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Operational Map-Guided Classification
of SAR Sea Ice Imagery
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Abstract—This paper presents a map-guided sea ice classifi-
cation system built to work in parallel with the Canadian Ice
Service (CIS) operations to produce pixel-based ice maps that
complement actual “egg code” maps produced by CIS. The system
uses the CIS maps as input to guide classification by providing
information on the number of ice types and their final label for
specific regions. Segmentation is based on a modified adaptive
Markov random field (MRF) model that uses synthetic aperture
radar (SAR) intensities and texture features as input. The ice type
labeling is performed automatically by gathering evidences based
on a priori information on one or two classes and deducing the
other labels iteratively by comparing distributions of segments.
Three methods for comparing the segment distributions (Fisher
criterion, Mahalanobis distance, and Kolmogorov–Smirnov test)
were implemented and compared. The system is fully described
with special attention to the labeling procedure. Examples are
presented in the form of two CIS SAR-based ice maps from the
Gulf of Saint Lawrence region and one example from the Beaufort
Sea. The results indicate that when the segmentation is good,
the labeling attains best results (between 71% and 89%) based
on evaluation by a sea ice analyst. Some problems remain to be
assessed which are primarily attributable to discrepancies in the
information provided by the egg code and what is actually visible
in the SAR image. Subscale information on floe size and shape
available to human analysts, but not in this classification system,
also appear to be a critical information for separating some ice
types.

Index Terms—Classification, distribution comparison, Fisher,
gray-level cooccurrence matrix (GLCM), Kolmogorov–Smirnov,
Mahalanobis, mapping, Markov random field (MRF), sea ice,
segmentation, texture.

I. INTRODUCTION

S
EA ice recognition and mapping is a major operational ap-

plication of remote sensing using orbital synthetic aperture

radar (SAR). At the Canadian Ice Service (CIS), many SAR im-

ages are interpreted daily to produce sea ice charts that are sent

to coast guard and merchant ships in sea-ice-infested regions for

tactical route planning. Radarsat-1 with its horizontally copo-

larized (HH) C-band (5.3 GHz or cm) imager is the pri-

mary source of data for CIS. The ScanSAR wide mode pro-
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vides a swath of 500 km and can supply the necessary daily cov-

erage of Canadian territory. The ice analysts use a geographic

information system (GIS)/image processing (IP) environment to

correct, enhance, interpret, and classify these images, but make

no use of automated segmentation/classification techniques. In-

stead, they manually draw regions containing roughly homoge-

neous concentrations of sea ice types and open water for which

they assign a code symbol called an egg code containing infor-

mation on these types, their concentration, and ice floes sizes

(http://ice-glaces.ec.gc.ca). These “egg coded” maps adopt the

World Meteorological Organization (WMO) standard and are

considered essential for navigation in sea-ice-infested regions.

This interpretation work is done manually because there are

no known effective operational tools available [1]. This can be

partly explained by the fact that single-band SAR imagery is

not easily processed using standard remote sensing segmenta-

tion and classification routines. The time factor is also an issue

at CIS since the ice analyst interprets an image in less than an

hour (D. Flett, personal communication, October 2004), a pro-

hibitive time frame for many computer vision approaches.

Deng and Clausi [2] have designed and implemented a system

that generates an unsupervised pixel-based segmentation of a

SAR image based on an a priori estimation of the number of

classes and using both texture and intensity features. A solu-

tion based on given homogeneous regions and a known number

of sea ice classes is more likely to comply with WMO stan-

dards and to be adopted by an operations service. This study

demonstrates the integration of these approaches into an oper-

ational environment. Whereas other systems rely solely on in-

tensity and/or require training, MAGSIC was conceived to in-

tegrate texture with tone and to be unsupervised. Furthermore,

an original solution for the labeling problem using classifica-

tion on accumulated evidences is described and tested. This

map-guided approach can be regarded as a symbiosis between

machine-aided interpretation and ice analyst: while the first will

benefit from a simplification of the problem and a higher chance

of success, the second will see their work taken one step further

and obtain more precise statistics on the sea ice types and open

water percentages. At present, it would be impossible for CIS

analysts to have the time to produce any pixel-based map of the

ice types and a system that would perform such task would rep-

resent a meaningful progress for CIS operations (R. De Abreu,

personal communication, May 2004).

Section II gives a background on the concepts adopted in our

research and a short review of previous work that lead to the

present paper. Section III describes the complete system and

its components. Examples are presented in Section IV while

Section V contains the conclusion.
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Fig. 1. Egg code symbol example. The letter “A” indicates that the symbol
applies to region “A” in the scene. The first row indicates the total proportion of
ice (9 indicates 90%). The second row indicates the proportion of each ice type
(3 in this case). The third row gives the ice code of each type, and finally the last
row indicates the relative floe size for each ice type (http://ice-glaces.ec.gc.ca).

II. BACKGROUND

A. Ice Services and Ice Maps

Information on ice concentration, ice type, and movement is

essential for the efficiency and safety of shipping as most navi-

gable waters in Canada are infested with sea ice during at least

the winter months for the southern part and year-round for the

Arctic [3]. Ships navigating in these ice-congested seas must

have timely and reliable information. Sea ice also has a direct

effect on the climate, and global climate studies need to eval-

uate the quantity and proportions of open water, first-year, and

multiyear ice in their models [4]–[6]. The advent of satellite

SAR data with rapid return capacity has improved the ability to

study sea ice and to produce ice maps in an operational manner

[1], [6].1 The Radarsat Geophysical Processor System (RGPS)

brought a significant contribution to understanding the physics

of ice backscattering and its relation to ice age, thickness, and

deformation [7], [8], but more research still needs to be done

in understanding the behavior of sea ice in SAR imaging. For

example, Brown et al. [9, p. 68] point out that one of the “Two

to Ten Year Action Items” is the continuation of the develop-

ment of automated procedures at CIS to estimate geophysical

parameters from Radarsat. At present, many ice services (i.e.,

Canada, U.S., Northern Europe) prepare WMO standard egg

code maps that show sea ice information in the form of “ho-

mogeneous” regions having determined amounts (percentage)

of different categories of ice (14 in all).2 Users of the egg code

maps are then able to translate these ice categories into rela-

tive thickness [4]. Even though these maps are highly gener-

alized, they are the expression of many years of experience in

sea ice identification from SAR data and represent an invaluable

source of information on which many lives and equipment rely.

