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Preface

Operational Modal Analysis is the testing procedure yielding experimental

estimates of the modal parameters from measurements of the structural

response only.

This book reports relevant information and established research results about

Operational Modal Analysis in a unified framework. Most of the material in the

book is currently disseminated throughout several books and journal papers. An

effort has been made to organize this material in a book entirely focused on

Operational Modal Analysis. The different aspects of output-only modal testing,

from test design to post-processing of results, are analyzed. The book is intended to

provide a fundamental theoretical and applicative resource for professional

engineers and researchers involved in modal testing of civil structures.

It has been conceived as a guide through the most relevant theoretical and

practical concepts in view of the development of a customized system for output-

only modal testing based on programmable hardware. The illustrated essential

theory provides a general framework to acquire the ability and understanding of

the techniques. On the other hand, the large attention devoted to the implementation

details provides a valuable stimulus in approaching the study. The applicative

perspective makes learning easy and the book suitable for a wide range of readers.

In order to simplify the practical implementation of concepts and methods, the use

of LabVIEW for software and system development is recommended, because it is

characterized by an advantageous learning curve. Moreover, it is very powerful and

versatile, making possible the integration of measurements and data processing in a

single platform.

Under this premise, it is possible to understand the choice of focusing

the attention on implementation details rather than heavy mathematical proofs.

The mathematics is kept as simple as each topic allows; most of the equations are

functional to the prompt implementation of algorithms and methods by the reader.

The basic software accompanying the book is oriented to fit the needs of both the

modal analysts on one hand, and undergraduate/graduate students, researchers and

developers on the other hand. The latters, in fact, are usually interested in writing

their own code for further developments or business opportunities, and the

accompanying software serves as a reference. Test engineers, instead, can find

here the tools and the fundamental information to promptly start the modal tests and

properly interpret the results.
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The material is presented at a level suitable for upper-level undergraduate or

post-graduate students and professional engineers. In fact, all the material in the

book and the organization of the topics are based on the courses given by the

authors at undergraduate and graduate students of the University of Molise and the

University of Naples Federico II as well as the field experience made in the context

of the spin-off company S2X s.r.l. An attempt has been made to produce a self-

contained book, with basics of structural dynamics and modal analysis as the only

prerequisite to understand most of the presented material. Sufficient details are

given in the chapters to cover the necessary multidisciplinary skills that are required

to the modal analyst. Several references are also provided at the end of each chapter

for the reader who is interested in more details about the various topics.

A number of explanatory applications will help the reader in gaining confidence

with the concepts and understanding the potential of output-only modal testing.

Most of the analyzed case studies are applications to real structures. This circum-

stance permits to highlight issues and challenges of output-only modal testing that

are often encountered in the practice.

The last part of the book is focused on automated Operational Modal Analysis,

providing an outlook on its promising applicative perspectives in the field of

vibration-based Structural Health Monitoring. An overview of the latest

developments in the field of automated Operational Modal Analysis is presented.

It basically represents a particular viewpoint about the matter, since a wide consen-

sus in the definition of the “best methods” for automated output-only modal

identification has not been reached, yet. However, the analysis of the main issues

related to automation, together with the attention devoted throughout the book to

relevant aspects of data acquisition and storage (including storage in MySQL

relational databases), aims at linking the material in this book with the wider area

of civil Structural Health Monitoring, that is currently a very active research field.

Since this is a new book, instructors, students, and professional engineers are

invited to write us (carlo.rainieri@unimol.it, giovanni.fabbrocino@unimol.it)

if they have questions, suggestions, or if they identify errors or relevant issues.

We thank you in advance for the time you will spend for this.

Termoli, Italy Carlo Rainieri

Giovanni Fabbrocino
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Introduction 1

1.1 Operational Modal Analysis: A New Discipline?

The use of experimental tests to gain knowledge about the dynamic response

of civil structures is a well-established practice. In particular, the experimental

identification of the modal parameters can be dated back to the middle of the

Twentieth Century (Ewins 2000). Assuming that the dynamic behavior of the

structure can be expressed as a combination of modes, each one characterized by

a set of parameters (natural frequency, damping ratio, mode shape) whose values

depend on geometry, material properties, and boundary conditions, Experimental

Modal Analysis (EMA) identifies those parameters from measurements of the

applied force and the vibration response.

In the last decades the principles of system identification and the experimental

estimation of the modal parameters have provided innovative tools for the under-

standing and control of vibrations, the optimization of design, and the assessment of

performance and health state of structures. In fact, even if the Finite Element

(FE) method and the fast progress in computing technologies have made excellent

analysis tools available to the technical community, the development of new high-

performance materials and the increasing complexity of structures have required

powerful tools to support and validate the numerical analyses. In this context the

experimental identification of the modal properties definitely supports the engineers

to get more physical insight about the dynamic behavior of the structure and to

discriminate between the errors due to discretization and those due to simplified

or even wrong modeling assumptions. Moreover, since the vibration response

originates from the modes, which are inherent properties of the structure, forces

exciting the structure at resonant frequencies yield large vibration responses that

can result in discomfort or even damage. Regular identification of modal para-

meters and analysis of their variation can support the assessment of structural

performance and integrity.

Since the origin of EMA, testing equipment and data processing algorithms have

significantly evolved. EMA is currently a well-established field, based on a sound
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theoretical background. An extensive illustration of EMA techniques can be found

in a number of books (Ewins 2000, Heylen et al. 1998, Maia et al. 1997) widely

adopted as references by the scientific and technical community.

EMA has been applied in different fields, such as automotive engineering,

aerospace engineering, industrial machinery, and civil engineering. The identification

of the modal parameters by EMA techniques becomes more challenging in the case

of civil engineering structures because of their large size and low frequency range.

The application of controlled and measurable excitation is often a complex task that

requires expensive and heavy devices. For this reason the community of civil

engineers has more recently focused the attention on the opportunities provided by

Operational Modal Analysis (OMA). OMA can be defined as the modal testing

procedure that allows the experimental estimation of the modal parameters of the

structure frommeasurements of the vibration response only. The idea behind OMA is

to take advantage of the natural and freely available excitation due to ambient forces

and operational loads (wind, traffic, micro-tremors, etc.) to replace the artificial

excitation. So, they are no more considered as disturbance but, on the contrary,

they make possible the dynamic identification of large civil structures. Since OMA

requires only measurements of the dynamic response of the structure in operational

conditions, when it is subjected to the ambient excitation, it is also known under

different names, such as ambient vibration modal identification or output-only modal

analysis.

Over the years, OMA has evolved as an autonomous discipline. However, most

of the OMA methods have been derived from EMA procedures, so they share a

common theoretical background with input–output procedures. The main differ-

ence is in the formulation of the input, which is known in EMA while it is random

and not measured in OMA. Thus, while EMA procedures are developed in a

deterministic framework, OMAmethods can be seen as their stochastic counterpart.

In the civil engineering field, OMA is very attractive because tests are cheap and

fast, and they do not interfere with the normal use of the structure. Moreover, the

identified modal parameters are representative of the actual behavior of the structure

in its operational conditions, since they refer to levels of vibration actually present in

the structure and not to artificially generated vibrations. On the other hand, the low

amplitude of vibrations in operational conditions requires very sensitive, low-noise

sensors and a high performance measurement chain. Additional limitations come

from the assumption about the input, as mentioned, for instance, in Sect. 1.3.

Nevertheless, it represents an attractive alternative to input–output modal analysis

and it shares with EMA most of the fields of application of modal identification

results. In some cases, such as testing of historical structures (where it reduces the

invasiveness of tests and the risk of damage) or vibration-based health assessment

and monitoring (where the replacement of the artificial excitation with ambient

vibrations makes it especially suitable for automation), OMA outperforms EMA,

and this justifies its increasing popularity in the civil engineering community.

Research findings and several successful applications of OMA in different

fields are documented in a number of Journals and proceedings of international

conferences such as the annual IMAC conference (http://www.sem.org/CONF-

IMAC-TOP.asp) organized by the Society of Experimental Mechanics, or the
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biannual ISMA conference (http://www.isma-isaac.be) in Leuven (Belgium).

