〉〈φj |
]−1

[√ρ⊗√ρ]vec(HS) (C19)

= −2
[∑
i,j

(pi + pj)−1|φi〉〈φi| ⊗ |φj〉〈φj |
]
[√ρ⊗√ρ]vec(HS) (C20)

= −2
[∑
i,j

√
pipj

pi + pj
|φi〉〈φi| ⊗ |φj〉〈φj |

]
vec(HS) . (C21)

Using Eq.(C15) this implies

HT
A = −2

∑
i,j

√
pipj

pi + pj
|φi〉〈φi|HS |φj〉〈φj | , (C22)

or, equivalently,

HA = −2
∑
i,j

√
pipj

pi + pj
|φj〉〈φi|HS |φj〉〈φi|. (C23)

Note that

Tr(ρHA) = −2
∑
i,j

√
pipj

pi + pj
Tr(ρ|φj〉〈φi|HS |φj〉〈φi|) (C24a)

= −
∑
i

pi〈φi|HS |φi〉 (C24b)

= −Tr(ρHS). (C24c)

It follows that the expectation value of the total Hamiltonian is zero, i.e. 〈Φρ|Htot|Φρ〉 = 0.
For this optimal HA we have

Tr(ρH2
A) = 4Tr(ρ

[∑
i,j

√
pipj

pi + pj
|φj〉〈φi|HS |φj〉〈φi|

][∑
k,l

√
pkpl

pk + pl
|φl〉〈φk|HS |φl〉〈φk|

]
) (C25a)

= 4
∑
i,j

pip
2
j

(pi + pj)2 |〈φi|HS |φj〉|2 (C25b)

= 2
∑
i,j

pip
2
j + pjp

2
i

(pi + pj)2 |〈φi|HS |φj〉|2 (C25c)

= 2
∑
i,j

pipj
pi + pj

|〈φi|HS |φj〉|2 , (C25d)

where to get the third line we have used the fact that 1
(pi+pj)2 |〈φi|HS |φj〉|2 is symmetric with respect to i and j.

Similarly,

Tr(√ρHS
√
ρHT

A) = −2Tr
(
HS
√
ρ
∑
i,j

√
pipj

pi + pj
|φi〉〈φi|HS |φj〉〈φj |

√
ρ
)

(C26a)

= −2Tr
(
HS

∑
i,j

pipj
pi + pj

|φi〉〈φi|HS |φj〉〈φj |
)

(C26b)

= −2
∑
i,j

pipj
pi + pj

|〈φi|HS |φj〉|2 (C26c)

= −Tr(ρH2
A) , (C26d)
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where to get the last line we have used Eq.(C25).

Putting these into Eq.(C10) we find

VHtot(|Φρ〉) = Tr(ρH2
S) + Tr(ρH2

A) + 2Tr(√ρHS
√
ρHT

A) (C27a)

= Tr(ρH2
S)− Tr(ρH2

A) (C27b)

= Tr(ρH2
S)− 2

∑
i,j

pipj
pi + pj

|〈φi|HS |φj〉|2 (C27c)

=
∑
i

pi〈φi|H2
S |φi〉 − 2

∑
i,j

pipj
pi + pj

|〈φi|HS |φj〉|2 (C27d)

=
∑
i,j

pi|〈φi|HS |φj〉|2 − 2
∑
i,j

pipj
pi + pj

|〈φi|HS |φj〉|2 (C27e)

=
∑
i,j

(pi + pj)2

2(pi + pj)
|〈φi|HS |φj〉|2 − 2

∑
i,j

pipj
pi + pj

|〈φi|HS |φj〉|2 (C27f)

=
∑
i,j

(pi − pj)2

2(pi + pj)
|〈φi|HS |φj〉|2 , (C27g)

where to get the fifth line we have used the decomposition of the identity operator as
∑
j |φj〉〈φj |, and to get the sixth line we

have used the fact that |〈φi|HS |φj〉|2 is symmetric with respect to i and j.

Comparing this with the formula for QFI

FH(ρ) = 2
∑
i,j

(pk − pj)2

pk + pj
|〈φk|H|φj〉|2 , (C28)

we find that

VHtot(|Φρ〉) = 1
4FH(ρ) . (C29)

This completes the proof.

It is also worth noting that because Tr(HSρ) = −Tr(HAρ) and VHtot(|Φρ〉) = Tr(ρH2
S)− Tr(ρH2

A), we have

1
4FH(ρ) = VHtot(|Φρ〉) = Tr(ρH2

S)− Tr(ρH2
A) = VHS (ρ)− VHA(ρ) , (C30)

i.e., QFI is four times the difference between energy variance of system S and the auxiliary system A.

Fisher information of the purifying system

The above argument shows that if the Hamiltonian of the auxiliary system is

HA = −2
∑
i,j

√
pipj

pi + pj
|φj〉〈φi|HS |φj〉〈φi|, (C31)

then for the total Hamiltonian HS ⊗ IA + IS ⊗HA of the composite system S and A, the QFI of state |Φρ〉 =
∑
i

√
pi|φi〉|φi〉 ,

is equal to the QFI for system S. In other words, by discarding system A the QFI does not decrease. It is interesting to note that
this happens even though the QFI of the auxiliary system A is nonzero.

