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We derive a necessary and sufficient condition for a quantum process to be Markovian which coincides with

the classical one in the relevant limit. Our condition unifies all previously known definitions for quantum Markov

processes by accounting for all potentially detectable memory effects. We then derive a family of measures of

non-Markovianity with clear operational interpretations, such as the size of the memory required to simulate a

process, or the experimental falsifiability of a Markovian hypothesis.

In classical probability theory, a stochastic process is the

collection of joint probability distributions of a system’s

state (described by random variable X) at different times,

{P (Xk, tk;Xk−1, tk−1; . . . ;X1, t1;X0, t0) ∀k ∈ N}; to be

a valid process, these distributions must additionally satisfy

the Kolmogorov consistency conditions [1]. A Markov pro-

cess is one where the state Xk of the system at any time tk
only depends conditionally on the state of the system at the

previous time step, and not on the remaining history. That is,

the conditional probability distributions satisfy

P (Xk, tk|Xk−1, tk−1;. . .;X0, t0)=P (Xk, tk|Xk−1, tk−1) (1)

for all k. This simple looking condition has profound impli-

cations, leading to a massively simplified description of the

stochastic process. The study of such processes forms an en-

tire branch of mathematics, and the evolution of physical sys-

tems is frequently approximated to be Markov (when it is not

exactly so). This is in part due to the fact that the properties

of Markov processes make them easier to manipulate analyti-

cally and computationally [2].

Implicit in this description of a classical process is the as-

sumption that the value of Xj at a given time can be observed

without affecting the subsequent evolution. This assumption

cannot be valid for quantum processes. In quantum theory, a

measurement must be performed to infer the state of system.

And the measurement process, in general, must disturb that

state. Therefore, unlike its classical counterpart, a generic

quantum stochastic process cannot be described without in-

terfering with it [3]. These complications make it challenging

to define the process independently of the control operations

of the experimenter. From a technical perspective, a serious

consequence of this is that joint probability distributions of

quantum observables at different times do not satisfy the Kol-

mogorov conditions [1], and do not constitute stochastic pro-

cesses in the classical sense.

Nevertheless, temporal correlations between observables

do play an important role in the dynamics of many open quan-

tum systems, e.g. in the emission spectra of quantum dots [4]

and in the vibrational motion of interacting molecular flu-

ids [5]. Quantifying memory effects, and clearly defining
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the boundary between Markovian and non-Markovian quan-

tum processes, represents an important challenge in describ-

ing such systems.

Attempts at solving this problem tend to take a necessary,

but not sufficient, condition for a classical process to satisfy

Eq. (1), and extend it to the quantum domain. This has led

to a zoo of quantum Markov definitions, and accompanying

“measures” of non-Markovianity [6, 7], that do not coincide

with Eq. (1) in the classical case [8]. Examples include mea-

sures based on: monotonicity of trace-distance distinguisha-

bility [9]; the divisibility of dynamics [10, 11]; how quantum

Fisher information changes [12]; the detection of initial cor-

relations [13–19]; changes to quantum correlations or coher-

ence [20, 21]; channel capacities and information flow [22–

25]; and positivity of quantum maps [26–29].

All these methods offer valid ways to witness mem-

ory effects. Unfortunately, however, they often lack a

clear operational basis. Moreover, different measures of

non-Markovianity agree neither on the degree of non-

Markovianity of a given process, nor even on whether it is

Markovian [30]. Put another way, they each fail to quantify

demonstrable memory effects in some cases. These inconsis-

tencies have led some to the conclusion that there can be no

unique condition for a quantum Markov process.

In this Letter, we use the process tensor framework, intro-

duced in an accompanying article [31], to demonstrate that

this conclusion is false. We first present a robust operational

definition for a quantum Markov process, which unifies all

previous definitions and, most importantly, reduces to Eq. (1)

for classical processes. We then go on to derive a family of

measures for non-Markovianity which quantify all detectable

memory effects, and which have a clear operational interpre-

tation.