The large research activity in the field, focused on both the theoretical basis and

the applications of OMA, has motivated the creation, in 2005, of an international

conference entirely focused on OMA, the International Operational Modal Analysis

Conference (IOMAC). Even if some tutorial and overview papers about OMA have

been published over the years, books aimed at explaining the basics of OMA testing

to a wide audience are still missing. The present book is intended as a guide through

the most relevant theoretical and practical aspects of OMA. It provides an extensive

description and discussion about OMA, with the details for software implementation

of the most popular data processing methods. Moreover, it provides criteria for the

selection of the measurement chain and illustrates how a customized measurement

system can be developed by means of programmable hardware. A number of

explanatory examples and an outlook on the perspectives of OMA in the field of

Structural Health Monitoring (SHM) will help the reader in better understanding the

concepts and potentialities of OMA.

Several relevant references are included at the end of each chapter. They provide

an overview, albeit partial and subjective, of the scientific literature about OMA.

The reader interested in more details about specific topics can find in the list of

references a valid support to extend the information reported in the book.

The larger attention devoted to the implementation details with respect to

theoretical background and analytical derivations is motivated by the wide variety

of potential readers the book is meant to. They include students and academicians

who could be interested in developing their own software and systems for study

and research purposes. Thus, the focus on implementation details provides a

valuable stimulus in approaching the study of OMA. On the other hand, the

illustration of relevant aspects of the theoretical background of OMA provides

a general framework to acquire the ability and understanding of the techniques.

The book is useful also for the nonspecialist or manager to get an insight into the

matter, its opportunities, and limitations, and to go beyond that bizarre feeling of a

“mysterious black box.”

The additional material accompanying the book (datasets, software) helps

the reader in familiarizing with OMA, while the modal analyst can find the tools

and the fundamental information to promptly start the modal tests and properly

interpret the results. The basic software accompanying the book can also serve to

test a number of OMA methods in view of the choice among the different com-

mercial software packages available on the market. Theory, algorithms, and imple-

mentation details have been organized by defining some milestones in learning and

always with the application in mind. The applicative perspective makes learning

easy and the book suitable for a wide range of readers.

1.2 Preliminary Concepts

A preliminary, brief discussion about signals and systems is definitely useful to

clarify the general context of application of the concepts illustrated in this book and

to set some nomenclature. The summarized notions about signals, systems, and
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structural dynamics indirectly define the required cultural background to approach

the study of OMA. The interested reader can refer to the literature for more details

and a more systematic analysis of the herein-reported concepts (see, for instance,

Chopra 2000, Ewins 2000, Bendat and Piersol 2000).

A signal is any physical quantity varying with respect to one or more indepen-

dent variables and associated to information of interest. A system converts an input

signal into an output signal. Mapping the response to a given stimulus reveals

important information about the system. For instance, the analysis of swinging of a

building (output signal) under wind load (input signal) makes possible the identifi-

cation of the dynamic characteristics of the building.

Typical engineering problems are in the form of forward problems. For instance,

they aim at estimating the response of a known system to a given input. However,

attention is herein focused on inverse problems, where the output is known but

either the input or the system characteristics are unknown. In particular, attention is

focused on the identification of the characteristics of the system when the output

signal is known (and some assumptions are made about the input).

The term noise refers to any undesired signal superimposed on the signal of

interest. The amount of noise in a signal is quantified by the signal-to-noise ratio

(SNR), expressed in dB as follows:

SNR ¼ 20log
As

An

� �

ð1:1Þ

where As and An denote the signal amplitude and the noise amplitude (expressed in

the same units), respectively. When the SNR is low, the signal of interest can become

indistinguishable. Thus, appropriate data acquisition strategies must be adopted to

minimize the level of noise that inevitably affects measurements (Chap. 3).

Complex signals may be decomposed into elemental signals. Examples of

elemental signals are the impulse and the sinusoid. When the signal is decomposed

into scaled and shifted impulses, a time domain analysis takes place; if, instead, the

signal is decomposed into scaled sinusoids of different frequency, analysis is carried

out in the frequency domain. It is always possible to convert a signal from one

domain to the other, so the final choice is usually dictated by considerations about

computational efficiency, ease of data interpretation, and noise reduction techniques.

The dynamic behavior of physical systems is often described by defining an

ideal constant-parameter linear system (also known as linear time-invariant—

LTI—system, Fig. 1.1). A system is characterized by constant parameters if all its

fundamental properties are invariant with respect to time. Moreover, it shows a

linear mapping between input and output if the response characteristics are additive

and homogeneous. As a result, the response of the system to a linear combination of

given inputs equals the same linear combination of the system responses to the

individual, separately analyzed inputs. The constant-parameter assumption is

reasonably valid for several physical systems encountered in the practice. However,

its validity depends on the extension of the considered time interval. For large
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observation periods it could be not realistic. This is the case, for instance, of

structures subjected to continual vibrations, where fatigue damage can cause a

change in the stiffness of the structure. The time intervals of practical interests

for the output-only modal testing are such that it is possible to consider the structure

as time invariant. The validity of the linearity assumption for real structures

depends not only on the characteristics of the structure, but also on the magnitude

of the input. Physical systems typically show nonlinear response characteristics

when the magnitude of the applied load is large. Moreover, nonlinearities are often

not associated to abrupt changes in the response; the presence of a transition makes

the problem even more complex. However, for the applications of our interest, the

response of many structures can be reasonably assumed to be linear, since ambient

excitation yields small amplitude vibrations.

From a general point of view, the dynamics of a civil structure, like any

mechanical system, can be described in terms of its mass, stiffness, and damping

properties, or in terms of its vibration properties (natural frequencies, damping

ratios, and mode shapes) or in terms of its response to a standard excitation.

The first approach is usually adopted when a FE model of the structure is set.

The dynamic properties of structures describe their free vibration response (when

no force or acceleration is applied) or, in other words, the ways in which they

“naturally” vibrate. In fact, under certain assumptions, the dynamic response of the

structure can be decomposed into a set of vibration modes, each one with a charac-

teristic deflected shape of its own: the mode shape. The corresponding natural

frequency and damping ratio govern the motion of the structure according to one of

these shapes. Natural frequencies and mode shapes can be obtained from the mass

and stiffness properties of the structure through the solution of an eigenproblem.

Under the assumption of proportional viscous damping, the modes of the damped

structure coincide with those of the undamped structure. Thus, it is possible to

compute the real eigenvalues and eigenvectors (associated with the natural

frequencies and the mode shapes) of the system without damping and, in a second

stage, apply a correction to the modal responses to account for the effect of damping.

It is worth pointing out that, while the eigenfrequencies of undamped or

proportionally damped systems are univocally determined, the eigenvectors are

not. In fact, the eigenproblem leaves the scaling factor undetermined. However,

it affects only the amplitude, while the shape (that is to say, the relative values of

the components of the mode shape vector) remains unchanged. For this reason,

conventional scaling procedures are usually adopted to normalize the mode

shape vectors. A frequently adopted scaling scheme is based on the orthogonality

of natural modes with respect to the mass and stiffness matrices of the structure.

The pre- and post-multiplication of those matrices by the modal matrix [Φ],

Fig. 1.1 Schematic

illustration of LTI system
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which collects the mode shape vectors in columns, yield the following diagonal

matrices:

Φ½ �T M½ � Φ½ � ¼
.

.

.

mr

.

.

.

2

6

6

4

3

7

7

5

ð1:2Þ

Φ½ �T K½ � Φ½ � ¼
.

.

.

kr

.

.

.

2

6

6

4

3

7

7

5

ð1:3Þ

Thus, it is possible to normalize the mode shape vectors in a way that the matrix

of (1.2) equals the identity matrix. According to this scaling scheme, the elements

on the main diagonal of the matrix of (1.3) correspond to the eigenvalues. The

relationship between the mass normalized mode shape {ψ r} and the unscaled one

{ϕr} for the r-th mode is:

ψ rf g ¼ 1
ffiffiffiffiffiffi

mr
p ϕrf g ð1:4Þ

where:

mr ¼ ϕrf gT M½ � ϕrf g ð1:5Þ

is also called modal mass.

In the more general case of nonproportional viscous damping, the free vibration

solution is determined from a complex eigenproblem. The obtained eigenvalues as

well as the corresponding complex-valued eigenvectors are in complex conjugate

pairs. In practical applications of OMA, real-valued mode shapes are typically

identified, but complex mode shapes are sometimes estimated, too. Complex

mode shape vectors can be the result of nonproportional damping or other causes,

so it is important to recognize whether they are physical or not. More details are

reported in Chap. 4.