A sample egg code symbol is shown in Fig. 1. Although most

of the data used are digital and mapping is done in a computer

environment, these operations are still wholly based on manual

interpretation, and the lack of automated algorithms for ice pa-

rameters retrieval has already been identified by ice services as

a limiting factor in the quality of the information produced [6],

[10]. The true challenge facing the different ice monitoring cen-

ters around the globe involves shifting from manual observation

to automated algorithms, which in turn leads to improved pre-

diction. More immediate challenges include the validation and

improved access from new sensors and the improvement of in-

formation products for the end user [1]. The present paper is

primarily concerned with the latter. In particular, the production

of a full-resolution thematic ice map would lead to an improved

1See Ramsay et al. “Utilization of RADARSAT Data in the Canadian Ice
Service” http://www.ccrs.nrcan.gc.ca/ccrs/rd/apps/.

2http://www.cis.ec.gc.ca/home.html

comprehension of a particular ice situation and would provide

more precise statistical calculation of ice type proportions.

B. Remote Sensing of Sea Ice Using Microwave Sensors

Remote sensing of sea ice has been an area of active research

for the last 15 years [4]. Because of frequent cloud coverage

and polar winter darkness, optical remote sensing is often not

usable for sea ice studies. Microwave sensors, being relatively

unaffected by these factors, have become the primary source of

data for sea ice remote sensing [3]. Since 1978, satellite-borne

passive microwave sensors such as the Scanning Multichannel

Microwave Radiometer, or the follow-up Special Sensor Mi-

crowave/Imager, have provided a continuous source of data that

made possible small-scale (coarse resolution) quantitative esti-

mates of the extent, nature (mainly multiyear versus first-year),

and trends in the sea ice in the polar regions [11], [12]. Since

the launch of a series of satellite-based SAR sensors (e.g., Eu-

ropean Remote Sensing 1 and 2 satellites, the Japanese Earth

Resources Satellite, and Radarsat-1), SAR has become the main

source of data for operational detailed recognition and map-

ping of sea ice. Radar sensors have the additional advantage

of being able to penetrate the ice surface and provide informa-

tion on the ice structure and composition (mainly moisture and

salinity) as well as being sensitive to the surface roughness [3],

[13]. SAR backscattering is a function of two main categories

of factors: electrical (dielectric constant) and geometrical (inci-

dence angle and surface roughness). However, since these fac-

tors can vary simultaneously, predictive models, which makes

attempts to infer geophysical surface parameters from the scat-

tering values highly underdetermined [14]. Surface roughness is

a function of wavelength, polarization, and incident angle; the

fact that the latter varies within a single image is an additional

complicating factor. The variation of the incidence angle can be

modeled, but it remains a difficult task since different ice types

react differently to such variation [15]. Each image pixel in a

radar scene is also subject to constructive or destructive inter-

ference that leads to substantial variations of backscatter known

as speckle or speckle noise [16]. Even when reduced using fil-

tering techniques, speckle noise can be a strong undermining

effect [14]. However, when taken in the context of visual tex-

ture analysis, speckle can bring benefits to the interpretation task

[16], [17].

C. Sea Ice Segmentation

Other research efforts toward computer-aided interpretation

of sea ice in SAR images have been attempted. The “Multi-year

Ice Mapping System” (MIMS) was developed at the University

of Colorado by Fetterer et al. [18] for the rapid identification

of multiyear ice based on a local dynamic thresholding of SAR

data using the Fisher criterion to split the distribution. Soh et al.

[19] proposed an automated analysis of a sea ice system based

on the Dempster–Shafer belief theory for segmentation and an

expert system for classification. The system first performs a seg-

mentation (based on the watershed merging algorithm) of the

SAR image and then creates a series of 25 features that describes

each segment. The features describe attributes of the segment

such as average intensity (and other first-order statistics) as well

as shape (and other spatial characteristics). Each segment is then
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classified according to a set of rules drawn from the knowledge

base. Karvonen [20] developed a system based on a pulse-cou-

pled neural network (PCNN). Training is based on the assump-

tion that ice classes have a nearly Gaussian distribution, and

since these distributions overlap, every pixel (within a window)

can be modeled as belonging to some or all ice classes by de-

tecting peaks (modes) in the distribution of the image tones.

These classes are fed in the PCNN, which assigns the final

label based on a neighborhood analysis.

D. Texture

Texture or visual texture has received much attention from the

computer vision and remote sensing communities in the past 10

to 15 years (see [21] for a review). In the realm of texture rep-

resentation, the gray-level cooccurrence matrix (GLCM) [22]

is the most commonly used texture method in remote sensing

applications [23]. The method has proven very powerful in a

variety of remote sensing applications with optical data [24],

[25] as well as for sea ice using SAR data [5], [26]–[28]. More

specifically, the GLCM approach can accurately capture the tex-

tural characteristics of sea ice using SAR data [29] and has often

proven superior to other popular methods in a classification con-

text [24], [30]. The method is based on measurements taken

from the matrix formed by the joint probability of a pair of gray

level values at a fixed distance and orientation from each other.