To calculate the QFI of the auxiliary system, first note that the reduced state of system A in this case is also ρ. Then, using the
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formula for QFI we find

FHA(ρ) = 2
∑
i,j

(pi − pj)2

(pi + pj)
|〈φi|HA|φj〉|2 (C32)

=
∑
i,j

2(pi − pj)2

(pi + pj)
4pipj

(pi + pj)2 |〈φi|HS |φj〉|2 (C33)

=
∑
i,j

8pipj(pi − pj)2

(pi + pj)3 |〈φi|HS |φj〉|2 (C34)

Therefore, if the system S is in a full rank density operator with nonzero Fisher information, then the Fisher information for the
auxiliary system will be necessarily nonzero, FHA(ρ) > 0.

We conclude that for state |Φρ〉 =
∑
i

√
pi|φi〉|φi〉 , and for this choice of Hamiltonian HA, by discarding system A, the

Fisher information does not decrease, even though the process is irreversible, and the discarded system itself carries non-zero
Fisher information.

Comparison with the Wigner-Yanase skew Information

In the above argument we found the optimal Hamiltonian of auxiliary system for the joint state |Φρ〉 =
∑
i

√
pi|φi〉|φi〉 .

Since for this joint state the reduced state of both subsystems A and S is ρ, a natural choice for the Hamiltonian HA which
minimizes the total energy variance could be HA = −HT

S = −H∗S , where T denotes the transpose relative to the eigenbasis of
ρ and ∗ denotes complex conjugation in this basis. Then, the total energy variance is given by

VHtot(|Φρ〉) = 〈Φρ|H2
tot|Φρ〉 − 〈Φρ|Htot|Φρ〉2 (C35)

= 〈Φρ|H2
S ⊗ IA|Φρ〉+ 〈Φρ|IS ⊗H2

A|Φρ〉+ 2〈Φρ|HS ⊗HA|Φρ〉 (C36)

= Tr(ρH2
S) + Tr(ρH2

A) + 2Tr(√ρHS
√
ρHT

A) (C37)

= 2Tr(ρH2
S)− 2Tr(√ρHS

√
ρHS), (C38)

where, in the first line we have used the fact that for HA = −HT
S the expectation value of total energy is zero.

Interestingly, the last line is twice the Wigner-Yanase skew information

WH(ρ) = −1
2Tr
(
[HS ,

√
ρ]2
)
, (C39)

which is also a measure of asymmetry relative to time-translations. Therefore, for this choice of HA we find

VHtot(|Φρ〉) = 2WH(ρ). (C40)

2. Second Proof of theorem 3 via Uhlmann’s theorem and Differentiability of Singular Value Decomposition

Here, we prove the result under the extra assumption that ρ is non-degenerate and full-rank.
We are interested to find a purification |Φρ〉SA of state ρ and a Hamiltonian HA acting on the purifying system A, such that

VHtot(|Φρ〉) = 〈Φρ|H2
tot|Φρ〉 − 〈Φρ|Htot|Φρ〉2 (C41)

is minimized, where Htot = HS ⊗ IA + IS ⊗ HA. First, using the fact that QFI is non-increasing under partial trace, and the
QFI for pure states is 4 times the variance, we find that

1
4FHS (ρ) ≤ VHtot(|Φρ〉) . (C42)

Next, we prove that there exists a Hamiltonian HA for which this holds as an equality. To prove this we use the connection
between fidelity and QFI. Recall that for a system with state σ and Hamiltonian H , the QFI is equal to

FH(σ) = −4 d
2

dt2

√
Fid(σ, e−iHtσeiHt)

∣∣∣
t=0

. (C43)
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Then, we use the following fact which is proven later:

Lemma 13. Let ρ be a full-rank density operator with non-degenerate eigenvalues, pure state |Φρ〉SA be a purification of ρ,
and HS be a bounded Hamiltonian. Then, there exists a family of unitary operators VA(t), satisfying√

Fid(ρ, e−iHStρeiHSt) = 〈Φρ|[e−iHSt ⊗ VA(t)]|Φρ〉SA , (C44)

for all t, such that (i) VA(0) is the identity operator, and (ii) VA(t) is infinitely differentiable in a finite neighborhood around
t = 0 .

Then, applying this lemma we find

d2

dt2

√
Fid(ρ, e−iHStρeiHSt)

∣∣∣
t=0

= d2

dt2

∣∣∣〈Φρ|[e−iHSt ⊗ VA(t)]|Φρ〉
∣∣∣
t=0

(C45a)

= −VHtot(Φρ) , (C45b)

where Htot = HS ⊗ IA + IS ⊗HA and

HA = i
d

dt
VA(t)

∣∣∣
t=0

. (C46)

Here, to get the second line in Eq.(C45) one can use the identity( d2

dx2

∣∣∣〈ψ0|ψx〉
∣∣∣)
x=0

=
∣∣∣d〈ψx|
dx
|ψx〉

∣∣∣2
x=0
− d〈ψx|

dx

d|ψx〉
dx

∣∣∣
x=0

, (C47)

which holds for any smooth family of states |ψx〉.
Using Eq.(C43), this in turn implies

FHS (ρ) = 4× VHtot(|Φρ〉) . (C48)

Combining this with inequality (C42), we find that

FHS (ρ) = 4×min
HA

VHtot(|Φρ〉) (C49)

Therefore, to complete the proof of theorem 3 we need to prove lemma 13.