Other descriptors of the dynamics of constant-parameter linear systems

are defined in terms of their response to “standard” excitations. When the excita-

tion is represented by a unit impulse input, the dynamics of the system can be

described by its impulse response function (IRF). When the excitation is a unit-

amplitude sinusoidal force applied at every frequency in a given range, another

descriptor is obtained: it is the so-called frequency response function (FRF)

defined over the considered range of frequency. As with the modal parameters,

FRFs and IRFs are univocally determined from the mass, damping, and stiffness

properties of the structure. Moreover, they can also be expressed in terms

of modal parameters (Chap. 4). Even if each conversion from one model to

6 1 Introduction

http://dx.doi.org/10.1007/978-1-4939-0767-0_4
http://dx.doi.org/10.1007/978-1-4939-0767-0_4


the other is theoretically reversible (for instance, it is possible to compute the

modal properties from the mass, stiffness, and damping matrices, and vice versa),

in the case of experimental investigations only a limited subset of points of the

structure are measured, and not all the modes are identified. The incomplete

information has serious consequences on the possibility to reconstruct the mass,

damping, and stiffness matrices from the results of modal testing.

Consider for simplicity a Single Degree of Freedom (SDOF) system, that is to

say a system whose dynamic response is described by a single displacement

parameter, as opposed to Multi Degree of Freedom (MDOF) systems, where the

displaced positions of all masses with respect to their initial configuration are

described by a number of independent displacement parameters (degrees of

freedom—DOFs). The following concepts can be easily extended to general

MDOF systems by appropriate matrix notation. For any arbitrary input f(t), the

output of the SDOF system is given by the following convolution integral of

the IRF h(τ) with the input:

y tð Þ ¼
ð1

0

h τð Þf t� τð Þdτ: ð1:6Þ

The lower limit of integration is zero since the LTI system has been assumed

to be physically realizable (causal), that is to say, it responds only to past inputs.

The assumption of causality, in fact, implies that:

h τð Þ ¼ 0 8τ < 0 : ð1:7Þ

A LTI system is also stable if every bounded input function f(t) produces a

bounded output y(t).

Alternatively, a physically realizable and stable LTI system can be described by

the FRF H(ω). The convolution integral of (1.6) reduces to a simple multiplication

when it is expressed in terms of the FRF and the Fourier transforms of the input—

F(ω)—and the output—Y(ω)—(see also Chap. 2):

Y ωð Þ ¼ H ωð ÞF ωð Þ: ð1:8Þ

A LTI system cannot cause any frequency translation. It can only modify the

amplitude and phase of the applied input. Its FRF is a function of the sole

frequency, while it is not function of either time or system excitation.

From the experimental point of view, FRFs are estimated by forced vibration

tests. Depending on the number of applied inputs and the number of measured

outputs, four types of testing scheme can be identified: Single Input Single Output

(SISO), Single Input Multiple Output (SIMO), Multiple Input Single Output

(MISO), Multiple Input Multiple Output (MIMO). The output-only modal tests,

which represent the subject of this book, are always of the MIMO type because of

the assumptions about the input (see also Chap. 4).
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1.3 Fundamental Principle and Applications of OMA

OMA aims at estimating the dynamic properties of LTI systems from records of

their dynamic response only. Thus, the unknown environmental and operational

loads play a fundamental role in testing and in the subsequent modal analysis.

If, on one hand, the environmental excitation is advantageous when large civil

structures are tested, on the other hand data acquisition and, above all, data

processing require supplemental attention to carry out successful output-only

modal tests. In fact, since the input is unmeasured, some characteristics of the

excitation can be erroneously confused with dynamic properties of the structure

under test. Moreover, since the test engineer has no control on the applied

excitation, the identification of closely spaced modes can be a more difficult

task with respect to EMA. Specific actions and functional checks are needed to

ensure that good quality information about closely spaced modes can be extracted

from the measured data. For instance, this objective can be achieved by ensuring a

sufficient amount of independent information in the data. In Chapter 4 it is shown

that the output power spectral density (PSD) matrix can be expressed in terms of

the FRF matrix of the structure and the input PSD matrix (4.12). As a conse-

quence, its rank (defining the number of independent rows or columns in the

matrix) cannot be larger than the rank of the individual matrices appearing in the

product. This implies that closely spaced modes cannot be estimated if the rank of

the input PSD matrix is equal to one. This happens when only one input is present,

or the inputs are fully correlated. It can be also the case when free decay data are

used for output-only modal identification. In fact, in this case multiple sets of

initial conditions are needed to handle closely spaced modes, since multi-output

measurements with respect to a single set of initial conditions are equivalent to a

SIMO scheme (Zhang et al. 2005).

Rank deficiency over a limited frequency band in the proximity of the consi-

dered closely spaced modes can partially hide the actual physical properties of the

structure (for instance, by revealing only one of the modes, or a combination of the

two modes). Thus, a proper design of sensor layout and a preliminary evaluation of

the sources of excitation acting on the structure in its operational conditions play a

primary role in ensuring the possibility to obtain high quality information from

modal testing. As a general rule, a large number of sensors allow maximizing the

rank of the FRF matrix, while several uncorrelated inputs ensure the maximization

of the rank of the input PSD matrix. On the contrary, correlated inputs or input

applied in a single point limit the rank of the input PSD matrix; sensors placed

in nodes of the mode shapes or multiple sensors measuring the same DOF

(thus, adding no new independent information) limit the rank of the FRF matrix.

Some recommendations for the definition of sensor layout for recurrent typologies

of civil structures are reported in Chap. 3. About the input, moving loads acting on

the structure or environmental loads, such as wind and traffic, force the rank of the

input PSD matrix to values larger than one.
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Despite of the differences in terms of excitation, output-only modal testing

consists of the same three basic steps encountered in classical input–output testing:

• Planning and execution of tests: this step concerns the definition of the experi-

mental setup (measurement chain, sensor layout, attachment of sensors, cable

paths, etc.) and the data acquisition parameters (duration of records, sampling

frequency).

• Data processing and identification of the modal parameters: this step concerns

the validation and pre-treatment (filtering, decimation, etc.) of the acquired data,

some signal processing operations (for instance, for the computation of correla-

tion functions, PSD functions, random decrement functions, transmissibility

functions, etc.), and the estimation of the modal parameters.

• Validation of the modal parameter estimates.

The estimated modal parameters are usually not the final objective of the test.

In fact, they are often used as input or reference for a number of applications. Model

updating (Friswell and Mottershead 1995, Ewins 2000) is probably the most

common. The modal parameter estimates provided by FE models are often not

fully reliable, due to inaccuracies related to discretization and model setting. As a

result, the numerical model is typically not representative of the actual dynamic

behavior of the structure and a correction is needed to make it more adherent to

the experimental observations. The correction is based on the evaluation of the

correlation between experimental and numerical estimates of the modal properties

and on a guided refinement of the model, so that, after the update, it can more

reliably predict the dynamic behavior of the structure. The validation or, eventually,

the calibration of the model ensure a more accurate prediction of the structural

response to complex excitations and a more reliable evaluation of the effects of

hazardous natural or manmade events. Another typical application of the updated

model is damage detection (see, for instance, Teughels and De Roeck 2004).

The identified modal parameters are sometimes used for troubleshooting.

A typical example consists in the assessment of the cause of excessive vibrations.

In this case, the estimated modal parameters can be used also for sensitivity

analyses (Ewins 2000) and structural modification. In fact, they allow predicting

the effects of structural modifications and evaluating a variety of solutions for the

vibration problem without incurring in the high costs usually associated to actual

interventions. Assuming that the structural modifications are sufficiently small, a

linear sensitivity analysis makes possible the identification of the most sensitive

parts of the structure for the application of the structural modification and the

solution of the vibration problem.

A relevant field of application of the identified modal parameters is damage

detection and SHM. Vibration-based damage detection relies on the changes in

the dynamic properties of the structure caused by damage. Thus, given reference

estimates of the modal parameters of the structure in healthy conditions, the

integrity of the structure can be assessed, in principle, by comparing the subsequent

modal parameter estimates with the reference ones. The vibration-based damage

assessment of structures has received a considerable attention in the last few

decades, with the development of methods not only to detect the presence of
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damage, but also to localize and quantify it. An extensive review about these

techniques is available in the literature (Doebling et al. 1996, Sohn et al. 2003,

Farrar and Worden 2013). The main drawback of damage detection techniques

based on the analysis of the changes in the estimated modal properties is related to

the influence of boundary conditions and operational and environmental factors on

the estimates. Such an influence can produce changes in the modal parameter

estimates that are of the same order of magnitude as those due to damage. However,

in recent years a number of techniques able to remove the influence of environ-

mental factors on modal parameter estimates have been developed (see, for

instance, Deraemaeker et al. 2008, Magalhaes et al. 2012), thus raising a renewed

interest towards vibration-based damage detection. Another relevant limitation to

the extensive application of these damage detection techniques was the lack of fully

automated procedures for the estimation of the modal parameters of the monitored

structure. This issue has determined large research efforts in the last few years to

develop reliable and robust automated OMA techniques. This topic is extensively

discussed in Chap. 6.