Quantum stochastic processes—Conventional approaches

to open quantum dynamics describe a process solely in terms

a system’s time-evolving density matrix ρt, which is related to

the initial state of the system by a completely positive trace-

preserving (CPTP) map Λt:0. However, as has also been ar-

gued in the classical case [32], a framework that captures non-

Markovian effects cannot be a simple extension of one which

characterises memoryless processes. In order to describe the

joint probability distributions of multiple measurement out-

comes, and hence capture memory effects which only appear

in multi-time correlation functions, we must go beyond the
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paradigm of CPTP maps [33].

We consider a scenario where the role of the observer in a

stochastic process is made explicit: A series of control opera-

tions A
(r)
j act on the system at times tj (here, r labels one of

a set of operations that could have been realised, with some

probability, at that time). These can correspond to measure-

ments, unitary transformations, interactions with an ancilla or

anything in between, and are represented mathematically by

completely positive (CP) maps. As implied above, their ac-

tion need not be deterministic (for example, in the case of

different measurement outcomes), but the average control op-

eration applied at a given point corresponds to a determinis-

tic CPTP map Aj =
∑

r A
(r)
j . The choice of CPTP map

and its decomposition into operations A
(r)
j is often referred

to as an instrument, and the latter can equivalently be thought

of as a decomposition of Aj into Kraus operators. The en-

tire sequence of control operations at times {t0, t1, ...tk−1}
may, furthermore, be correlated, and we denote it by Ak−1:0

(which is an element of the tensor product of spaces of con-

trol operations at each step). When the operations are un-

correlated, this can simply be thought of as the sequence

Ak−1:0 = {A
(rk−1)
k−1 ; ...;A

(r1)
1 ,A

(r0)
0 }.

In an accompanying Article [31], we describe how a pro-

cess can be fully characterised by a linear and CP map-

ping Tk:0, called the process tensor, which takes a sequence

of operations to the density operator at a later time: ρk =
Tk:0[Ak−1:0]. Tk:0 encodes all uncontrollable properties of

the process, including any interactions of the system with its

environment, as well as their (possibly correlated) average ini-

tial state. When the control operations are non-deterministic,

ρk is subnormalised, with a trace that gives the joint proba-

bility of applying those operations. Any given process tensor

is guaranteed to be consistent with unitary dynamics of the

system with a suitable environment. If the process tensor, de-

fined on any set of time steps in an interval, and the control

operations all act in a fixed basis, then the description reduces

to that of a classical stochastic process as described in the in-

troduction. Interestingly, quantum stochastic processes have

been defined in a mathematically related way several times in

the past [34–36], without being widely adopted by the open

quantum systems community.

Our description, in terms of the process tensor, fully con-

tains the conventional one; doing nothing to the system, rep-

resented by the identity map I is a perfectly valid control op-

eration and, for a system initially uncorrelated with its envi-

ronment, Tk:0[I
⊗k] = Λk:0[ρ0]. The main achievement of the

process tensor framework is to separate ‘the process,’ as dic-

tated by Nature, from an experimenter’s control operations.

In other words, the process tensor describes everything that

is independent of the choices of the experimenter. Using this

framework, we are now in a position to present our main re-

sult.

Criterion for a quantum Markov process.— To clearly and

operationally formulate a quantum Markov condition, we in-

troduce the idea of a causal break, where the system’s state

is actively reset, dividing its evolution into two causally dis-

connected segments. We then test for conditional depen-

Figure 1. Determining whether a quantum process is Markovian.

Generalised operations Ak:0 are made on the system during a quan-

tum process, where the subscripts represent the time. At time step

k we make a causal break by measuring the system with Π
(r)
k and

re-preparing it in randomly chosen state P
(s)
k . The process is said to

be Markovian if and only if ρl(Pk|Π
(r)
k ;Ak−1:0) = ρl(P

(s)
k ) at all

time steps l, k, for all inputs P
(s)
k , measurements {Π

(r)
k }, and control

operations {Ak−1:0}.

dence of the future dynamics on the past control operations.

If the future process depends on the past controls, then we

must conclude that the process carries memory and it is non-

Markovian.

To formalise this notion, we begin by explicitly denoting

the state of the system at time step l as a function of previous

control operations, ρl = ρl(Al−1:0). Now, suppose at time

step k < l we make a measurement (of our choice) on the

system and observe outcome r, which occurs with probabil-

ity p
(r)
k ; the corresponding positive operator is denoted Π

(r)
k .