Smooth purifications (Proof of lemma 13)

Let ρ =
∑
j pj |φj〉〈φj | be the spectral decomposition of ρ, and

|Φρ〉SA = (√ρ⊗ IA)
∑
j

|φj〉S |φj〉A =
∑
j

√
pj |φj〉S |φj〉A . (C50)

Then, any purification of e−iHtρeiHt can be written as [e−iHSt⊗VA(t)]|Φρ〉SA for a unitary VA(t). According to the Uhlmann’s
theorem, there exists a unitary VA(t) such that

〈Φρ|[e−iHSt ⊗ VA(t)]|Φρ〉SA =
√

Fid(ρ, e−iHStρeiHSt) = ‖√ρe−iHt√ρeiHSt‖1 = ‖√ρe−iHt√ρ‖1 , (C51)

which means

Tr
(√

ρe−iHSt
√
ρ V TA (t)

)
=
∥∥√ρe−iHSt√ρ∥∥1 . (C52)

In fact, V TA (t) can be determined directly from the singular value decomposition of
√
ρe−iHSt

√
ρ. Consider the decomposition

√
ρe−iHSt

√
ρ = L(t)D(t)R(t) , (C53)
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where D(t) is a diagonal matrix with non-negative elements and L(t) and R(t) are unitary transformations. Then, in Eq.(C52)
we can choose

V TA (t) = [L(t)R(t)]† = R†(t)L†(t) . (C54)

In general, singular value decomposition is not necessarily smooth. The following result, guarantees the smoothness of this
decomposition under certain conditions:

Theorem 14. ([65]) Let A(t) be k-times continuously differentiable square matrix function with full-rank and distinct singular
values. Then, A(t) has a Singular Value Decomposition which is k-times continuously differentiable.

We apply this theorem to operator
√
ρe−iHt

√
ρ and its singular value decomposition in Eq.(C53). Note that this operator is

infinitely differentiable. Furthermore, if ρ is full-rank, then
√
ρe−iHt

√
ρ is also full-rank. And, if ρ is non-degenerate then for

sufficiently small t the singular values of
√
ρe−iHt

√
ρ will be distinct (Note that the singular values of this operator are square

root of the eigenvalues of operator
√
ρ(e−iHtρeiHt)√ρ. For sufficiently small t, these eigenvalues will be arbitrary close to the

eigenvalues of ρ2, which are distinct).
Therefore, applying the above result we conclude that if ρ is full-rank and its eigenvalues are distinct, then the operator

V TA (t) = [L(t)R(t)]† = R†(t)L†(t) is infinitely differentiable at t = 0, which in turn implies VA(t) is infinitely differentiable
at t = 0 and completes the proof.

3. QFI as the convex roof of variance (Proof of theorem 4)

For completeness we restate theorem 4 in more details.

Restatement of theorem 4: Suppose under Hamiltonian H state ρ has period τ , i.e. τ = inft{t > 0 : e−iHtρeiHt = ρ} . Then,

FH(ρ) = min
{qk,ηk}

∑
k

qkFH(ηk) = 4× min
{qk,ηk}

∑
k

qkVH(ηk) , (C55)

where the minimization is over all ensembles {qk, |ηk〉} satisfying
∑
k qk|ηk〉〈ηk| = ρ. Furthermore, the optimal ensemble

{qk, |ηk〉} for which the minimum is achieved can be chosen such that the period τk = inft{t > 0 : |〈ηk|e−iHt|ηk〉| = 1} of
state |ηk〉 under Hamiltonian H is either 0, i.e., ηk is an eigenstate of Hamiltonian H , or τk = τ/mk for an integer mk ∈ N.
Finally, at each time t ∈ (0, τ) there is at least one state |ηk〉 with non-zero probability qk > 0, such that |〈ηk|e−iHt|ηk〉| < 1.

Note that the last part of theorem means that the greatest common divisor of integers {mk = τ/τk} is one. As we mentioned
before, the first part of the theorem was conjectured by Toth and Petz [54], and is proven by Yu [55]. In the paper we showed
that this part follows from theorem 3. Here, we prove the second part of the theorem, which puts a constraint on the period of
states in the optimal ensemble.