An application of modal parameter estimates somehow related to vibration-

based SHM and to inherent limitations of OMA techniques is represented by the

estimation of the modal masses or, equivalently, the scaling factors of mode shapes.

In fact, since the input is not measured, only unscaled mode shapes can be obtained

from operational modal testing. For this reason, specific techniques for the estima-

tion of the scaling factors, based on the application of known structural modifi-

cations, have been developed. This topic is discussed in Chap. 5. The estimation of

the scaling factors makes possible, among the rest, the reconstruction of the FRF

matrix from the experimental results and the application of a specific class of

damage detection techniques (see, for instance, Doebling et al. 1998, Pandey and

Biswas 1994).

Additional applications concern load identification. In this case, the known

modal parameters are used to solve an inverse problem for the identification of

the unknown forces that produced a given measured response (Parloo et al. 2003).

1.4 Organization of the Book

The wide range of applications and the increasing demand for output-only modal

testing in the current civil engineering practice justify the increasing attention and the

large research efforts in the field of OMA observed in the last decade. The present

book has been conceived and prepared in order to transfer the OMA concepts from

academy to practice and foster the attraction of young students and researchers to this

discipline. For this reason, it is organized in clearly defined learning steps covering

the required interdisciplinary notions to train a thorough and effective modal analyst.

The topics discussed in the book encompass the fundamental theoretical notions, the

criteria for proper measurement execution, and the methods and criteria for an

appropriate and detailed data analysis. The integration of those three components is

the key for a full exploitation of the potentialities of OMA. The importance of mixing
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all the necessary theoretical and practical skills for a successful modal testing can be

easily realized by recognizing, for instance, that a well-trained test engineer must

be able to quickly identify anomalies in the measurements and the corresponding

possible technical solutions (they sometimes simply consist in the replacement of a

faulty connector or in the relocation of one or more sensors). This is possible only if

the modal analyst has a sound theoretical basis.

The balance between theoretical and practical aspects of OMA is highlighted

by the content of the different chapters. In Chapter 2 the basic notions of random

processes and inverse problems are reported. Chapter 3 is focused on the issues

related to measurement execution. Chapter 4 discusses the main models of the

dynamic behavior of structures, how these models are applied in the context of

OMA, the similarities and differences about different OMA methods, and the

procedures for post-processing and validation of experimental results.

In the illustration of the fundamental analysis tools (Chap. 2) and the theoretical

basis of OMA methods (Chap. 4), heavy mathematical derivations are avoided to

focus the attention on the concepts and their practical implications. The attention to

the applicative aspects is remarked by the detailed presentation of the algorithms

and implementation details of popular OMA methods and by the applications

proposed at the end of the next three chapters. The latter, in particular, are aimed

at the prompt practical verification of the previously discussed theoretical notions,

thus providing a valuable motivation to learning. In most of the proposed applica-

tions the reader has two options: he can develop his own systems and software

according to the reported algorithms and tutorials, or he can use the basic software

accompanying the book. The two options are conceived to fulfill the needs of

both academicians and technicians.

Guidelines for the application in the field of the concepts and notions reported in

the first chapters can be obtained from the analysis of the case studies discussed

in Chap. 5. Finally, Chapter 6 extensively analyzes the latest developments in the

field of OMA concerning the automated identification of the modal parameters.

At the end of the last two chapters no applications are proposed. The reason is that

Chap. 5 already has a practical character, while the topic discussed in Chap. 6

(automated OMA) is very recent. Thus, Chapter 6 basically reports the viewpoint of

the authors about the matter, since a wide consensus in the definition of the “best

methods” for automated output-only modal identification has not been reached, yet.

At the end of these preliminary notes and before the introduction of the

recommended platform for the implementation of the systems and procedures

discussed in this book, it is worth remarking two additional aspects concerning

the illustration of the topics. The adopted approach consists in making the various

topics “as simple as possible but not simpler”. For this reason, heavy mathematical

derivations are avoided, providing all the necessary references for the reader inter-

ested in more details; however, the mathematical description of concepts and

algorithms has been retained to ensure an autonomous learning basis and simplify

their practical implementation. The mathematical description of models and

methods is also functional to the understanding of the common characters behind

different OMA methods. Starting from a number of investigations reported in the
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literature, the unifying mathematical framework of the different OMA methods is

presented to highlight the similarities, in terms of theoretical background and

analysis tools, behind apparently unrelated procedures. Among the unifying

concepts of OMA, that of spatial (or modal) filtering needs to be mentioned for

its implications in a number of (both manual and automated) OMA procedures. It

consists in the isolation of the contribution of a mode based on the estimate of the

corresponding shape. This type of filtering can be applied in the frequency domain

as well as in the time domain and it requires a number of measurement channels not

lower than the number of active modes in the investigated frequency range. The

isolated modal response simplifies the estimation of the corresponding modal

parameters. Applications of this concept can be found in Chaps. 4 and 6.

The second and last remark concerns the detailed discussion reported in Chap. 3

about different aspects of measurement execution. Only if the quality of data

acquisition is satisfactory the success of the output-only modal identification is

guaranteed. On the contrary, there is no data processing method able to solve the

problems due to poor data acquisition. In other words, only if the measurement

chain is able to resolve the structural response in operational conditions the physical

information is present in the data and it can be extracted. Filtering, averaging, and

other data processing tools provide a valuable support to put in evidence this

information, but they are totally ineffective when the physical information is buried

in noise due to an inappropriate choice of the measurement chain. The signal must

be improved at the lowest level by careful design of test setup, adequate choice of

electronics, and proper isolation. In summary, a good modal analysis always starts

from good measurements. Be aware of it!

1.5 A Platform for Measurement Execution
and Data Processing

1.5.1 Generalities

The choice of the programming language for software implementation is always

personal and depends on the background and skills of the user. The algorithms and

systems described in the book can be easily implemented with any programming

language where advanced mathematical and data processing tools are available and

it is possible to manage the communication with the measurement hardware for

data acquisition. Based on the authors’ experience, this book recommends the

use of LabVIEW (www.ni.com/labview) because this was originally developed

with the objective of integrating measurement and data processing in a single

platform. It is characterized by an advantageous learning curve, which allows a

fast and easy development of systems and software, but it is also very powerful

and versatile. In fact, advanced functions and analysis tools are available and it

makes possible the communication with a large number of commercial devices.

An overview of relevant aspects about programming in LabVIEW is given in

this section, since all the proposed applications are discussed assuming LabVIEW
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as the common platform for system and software implementation. The choice of the

platform for measurement execution and data processing can obviously be different

but, for practical reasons, it is impossible to provide a tutorial for every program-

ming language. Nevertheless, since the algorithms are general, any other choice is

possible for their implementation, provided that the reader carries out the appro-

priate language translations.

LabVIEW programs are called Virtual Instruments, or VIs, because their appear-

ance and operation imitate physical instruments, such as oscilloscopes and

multimeters. LabVIEW contains a wide set of tools to acquire, analyze, display,

and store data, as well as for code troubleshooting (National Instruments 2005a).

Programming in LabVIEW requires the design and implementation of a user

interface, or Front Panel (Fig. 1.2), with controls and indicators, which are the

interactive input and output terminals of the VI, respectively. Figure 1.2 shows a

simple VI to analyze the variations of a signal and its spectrum for different

amplitudes of its components, a sinusoid and a random signal. The user can

interactively set the parameters of the signals by means of the controls.

Several types of controls and indicators are available. Examples of controls are

knobs, push buttons, dials, and other input mechanisms. Controls simulate instru-

ment input mechanisms and supply data to the block diagram (Fig. 1.3) of the VI.

Examples of indicators are graphs, LEDs, and other output displays. Indicators

simulate instrument output mechanisms and display the data acquired or generated

by the block diagram. Controls and indicators can handle different types of

variables; it is possible to distinguish:

• Numeric controls and indicators, such as slides and knobs, graphs, charts.

