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Quantum discord quantifies non-classical correlations going beyond the standard classification
of quantum states into entangled and unentangled ones. Although it has received considerable
attention, it still lacks any precise interpretation in terms of some protocol in which quantum
features are relevant. Here we give quantum discord its first information-theoretic operational
meaning in terms of entanglement consumption in an extended quantum state merging protocol. We
further relate the asymmetry of quantum discord with the performance imbalance in quantum state
merging and dense coding.
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I. INTRODUCTION

The study of quantum correlations has mostly been fo-
cused on entanglement [1]. This is because entanglement
has been identified as a key ingredient in quantum infor-
mation processing, allowing to perform a number of tasks
that are either impossible to realize or less efficient with
only classical resources at disposal. However, entangle-
ment does not account for all the non-classical properties
of quantum correlations. Zurek [2] (see also [3, 4]) identi-
fied quantum discord (QD) as a feature of quantum corre-
lations that encapsulates entanglement but goes beyond
it as it is also present even in separable states. Over the
past decade, QD has been the focus of several theoretical
and experimental studies addressing its formal charac-
terization [5, 6], its behavior under dynamical processes
[6, 7], and its connection with quantum computation [8]
and quantum phase transitions [9].

QD was initially introduced in the context of the anal-
ysis of quantum measurements [4] and afterwards inter-
pretations in terms of the difference in performance of
quantum and classical Maxwell demons were given [10].
Nevertheless, a large part of the quantum information
community has always been skeptical towards QD as
an information-theoretic quantier. This is because QD
has not a clear operational interpretation in this context.
That is, we lack an information-theoretic task for which
the QD provides a quantitative measure about the per-
formance in the task. Thus, without this kind of opera-
tional interpretation, QD is very often considered simply
a ”quantumness parameter”.

In this Letter we give quantum discord its long sought
operational interpretation. We relate QD to state merg-
ing (SM) [11], a well known task in quantum information.
In SM a tripartite pure state is considered, i.e., Alice (A),
Bob (B), and Charlie (C) share (many copies of) a pure
state ψABC . The goal in the task is that A transfers her
part of the state to B, ψABC → ψB′BC (see Fig. 1),
by using classical communication and shared entangle-

ment. Here we show that the minimal total entanglement
consumed in a process we call “extended state merging”
(ESM) from A to B is exactly equal to the QD between
B and C (with measurements on C). We further un-
ravel a connection between QD to a well-known protocol
in quantum information processing: dense coding (DC)
[12]. DC is a task that uses pre-established quantum cor-
relations to send classical messages more efficiently than
by classical mean.

We focus on the finite-dimensional case with the three
parties A, B, and C sharing a pure state ψABC . All
bipartite and single-party states are obtained by taking
the appropriate partial traces of ψABC . The quantum
(von Neumann) entropy of a state ρ is defined as S(ρ) =
−Trρ log2 ρ. It is the generalization to the quantum do-
main of the classical (Shannon) entropy of a probability
distribution {pi} given by H({pi}) = −

∑
i pi log2 pi. We

write S(X) to denote the entropy of the reduced state ρX .
Similarly, we write H(a) to denote the Shannon entropy
of a classical random variable a distributed according to
some probability distribution {pai }. The latter may be
the marginal probability distribution pai =

∑
j p

ab
ij of a

bivariate (in general, multivariate) probability distribu-
tion {pabij } of two classical random variables a and b.

II. CONDITIONAL ENTROPY AND
COHERENT INFORMATION

For a bipartite system AB, the quantum (von Neu-
mann) conditional entropy is defined as S(A|B) :=
S(AB)−S(B) [13]. It is the quantum version of the clas-
sical (Shannon) conditional entropy H(a|b) := H(a, b)−
H(b). Note that both are asymmetric quantities. H(a|b)
measures how much uncertainty is left—on average—
about the value of a given the value of b. It can be
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written as

H(a|b) =
∑
j

pbjH(a|b = j), (1)

where H(a|b = j) is the entropy of the conditional prob-
ability distribution pai|b=j := pabij /p

b
j . It has a clear opera-

tional interpretation as the amount of classical informa-
tion that A has to give—on average—to B, who knows
the value of b, so that the latter gains full knowledge
also of the value of a [14]. Given this interpretation for
H(a|b), it is always non-negative.