A wealth of measurements can be taken from the GLCM; Har-

alick et al. [22], being recognized as the first to use the GLCM

in image processing, have proposed 14 measurements. Many

of these are correlated or even redundant, and the past three

decades of experience with GLCM has led to the usage of set of

measurements that have been generally more successful: con-

trast and entropy in the present case [28], [31].

E. Markov Random Fields for Segmentation

Markov random fields (MRFs) can provide solutions for

most contemporary image analysis problems such as image

restoration, texture description, and image segmentation [32],

[33]. MRF models inherently describe spatial context: the local

spatial interaction among neighboring pixels. This is most

appropriate since neighboring pixels are generally not statis-

tically independent but are linked by spatial correlation. The

Markov assumption states that the conditional probability of a

pixel value given its neighborhood is equal to the conditional

probability of that pixel given the rest of the image. In other

words, each pixel with its local neighborhood can be consid-

ered an independent process making it more easily modeled in

mathematical terms [34]. Other advantages of MRF models are

that they can be inferred in the Bayesian framework and that

they can work with multiple features (intensity and texture in

the present case). Numerous MRF-based segmentation methods

have been developed [2], [35]–[38]. Considering SAR images,

MRF models have already shown to provide an appropriate

representation of SAR images given their variance (due to

speckle) and texture [38]–[41].

In this paper, the standard form of the MRF segmentation

model adopted is described in Li [33] and adapted by Deng

and Clausi [2]. The model named “modified adaptive Markov

random field segmentation” (MAMSEG) uses the Bayesian

Fig. 2. Schematical representation of the system architecture (within the
dotted line) and its relation with CIS operations (Radarsat-1 illustration,
courtesy Canadian Space Agency—CSA).

paradigm where the conditional probability is based on a

single observation (pixel vector) and a particular distribution

(Gaussian or Gamma), and the prior probability is modeled

using the neighborhood and the MRF model. The relationship

between these two components is usually pre-fixed, but the

current implementation introduced a variable weighting factor

between them.

III. DESCRIPTION OF THE SYSTEM

The system is not meant to be eventually inserted in the CIS

operations but rather to operate in parallel to the CIS procedure

and eventually provide value-added products such as thematic

maps and improved statistics that are not feasibly produced by

human operators due to time constraints. Both operations and

their relationship are roughly illustrated in Fig. 2. The data used

by the system consist of three files, namely: the SAR image

(Radarsat-based), the vector-based egg code map file, and its at-

tribute file containing the egg code information for each polygon

in the egg code map. These data files are described below.

A. Data and Preprocessing

The area enclosed in the dotted line in Fig. 2 represents the

MAp-Guided Sea Ice Classification (MAGSIC) system which

can be activated by supplying the sea ice analyst’s interpretation

(in the form of a vector map and an attribute file) along with the

registered SAR image. The vector map is supplied in the form

of a “topologically clean” set of polygons (lines intersect where

they are expected to; nodes are created at all intersections; all

polygons are closed and contain a label; and no lines are du-

plicated [42, p. 195]) and the attribute file as a spreadsheet. At

present, these files are prepared on a one-by-one basis using PCI

Geomatica (Richmond Hill, ON, Canada), but this procedure
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could easily be automated within the CIS operations. The SAR

images supplied by CIS are all eight-bit coded, block-averaged

to 100 m, and registered to a Lambert conical conform projec-

tion. The SAR images are transformed in an eight-bit standard

BIL format from which the texture features are calculated using

the PCI Modeler texture generation routine.

Three GLCM statistics are recommended for classification

of pure sea ice sample [5], [28]: contrast, entropy, and correla-

tion. However, for segmentation purposes, windows often have

mixed class types, and the correlation statistic has been demon-

strated to generate erroneous class boundaries [31]. As a result,

here only contrast and entropy are used. Tests (not shown here)

have led to the selection of a window size of 9 9 pixels and a

single pixel pair distance of two. A quantization level of 64 gray

level is used [28], and the GLCM statistics were averaged over

four directions (0 , 45 , 90 , and 135 ) to generate rotationally

invariant features.

B. Components of the System

The system is composed of five modules (or programs) that

are sequentially arranged and that could eventually be merged

into a single program (Fig. 2). They have been developed sep-

arately because they correspond to different conceptual oper-

ations, and this also makes the description of the system con-

ceptually simpler. The starting point for the system is provided

by the three data sources described above; namely a registered

SAR image and egg code map pair as well as an attribute file

accompanying the egg code map containing for each egg region

the corresponding ice/open water percentage along with the ice

types and percentage. The five components of the system are

described below.

1) SCANEGG: The first program reads the attribute file (in a

spreadsheet format) and the egg code map. SCANEGG then de-

termines for each egg code region the minimal enclosing rectan-

gular subimage coordinates and writes these coordinates (along

with the ice and open water data) in an output file so that the

amount of memory needed by the segmentation routine, when

applied to the circumscribing rectangles, is minimized. This pre-

caution is especially important with the use of texture features

to complement the backscattering values of the SAR image in

the segmentation process. The MRF routine needs to keep the

whole region and features in memory making this precaution

necessary to minimize completion time.

2) MAp-Guided Sea-Ice Segmentation: The “MAp-Guided

Sea-Ice Segmentation” (MAGSIS) is the second component and

the most time consuming. Each egg code region (defined by its

minimal enclosing subimage) is stored in memory along with

the corresponding SAR subimage and texture features and sent

to the MAMSEG, which is fully described in [2] and briefly

explained in the next paragraph. The MRF segmentation rou-

tine returns a segmented image that is inserted into the corre-

sponding sea ice map. MAMSEG needs to know the number of

classes as supplied by the egg code information. No more than

three sea ice classes are normally included in a single egg code.