Proof. Let H =
∑
E EΠE be the spectral decomposition of Hamiltonian H . The fact that e−iHτρeiHτ = ρ implies that for

any two energy levels E1 and E2 if ΠE1ρΠE2 6= 0, then E1 − E2 = 2πm/τ for an integer m. Based on the criterion that
ΠE1ρΠE2 is zero or not we can divide the energy levels into disjoint partitions, such that (i) the energy levels in each partition
are separated with energy gaps 2πm/τ for an integer m, and (ii) for any two energy levels E1 and E2 in two different partitions
ΠE1ρΠE2 = 0.

Suppose we label disjoint partitions with r and let Pr be the projector to the subspace spanned by the energy level in the
partition r, i.e., each Pr is the sum of ΠE for all E belonging to the same partition r. Note that there is no coherence between
different partitions. That is ∑

r

PrρPr = ρ . (C56)

Let {qk, |ηk〉} be an optimal ensemble satisfying

FH(ρ) = 4×
∑
k

qkVH(ηk) . (C57)

Now we define a new ensemble of pure states, which is obtained from this ensemble by removing coherence between different
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partitions defined above. Namely the ensemble{
q̃k,r = qk〈ηk|Pr|ηk〉 , |η̃k,r〉 = Pr|ηk〉√

〈ηk|Pr|ηk〉

}
k,r

(C58)

where state Pr|ηk〉√
〈ηk|Pr|ηk〉

happens with probability q̃k,r. This ensemble can be thought of as the ensemble obtained from the

optimal ensemble {qk, |ηk〉} by measuring in the basis {Pr}r. It can be easily seen that

1. Eq.(C56) together with
∑
k qk|ηk〉〈ηk| = ρ imply∑

k,r

q̃k,r|η̃k,r〉〈η̃k,r| = ρ . (C59)

2. Concavity of variance implies∑
r

q̃k,rVH(|η̃k,r〉) = qk
∑
r

〈ηk|Pr|ηk〉VH(|η̃k,r〉) ≤ qkVH(|ηk〉) . (C60)

It follows that the average variance for the ensemble { q̃k,r, |η̃k,r〉}k,r satisfies∑
k,r

q̃k,rVH(|η̃k,r〉) =
∑
k

qk
∑
r

〈ηk|Pr|ηk〉VH(|η̃k,r〉) (C61)

≤
∑
k

qkVH(|ηk〉) (C62)

= FH(ρ)
4 (C63)

≤
∑
k,r

q̃k,rVH(|η̃k,r〉) , (C64)

where to get the second line we have used the fact that variance is a concave function, the third line follows from Eq.(C57),
and the last line follows from convexity of QFI. We conclude that∑

k,r

q̃k,rVH(|η̃k,r〉) = FH(ρ)
4 . (C65)

3. Since for each projector Pr the difference between any two energy levels is an integer multiple of 2π/τ , for any k and r
the period of state |η̃k,r〉 = Pr|ηk〉√

〈ηk|Pr|ηk〉
is τk = τ/mk for an integer mk, or is zero, i.e., |η̃k,r〉 is an energy eigenstate.

4. Since for any time t < τ , e−iHtρeiHt 6= ρ, we conclude that for any t < τ there should be at least one pure state |η̃k,r〉
such that |〈η̃k,r|e−iHt|η̃k,r〉| 6= 1. Equivalently, this means that the greatest common divisors of integers mk = τ/τk is
one.

This completes the proof.
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Appendix D: Monotonicity of Fisher information in approximate asymptotic transformations

Consider a pair of systems labled as the input and output systems, with the Hilbert spacesHin andHout and the corresponding
Hamiltonians Hin and Hout. Define the superoperators Uin(t) and Uout(t) to be the time translations generated by Hin and Hout,
i.e.

Uin(t)[·] = e−iHint(·)eiHint , Uout(t)[·] = e−iHoutt(·)eiHoutt . (D1)

Theorem 15. Suppose there exists a sufficiently large integer n0 such that for all integer n ≥ n0, there exists a CPTP map En
that transforms n copies of the input system to m = dRne copies of the output system, such that (i) En satisfies the covariance
condition

∀t : U⊗dRneout (t) ◦ En = En ◦ U⊗nin (t) , (D2)

and (ii) maps the input state ρ⊗n to σ⊗dRne with error bounded by δ, such that

1
2
∥∥En(ρ⊗n)− σ⊗dRne

∥∥
1 ≤ δ . (D3)

Then,

TT/(1−T ) − T 1/(1−T ) ≤ 4
√
δ , (D4)

where

T = FHin(ρ)
R× FHout(σ) . (D5)

It can be easily seen that function g(x) = xx/(1−x) − x1/(1−x) is positive in the interval x ∈ [0, 1). This means that for
T = FH(ρ)/(R× FH(σ)) < 1,

√
δ is lower bounded by a positive number. That is if FH(ρ) < R × FH(σ) then the error δ

cannot be arbitrary small. In summary, we conclude that if there exists a sequence of TI operations that convert copies of the
input systems to the copies of the output systems with rate R(ρ→ σ), with a vanishing error in the trace distance, then

R(ρ→ σ) ≤ FHin(ρ)
FHout(σ) . (D6)

Before presenting the proof, we recall the Fuchs-van de Graaf inequality [29, 30, 66]: For any pair of density operators ρ1 and
ρ2 it holds that

1−
√

Fid(ρ1, ρ2) ≤ 1
2‖ρ1 − ρ2‖1 ≤

√
1− Fid(ρ1, ρ2) , (D7)

where ‖ · ‖1 denotes the l-1 norm, that is the sum of the singular values. Using the properties of fidelity and Bures metric, in Sec.
D 2 we prove the following lemma, which will be used in the proof of theorem 15.