However, the situation changes drastically for quantum
states, because S(A|B) can take negative values, e.g. for
pure entangled states. This fact was, for a long time,
an obstacle to an operational interpretation of S(A|B).
On the other hand, its opposite was identified as an im-
portant quantity in the context of quantum information,
and was even given a name of its own: coherent infor-
mation I(A〉B) := −S(A|B). Coherent information was
originally introduced to measure the amount of quan-
tum information conveyable by a quantum channel [15];
given that it is always non-positive in the classical case,
one may say that it is a purely quantum quantity.

III. QUANTUM DISCORD

One remedy to negative quantum conditional entropy
is to generalize the classical conditional entropy to quan-
tum using Eq. (1), as was done in [3, 4] by defining
S(A|Bc) := min{Nj}

∑
j p

B
j S(A|B = j), where the min-

imization is over generalized measurements {Nj} [16],
with Nj ≥ 0 for all j and

∑
j Nj = 11B . We also

have S(A|B = j) = S(ρA|j), where ρA|j = TrB(11A ⊗
N j
BρAB)/pBj with pBj = Tr(11A⊗N j

BρAB). S(A|Bc) is al-
ways positive and can also be thought of as a measure of
the uncertainty left on average about A given that B has
been measured. For classical systems both S(A|B) and
S(A|Bc) coincide with the classical conditional entropy,
but in general S(A|Bc) is strictly larger than S(A|B).
The difference in these two quantity is indeed the defi-
nition of the quantum discord with measurements on B
[4]

D(A|B) := S(A|Bc)− S(A|B). (2)

QD can be seen as the gap between the standard mea-
sure for total correlations present in a quantum state
ρAB , given by quantum mutual information I(A : B) :=
S(A) − S(A|B) [17], and the Henderson-Vedral measure
of classical correlations I(A : Bc) := S(A)−S(A|Bc) [3].
As D(A|B) = I(A : B) − I(A : Bc), the QD can be
considered a (asymmetric) quantifier of non-classical cor-
relations present in a quantum state. We will refer to
D(X|Y ) as to the “discord of XY measured by Y ”.

FIG. 1. (Color online). Starting from a tripartite state ψABC ,
the goal of SM is to transfer Alice’s (A) part of the state
to Bob (B), possibly using some extra entanglement or hav-
ing some entanglement leftover. The total entanglement con-
sumption in this process is equal to D(A|C) (see Eq.(4)).

IV. STATE MERGING AND ENTANGLEMENT
CONSUMPTION

A fully convincing operational interpretation of quan-
tum conditional entropy and coherent information was
given with the introduction of the task of quantum state
merging (SM) [11]. SM, say from A to B, is a process by
which A and B transfer A’s part of the state to B main-
taining the coherence with the reference C. A and B both
know the state they share, and they can apply arbitrary
local operations coordinated by classical communication
(LOCC). By acting on n copies of ψABC , their goal is to
end up with a state close to ψ⊗nB′BC , such that the sub-
system B′ is in Bob’s hands and plays in the new state
exactly the same role as A played in the old one. Errors
are allowed, but they must vanish in the limit n→∞. To
achieve their goal, A and B are allowed to use extra, pre-
established two-qubit maximally-entangled pairs (ebits),
but these constitute a valuable resource they must pay
for. It turns out that the value of S(A|B) quantifies ex-
actly the optimal amount—per copy of the state—of ebits
spent in the process. A positive value means that en-
tanglement must be consumed, while a negative amount
means not only that no extra entanglement is needed,
but also that A and B retain −S(A|B) = I(A〉B) ebits
per copy merged. See Fig. 1 for an illustration of SM.

A useful way to think of the role played by the con-
ditional entropy in SM is to imagine a hypothetic en-
tanglement bank in which A and B possess a joint ac-
count: the entanglement balance after merging—in ebits,
per copy merged—is given precisely by −S(A|B). When
S(A|B) ≥ 0, A and B have to withdraw S(A|B) from
their account to perform SM. On the other hand, when
S(A|B) < 0 then the process can be completed without
any withdrawing. Moreover, after merging they end up
sharing I(A〉B) = −S(A|B) extra ebits of entanglement,
which they deposit in their account for future use.