We then re-prepare the system into a known state P
(s)
k , cho-

sen randomly from some set {P
(s)
k }. The measurement and

the re-preparation at k break the causal link between the past

j ≤ k and the future l > k of the system; more generally, any

operation whose output is independent of its input constitutes

a causal break. If we let the system evolve to time step l, its

state will depend on the choice and the outcome of the mea-

surement at k, the preparation Pk, and the control operations

from 0 to k − 1. Therefore, we have a conditional subnor-

malised state ρ̃l = prρl(P
(s)
k |Π

(r)
k ;Ak−2:0), where the condi-

tioning argument is the choice of past measurement Π
(r)
k and

controls {Ak−1:0}. The probability pr, which also, in general,

depends on {Ak−1:0}, is not relevant to whether the process is

Markovian; we are interested only in whether the normalised

state ρl = ρl(P
(s)
k |Π

(r)
k ;Ak−1:0) depends on its conditioning

argument. This operationally well defined conditional state is

fully consistent with conditional classical probability distribu-

tions. However, it is very different from the quantum condi-

tional states defined in Ref. [37].

Because of the causal break, the system itself cannot carry

any information beyond step k about Π
(r)
k or its earlier his-

tory. The only way ρl could depend on the controls is if the

information from the past is carried across the causal break

via some external environment (see Appendix B for some ex-

amples). We have depicted this in Fig. 1, with the memory

as a cloud that transmits information from the past to the fu-

ture across the causal break. This immediately results in the
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following operational criterion for a Markov process:

Definition A quantum process is Markovian when the state

of the system ρl, after a causal break at time step k

(with l > k), only depends on the input state P
(s)
k :

ρl(P
(s)
k |Π

(r)
k ;Ak−1:0) = ρl(P

(s)
k ), ∀ {P

(s)
k ,Π

(r)
k ,Ak−1:0}

and ∀ l, k ∈ [0,K].

Note that this definition is directly analogous to the causal

Markov condition for a discrete-time classical stochastic evo-

lution that allows for interventions [38]: While the definition

in Eq. (1) refers only to the system state at different times,

more modern descriptions of (classical) stochastic processes

in terms of their causal structure allow for interventions be-

tween time steps. Recently, and independently of this work,

a generalisation of this kind of ‘Markovian causal modelling’

has been developed for quantum Markov processes [39].

From the Definition, we have the following Theorem:

Theorem A quantum process is non-Markovian iff there exist

at least two different choices of controls {Π
(r)
k ;Ak−1;0} and

{Π
′(r′)
k ;A′

k−1;0}, such that after a causal break at time step k,

the conditional states of the system at time step l are different:

ρl(P
(s)
k |Π

(r)
k ;Ak−1;0) 6= ρl(P

(s)
k |Π

′(r′)
k ;A′

k−1;0). (2)

Conversely, if ρl is constant for all linearly independent con-

trols, then the process is Markovian.

The proof, which relies on the linearity of the process tensor,

is given in Appendix A. Identifying two controls that lead to

different conditional states may, in pathological cases, require

testing Eq. (2) for all possible (exponentially many) linearly

independent control operations, though the discovery of any

pair of control sequences that lead to an inequality in Eq. (2)

is a witness for non-Markovianity; this is directly analogous

to the problem of testing for correlations in a many-body state.

The implication of the Theorem is that it is possible to deter-

mine whether a process is Markovian in a finite number of

experiments.

Our Theorem also has the appealing consequence that

quantum Markov processes give rise to classical ones:

Corollary Fixing a choice of instruments always leads to

a classical probability distribution satisfying Eq. (1) iff the

quantum process is Markovian according the Definition pro-

vided above.