Lemma 16. For any pairs of states τ1 and τ2 and unitary U it holds that∣∣∣√Fid(Uτ1U†, τ1)−
√

Fid(Uτ2U†, τ2)
∣∣∣ ≤ 4

√
1−

√
Fid(τ1, τ2) ≤ 4

√
1
2‖τ1 − τ2‖1 . (D8a)

1. Proof of theorem 15

To simplify the notation we assume the input and output system Hamiltonians are identical and they are both denoted by H .
Generalizing the result to the case where these systems are different is straightforward.

For any n let m = dRne be the number of copies of the output systems. Let σm = En(ρ⊗n) be the actual output state and
σm(∆t) be the time-evolved version of σm, i.e.

σm(∆t) = U⊗m(∆t)[σm] = (e−iH∆t)⊗mσm(eiH∆t)⊗m . (D9)
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Here, ∆t is a parameter whose value will be fixed later. Similarly, let σ⊗m(∆t) = (e−iH∆tσeiH∆t)⊗m be the time-evolved
version of state σ⊗m. Since the operation En is TI, i.e. satisfies the covariance condition in Eq.(D2), for any ∆t it maps state
ρ⊗n(∆t) to state σm(∆t). To summarize

En(ρ⊗n) = σm (D10a)

En(ρ(∆t)⊗n) = σm(∆t) . (D10b)

Then, [
Fid(ρ, ρ(∆t))

]n/2 =
√

Fid(ρ⊗n, ρ(∆t)⊗n) ≤
√

Fid(σm, σm(∆t)) , (D11)

where the equality follows from the multiplicativity of fidelity under tensor products and the bound follows from the monotonic-
ity of Fidelity under CPTP maps.

Applying lemma 16 to states σ⊗m and σm, we find√
Fid (σm(∆t), σm)−

√
Fid (σ(∆t)⊗m, σ⊗m) ≤ 4

√
1−

√
Fid(σm, σ⊗m) . (D12)

Using the multiplicativity of fidelity for tensor products and applying Eq.(D11), this implies

[
Fid(ρ, ρ(∆t))

]n/2 ≤√Fid(σm(∆t), σm) ≤ 4
√

1−
√

Fid(σm, σ⊗m) +
[
Fid(σ(∆t), σ)

]m/2
. (D13)

Then, choosing m = dRne we find

[
Fid(ρ(∆t), ρ)

]n/2 − [Fid(σ(∆t), σ)
]dRne/2 ≤ 4

√
1−

√
Fid(σm, σ⊗m) (D14)

≤ 4
√

1
2‖σm − σ

⊗m‖1 , (D15)

where to get the second line we have used Fuchs-van de Graaf inequality in Eq.(D7). By the assumption of the theorem, for
n ≥ n0, the trace distance 1

2‖σm − σ
⊗m‖1 is bounded by δ. This implies[
Fid(ρ(∆t), ρ)

]n/2 − [Fid(σ(∆t), σ)
]dRne/2 ≤ 4

√
δ . (D16)

Next, we take ∆t = t/
√
n for arbitrary fixed t ∈ R and consider the limit of large n, where ∆t goes to zero. Consider the

Taylor expansion of Fid(ρ(∆t), ρ), as a function of ∆t around ∆t = 0. Since Fid(ρ(∆t), ρ) is an even function of ∆t, its odd
derivatives with respect to ∆t vanishes. Furthermore, the second derivative of function Fid(e−iH∆tρeiH∆t, ρ) with respect to
∆t is 1/4 times the QFI for the family of states {e−iH∆tρeiH∆t} and parameter ∆t (Theorem 6.3 [31]). In other words, for
infinitesimal ∆t,

Fid(ρ(∆t), ρ) = Fid(e−iH∆tρeiH∆t, ρ) = 1− ∆t2

4 FH(ρ) +O(∆t4) , (D17)

where O(∆t4) denotes terms of order ∆t4 and higher. Therefore, for ∆t = t/
√
n, in the limit of large n we find

Fid(ρ( t√
n

), ρ) = 1− t2

4nFH(ρ) +O( t
4

n2 ) . (D18)

Then, using the fact that limn→∞(1−x/n)n = e−x, we find that in the limit n goes to infinity, Fidn/2(ρ, ρ(∆t)) in the left-hand
side of Eq.(D16) converges to

lim
n→∞

[
Fid(ρ, ρ( t√

n
))
]n/2

= e−t
2FH(ρ)/8 . (D19)

Similarly,
[
Fid(σ(∆t), σ)

]dRne/2
converges to e−

1
8Rt

2FH(σ). Therefore, Eq.(D16) implies

e−
1
8 t

2FH(ρ) − e− 1
8Rt

2FH(σ) ≤ 4
√
δ . (D20)
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This bound holds for arbitrary t ∈ R. Te strongest bound is achieved when the left-hand side is maximized, which happens for

t2 = −8
R× FH(σ)− FH(ρ) × log FH(ρ)

R× FH(σ) . (D21)

In this case, Eq.(D20) implies

g(T ) ≤ 4
√
δ , (D22)

where T = FH(ρ)
R×FH(σ) and g(x) ≡ xx/(1−x) − x1/(1−x).