If open water is present (i.e., the overall ice concentration is 90%

or less), an additional class is considered. Fig. 1 shows an egg

code example with three ice type classes and open water (10%).

For example, for a three-sea-ice-classes egg code region with

open water, the MAMSEG routine will return an image con-

taining labels between one and four but will not provide any in-

formation as to which label represents which class. The problem

of assigning the proper label to each segment for all egg code

regions is defined here as the “labeling problem.”

3) MAMSEG: This subcomponent is the core subsystem

that actually performs the segmentation work based on the

MRF model. Full details of this model are found in [2]. The

model is based on the Bayesian framework formulated as

(1)

where is the conditional distribution for feature vector

given class , and is the a priori probability for class

. Suppose the energy associated with the a priori probability

is and that represents the energy form of . Then

the general energy form for is given by [37]

(2)

where is a weighting parameter used to determine the respec-

tive proportions of and ’s individual contribution to .

Whereas MRF models traditionally assume a fixed value for ,

the modified version [2] decreases for each iteration in the

simulated annealing solution that seeks to minimize . This

ensures that first dominates the MRF model ( is large) in

order to learn its global mean and standard deviation and

yields more importance to the local label as the model shifts to-

ward a solution with each iteration.

Normally, MRF models are initialized with a random image

segmentation, which has been demonstrated to work well in

most situations [2], [32]. However, in this implementation, by

providing an initial segmentation based on the backscattering in-

tensity and using the K-means method, the number of iterations

in the MRF procedure is typically reduced by 10 to 20 while

maintaining similar results. For the examples presented here and

in other similar tests, 50 iterations were generally sufficient.

4) Map-Guided Sea-Ice Statistics: “Map-guided sea-ice

statistics” (MAGSISTAT) calculates the mean and the co-

variance matrix ( and ) of each and among the features

(backscattering and texture) for each segment (or segmented

class) of each egg code region. It also computes and stores the

histogram for each feature. MAGSIS returns integer labels but

makes no inference as to which label represents which class.

MAGSISTAT builds a spreadsheet where each segment of each

egg code region is a row entry. For each row entry, the and

of each feature are calculated, and all possible classes are

also recorded. To illustrate this process, a spreadsheet example

is shown in Table I (covariance matrices and histograms are

stored in the same spreadsheet but are not shown here) where

a single egg code region having a value of 46 (corresponding

to “A” in Fig. 1) in the egg code map was segmented into four

separate classes having pixel values between one and four (in

the ice map) which correspond to one of the following classes:

7 (thin first-year ice), 5 (gray-white ice), 4 (gray ice), or 20

(open water). Note that “open water” is not part of the WMO

ice coding, so, for the purpose of this implementation, the code

“20” has been assigned. The analyst-estimated percentage of

each ice type is also recorded but not used at this stage because
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TABLE I
EXAMPLE OF A SPREADSHEET RETURNED BY THE MAGSISTAT PROGRAM.

ECR IS THE EGG CODE REGION VALUE. L IS THE LABEL. n IS THE NUMBER

OF CLASSES. C1–4 ARE THE FOUR POSSIBLE ICE CLASSES. %C1–4 ARE

THE CONCENTRATIONS FOR EACH ICE CLASS. F ARE THE MEANS

OF EACH FEATURE (SAR INTENSITIES ARE RESAMPLED TO EIGHT

BITS, TEXTURE FEATURES TO 16 BITS); FL IS THE ICE LABEL

EACH SEGMENT RECEIVED AFTER CLASSIFICATION

the margin of error is too large (this has been confirmed by

CIS personnel) for the program to consistently use as a prior

probability. Note that the last column named “final ice type

label” received an initial label of zero for all entries. This

indicates that the classification program (described below) has

not yet solved the class label for this segmentation result. As

an additional precaution, the MAGSISTAT program excludes

from the calculation all pixels fewer than four pixels away

from an egg code region edge. This is performed by applying a

Laplacian kernel of 7 7 to the segmented map and excluding

all output pixels for which the result differs from zero. This

precaution was taken to account for the approximate manner

by which the analysts draw their egg code polygons.

5) Sea-Ice Classification by Cognitive Reasoning: The

“sea-ice classification by cognitive reasoning” (SICLASS-

CORE) program tries to perform the classification (which has

been reduced to an association problem since the number of

classes and the categories are already known) by accumulating

evidences and “learning” solutions as it proceeds (see example

at the end of this section). Three types of evidence are defined:

first, second, and third degree. First-degree evidence falls into

two categories: 1) the egg code region contains only one class

or 2) the egg code region contains several classes, and all but

one have already been solved and assigned. In either case, the

association is straightforward, and no additional information

is needed to solve the association. The and values for the

“solved” segment are then retained and associated to the final

class. Each time a new “solution” is found, the program calls a

subroutine that automatically updates the statistics of the class

(see below).

Second-degree evidence is characterized by the fact that

although all or some classes of an egg code region have pre-

viously been solved (in other egg code regions), the program

still has to find which set of associations is the most likely. For

a total of classes, there are permutations of matching

each segment of a particular egg code region to one of the

classes. The objective is then to determine which permutation

is more likely according to some metric. Three methodologies

for performing the optimal label assignment are presented

in Section III-C: Fisher (nonparametric), Mahalanobis (dis-

tance), and Kolmogorov–Smirnov (probabilistic). Any of these

methods could be used, and for the current discussion the term

“metric” is used to describe any one of these. The means ,

covariance matrices and histograms of the solved

classes are kept in a series of arrays where rep-

resents the number of classes and the number of features.