At the end of this process, the only correlations be-
tween A and B are those present in the bank account.
In particular, there is no additional entanglement left
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between A and B. Given this, the bank-account picture
suggests to consider a more comprehensive balance, that
takes into account also the entanglement “lost” in the
process. Indeed, coherent information is positive only if
the state is entangled, and while A and B may end up
with “leftover” Bell pairs after SM, they do not share
anymore the starting entangled states. Thus, it is useful
and sensible to define the total entanglement consump-
tion as

Γ(A〉B) := EF (A : B) + S(A|B), (3)

where EF (A : B) := min{pi,ψAB
i }

∑
i piS

(
TrA(ψABi )

)
is

the entanglement of formation (EoF) of ρAB , with the
minimum taken over pure-state ensembles {pi, ψABi } for
ρAB [18]. EoF quantifies the minimum amount of pure-
state entanglement that A and B need to consume to
create ρAB by LOCC with strategies where each pure-
state member of the ensemble forming ρAB is prepared
independently. Thus, Γ quantifies the total entanglement
consumed in SM, by taking into account the amount of
entanglement A and B would have needed to prepare
ρAB by LOCC—and “lost” during SM—plus the amount
of entanglement used by the process of SM itself. In
order to give a more precise operational interpretation,
we consider a two-step process. In the first stage, Alice
and Bob prepare the state ρAB . To this aim, they have
to share classical information, and potentially use some
other local ancillas. We demand that, in order to end up
sharing ρAB and not some larger state, after preparing
the state and before the merging, they remove all ancillas.
Then Eq. (3) indeed characterizes the entanglement cost
of a two-stage process that we call extended state merg-
ing (ESM): (i) state preparation through the (possibly
non-optimal – see section Regularization below) protocol
described before and (ii) merging.

V. OPERATIONAL INTERPRETATIONS OF
QUANTUM DISCORD

A. Quantum Discord and Extended State Merging

Now we are in the position to give QD an operational
interpretation. In Appendix 1 we prove the following:

D(A|C) = Γ(A〉B). (4)

This equation says that QD between C and A with mea-
surements on C is equal to the total entanglement con-
sumption in ESM from A to B. To the best of our knowl-
edge, this yields the first information-theoretic scenario
where the value of QD provides concrete quantitative in-
formation about a task’s performance or cost.

B. Asymmetry of quantum discord

One immediate exercise of the last equation is to give
meaning to the asymmetry of QD, that is, the fact that

in general D(A|C) 6= D(C|A). Thanks to Eq. (4) we can
interpret the asymmetry of discord as the differences in
the cost of ESM for A versus C to send their parts of the
state to B, i.e. :

D(A|C)−D(C|A) = Γ(A〉B)− Γ(C〉B). (5)

C. Quantum Discord and Dense Coding

Coherent information also describes the usefulness of a
quantum state ρAB as a resource for dense coding (DC)
[12]. DC—say from a sender A to a receiver B, initially
sharing ρAB—is a procedure by which A is able, by send-
ing her subsystem to B, to transmit more classical infor-
mation than she could if the system was classical; i.e.,
the maximal rate of classical information transmission
per copy of ρAB used can be larger. If A’s encoding is
done by unitary rotations, the correction to the classi-
cal capacity that she could achieve by sending a classi-
cal system with dimension equal to that of her subsys-
tem, dA, is exactly the coherent information I(A〉B) [19–
22]. In the most general DC scenario [19, 20, 22], A
encodes her message by means of general quantum op-
erations ΛA : MdA → Md′A

, where dA is the dimen-
sion of the original subsystem in the hands of A, while
d′A is the dimension of the subsystem sent to B, and
Md denote the set of d × d complex matrices. If the
encoding is applied at the level of single copies of the
shared state ρAB , the DC single-copy capacity can be
achieved by a unitary encoding after a pre-processing
operation whose aim is exactly that of increasing coher-
ent information. More precisely the capacity is equal to
χDC(A〉B) := log2 d

′
A + maxΛA

I(A′〉B), where the max-
imization is over all quantum operations with output di-
mension d′A and I(A′〉B) is the coherent information of
(ΛA ⊗ 11B)[ρAB ]. This capacity depends on the output
dimension d′A, but, given that log2 d

′
A can be considered

as a classical contribution, one can focus on the quantum
advantage of DC

∆DC(A〉B) := max
ΛA

I(A′〉B). (6)

The maximization above has no restriction on the output
dimension, which can anyway be taken to be less or equal
to d2

A [22]. The maximization over ΛA ensures that the
coherent information of the pre-processed state is non-
negative.