To complete the proof of theorem, in the following we prove lemma 16.

2. Proof of lemma 16

We first recall some useful properties of Fidelity and the Bures distance. Recall that fidelity of two states ρ1 and ρ2 is defined
as Fid(ρ1, ρ2) = ‖√ρ1

√
ρ2‖21 = Tr(

√√
ρ1ρ2
√
ρ1)2. Fidelity is not a distance but it is closely related to the Bures distance, via

the relation

B(ρ1, ρ2) =
√

2[1−
√

Fid(ρ1, ρ2)] . (D23)

This function satisfies all the properties of a distance. In particular, it is symmetric, i.e., B(ρ1, ρ2) = B(ρ2, ρ1), and satisfies the
triangle inequality, i.e.

B(ρ1, ρ2) +B(ρ2, ρ3) ≥ B(ρ1, ρ3) . (D24)

Furthermore, it is invariant under unitary transformations, i.e. B(ρ1, ρ2) = B(Uρ1U
†, Uρ2U

†), which can be easily seen using
its relation with fidelity.

Now, we are ready to present the proof of the lemma. Using the triangle inequality twice we find

B(Uτ2U†, Uτ1U†) +B(Uτ1U†, τ1) +B(τ1, τ2) ≥ B(Uτ2U†, τ2). (D25)

Let η ≡ B(Uτ1U†, Uτ2U†) = B(τ1, τ2). Then, the above inequality can be rewritten as B(Uτ1U†, τ1) ≥ B(Uτ2U†, τ2)− 2η ,
which in turn implies

B2(Uτ1U†, τ1) ≥ B2(Uτ2U†, τ2)− 4ηB(Uτ2U†, τ2) (D26)

≥ B2(Uτ2U†, τ2)− 4
√

2η , (D27)

where we have used the fact that Bures metric is bounded by
√

2. This, in turn implies

1−
√

Fid(Uτ1U†, τ1) ≥ 1−
√

Fid(Uτ2U†, τ2)− 2
√

2η , (D28)

and so

2
√

2η ≥
√

Fid(Uτ1U†, τ1)−
√

Fid(Uτ2U†, τ2) . (D29)

Exchanging τ1 and τ2 we also find 2
√

2η ≥
√

Fid(Uτ2U†, τ2) −
√

Fid(Uτ1U†, τ1). We conclude that |
√

Fid(Uτ1U†, τ1) −√
Fid(Uτ2U†, τ2)| ≤ 4

√
1−

√
Fid(τ1, τ2). Finally, combining this with Fuchs-van de Graaf in Eq.(D7) proves the lemma.
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Appendix E: Quantum Fisher Information as the coherence cost: iid regime (Proof of theorem 2)

In this section we prove that in the iid regime the coherence cost of preparing any state is determined by its Quantum Fisher
information.

Restatement of Theorem 2: Consider a system with Hamiltonian H and state ρ with period τ , with a finite-dimensional
Hilbert space. Consider a two-level system with state |Θ〉c-bit = (|0〉 + |1〉)/

√
2 and Hamiltonian Hc-bit = πσz/τ . Then, for

any R > FH(ρ)/Fc-bit = (τ/2π)2FH(ρ), and integer n, there exists a TI operation that converts Θ⊗dRnec-bit to a state whose trace
distance from ρ⊗n is bounded by εn > 0, and εn → 0 in the limit n goes to infinity, i.e.

Θ⊗dRnec-bit
TI−−→

εn≈ ρ⊗n as n→∞, εn → 0 .

Furthermore, for any R < FH(ρ)/Fc-bit = (τ/2π)2FH(ρ) the above transformation is not possible with a vanishing error εn.

Another way to phrase this result is in terms of the coherence cost of system with state ρ and Hamiltonian H: the coherence
cost of state ρ is given by

CTI
c (ρ) = FH(ρ)

Fc-bit
= ( τ2π )2 × FH(ρ) . (E1)

The proof of the second part, i.e. CTI
c (ρ) ≥ FH(ρ)/Fc-bit follows from our result in Sec.D, and in particular, theorem 15. In

this section we prove the first part of theorem 2, i.e., we show that CTI
c (ρ) ≤ FH(ρ)/Fc-bit. The proof uses theorem 3. According

to this theorem QFI is four times the convex roof of the variance, i.e.

FH(ρ) = min
{qk,ηk}

∑
k

qkFH(ηk) = 4× min
{qk,ηk}

∑
k

qkVH(ηk) , (E2)

where the minimization is over the set of all ensembles of pure states {qk, |ηk〉} satisfying
∑
k qk|ηk〉〈ηk| = ρ.