Proof. Fixing a choice of instruments means allow-

ing only one of a set of operations A
(r)
j to act at each

time step, such that
∑

r A
(r)
j is a CPTP map (the in-

strument may be different at different time steps). As

such, the trace of the state at time k is the proba-

bility distribution P (rk−1, tk−1; . . . ; r1, t1; r0, t0) =

trρk(A
(rk−1)
k−1 , . . . ,A

(r1)
1 ,A

(r0)
0 ), where the rj can be

treated as classical random variables. For a Markov pro-

cess, we have that ρj(A
(rj−1)
j−1 , P

(s)
j−2|Π

(rj−2)
j−2 ,Aj−3:0) =

ρj(A
(rj−1)
j−1 , P

(s)
j−2|Π

(rj−2)
j−2 ) = ρj(A

(rj−1)
j−1 |P

(s)
j−2,Π

(s′)
j−2)

for any deterministic choice of preparation P
(s)
j−2. By

writing A
(rj−2)
j−2 =

∑

ss′ c
(rj−2)
ss′ P

(s)
j−2 ⊗ Π

(s′)
j−2 [40],

it follows that P (rj−1, tj−1| . . . ; r1, t1; r0, t0) =
P (rj−1, tj−1|rj−2, tj−2) ∀k > j > 0. From our The-

orem, if the process is non-Markovian, then there is at

least some pair of control operations for which the in-

equality in Eq. (2) is true. By choosing an instrument

which acts with these operations, one realises a classi-

cal process with P (rj−1, tj−1|rj−2, tj−2, . . . ; r0, t0) 6=
P (rj−1, tj−1|rj−2, tj−2) for some values of {rj}. �

This remedies an important issue with existing definitions

of quantum Markov processes; namely, that they fail to clas-

sify classical stochastic processes correctly [6]. Instead, as

discussed above, conventional approaches are based on nec-

essary, but not sufficient, conditions for a classical process

to be Markov. The above Corollary demonstrates that our

Definition corresponds to a necessary and sufficient condi-

tion. Of course, those necessary conditions are still satisfied

by Markov processes in our framework. In particular, we have

the following Lemma:

Lemma Markov processes are K-divisible, i.e., they can be

written as a sequence of CPTP maps between the K time steps

on which they are defined.

Proof. If the condition introduced in our Definition is satisfied,

then ρk only depends on the previous choice of input P
(s)
k−1

for any k. By choosing from a complete set of linearly inde-

pendent inputs {P
(νj)
j }, quantum process tomography can be

performed independently for each pair of adjacent time steps.

Since the dynamics between any two time steps is free from

the past (there is no conditioning on prior operations), the re-

sulting set of CPTP maps completely describes the dynamics.

These maps can then be composed to calculate the dynamics

between any two time steps. In other words, the dynamics

between time steps l > k > j is described by maps Λk:j ,

Λl:k, and Λl:j , with the last map being the composition of the

former two: Λl:j = Λl:k ◦ Λk:j . �

This means our result verifies the well-known hypothesis

that Markovian dynamics is divisible. However, the converse

of this statement does not hold, contrary to what is often pos-

tulated [6]. That is, Λl:j = Λl:k ◦ Λk:j ∀l > k > j ∈ [0,K]
does not imply that the process is Markovian according to our

main Theorem. In principle, there could be multi-time cor-

relations between time steps that affect future dynamics con-

ditioned on past operations. In this light, the Theorem we

present here can be seen as both a unification and generalisa-

tion of previous theories of quantum non-Markovianity, since

all of these require non-Markovian processes to be indivisible.

This direct consequence of the above Lemma is encapsulated

in the following Remark:

Remark Any process labelled non-Markovian according to

the definitions given in Refs. [9–29] will be non-Markovian

according to our main Theorem. The converse does not hold.

In fact, because it contains information about the density

operator as a function of time, the process tensor formalism

could be used to explicitly calculate any of the measures of
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non-Markovianity introduced in the above references. In Ap-

pendix B, we give several examples of non-Markovian effects

which are not detected by conventional approaches, but which

are detected in our framework. The first manifests the dis-

cussion below the above Lemma, demonstrating that divisi-

ble (even CP-divisible) dynamics can have memory. We also

show how the trace-distance definition of Markov processes

can fail to characterise non-Markovianity, and that a quan-

tum process can be non-Markovian even when there are no

system-environment quantum correlations.