• Boolean controls and indicators, such as buttons and switches.

• String, path, array, cluster, enumerated type controls. . . each one associated to a

certain type of data.

Fig. 1.2 Front panel
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The management of the user interface is based on the related code developed in

the block diagram by using VIs and structures to get the control of the Front Panel

objects. Objects in the block diagram include terminals and nodes. Block diagrams

are built by connecting the objects with wires. The color and symbol of each

terminal indicate the data type of the corresponding control or indicator. Constants

are terminals that supply given data values to the block diagram.

An example of code is reported in Fig. 1.3, which shows the block diagram

associated to the Front Panel of Fig. 1.2. In this simple example, the management of

the user interface is based on a While Loop. The user sets the values of the controls

in the Front Panel and they are continuously acquired and sent to the VIs for signal

generation. The outputs of these VIs are then combined (added) and used to

compute the spectrum of the signal.

LabVIEW can also be used to communicate with hardware such as data acquisi-

tion, vision, and motion control devices, as well as GPIB, PXI, VXI, RS232, and

RS485 equipment. It can be both National Instruments and third party hardware.

Hardware configuration is carried out through a specific interface that is illustrated

in Chap. 3 in the context of the proposed application for the development of a

dynamic data acquisition system based on programmable hardware.

LabVIEW adopts a dataflow model for the running VIs. A block diagram node

executes when it receives all the required inputs. When a node executes, it produces

output data that are passed to the next node in the dataflow path. The movement of

data through the nodes determines the execution order of the VIs and structures on

the block diagram. The main difference between LabVIEW and other programming

languages is indeed in the dataflow model. Text-based programming languages

typically respond to a control flow model of program execution. In control flow,

Fig. 1.3 Block diagram
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the sequential order of program elements determines the execution order of the

program. In LabVIEW the flow of data rather than the sequential order of

commands determines the execution order of block diagram elements. Therefore,

it is possible to create block diagrams that have simultaneous operations.

Dataflow execution makes memory management easier than the control flow

model of execution. In LabVIEW the user typically does not allocate memory for

variables or assign values to them. On the contrary, he defines a block diagram with

wires that represent the transition of data. When a VI generates new data, it automa-

tically allocates the memory for those data. When the VI no longer uses the data,

LabVIEW de-allocates the associated memory. When new data are added to an array

or a string, LabVIEW allocates sufficient additional memory to manage the new data.

1.5.2 VIs and Toolkits for Data Processing
and System Identification

Many output-only modal identification techniques require the preliminary compu-

tation of spectra and correlation functions. Advanced VIs for their estimation

from the acquired time series are available in the Signal Processing Palette in

LabVIEW. Additional advanced tools for vibration analysis are also available

as LabVIEW add-ons, such as the Sound and Vibration Toolkit and the Time Series

Analysis Tools in the Advanced Signal processing Toolkit.

The Time Series Analysis Tools, in particular, include several statistical tools of

interest for random data analysis. Moreover, they include also some VIs for the

output-only modal parameter identification based on polynomial models, state-

space models, and least squares estimators (Fig. 1.4). In particular, tools for the

estimation of autoregressive (AR) and autoregressive moving average (ARMA)

models are available.

A brief introduction about these tools is herein reported for the reader interested

in applying such models. However, as discussed in Chap. 4, AR and ARMAmodels

did not reach a level of robustness adequate for the application in the context of

OMA of civil engineering structures.

AR and ARMA models allow predicting (even if in the presence of a prediction

error) the current value of a time series based on a number of past values. These

models can also be used to describe LTI systems and to extract the modal parameters

(Chap. 4). From a general point of view, the estimation of AR and ARMA models

requires an appropriate selection of the order of the polynomial. It is obvious that the

higher the model order, the better the model fits the time series, because a high-order

Fig. 1.4 VIs for output-only modal identification (included in the Time Series Analysis Tools)

1.5 A Platform for Measurement Execution and Data Processing 15

http://dx.doi.org/10.1007/978-1-4939-0767-0_4
http://dx.doi.org/10.1007/978-1-4939-0767-0_4


model has more degrees of freedom. However, an overestimated order can introduce

spurious artifacts not related to the physics of the observed system. As a result, a

number of criteria for selection of the order have been developed over the years.

They take into account the model-fitting error associated to a certain choice of the

order but they also incorporate a penalty when the order increases. Many of those

criteria (Akaike’s Information Criterion, Bayesian Information Criterion, Final

Prediction Error Criterion, Minimal Description Length Criterion, Phi Criterion),

differing only for the way the penalty is evaluated, are available in the Time Series

Analysis Tools of the Advanced Signal Processing Toolkit. More details about the

VIs in the Toolkit and their applications can be found in the related user manual

(National Instruments 2005b).

The additional toolkits can simplify the implementation of the algorithms

discussed in this book, but they are not critical and their use can be avoided with

no large penalties. In fact, all the necessary tools for the implementation of OMA

algorithms are already present in LabVIEW. They include, among the others, linear

algebra tools, tools for probability and statistics, curve fitting tools, tools for

polynomial analysis, tools for filtering and signal processing. In the application of

these tools, the analysis of the related documentation, such as the LabVIEW

Analysis Concepts (National Instruments 2004), is recommended to avoid possible

mistakes in the interpretation of input settings, outputs, and mode of operation.

Moreover, the analysis of the above mentioned documentation might disclose

functionalities that cannot be immediately recognized by the user.

1.5.3 Recurrent Structures for Software Development

An effective software development in LabVIEW starts from the implementation of a

main VI and several subVIs organized in a hierarchical structure (Fig. 1.5). Each

subVI has to perform specific and usually very limited tasks. This approach to

software implementation based on the definition of a VI hierarchy is recommended

to take advantage of the opportunities of dataflow and to make the code under-

standable to third parties or after long time. Moreover, even in the presence of a

well-defined sequence of operations, it is advantageous to make use of structures

for the management of the interactions with the user. The simplest example is

represented by the While Loop structure presented in Sect. 1.5.1. Shift registers

(Fig. 1.6) are typically used to preserve data between subsequent iterations. In

other words, shift registers allow sending values from previous iterations to the next.

Loops are not the only possibility to manage user interaction. There are also

other, more advanced structures that can fit specific needs, such as the management

of parallel operations (for instance, data acquisition and data processing) or the

execution of some operations depending on given conditions. They are also avail-

able in the form of design patterns. Design patterns are standard templates for

software implementation that have been developed over the years by the LabVIEW

community. Since they represent solutions to common problems in software

implementation, they can be profitably used as the basis to develop a large number

of applications.
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Fig. 1.5 Sample VI hierarchy

Fig. 1.6 State machine



The State Machine (Fig. 1.6) is one of these fundamental architectures. It allows

the execution of different sections of code (states) in an order that can be deter-

mined in several different ways. Thus, it can be used to implement complex

decision-making algorithms represented by flowcharts.

State Machines are used in applications where distinguishable states exist.

An initialization phase is sometimes needed. State Machines perform a specific

action for each state in the diagram. Each state can lead to one or multiple states, or

end the process. The user input or results of computations in the running state

determine the next state. This is the reason why they are commonly adopted to

manage the user interactions. Different user inputs lead to different processing

segments. Each of these segments represents one of the states in the State Machine.

Since each state in a State Machine carries out a specific action and calls the next

state, this architecture requires the definition of some conditions. Thus, the common

elements in a State Machine architecture are: the While Loop, which continually

executes the various states, the Case Structure, containing the code associated to a

certain state, the shift register and the transition code, which determines the next

state in the sequence (Fig. 1.6).

Another design pattern commonly used to interact with user input via the front

panel is the Event structure.

Events are caused by actions of the user (for instance, a click of the mouse).

In this case the execution of the code is governed by the occurring events. In an

event-driven program, the program first waits for events to occur, responds to those

events, then returns to waiting for the next event. How the program responds

depends on the code implemented for that specific event. The order in which an

event-driven program executes depends on which events occur and on the order in

which those events occur. While the program waits for the next event, it frees up

CPU resources that might be used to perform other processing tasks.

In LabVIEW, the Event structure (Fig. 1.7) allows handling events in an

application. Multiple cases can be added to the Event structure and configured to

handle one or more events. Configuration of the events is easy. It is sufficient to

right-click the Event structure border and select Edit Events Handled by This Case

from the shortcut menu. The Edit Events dialog box appears (Fig. 1.8) and it is

possible to configure the event.