These arrays have a third dimension to store the values of the

’s and ’s.

The association set with optimal cumulated metric is retained

as the most likely solution. Again, the class statistics are up-

dated after each new solution is found. The program starts by

solving egg code regions with two classes where all classes have

been solved previously and then does the same for egg code re-

gions with three and four classes. Then the program solves cases

of two known classes in three-class regions and three known

classes in four-class regions and so on.

In third-degree evidence, reasoning is based on the fact that

while comparing two egg code regions, although no associa-

tion was previously solved, if only one class is common to both

egg code regions (intersection), then one can deduce which is

more likely by calculating a distance metric between all pair-

wise possibilities. The optimal result is retained as the correct

association.

Each time a segment is found to belong to a particular class,

regardless of the degree of evidence, that class can be updated

with the new segment population. Hence, for the segment

having samples (or pixels) and found to belong to class

(with samples), the covariance matrices are merged using the

following closed-form update equation [43, p. 119]:

(3)

where

(4)

is the result of merging the scatter matrices of segments and

defined by and , respectively. Similarly, the means

are updated using the relation

(5)

6) Sea-Ice Reclassification: Having gathered all the evi-

dence and stored them in a lookup table, “sea-ice reclassifi-

cation” (SIRECLASS) performs the last step by reclassifying

(assigning the final label to each segment) the sea ice map

segments by cross tabulation. Using the example in Table II,

initial label 1 of egg code region 1 acquires ice type “1”; initial

label 2 of the same egg code region becomes “4” and so on for

the other regions.

C. Metrics Used for Label Assignment

Three different methods were considered in SICLASSCORE

to calculate the likeliness of a segment belonging to a class:

1) the Fisher criterion (FC) [43, p. 117]; 2) the Mahanalobis dis-

tance (MD) [43, p. 36]; and 3) the Kolmogorov–Smirnov (KS)

[44, p. 623] test. The first method is based on the Fisher crite-

rion

(6)

where and are

the between- and pooled within-class scatter matrices, respec-
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TABLE II
EXAMPLE OF A SPREADSHEET RETURNED BY THE MAGSISTAT PROGRAM.
LEGEND: 1-NEW ICE; 4-GRAY ICE; 5-GRAY-WHITE ICE; 7-THIN FIRST-YEAR

ICE; 1. MEDIUM FIRST-YEAR ICE; 20-OPEN WATER. ECR IS THE EGG CODE

REGION VALUE. L IS THE LABEL. n IS THE NUMBER OF CLASSES. C1–4 ARE

THE FOUR POSSIBLE ICE CLASSES. FL IS THE ICE LABEL EACH SEGMENT

RECEIVED AFTER CLASSIFICATION. NOTE THAT THE ORIGINAL WMO CODES

FROM THE EGG CODED MAP WERE KEPT WHERE A TO Z REPRESENT

ICE-INFESTED POLYGONS AND OW REPRESENTS AN OPEN WATER REGION.
SOME OF THE EGG CODE REGIONS HAVE BEEN LEFT OUT FOR SIMPLIFICATION

tively, and A Fisher criterion is calcu-

lated for each class pair, and the segment is assigned to the class

with the smallest . The Fisher criterion offers the advantage of

taking into consideration the spread of both distributions being

compared.

The Mahanalobis distance is a very popular classification

method in the remote sensing community. It is equivalent to the

maximum-likelihood classifier when all a priori probabilities

are equal

(7)

A Mahanalobis distance is normally calculated between a

sample (pixel vector) and a class distribution ; there-

fore, it does not take into account the spread when a bundle (a

whole segment) is considered instead of a single observation.

Finally, the KS test computes the probability of two distri-

butions belonging to the same population based on the distance

between their cumulative distributions

(8)

where and represent the frequency of occur-

rence of bin (pixel value) in the two cumulative frequency dis-

tributions. The probability that is significant (reject the

null hypothesis that the two distributions are the same) is then

computed using the following sum:

(9)

where and

. Thus, the larger , the less likely the

two distributions belong to the same population.

With all of these methods, the metrics are cumulated for each

combination of assignments, and either the smallest (MD or

FC) or largest (KS probability) value is retained as the correct

solution.

D. Example

To illustrate the complete process, the spreadsheet of part of

an egg code map with ten egg code regions is shown in Table II.

The following paragraphs explain how the evidence is gathered

and the labels attributed.

• The program first finds evidence that the egg code re-

gion OW (open water) has only one class (first-degree

evidence): class 20 is solved.

• Then it checks if one of the two-class egg code regions

also has class 20 in which case it could figure out which is

class 20 and which is the remaining class (second-degree

evidence).

• Since this is not the case, it looks for third-degree evidence:

no class has been solved but there is a unique class common

to two “two-class” egg code regions: this is the case be-

tween egg code regions A and C where class 1 is uniquely

shared. It is found that the first class of egg code region A

and the second class of egg code region C correspond to

class 1: 1 and 20 are solved.

• Then, since one class of both egg code regions A and C

is known, first-degree evidence tells us that the remaining

class of each egg code can only belong to the other possible

class: class 4 for egg code region A and class 7 for egg code

region C: 4, 7, 1, and 20 are solved.

• Although four classes have been solved there are no re-

maining egg code regions having all its possible classes

previously solved but three of the four remaining “three-

class” egg code regions have two out of three classes solved

and so second-degree evidence can be used to determine

which segments are more likely to belong to these classes.

• First-degree evidence can now be used to solve class 5 in

region W. Now, 5, 4, 7, 1, and 20 are solved.