To prove theorem 2, we also use the following lemma, which can be shown using the results of Sec. A on pure state conver-
sions.

Lemma 17. For a system with Hamiltonian H , consider a finite set of pure states S = {|ψk〉}k with the property that
|〈ψk|e−iHτ |ψk〉| = 1. Furthermore, suppose for any 0 < t < τ there is, at least, one state |ψk〉 ∈ S such that
|〈ψk|e−iHt|ψk〉| < 1. Let {rk > 0} be an arbitrary set of positive real numbers.

Then, for any integer m there exists a TI operation that converts dmRe copies of system with state |Θ〉c-bit = (|0〉+ |1〉)/
√

2
and Hamiltonian Hc-bit = πσz/τ to state |Ψ(m)〉 =

⊗
k∈S |ψk〉⊗drkme with an error εm that vanishes in the limit m goes to

infinity, provided that R >
∑
k rkVH(ψk)/Vc−bit =

∑
k rkVH(ψk)τ2/π2, where Vc−bit = (π/τ)2. In summary

R >
∑
k∈S

rk
VH(ψk)
Vc−bit

=⇒ Θ⊗dRmec-bit
TI−−→

εm≈ |Ψ(m)〉 =
⊗
k∈S
|ψk〉⊗drkme as m→∞, εm → 0 . (E3)

Proof. First, we temporarily assume all rk > 0 are rational numbers and show that the result follows from theorem 11: Since S
is a finite set, there exists a finite integer M such that Mrk is an integer for all k. Now consider state

|Ψ(M)〉 =
⊗
k∈S

|ψk〉⊗(Mrk). (E4)

It can be easily seen that this state has energy variance

M
∑
k

rkVH(ψk) , (E5)

and period τ . To see the latter note that all states ψk satisfies |〈ψk|e−iHτ |ψk〉| = 1 and for any t < τ there is, at least, one state
|ψk〉 such that |〈ψk|e−iHt|ψk〉| < 1, we conclude that

τ = inf
t

{
t > 0 :

∣∣∣〈Ψ(M)|(e−iHt)⊗(M
∑

k
rk)|Ψ(M)〉

∣∣∣ = 1
}
. (E6)
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Therefore, we can apply the results of section A and in particular, theorem 11 which implies that by consuming c-bits at rate

R′ > M
∑
k

rk
VH(ψk)
Vc-bit

, (E7)

per copy it is possible to prepare copies of |Ψ(M)〉 using TI operations. More precisely, there exists a sequence of TI operations
that implements the state conversion

|Θ〉⊗dR
′ne

c-bit = |Θ〉⊗d
R′
M (M×n)e

c-bit = |Θ〉⊗d
R′
M ×me

c-bit
TI−−→

εn≈ |Ψ(M)〉⊗n = |Ψ(n×M)〉 = |Ψ(m)〉 as n→∞, εn → 0 , (E8)

where m = M × n. This proves Eq.(E3) for the subsequence of integers that are multiple of M . It can be easily seen that the
result also holds for general integer m: Clearly, by discarding subsystems, which is a TI operation, we can convert |Ψ(m)〉 to
|Ψ(m′)〉 for any m′ ≤ m. Therefore, to generate |Ψ(m)〉 for m which is not a multiple of M , we can generate |Ψ(M)〉⊗n for
n = dm/Me, and then discard the additional subsystems. This way we can implement the state conversion

Θ⊗dRmec-bit
TI−−→

εm≈ |Ψ(m)〉 =
⊗
k∈S

|ψk〉⊗drkme as m→∞, εm → 0 , (E9)

provided that

dRme > R′ × dm
M
e > (Mdm

M
e)×

∑
k

rk
VH(ψk)
Vc-bit

(E10)

In the limit m→∞, this is equivalent to

R >
∑
k

rk
VH(ψk)
Vc-bit

. (E11)

This proves the result for the special case where all coefficients rk > 0 are rational numbers. To extend the result to the case
of irrational numbers, for each rk we choose a rational number r̃k ≥ rk. Then, applying the above argument we find that the
state conversion in Eq.(E3) is possible with any rate R >

∑
k r̃kVH(ψk). Since the rational number r̃k can be arbitrary close to

rk, we conclude that for any R >
∑
k rkVH(ψk) the state conversion in Eq.(E3) can be implemented by a TI operation with an

error which vanishes in the limit m goes to infinity. This completes the proof.

1. Proof of theorem 2

Finally, we present the proof of theorem 2. From theorem 3 we know that there exists a finite ensemble {(qk, |ψk〉) : k ∈ S}
with density operator ρ =

∑
k∈S qk|ψk〉〈ψk|, satisfying

1. FH(ρ) =
∑
k qkFH(ψk) = 4×

∑
k qkVH(ψk) .

2. For all k, |〈ψk|e−iHτ |ψk〉| = 1, and for any 0 < t < τ , there is at least one state |ψk〉 in this ensemble such that
|〈ψk|e−iHt|ψk〉| < 1.