It is worth noting that all open quantum evolutions gener-

ated by a time-independent system-environment Hamiltonian

are non-Markovian according to our main Theorem, when

considering more than two time steps. A similar point was

also made in Ref. [41], albeit in the context of dynamical de-

coupling. The strictness of the operational Markov Defini-

tion, however, does not render the notion of non-Markovianity

meaningless; on the contrary, it allows us to construct mean-

ingful measures of non-Markovianity.

Quantifying non-Markovianity.— One of the key features

of the process tensor formalism is the isomorphism between

a process Tk:0 and a many-body generalised Choi state Υk:0.

The correlations between subsystems in Υk:0 encode the tem-

poral correlations in the corresponding process. As we prove

in our Lemma above, a Markov process is divisible, i.e., it can

be described by a sequence of independent CPTP maps. The

corresponding Choi state will only have correlations between

subsystems corresponding to neighbouring preparations and

subsequent measurements; it can be written as the tensor prod-

uct ΥMarkov
k:0 = Λk:k−1 ⊗Λk−1:k−2 ⊗ · · · ⊗Λ1:0 ⊗ ρ0, where

Λj+1:j is the Choi state of the CPTP map between time steps

j and j + 1, and ρ0 is the average initial state of the process.

This observation allows us to define a degree of non-

Markovianity.

Proposition Any CP-contractive quasi-distance D between

the generalised Choi state of a non-Markovian process and

the closest Choi state of a Markov process measures the de-

gree of non-Markovianity:

N := min
ΥMarkov

k:0

D
[

Υk:0‖Υ
Markov
k:0

]

. (3)

Here, CP contractive means that D[Φ(X)‖Φ(Y )] ≤ D[X‖Y ]
for any CP map Φ on the space of generalised Choi states, and

a quasi-distance satisfies all the properties of a distance except

that it may not be symmetric in its arguments. Other quasi-

distance measures may also be used, with different operational

interpretations, but those which are not CP-contractive do not

lead to consistent measures for non-Markovianity [42]. If we

choose relative entropy [43] as the metric, then the closest

Markov process is straightforwardly found by discarding the

correlations. This measure of non-Markovianity has an oper-

ational interpretation: Probconfusion = exp{−nN} measures

the probability of confusing the given non-Markovian process

for a promised Markovian process after n measurements of

the Choi state. In other words, ΥMarkov
k:0 represents a Marko-

vian hypothesis for an experiment that is really described by

Υk:0. If N is large, then an experimenter will very quickly

realise that the hypothesis is false, and the model needs up-

dating.

Furthermore, other meaningful definitions of non-

Markovianity can be derived from the properties of the

Choi state. For example, the bond dimension of the matrix

product representation of Υk:0 indicates the size of the

system required to store the memory between time steps; it

is unity (no memory) only in the case of a Markov process.

This clearly has importance for the efficiency of numerical

simulations of complex quantum systems.

Discussion.— We have used the process tensor framework

to introduce an unambiguous condition for quantum Markov

dynamics. This condition is constructed in an entirely opera-

tional manner; and it meaningfully corresponds to the classi-

cal one in relevant settings. We have then used this condition

to derive a family of measures for non-Markovianity, includ-

ing one with a natural interpretation in terms of hypothesis

testing with a Markovian model. Our measure will there-

fore enable experimenters to incrementally construct better

models for a given system, by accounting for non-trivial non-

Markovian memory. By means of the Trotter formula we can

also extend the measure for non-Markovianity to continuous

processes.

There are well-known methods to develop master equations

for Markov processes. We can meaningfully quantify the er-

ror associated with using such methods for non-Markovian

processes if we can bound their fidelity using Eq. (3). This

should be possible in many cases, since large environments

tend not to retain long-term memory. We anticipate that most

processes of physical interest will be almost Markovian and

the corresponding process tensor should be highly sparse with

a block-diagonal structure. In fact, equipped with a suitable

measure on the space of Choi states, our Proposition allows

for quantitative statements about typical non-Markovianity to

be made, though we leave this for future work.