• Again, second-degree evidence can be used to find which

of the three classes of region Z is class 7 and 5 leaving only

class 1 (one dot, a WMO code) as the only class remaining

unsolved.

• First-degree evidence is used to solve class 1 in Z. Now, 1.,

5, 4, 7, 1, and 20 are solved.

• Finally, second-degree evidence can be applied to find the

most likely combination for the last two egg code regions
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(a)

(b)

(c)

Fig. 3. (Left) Egg code maps and (right) Radarsat images for the three
examples. (a) Western (March 10, 2002) and (b) Eastern (March 13, 2002)
Gulf of Saint Lawrence and (c) the Beaufort Sea (October 13, 1997). Marked
areas represent the locations of the samples of Fig. 4.

having four classes (regions O and V) which have all been

previously solved.

• If not all cases have been solved, the process can be con-

tinued by testing weaker evidence (e.g., only one class is

known in three or four).

Even considering that typical egg code maps will provide suf-

ficient evidence for solving all classes of all egg code regions,

there still exists, in theory, the possibility that no strong evidence

is given as a starting point. In these cases we are considering

“helping” the program by providing training data to be used as a

starting point for one or two classes; this should provide enough

first-degree evidence to trigger the reasoning for solving the re-

maining classes.

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Original SAR image samples (left side of subfigures) and segmentation
result (right side). (a)–(c) Eastern Gulf of Saint Lawrence SAR image.
(d)–(e) Western Gulf. (f) Beaufort Sea image. Note that (a) and (e) had to
be segmented in two stages. The black vertical lines show where the split
was performed. Location of each sample is shown in Fig. 3. All images are
compressed in size for display purposes and have 430 lines of 700 pixels
(approximately 70 km in width and 43 km in height).

IV. RESULTS AND DISCUSSION

Results are presented for three Radarsat-1 scan mode images:

two of the Gulf of Saint Lawrence, one for the eastern part

(March 13, 2002) and one in the western end (March 10, 2002)

and one of the Beaufort Sea region (Fig. 3). One image is the

result of merging two swaths causing a straight vertical linear

feature that crosses the entire image scene [can be seen crossing

region E in Fig. 3(b)]. These images results from direct CIS op-

erations and have not received any alteration or cropping (except

for display purposes) to try to simulate a real operational con-

text. The first two images are also considered “difficult cases”

according to CIS (D. Flett, personal communication, October

2004). Reporting realistic success and error in the segmentation

and classification of sea ice is a rather difficult task since ground

truth is very difficult to obtain due to the highly dynamic and in-

accessible nature of sea ice. On the other hand, since only one

element is considered in its various states (from open water to

multiyear ice), and SAR images are the main source of data, the

interpretation is almost solely a visual task. It is only natural

then to evaluate the performance of segmentation on a visual

basis rather than only relying on often too few control samples.

The evaluation was also done by consulting an ice analyst from

CIS. Three levels of evaluation are considered here: 1) segmen-

tation; 2) classification; and 3) operational.

A. Segmentation

Fig. 4 shows a series of six segmentation examples drawn

from the three SAR images. The samples were selected for

having at least three classes (the maximum being four) and for

illustrating different patterns of sea ice where texture played an

evident role. Two of these examples [Fig. 4(a) and (e)] were

split in two parts which were segmented separately (region

splitting was sometimes necessary to reduce the amount of

memory used). In both cases (and in all other cases not shown

here) the segmentation was consistent across these artificial
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borders. Segmentation results were rated based on two separate

evaluations. The first evaluation aimed at finding the ability

of the segmentation to preserve natural edges and small de-

tails (Table III). Results were rated negatively when artifact

boundaries were created and when borders with other egg code

regions were inconsistent. The rating criteria were as follows.

“All or Most” is attributed when the segmentation appears to

have captured all or most important features with a good level

of detail. “Partial” implies that some important feature patterns

are not properly rendered. “Few” indicates that many impor-

tant feature are absent. Table III shows that the segmentation

captured most visual details for the great majority (55/78) of

the egg code regions for all SAR images. In all 18 egg code

regions were rated as “Partial” and five as “Few.” It should be

noted that many egg code regions had inconsistencies such as

a missing an ice class or that the egg code region contour was

not precisely drawn and partially overlayed a neighboring class

not present in the egg code.

The addition of texture helped to preserve the small details

since these are characterized by good local contrast. However,

since texture features are window-based, edges tend to be ex-

aggerated in size and so are the small features. Although this

is not desirable, it still is better than the opposite situation that

would involve the disappearance of these details. Additionally,

the amount of exaggeration of these details is related to the

number of iterations and the number of classes in the MRF seg-

mentation routine. More iterations result in these small details

to be either exaggerated in size or to disappear when contrast is

low. Likewise fewer classes tend to have the same effect. One

possible way to counter this problem would be to use the number

of classes as a basis for calculating the number of iterations nec-

essary. Additional testing needs to be performed to model this

effect more precisely.

The second evaluation involved an ice analyst from CIS to

characterize the match between the segments and the actual

ice types within the egg code regions. Ice analysts are profes-

sionals (usually from a physics of meteorology background)

whose work consists in analyzing and interpreting data from

various sources (one of which is usually a SAR image) to pro-

duce daily ice charts. This validation made it possible to identify

not only the accuracy of the segmentation but mostly, it has out-

lined the different problems that the segmentation was facing.

Upon confronting the results with ice analysts, it became quite

clear that many discrepancies between the analyst’s interpre-

tation and the computer-generated segmentation could be at-

tributed to four principal factors:

1) Incomplete information in the egg codes. Space limita-

tions can force the analyst to sometimes ignore a class

(usually the one with the smallest percentage or the

thinnest ice). The analyst also knows that their interpre-

tation will be later generalized (in a broader region), and

some similar egg codes might be merged with others

disregarding the least important ice classes. Imprecise

delineation of the egg code region polygons can also

incorporate classes for which the egg code has no infor-

mation (some egg code regions have incorporated parts

of neighboring regions or even land or fast ice).