To see the latter statement, note that if there is a t0 ∈ (0, τ) such that |〈ψk|e−iHt0 |ψk〉| = 1 for all k ∈ S, then

e−iHt0ρeiHt0 =
∑
k

qk e
−iHt0 |ηk〉〈ηk|eiHt0 =

∑
k

qk |ηk〉〈ηk| = ρ , (E12)

which contradicts with the assumption that the period of ρ under H is τ .
Next, consider m copies of ρ, i.e., state

ρ⊗m =
(∑
k∈S

qk|ψk〉〈ψk|
)⊗m

=
∑

k

qk|ψk〉〈ψk| , (E13)

where k = k1 · · · km ∈ Sm, qk = qk1 · · · qkm and |ψk〉 = |ψk1〉 ⊗ · · · ⊗ |ψkm〉.



31

For any l ∈ S, let nl(k) be the number of occurrence of l in the string k = k1 · · · km ∈ Sm. Then, for any δ > 0, we define
the set of δ-typical strings as

Tδ ≡ {k = k1 · · · km ∈ Sm
∣∣ ∀l ∈ S : |nl(k)

m
− ql| ≤ δ} . (E14)

In other words, Tδ is the set of all strings for which the relative frequency of any l ∈ S is between ql − δ and ql + δ.

Now consider the decomposition of state ρ⊗m as

ρ⊗m =
∑

k

qk |ψk〉〈ψk| =
∑
k∈Tδ

qk |ψk〉〈ψk|+
∑
k/∈Tδ

qk |ψk〉〈ψk| . (E15)

Based on this decomposition we can define a TI operation for preparing a state close to ρ⊗m: First, we sample k ∈ Sn with
probability qk. If k is in the typical set Tδ , then we prepare state |ψk〉. Otherwise, we prepare a fixed incoherent state σinv, e.g.,
the maximally mixed state. The resulting state is

ρ̃m =
∑
k∈Tδ

qk|ψk〉〈ψk|+ perr σinv , (E16)

where

perr =
∑
k/∈Tδ

pk = 1−
∑
k∈Tδ

pk . (E17)

Then, using the standard typicality arguments, we know that for any fixed δ > 0, in the limit m goes to infinity, the probability
perr goes to 0, which means with probability approaching 1 the sampled string is in the typical set Tδ . This, in turn implies that
the trace distance between the output state ρ̃m and the desired state ρ⊗m vanishes, i.e.

lim
m→∞

1
2‖ρ

⊗m − ρ̃m‖1 = 0 . (E18)

Therefore, in the following we focus on the coherence cost of preparing |ψk〉 for k in the typical set Tδ . Up to a permutation,
which is a TI unitary, this state can be written as ⊗

l∈S

|ψl〉⊗nl(k) , (E19)

where, the typicality of string k implies

nl(k) ≤ m× (ql + δ) . (E20)

Therefore, to obtain |ψk〉 it suffices to prepare

|Ψ(m)〉 =
⊗
l∈S
|ψl〉⊗dm×(ql+δ)e , (E21)

and then, possibly discard some subsystems and permute the remaining ones.

Then, we apply lemma 17. Note that for all l ∈ S, we have |〈ψl|e−iHτ |ψl〉| = 1, and for any 0 < t < τ there is, at least, one
state |ψl〉 such that |〈ψl|e−iHt|ψl〉| < 1. Therefore, all the assumptions of this lemma are satisfied. Applying this lemma we
conclude that if k is in the typical set, then there exists a sequence of TI operations that implements the state conversion

Θ⊗dRmec-bit
TI−−→

ε
≈ |ψk〉 as m→∞, ε→ 0 , (E22)

provided that

R >
∑
l

(ql + δ)VH(ψl)
Vc−bit

. (E23)
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Note that since
∑
l qlVH(ψl) = FH(ρ) and VH(ψ) ≤ ‖H‖2, the latter condition is satisfied if

R >
FH(ρ) + δ‖H‖2

Fc−bit
= ( τ2π )2 × [FH(ρ) + δ‖H‖2] , (E24)

where Fc−bit = 4Vc−bit = (2π/τ)2.
This, in turns implies there exists a sequence of TI operations that implements

Θ⊗dRmec-bit
TI−−→

ε
≈ ρ̃m =

∑
k

qk|ψk〉〈ψk|+ perr σinv as m→∞, ε→ 0 . (E25)

Combining this with Eq.(E18), and using the fact that δ > 0 can be chosen arbitrarily small, we find that for any R >
( τ2π )2FH(ρ) there exists a sequence of TI operations that implements

Θ⊗dRmec-bit
TI−−→

ε
≈ ρ⊗m as m→∞, ε→ 0 . (E26)

This proves CTI
c (ρ) ≤ ( τ2π )2FH(ρ). The proof of CTI

c (ρ) ≥ ( τ2π )2FH(ρ) follows from theorem 15 in Sec.(D) which implies
Quantum Fisher Information cannot increase in the iid regime.
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