Because it captures all operationally accessible memory

effects (and no more), the framework we have introduced

in this Letter enables the unambiguous comparison of non-

Markovianity between different systems. In particular, the

fact that it puts quantum and classical processes on the same

footing, will allow for a meaningful quantification of the ad-

vantages (or not) that quantum mechanics brings when using

memory as a resource.
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Appendix A: Proof of quantum Markov condition (main Theorem)

The first statement follows trivially from the definition of a quantum Markov process: if the inequality in Eq. (2) holds, then

the state at l depends on the past beyond the input P
(s)
k .

We now proceed to prove the converse statement: if the left and right sides of Eq. (2) are equal for a complete, linearly

independent set of controls, they will be equal for any pair of controls, implying that the process is Markovian. First, consider

expanding the process tensor for a general control sequence, prior to a causal break, in terms of the basis {A
(µ,ν)

j

j }:

ρl(P
(s)
k ,Π

(r)
k ;Ak−1:0) =Tl:0

(

P
(s)
k ⊗Π

(r)
k ,Ak−1:0

)

=
∑

~µ,~ν,µk

αr,µk
α(~µ,~ν) ρl

(

P
(s)
k ⊗Π

(µk)
k ;A

(µ,ν)
k−1

k−1 ; . . . ;A
(µ,ν)

1

1 ;A
(µ,ν)

0

0

)

, (A1)

where we are using the same notation as in Ref. [31]. We have also expanded the POVM element Π
(r)
k =

∑

µk
αr,µk

Π
(µk)
k in

terms of an informationally-complete set of basis POVM elements {Π
(µk)
k }, and have assumed no further operations are applied

between time steps k and l (the following proof straightforwardly generalizes to the case where later operations are applied).

Using the definition in the main text, we can rewrite Eq. (A1) in terms of conditional states as

ρl(P
(s)
k ,Π

(r)
k ;Ak−1:0) =

∑

~µ,~ν,µk

αr,µk
α(~µ,~ν)pl(µk, ~µ, ~ν)

× ρl(P
(s)
k |Π

(µk)
k ;A

(µ,ν)
k−1

k−1 ; . . . ;A
(µ,ν)

1

1 ;A
(µ,ν)

0

0 ), (A2)

where pl(µk, ~µ, ~ν) is the joint probability distribution for the outcome corresponding to Π
(µk)
k as well as all previous basis

operators. If we now assume that Eq. (2) holds for each of our finite set of basis elements, i.e., the conditional state is the same

for each outcome Π
(µk)
k and for each set of basis operations {A

(µ,ν)
j

j }, we can take the state out of the sum:

ρl(P
(s)
k ,Π

(r)
k ;Ak−1:0) =

∑

~µ,~ν,µk

αr,µk
α(~µ,~ν)pl(µk, ~µ, ~ν)ρl(P

(s)
k |Π

(µk)
k ;A

(µ,ν)
k−1

k−1 ; . . . ;A
(µ,ν)

1

1 ;A
(µ,ν)

0

0 )

=
∑

~µ,~ν,µk

αr,µk
α(~µ,~ν)pl(µk, ~µ, ~ν)ρl(P

(s)
k |Π

(µ′

k)
k ;A

(µ,ν)′
k−1

k−1 ; . . . ;A
(µ,ν)′

1

1 ;A
(µ,ν)′

0

0 )

=ρl(P
(s)
k )

∑

~µ,~ν,µk

αr,µk
α(~µ,~ν)pl(µk, ~µ, ~ν). (A3)

Since, by definition, the conditional state ρl(P
(s)
k ) is a trace one object, it must be that

∑

~µ,~ν,µk

αr,µk
α(~µ,~ν)pl(µk, ~µ, ~ν) = tr[ρl(P

(s)
k ,Π

(r)
k ;Ak−1:0)] = pl(Π

(r)
k ;Ak−1:0). (A4)

Dividing through by this quantity in Eq. (A3), we find an expression for the overall conditional state:

ρl(P
(s)
k |Π

(r)
k ;Ak−1:0) =

ρl(P
(s)
k ,Π

(r)
k ;Ak−1:0)

pl(Π
(r)
k ;Ak−1:0)

= ρl(P
(s)
k ), (A5)

which is independent of the measurement outcome Π
(r)
k and the past history of operations Ak−1:0. Despite only assuming