The Event structure waits until an event happens, then it executes the VI in

the case associated to that event. Using the Event structure minimizes the CPU

usage because the VI does not continually poll the Front Panel for changes, as in the

case of the While Loop structure. In contrast to polling, the Event structure does not

lose user events. In fact, events are stored in a queue and processed in the order in

which they occur.

The execution of parallel operations is slightly more complex and requires

specific structures. The Producer/Consumer architecture (Fig. 1.9) is a commonly

adopted design pattern for the development of data acquisition and data logging

systems. It consists of two parallel loops, where the first loop produces data and the

other consumes those data. Data queues are used to communicate data between the

loops. The queues ensure data buffering between producer and consumer loops.
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Fig. 1.7 Event structure

Fig. 1.8 The edit events

dialog box
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The typical use of the Producer/Consumer pattern is for applications acquiring

multiple sets of data to be processed in order and in parallel (that is to say, with no

influence of the consumer on the producer cycle). In fact, since data are queued, the

Producer/Consumer pattern gives the possibility to handle multiple processes at the

same time while iterating at individual rates. The buffered communication makes

this architecture very effective for data acquisition. In fact, it is possible to develop

an application carrying out data acquisition and data processing at the same time.

The first cycle performs data acquisition while the second processes the data at an

eventually lower speed.

The use of the previously described structures and design patterns is recom-

mended for many of the applications proposed at the end of the next chapters.

More details and sample applications of design patterns are available on the Internet

(zone.ni.com) and in the LabVIEW Context Help.
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Mathematical Tools for Random
Data Analysis 2

2.1 Complex Numbers, Euler’s Identities,
and Fourier Transform

Sinusoidal signals are frequently used in signal processing and system analysis.

In fact, sines and cosines are orthogonal functions and form a base for the analysis

of signals. Moreover, they are eigenfunctions for LTI systems. However, in order to

simplify operations and mathematical manipulations, sinusoidal signals are often

expressed by complex numbers and exponential functions.

Consider a sinusoidal function characterized by amplitude M> 0, frequency ω

and phase angle φ:

y tð Þ ¼ M cos ω � t� φð Þ ð2:1Þ

Taking advantage of the Euler’s formulas:

eiX ¼ cos Xð Þ þ i � sin Xð Þ ð2:2Þ

e�iX ¼ cos Xð Þ � i � sin Xð Þ ð2:3Þ

cos Xð Þ ¼ eiX þ e�iX

2
ð2:4Þ

sin Xð Þ ¼ eiX � e�iX

2i
ð2:5Þ

where i is the imaginary unit (i2¼�1), y(t) can be rewritten in terms of complex

exponentials:
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y tð Þ ¼ M

2
ei ω�t�φð Þ þM

2
e�i ω�t�φð Þ ð2:6Þ

The representation in terms of complex numbers and exponential functions has

several advantages. First of all, the representation in terms of exponential functions

simplifies computations and analytical derivations. In fact, they convert product

into sum (2.7) and power into product (2.8), and the derivative of an exponential

function is the function itself multiplied by a factor (2.9).

ea � eb ¼ eaþb ð2:7Þ

eað Þb ¼ ea�b ð2:8Þ

d eað Þ
db

¼ da

db
ea ð2:9Þ

Moreover, the graphical representation of complex numbers c + id in rectangular

(2.10) and polar coordinates (2.11) gives different opportunities to analyze the data

and recover the information they hold. In Fig. 2.1 the complex number c + id and

its conjugate c-id are represented in the complex plane. Taking into account the

relation ((2.10) and (2.11)) between the amplitude (r) and phase (θ) in polar coordi-

nates on one hand and the real (c) and imaginary (d) part in rectangular coordinates on

the other, it can be noted that the complex conjugate has the same amplitude of the

original complex number but opposite phase.

c; dð Þ ¼ r cos θ, r sin θð Þ ð2:10Þ

Re

Im

c

d

-d

X=c+id

X*=c-id

|X|

|X*|

θ

−θ

Fig. 2.1 Graphical

representation of a complex

number and its conjugate
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r; θð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ d2
p

, arctan
d

c

� �

ð2:11Þ

On the other hand, algebraic operations with complex numbers lead to

operations with real numbers taking into account that i2¼�1, treating complex

number as polynomials and multiplying numerator and denominator by the com-

plex conjugate of the denominator in the division:

cþ idð Þ þ eþ ifð Þ ¼ cþ eð Þ þ i d þ fð Þ ð2:12Þ

cþ idð Þ � eþ ifð Þ ¼ c � e� d � fð Þ þ i c � f þ d � eð Þ ð2:13Þ

cþ idð Þ
eþ ifð Þ ¼

cþ idð Þ e� ifð Þ
eþ ifð Þ e� ifð Þ ¼

cþ idð Þ e� ifð Þ
e2 þ f 2

ð2:14Þ

Operations with complex numbers satisfy the commutative, associative, and

distributive rules.

The idea behind the Fourier analysis is that any signal can be decomposed as a

linear combination of sinusoidal functions at different frequencies. This can be

understood by taking into account the relation between sinusoidal functions and

complex exponentials and that both are orthogonal functions, that is to say, they

fulfill the following general conditions ((2.15) and (2.16)):

ð b

a

f u tð Þf �v tð Þdt ¼ 0, u 6¼ v ð2:15Þ

ð b

a

f u tð Þf �v tð Þdt 6¼ 0 < 1, u ¼ v ð2:16Þ

where fu and fv are complex valued functions and the superscript * means complex

conjugate. In particular, this type of decomposition, originally developed for

periodical functions, can be extended to nonperiodic functions, such as transients

and random signals, by assuming that they are periodic functions with period equal

to the duration T of the signal. For a nonperiodic signal x(t), the (forward) Fourier

transform (analysis equation: (2.17)) and the inverse Fourier transform (synthesis

equation: (2.18)) are given by:

X fð Þ ¼
ðþ1

�1
x tð Þe�i2πftdt ð2:17Þ

x tð Þ ¼
ðþ1

�1
X fð Þei2πftdf : ð2:18Þ

Thus, (2.17) shows that any signal x(t) can be decomposed in a sum (represented

by the integral) of sinusoidal functions (recall the Euler’s formula relating complex

exponentials and sinusoidal functions, (2.2) and (2.3)). In practical applications,
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when the signal x(t) is recorded and analyzed by means of digital equipment, it is

represented by a sequence of values at discrete equidistant time instants. As a

consequence, only discrete time and frequency representations are considered,

and the expression of the Fourier transform has to be changed accordingly.

First of all, when dealing with discrete signals it is worth noting that the

sampling interval Δt is the inverse of the sampling frequency fs (representing the

rate by which the analog signal is sampled and digitized):

Δt ¼ 1

f s
: ð2:19Þ

In order to properly resolve the signal, fs has to be selected so that it is at least twice

the highest frequency fmax in the time signal:

f s � 2fmax: ð2:20Þ

Moreover, the following “uncertainty principle” holds:

Δf ¼ 1

NΔt
ð2:21Þ

In the presence of a finite number N of samples, the frequency resolution Δf can

only be improved at the expense of the resolution in time Δt, and vice versa. As a

consequence, for a given sampling frequency, a small frequency spacing Δf is

always the result of a long measuring time T (large number of samples N):

T ¼ NΔt ð2:22Þ

Assuming that the signal x(t) has been sampled at N equally spaced time instants

and that the time spacing Δt has been properly selected (it satisfies the Shannon’s

theorem (2.20)), the obtained discrete signal is given by:

xn ¼ x nΔtð Þ n ¼ 0, 1, 2, . . . ,N � 1: ð2:23Þ

Taking into account the uncertainty principle expressed by (2.21), the discrete

frequency values for the computation of X(f) are given by:

f k ¼
k

T
¼ k

NΔt
k ¼ 0, 1, 2, . . . ,N � 1 ð2:24Þ

and the Fourier coefficients at these discrete frequencies are given by:

Xk ¼
X

N�1

n¼0

xne
�i2 πkn

N k ¼ 0, 1, 2, . . . ,N � 1: ð2:25Þ
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The Xk coefficients are complex numbers and the function defined in (2.25) is

often referred to as the Discrete Fourier Transform (DFT). Its evaluation requires

N2 operations. As a consequence, in an attempt to reduce the number of operations,

the Fast Fourier Transform (FFT) algorithm has been developed (Cooley and

Tukey 1965). Provided that the number of data points equals a power of 2, the

number of operations is reduced to N · log2N. The inverse DFT is given by:

xn ¼
1

N

X

N�1

k¼0

Xke
i2πkn
N n ¼ 0, 1, 2, . . . ,N � 1 ð2:26Þ

The coefficient X0 captures the static component of the signal (DC offset).