TABLE III
SEGMENTATION VISUAL RATINGS FOR THE EGG CODE REGION FOR THE

THREE SAR IMAGES: E = EASTERN GULF OF SAINT LAWRENCE,
W = WESTERN GULF OF SAINT LAWRENCE, B = BEAUFORT SEA.

THE FIGURES REPRESENT THE NUMBER OF EGG CODE REGIONS

2) Ancillary information. The analyst has access to informa-

tion from neighboring regions, previous days, and from

other sources (space, airborne, or ground-based). This ex-

plains for instance how ice floe sizes smaller than the

image resolution can sometimes be indicated in the egg

code.

3) Shape and size. Some ice classes are directly related to

the shape and size of ice floes. For instance, first-year

ice can often be separated from gray-white ice because

the former is characterized by older floes that appear to

have smoother boundaries due to constant grinding con-

tact with other floes. This cue is not yet taken into account

as a separate feature.

4) Angle of incidence. The angle of incidence can have a

dramatic effect on the backscattering (especially of open

water in windy conditions) and this has sometimes caused

a single class to be split in two distinct segments at the

expense of another class with subtle differences.

Table IV is a synthesis of the validation process in which these

four problems were organized according to the origin of the flaw

as follows:

1) Incomplete information

a) missing information in egg code;

b) interpretation was based on ancillary data;

2) Poor performance of the segmentation

a) segmentation should incorporate information on shape

and size;

b) incidence angle problems (shift in brightness).

The ice analyst’s validation revealed that 43 of the 78 egg

code regions suffered from at least one of the four problems. In-

complete information (1a and 1b) affects at least 28 egg code

regions (36%) and poor performance of the segmentation al-

gorithm (2a and 2b) due to missing features (shape and size)

or incidence angle problem was detected in at least 30 regions

(38%). While the latter problems could potentially be taken into

account by the segmentation algorithm, the former cannot be

solved at this level. Other reasons might be responsible for un-

satisfactory segmentation that do not fall in one of these cate-

gories but these appear to be in a very small proportion.

It should also be mentioned that while doing their interpreta-

tion, the ice analyst does not try to identify the ice classes indi-

vidually but rather tries to grasp the situation in a much more dy-

namic way. The analysts visualize movement and progression,

which are important cues in their final decision. On the other

hand, the computer program in its actual form tries to identify

these classes independently of their context in a static approach.
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TABLE IV
VALIDATION OF THE SEGMENTATION RESULTS FOR THE THREE SAR IMAGES.
E = EASTERN GULF OF SAINT LAWRENCE,W =WESTERN GULF OF SAINT

LAWRENCE, B = BEAUFORT SEA. THE FIGURES REPRESENT THE NUMBER

OF EGG CODE REGIONS. NOTE THAT A SINGLE EGG CODE REGION

CAN SUFFER FROM MORE THAN ONE PROBLEM

These are two very different levels of description. Hofstadter de-

scribes one of the challenge of artificial intelligence (and com-

puter vision by extension) as “bridging the gap between these

two descriptions: how to construct a system which can accept

one level of description and produce the other” [45, p. 285]. He

makes an analogy with the comparison of how novices and mas-

ters perceive a chess situation: while the novices see the position

of individual pieces on the chess board, the masters are sensitive

to high-level patterns or types of recurring situations—they see

the chess board on a higher level. In the case of sea ice interpre-

tation, the computer program is the novice who does not yet see

the greater picture. It will need not only more features but also

more ways of combining them.

The analysis of the results by ice analysts was very rewarding

in that it pin-pointed not only the problems but also many of the

possible solutions. For instance, it appears that the egg codes

should be first analyzed on a high level to identify cases where

information might be missing or be more detailed than what the

segmentation can be expected to achieve. For example, in cases

where the ice floes are smaller than the resolution of the image,

some distinctions between ice types are not possible without

additional airborne or ground information.

B. Classification

As mentioned above, reporting classification success without

ground truth is not absolute, but is recognized to be an accept-

able procedure given the particularities of sea ice mapping.

The labeling was validated using the ice analysts experience

to check the appropriateness of the classification given the

limitations of the segmentation. Egg code regions that were

properly segmented were used directly and the number of

correctly labeled segments were simply counted. Egg code

regions that suffered from poor segmentation could not be

used directly so the number of correctly labeled segments were

counted against the number of correctly segmented classes. For

example, if an egg code region had four classes but only two

were appropriately segmented, then only these two segments’

TABLE V
CLASSIFICATION RATINGS REPRESENTING THE NUMBER OF EGG CODE

REGIONS CORRESPONDING TO EACH CRITERION FOR THE THREE CLASSIFIERS

AND THE THREE SAR IMAGES IN FIG. 5 (E FOR EASTERN GULF OF SAINT

LAWRENCE, W FOR WESTERN, AND B FOR BEAUFORT SEA)

labels were considered. This is not trivial because the number

of possibilities remains the same so the fact that one class is

correct does not imply that the second is also correct. In some

cases, the segmentation might have missed part of a class but

the labeling could still assign the most appropriate label to that

segment enabling that egg code region to be considered for

validation.