Eq. (2) holds for a fixed set of inputs, we have shown that it holds for any possible input prior to the causal break. Ergo, the

process is Markovian. �

Appendix B: Examples

We have given a necessary and sufficient conditions for a quantum process to be Markovian. Here, using our formalism we

present examples where various non-Markovianity witnesses fail to detect non-Markovian behaviour. The importance of these

witnesses should be stressed: they enable efficient criteria to determine whether a process is non-Markovian in many cases.
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Figure 2. A CP-divisible, but non-Markovian process. (a) A qubit system in an arbitrary state ρS evolves according to the Hamiltonian

HSE = g

2
σx ⊗ x̂ along with an environmental position degree of freedom, which is initially uncorrelated with a Lorentzian wavefunction

〈x〉ψ = ψE(x) =
√

γ/π/(x + iγ). (b) The reduced dynamics of the system is pure dephasing in the σz basis, and can be written

exactly in GKSL form, i.e., if the system is not interfered with, the evolution between any two points is a CP-map of the following form:

ρ(tj) = exp(Lδtij)[ρ(ti)], where δtij = tj − ti. It is therefore CP-divisible [6, 7, 29]. (c) If an X operation (X [ρ] = σxρσx) is performed

at some time t2, then the dynamics reverses for a period δt12, such that the state at time t2 + δt12 is equal to the initial state ρS up to a further

X operation. The subsequent evolution is again pure dephasing. This behaviour constitutes a non-Markovian memory.

1. Divisibility

Our first example is taken from Ref. [41], and depicted here in Fig. 2. The authors of Ref. [41] consider a qubit coupled to a

continuous degree of freedom. They show that the exact dynamics of the qubit are fully CP-divisible, i.e., they are described by

a time-independent generator L in Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) form. This implies Λt:0 = Λt:τ ◦ Λτ :0 for

any τ < t and all Λx:y are CPTP maps. Under this evolution, the off-diagonal elements of the qubit decay exponentially in time

(resulting from the entanglement growth between system and environment). However, it is shown that applying an X operation

to the system at time t2 > t1 and then at 2t2 − t1 fully returns the system to its state at t1. Reversal of this exponential decay,

which occurs for a time that depends on the system’s history, implies that the dynamics are non-Markovian even according to, for

example, the trace-distance distinguishability criterion discussed below. By introducing a causal break, it is also straightforward,

if tedious, to show that it is also non-Markovian according our Theorem. This is an example of a process where the memory

effects only appear in multi-time correlations.

However, in Ref. [27] a CPTP map Λ is defined to be Markovian if it can be written as Λ = eL. The motivation for this approach

is to determine whether is Λ is related to a valid generator for GKSL dynamics. As mentioned already, the example of Ref. [41]

leads to dynamics of exactly this form, with positive and time-independent rate coefficients. Therefore, the snapshot approach

would find this example to be Markovian. As we have argued, these dynamics are indeed non-Markovian, demonstrating the

limitations of the snapshot method.

2. Trace distance

Figure 3. A monotonically trace-distance decreasing, but non-Markovian process. (a) System and environment (both qubits) evolve under a

partial swap operation Uj:i = exp(iSωδtij) = cosω(tj − ti)✶ ⊗ ✶ + i sinω(t2 − t1)S. (b) If a measurement is made at some time t2 and

fresh pure state P is prepared, then the subsequent reduced dynamics Λ(n, r) depends on the measurement outcome Π(r) and the choice of

initial state ρ
(n)
S at time t1. However, for ω(t3 − t1) ≤ π/2, the process is monotonically trace-distance distinguishability decreasing.