The magnitude of the Fourier coefficient Xk relates to the magnitude of the sinusoid

of frequency fk that is contained in the signal with phase θk:

Xkj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Re Xkð Þ½ �2 þ Im Xkð Þ½ �2
q

ð2:27Þ

θk ¼ arctan
Im Xkð Þ
Re Xkð Þ

� �

ð2:28Þ

The Fourier transform is a fundamental tool in signal analysis, and it has the

following important properties:

• Linearity: given two discrete signals x(t) and y(t), the Fourier transform of any

linear combination of the signals is given by the same linear combination of the

transformed signals X(f) and Y(f);

• Time shift: if X(f) is the Fourier transform of x(t), thenX fð Þe�i2πf t0 is the Fourier

transform of x(t-t0);

• Integration and differentiation: integrating in the time domain corresponds to

dividing by i2πf in the frequency domain, differentiating in the time domain to

multiplying by i2πf in the frequency domain;

• Convolution: convolution in time domain corresponds to a multiplication in the

frequency domain, and vice versa; for instance, the Fourier transform of the

following convolution integral:

a tð Þ ¼
ðþ1

�1
b τð Þ � c t� τð Þdτ ¼ b tð Þ∗c tð Þ ð2:29Þ

is given by:

A fð Þ ¼ B fð Þ � C fð Þ ð2:30Þ

These last two properties are some of the major reasons for the extensive use of

the Fourier transform in signal processing, since complex calculations are

transformed into simple multiplications.
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2.2 Stationary Random Data and Processes

2.2.1 Basic Concepts

The observed data representing a physical phenomenon can sometimes be

described by an explicit mathematical relationship: in such a case, data are deter-

ministic. The observed free vibration response of a SDOF system under a set of

initial conditions is an example of deterministic data, since it is governed by an

explicit mathematical expression depending on the mass and stiffness properties of

the system. On the contrary, random data cannot be described by explicit mathe-

matical relationships (the exact value at a certain time instant cannot be predicted)

and they must be described in probabilistic terms.

A random (or stochastic) process is the collection of all possible physical

realizations of the random phenomenon. A sample function is a single time history

representing the random phenomenon and, as such, is one of its physical realiza-

tions. A sample record is a sample function observed over a finite time interval; as

such, it can be thought as the observed result of a single experiment. In the

following, attention is focused on Stationary Random Processes (SRP) and, above

all, on the particular category of Stationary and Ergodic Random Processes (SERP).

A collection of sample functions (also called ensemble) is needed to characterize

a random process. Said xk(t) the k-th function in the ensemble, at a certain time

instant t the mean value of the random process can be computed from the instanta-

neous values of each function in the ensemble at that time as follows:

μx tð Þ ¼ lim
K!1

1

K

X

K

k¼1

xk tð Þ: ð2:31Þ

In a similar way the autocorrelation function can be computed by taking

the ensemble average of the product of instantaneous values at time instants t and

tþ τ:

Rxx t, tþ τð Þ ¼ lim
K!1

1

K

X

K

k¼1

xk tð Þxk tþ τð Þ: ð2:32Þ

Whenever the quantities expressed by (2.31) and (2.32) do not vary when the

considered time instant t varies, the random process is said to be (weakly)

stationary. For weakly stationary random processes, the mean value is independent

of the time t and the autocorrelation depends only on the time lag τ:

μx tð Þ ¼ μx ð2:33Þ

Rxx t, tþ τð Þ ¼ Rxx τð Þ: ð2:34Þ

In the following sections the basic descriptive properties for stationary random

records (probability density functions, auto- and cross-correlation functions, auto-

and cross-spectral density functions, coherence functions) are briefly discussed,
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focusing the attention in particular on ergodic processes. The above-mentioned

descriptive properties are, in fact, primary tools of signal analysis. They are

commonly used to prepare the data for most OMA techniques.

2.2.2 Fundamental Notions of Probability Theory

A preliminary classification of data is based on their probability density function.

For a given random variable x, the random outcome of the k-th experiment is a

real number and it can be indicated as xk. The probability distribution function

P(x) provides, for any given value x, the probability that the k-th realization of the

random variable is not larger than x:

P xð Þ ¼ prob xk � x½ � ð2:35Þ

Moreover, whenever the random variable assumes a continuous range of values,

the probability density function is defined as follows:

p xð Þ ¼ lim
Δx!0

prob x < xk � xþ Δx½ �
Δx

ð2:36Þ

The probability density function and the probability distribution function show

the following properties:

p xð Þ � 0 ð2:37Þ
ðþ1

�1
p xð Þdx ¼ 1 ð2:38Þ

P xð Þ ¼
ð x

�1
p ζð Þdζ ð2:39Þ

P að Þ � P bð Þ if a � b ð2:40Þ

P �1ð Þ ¼ 0, P þ1ð Þ ¼ 1 ð2:41Þ

In a similar way, in the presence of two random variables x and y, it is possible to

define the joint probability distribution function:

P x; yð Þ ¼ prob xk � x and yk � y½ � ð2:42Þ

and the joint probability density function:

p xð Þ ¼ lim
Δx ! 0

Δy ! 0

prob x < xk � xþ Δx and y < yk � yþ Δy½ �
ΔxΔy

ð2:43Þ
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The probability density functions of the individual random variables can be

obtained from the joint probability density function as follows:

p xð Þ ¼
ðþ1

�1
p x; yð Þdy ð2:44Þ

p yð Þ ¼
ðþ1

�1
p x; yð Þdx ð2:45Þ

If the following condition holds:

p x; yð Þ ¼ p xð Þp yð Þ ð2:46Þ

the two random variables are statistically independent; for statistically independent

variables it also follows that:

P x; yð Þ ¼ P xð ÞP yð Þ ð2:47Þ

When a random variable assumes values in the range (�1, +1), its mean value

(or expected value) can be computed from the product of each value with its

probability of occurrence as follows:

E xk½ � ¼
ðþ1

�1
xp xð Þdx ¼ μx: ð2:48Þ

In a similar way it is possible to define the mean square value as:

E x2k
� �

¼
ðþ1

�1
x2p xð Þdx ¼ ψ2

x ð2:49Þ

and the variance:

E xk � μxð Þ2
h i

¼
ðþ1

�1
x� μxð Þ2p xð Þdx ¼ ψ2

x � μ2x ¼ σ2x : ð2:50Þ

By definition, the standard deviation σx is the positive square root of the

variance, and it is measured in the same units as the mean value.

The covariance function of two random variables is defined as:

Cxy ¼ E xk � μxð Þ yk � μy
� �� �

¼
ð

þ1

�1

ð

þ1

�1

xk � μxð Þ yk � μy
� �

p x; yð Þdxdy : ð2:51Þ

Taking into account that the following relation exists between the covariance of

the two random variables and their respective standard deviations:
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Cxy

	

	

	

	 � σxσy ð2:52Þ

the correlation coefficient can be defined as:

ρxy ¼
Cxy

σxσy
: ð2:53Þ

It assumes values in the range [�1, +1]. When it is zero, the two random variables

are uncorrelated. It is worth noting that, while independent random variables are also

uncorrelated, uncorrelated variables are not necessarily independent. However, it is

possible to show that, for physically important situations involving two or more

normally distributed random variables, being mutually uncorrelated does imply

independence (Bendat and Piersol 2000).

Relevant distributions for the analysis of data in view of modal identification are

the sine wave distribution and the Gaussian (or normal) distribution.

When a random variable follows a Gaussian distribution, its probability density

function is given by:

p xð Þ ¼ 1

σx
ffiffiffiffiffi

2π
p e

� x�μxð Þ2
2σ2x ð2:54Þ

while its probability distribution function is:

P xð Þ ¼ 1

σx
ffiffiffiffiffi

2π
p

ð x

�1
e
� ζ�μxð Þ2

2σ2x dζ ð2:55Þ

with μx and σx denoting the mean value and the standard deviation of the random

variable, respectively. The Gaussian probability density and distribution functions

are often expressed in terms of the standardized variable z, characterized by zero

mean and unit variance:

z ¼ x� μx

σx
ð2:56Þ

for convenience of plotting and applications. The Gaussian probability density and

distribution functions in standardized form are given by:

p zð Þ ¼ 1
ffiffiffiffiffi

2π
p e�

z2

2 ð2:57Þ

P zð Þ ¼ 1
ffiffiffiffiffi

2π
p

ð x

�1
e�

ζ2

2 dζ ð2:58Þ
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Figures 2.2 and 2.3 show the plots of (2.57) and (2.58).