In Appendix 2 we prove the following connection be-
tween QD and DC:

D(A|C)−D(B|C) = ∆DC(C〉A)−∆DC(C〉B). (7)

Note that, if C sends subsystems with the same di-
mension to A and B (in particular a dimension large
enough to achieve the quantum advantage of DC with
both receivers) this difference can be written asD(A|C)−
D(B|C) = χDC(C〉A) − χDC(C〉B), i.e., in terms of the
DC capacity itself.
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Eq. (7) gives an operational meaning in terms of per-
formance to the differences in QD: the difference in the
QD of AC and BC, both measured by C, is the same
as the difference in the DC capacity from C to either A
or B. The same difference in QD can be related to the
coherent information, as can be seen using Eq. (4) twice:
D(A|C)−D(B|C) = I(A〉C)−I(B〉C) = I(C〉A). Or, for
measurements on different parties, D(C|A)−D(C|B) =
Γ(C〉B)− Γ(C〉A).

VI. REGULARIZATION

All the relations we have found, although already
meaningful in the form above, can be cast in their regu-
larized version, so that they become, in the case of ESM,
more consistent from an operational and information-
theoretic point of view. To do so we note that the
minimal amount of ebits needed to create ρAB over all
possible LOCC strategies is given by the entanglement
cost EC(A : B) = limn→∞

1
nEF (A : B)ρ⊗n

AB
[23]. We

can then define the asymptotic total entanglement con-
sumption of ESM as the regularized version of Eq. (3),
i.e, as Γ∞(A〉B) := limn→∞ Γ(A〉B)ρ⊗n

AB
/n = EC(A :

B)+S(A|B), having used that conditional entropy is ad-
ditive. As ESM is itself an asymptotic process, the regu-
larized total cost Γ∞ is a quantity better motivated than
the unregularized Γ from an operational and information-
theoretic point of view. It is worth remarking that both
Γ and Γ∞ are positive, because coherent information is a
lower bound on distillable entanglement [24], and there-
fore on entanglement cost. By Eq. (4) we have that
D∞(A|C) = Γ∞(A〉B).

VII. CONCLUSIONS

We have seen that the QD is intimately related to the
tasks of ESM and DC. For a pure tripartite state, the QD

reveals what is the entanglement consumption in ESM
and in which direction more classical information can be
sent through DC. Moreover the asymmetry of the QD can
be given an operational interpretation, since it matches
the asymmetry of the tasks to which we have related it,
ESM and DC, which are inherently directional.

Finally, a recent paper has unraveled a different con-
nection between QD and SM [25]. There, it was observed
that the right-hand side of (2) can be interpreted as the
difference in quantum communication costs between per-
forming SM with a partially measured version of ρAB
(first term) and with ρAB (second term) directly. Such
an interpretation of QD regards a relation between dif-
ferent states, one obtained from the other via measure-
ment, while the one presented here refers to just one state
(and its purification). On the other hand, since QD can
be expressed also as the difference in mutual informa-
tion between such two states (see the paragraph after
(2)), an approach similar to that of [25] can lead to in-
terpretations in terms of quantum locking [26, 27] and
correlations erasure [17].
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VIII. APPENDIX 1: PROOF OF EQ. (4)

We start by recalling the Koashi-Winter monogamy
relation [28] for quantum correlations within a pure tri-
partite state ψABC :

S(B) = EF (A : B) + I(B : Cc). (8)

This, together with the definition of I(B : Cc), implies
that

EF (A : B) = S(B|Cc) = S(A|Cc), (9)

which we can substitute in the definition of D(A|C) to
get [29]

D(A|C) = EF (A : B)− S(A|C). (10)

Now, note that S(A|C) = S(AC)−S(C) and, since ψABC
is a pure state, we have S(AC) = S(B) and S(C) =
S(AB). Hence S(A|C) = S(B)− S(AB) = −S(A|B), so
that

D(A|C) = EF (A : B) + S(A|B) = Γ(A〉B). (11)

IX. APPENDIX 2: PROOF OF EQ. (7)

A monogamy equality similar to Eq. (8) with regards
to DC was given in [22]:

S(A) = EP (A : C) + ∆DC(B〉A), (12)

where EP is the entanglement of purification, defined
as [30] EP (A : C) := minψAA′CC′ S

(
TrCC′(ψAA′CC′)

)
,

with the minimum taken over all pure states ψAA′CC′
such that TrA′C′(ψAA′CC′) = ρAC . Using the fact that
for a tripartite pure state I(A〉C) = S(C) − S(B), and
expressing S(B) according to (12), from (4) one obtains
D(A|C) = S(C)−∆DC(C〉B)−

(
EP (A : B)−EF (A : B)

)
.

Applying this equivalence twice one gets

D(A|C)−D(B|C) = ∆DC(C〉A)−∆DC(C〉B). (13)
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