Consider the circuit presented in Fig. 3. The initial state of the system-environment at time t1 is ρ
(n)
SE(t1) = ρnS ⊗ ✶/2,

where the initial system state is chosen from some fixed set, labelled by n. After evolution under the partial swap op-

eration U2:1 = exp(iSωδt12), the total state at some later time t2 is given by ρ
(n)
SE(t2) = cos2(ωδt12)ρ

n
S ⊗ ✶/2 +

sin2(ωδt12)✶/2⊗ρnS+i cos(ωδt12) sin(ωδt12)[S, ρ
n
S⊗✶/2]. The action on the system alone corresponds to depolarising channel

Λ2:1 = cos2(ωδt12)I+sin2(ωδt12)✶, such that the state of the system at time t2 is ρnS(t2) = cos2(ωδt12)ρ
n
S +sin2(ωδt12)✶/2.
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Now suppose we initialise the system in two different states. The trace distance between these two states at a later time t3 is

tr |ρmS (t2)− ρnS(t2)| = cos2(ωδt12) tr |ρ
m
S − ρnS | . (B1)

This is a monotonically decreasing function in the interval ωδt13 ∈ [0, π/2]. Therefore in this interval the process will be labeled

Markovian as determined by the measure proposed in Ref. [9].

However, consider a measurement on the system {Π(k)} followed by preparation in pure state P at time t2. The (normalised)

total state after this causal break depends on the outcome of the measurement Π(r) and is given by ρ
(n,r)
SE (t2) = P ⊗ ρ

(n,r)
E (t2),

where the operator on the environment is

ρ
(n,r)
E (t2) =

trS

[

ρ
(n,r)
SE (t2)Π

(r)
]

tr
[

ρ
(n,r)
SE (t2)Π(r)

]

=
(

tr[ρnS(t2)Π
(r)] cos2(ωδt12) ✶+ tr[Π(r)] sin2(ωδt12) ρ

n
S

+ i cos(ωδt12) sin(ωδt12)trS

[

Π(r)[S, ρnS ⊗ ✶]
])

/
(

2tr
[

ρnS(t2)Π
(r)

]

cos2(ωδt12) + tr[Π(r)] sin2(ωδt12)
)

. (B2)

The crucial point is that, after the causal break, there are no correlations with the environment, and the state of the system is

reset to a pure state. Moreover, independent of the choice of the initial system state, i.e. n, the trace distance between the states

of the system is zero after the fresh preparation. However, the environment state still depends on the initial state of the system

(and the measurement outcome). If we let the evolution continue to some time t3, the state of the system is

ρnS(t3) = cos2(ωδt23)P + sin2(ωδt23)ρ
(n,r)
E (t2) + i cos(ωδt23) sin(ωδt23)trS

(

[S, P ⊗ ρ
(n,r)
E (t2)]

)

=Λ(n, r)[P ]. (B3)

This state is a function of ρ
(n,r)
E (t2), which in turn is a function of the initial choice n and measurement outcome r. Therefore,

this process is operationally non-Markovian according to our main Theorem. For it to be operationally Markovian, the state of

the system at t3 (after the causal break) must only be a function of P , the system-environment unitary interaction, and the state

of the environment, which cannot be a function of past states of the system.

3. Non-Markovianity without correlations

Figure 4. A non-Markovian process without S-E correlations. The initial S-E state is the product state ρS⊗ρE , where system and environment

have the same dimension. After time t1 a SWAP operation is performed between them, such that the state at time t2 is ρE ⊗ ρS . Another SWAP

operation is then performed. The joint S-E state is always a product, i.e., there are never any S-E correlations. However, the system state at

t3 is always ρS (the state at t1) independently of what operation is performed at t2.

As we mentioned earlier, when the initial S-E correlations contribute to the dynamics of S, the process is non-Markovian.

There are several witnesses for detecting initial S-E correlations [13–15, 17–19, 44]. However, correlations are not always

important for quantum non-Markovian dynamics. Here we present a counter example.

Consider the two-step discrete process depicted in Fig. 4, where both the S-E unitaries are SWAP operations S. We prepare

any state ρS initially for the system, and the initial state of the environment is ρE . After the first SWAP operation, the system

will be in state ρE , independent of its initial state. While the environment will be in in the state ρS . Now, once again we can

make any operation on the system we like (including a causal break) and allow for the second step in the process to take place.

Independent of our preparation at the intermediary step, the system’s state at the next step will be the same as the initial state of

the system ρS . Since the reduced dynamics between times t2 and t3 clearly depends on the system state at earlier time t1, the

process is non-Markovian according to our Theorem. However, at no point in the process were there any correlations between

the system and the environment. Note that if ρS and ρE are pure, then they also cannot be correlated to any third party.
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