Table V shows the ratings for the three images separately. The

table is divided according to whether the classes of the egg code

were all (second row) or partially usable (third row). This cri-

terion was based on the evaluation of the segmentation as there

was no point in validating a class that was not well segmented

to start with. The top value of each row represents (as a frac-

tion) the proportion of accurately classified classes on the total

number of usable classes and the bottom value gives the cor-

responding percentage. Given about 89% of classification ac-

curacy for well-segmented regions and 71% for partially well

segmented regions, the MD metric outperformed the other two

methods, but the difference with FC is small and might not be

significant. The poorer performance of the KS metric (only 36%

egg code regions with no apparent errors) can probably be at-

tributed to the fact that it is too sensitive to the inaccuracies

associated with not knowing the true class distributions (e.g.,

histograms having skewed shape and suffering from shifts in

central tendency (mean, mode or median) due to varying angle

of incidence). This is especially true for the Beaufort image for

which this effect was strong in the open water. In general, open

water has a dark SAR intensity and a rather smooth texture and

this is the case for the majority of regions in both test images.

However, the presence of waves (wind) coupled with the varying

incident angle can produce extreme differences in both the in-

tensity and the texture of open water [15], [46].

One obvious limitation of the classification is that it can only

attribute a label that already exists in the egg code so that any

imprecise contouring from the ice analyst can include an un-

accounted class in the egg code region that would probably

affect the segmentation algorithm and the classification con-

sequently. A possible solution to this would be to perform an

oversegmentation and to consider a “mystery” class during the

initial labeling process. A subsequent labeling would associate

the “mystery” segment to the most probable class from the set of

classes from the whole image (and not only an egg code region).

This technique is currently being considered for future versions

of the system.
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Fig. 5. Classification results for the (a) Eastern (March 13, 2002) and (b) Western (March 10, 2002) Gulf of Saint Lawrence and (c) the Beaufort Sea (October
13, 1997).

Nevertheless, the classification results are correct by an ap-

preciable majority for the MD classifier. Upon analyzing the er-

rors, it was found that many cases are benign and involve classes

that are alike with similar impact such as gray and gray-white

ice or medium- and thin-first year ice. However, there are a few

errors involving confusion between open water and ice which

have more dramatic consequences. Another factor that caused

such confusion is the apparent likeliness of some ice categories

with open water. For instance, some egg code regions do not

include new ice but have features that resemble it strongly. It is

also possible that the egg code region contains some new ice but

that the ice analyst did not judge it worthwhile having mainly

navigation in mind (D. Flett, personal communication, October

2004). Several approaches have been contemplated to solve this

problem but were not implemented at this stage. This particular

topic (separation of ice from open water) is an integral part of

the current research.

C. Operational Considerations

In its current implementation, the system operates mainly

within the Matlab environment. The texture feature extraction is

based on the PCI modeler package. The file preparation is per-

formed within the PCI image processing software. The segmen-

tation phase accounts for over 80% of the total time required to

analyze a single image. For a 40+ megapixel image and using

two texture features, the whole process takes approximatively

four hours to run on a 2.8-GHz Intel processor. This figure is

not meant as a strict reference since the time also depends on

the number of egg code regions and the number of classes per

region. This time frame could be significantly reduced using op-

timized coding since Matlab is recognized to be cumbersome for

iterative procedures. This would in turn bring the system to an

“operational” level in terms of processing time.

D. Outlook

A number of valuable output products are foreseen. The first

of these is a thematic map produced at the pixel resolution (as

opposed to the “homogeneous regions” used by the sea ice ana-

lysts) with three classes: ice, open water, and land. This thematic

map would be a valuable complementary tool for navigation (in

addition to the egg code maps). A second thematic map would

retain all the sea ice classes extracted during the segmentation

and classification and would be stored in a database that would

be used for meteorological and ocean circulation purposes as

well as global change studies. Finally, the sea ice thematic maps

could instantly yield a wealth of statistics on the proportions of

sea ice types and open water on a daily basis.
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V. CONCLUSION

This paper presents a system to classify satellite SAR data in

different types of sea ice and open water. The system is based

on refining a regional mapping made by ice analysts from the

Canadian Ice Service to a pixel-level resolution. This approach

ensures that only the proper information is extracted from the

image by guiding a segmentation algorithm through the provi-

sion of the number and type of sea ice classes (and open water

if present) that should be found in a particular region defined

by the analyst. Likewise, the system takes advantage of a priori

information to deduce which class should be assigned to a seg-

ment by a process of deduction, elimination and pattern classi-

fication. Here, this process received the name of “cognitive rea-

soning” because of its ability to “learn” the most likely match

using minimal information.

Through two sample SAR images from the Gulf of Saint

Lawrence region, being considered “difficult cases” in terms

of sea ice mapping and one image of the Beaufort Sea it was

shown that the MAMSEG algorithm is capable of achieving ac-

curate segmentation with a high level of detail. The highest level

of success was achieved by feeding the segmentation algorithm

with a triplet of features composed of the SAR intensity and two

texture features generated from the gray-level coccurrence ma-

trix. It was also demonstrated that a “cognitive reasoning” ap-

proach was successively implemented for solving the labeling

problem. Additionally, it was found that the Mahanalobis dis-

tance and the Fisher linear criterion were accurate metrics for

assigning the most likely match between sea ice classes and seg-

ments produced by MAMSEG although the former was slightly

superior in the overall performance. The Kolmogorov–Smirnov

test was also implemented as a third metric but showed rela-

tively poor results that were attributed to the nonuniform skewed

distributions.

Problems encountered were attributed to four principal fac-

tors, two of which were generated by incomplete information

on the part of the egg code themselves. The two other problems

appear to have been resulting from the incomplete feature space

that should include information on shape and size of the floes

and some way to model the effects of the variations of the angle

of incidence. Although some solutions are being considered for

solving these problems, more testing is required before a refined

solution is implemented.
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