The importance of the Gaussian distribution in physical problems can be partially

addressed to the central limit theorem (Papoulis 1991). It states that, given K

mutually independent random variables, whatever their (eventually different)

distributions, their sum is a normally distributed random variable when K!1.

A sine wave characterized by given amplitude A and frequency f0 can be

considered a random variable when its initial phase angle is a random variable.
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Assuming that the latter is characterized by a uniform probability density function

in the range [0, 2π], the sine wave probability density function is given by:

p xð Þ ¼ 1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � x2
p , xj j < A ð2:59Þ

while its mean value and variance are:

μx ¼ 0, σ2x ¼
A2

2
: ð2:60Þ

The plot of the probability density function of the sine wave is shown in Fig. 2.4.

If a Gaussian noise n(t) (with zero mean and σn
2 variance) is added to the above

mentioned sine wave:

g tð Þ ¼ A sin 2πf 0tþ θð Þ þ n tð Þ ð2:61Þ

it is possible to demonstrate (Bendat and Piersol 2000) that the standardized

probability density function has the following expression:

p zð Þ ¼ 1

πσn

ð π

0

1
ffiffiffiffiffi

2π
p e �1

2
z�A cos ζ

σn
ð Þ2

� �

dζ ð2:62Þ

and its shape depends on the following variance ratio:

R ¼ σ2s
σ2n

¼ A2

2σ2n
: ð2:63Þ
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The estimation of probability density functions from recorded data and the

analysis of their shape provide an effective mean for the identification of spurious

harmonics superimposed to the stochastic response of the structure under test, as

shown in Chap. 5.

It is worth noting that, when dealing with finite records of the structural

response, an exact knowledge of parameters, such as mean and variance, and,

therefore, of probability density functions is generally not available. Only estimates

based on finite datasets can be obtained. Thus, it is desirable to get high quality

estimates from the available data. They can be obtained through an opportune

choice of the estimator. Since different estimators exist for the same quantity, the

choice should be oriented towards estimators that are:

• Unbiased: the expected value of the estimator is equal to the parameter being

established;

• Efficient: the mean square error of the estimator is smaller than for other possible

estimators;

• Consistent: the estimator approaches the parameter under estimation with a

probability approaching unity as the sample size increases.

Thus, even if a different choice is possible, the unbiased estimators for the mean

and variance given by:

μ̂ x ¼
1

N

X

N

i¼1

xi ð2:64Þ

σ̂ 2
x ¼

1

N � 1

X

N

i¼1

xi � μ̂ xð Þ2 ð2:65Þ

are adopted in the following; the hat (^) indicates that the quantities in (2.64)

and (2.65) are estimates of the true mean and variance based on a finite number

of samples.

The probability density function of a record can be estimated by dividing the full

range of data into a number of intervals characterized by the same (narrow) width.

For instance, assuming that [a, b] is the full range of data values, it can be divided

into K intervals characterized by the equal width W:

W ¼ b� a

K
ð2:66Þ

Then, the number Nk of data values falling into the k-th interval [dk-1, dk]:

dk�1 ¼ aþ k � 1ð ÞW, dk ¼ aþ kW ð2:67Þ

provide the following estimate of the probability density function:

p̂ xð Þ ¼ Nk

NW
: ð2:68Þ
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Note that the first interval includes all values not larger than a, while the last

interval includes all values strictly larger than b. Moreover:

X

Kþ1

k¼0

Nk ¼ N: ð2:69Þ

The output of this procedure can be represented in the form of a sequence of

sample probability density estimates in accordance with (2.68):

p̂ k ¼
Nk

N

� �

K

b� a

� �

k ¼ 1, 2, . . . ,K ð2:70Þ

Alternatively, it can be either represented in the form of a histogram, which is

simply the sequence of the values of Nk without changes, or expressed in terms of

the sample percentage Nk/N of data in each interval.

2.2.3 Correlation Functions

Correlation functions play a primary role in output-only modal identification.

In fact, under the assumption of stationary and random response of the structure,

the second-order statistics of the response carry all the physical information.

Given the sample functions xk(t) and yk(t) of two stationary random processes,

the mean values, independent of t, are given by:

μx ¼ E xk tð Þ� �

¼
ðþ1

�1
xp xð Þdx ð2:71Þ

μy ¼ E yk tð Þ� �

¼
ðþ1

�1
yp yð Þdy ð2:72Þ

in agreement with (2.48). The assumption of stationary random processes yields

covariance functions that are also independent of t:

Cxx τð Þ ¼ E xk tð Þ � μxð Þ xk tþ τð Þ � μxð Þ
h i

ð2:73Þ

Cyy τð Þ ¼ E yk tð Þ � μy
� �

yk tþ τð Þ � μy
� �

h i

ð2:74Þ

Cxy τð Þ ¼ E xk tð Þ � μxð Þ yk tþ τð Þ � μy
� �

h i

ð2:75Þ

If the mean values are both equal to zero, the covariance functions coincide with

the correlation functions:

Rxx τð Þ ¼ E xk tð Þxk tþ τð Þ� �

ð2:76Þ
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Ryy τð Þ ¼ E yk tð Þyk tþ τð Þ� �

ð2:77Þ

Rxy τð Þ ¼ E xk tð Þyk tþ τð Þ� �

: ð2:78Þ

The quantities Rxx and Ryy are called auto-correlation functions of xk(t) and

yk(t), respectively; Rxy is called cross-correlation function between xk(t) and yk(t).

When the mean values are not zero, covariance functions and correlation

functions are related by the following equations:

Cxx τð Þ ¼ Rxx τð Þ � μ2x ð2:79Þ

Cyy τð Þ ¼ Ryy τð Þ � μ2y ð2:80Þ

Cxy τð Þ ¼ Rxy τð Þ � μxμy: ð2:81Þ

Taking into account that two stationary random processes are uncorrelated if

Cxy(τ)¼ 0 for all τ (2.53) and that this implies Rxy(τ)¼ μxμy for all τ (2.81), if μx or

μy equals zero the two processes are uncorrelated when Rxy(τ)¼ 0 for all τ.

Taking into account that the cross-correlation function and the cross-covariance

function are bounded by the following inequalities:

Cxy τð Þ
	

	

	

	

2 � Cxx 0ð ÞCyy 0ð Þ ð2:82Þ

Rxy τð Þ
	

	

	

	

2 � Rxx 0ð ÞRyy 0ð Þ ð2:83Þ

and noting that:

Cxx τð Þj j � Cxx 0ð Þ ð2:84Þ

Rxx τð Þj j � Rxx 0ð Þ ð2:85Þ

it follows that the maximum values of the auto-correlation and auto-covariance

functions occur at τ¼ 0; they correspond to the mean square value and variance of

the data, respectively:

Rxx 0ð Þ ¼ E x2k tð Þ
� �

, Cxx 0ð Þ ¼ σ2x : ð2:86Þ

When the mean values and covariance (correlation) functions of the considered

stationary random processes can be directly computed by means of time averages

on an arbitrary pair of sample records instead of computing ensemble averages, the

two stationary random processes are said to be weakly ergodic. In other words, in

the presence of two ergodic processes, the statistical properties of weakly stationary

random processes can be determined from the analysis of a pair of sample records

only, without the need of collecting a large amount of data. As a consequence, in the
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presence of two ergodic processes, the mean values of the individual sample

functions can be computed by a time average as follows:

μx kð Þ ¼ lim
T!1

1

T

ð T

0

xk tð Þdt ¼ μx ð2:87Þ

μy kð Þ ¼ lim
T!1

1

T

ð T

0

yk tð Þdt ¼ μy: ð2:88Þ

The index k denotes that the k-th sample function has been chosen for the

computation of the mean value: since the processes are ergodic, the results are

independent of this choice (μx(k)¼ μx, μy(k)¼ μy). It is worth pointing out that

the mean values are also independent of the time t.

In a similar way, auto- and cross-covariance functions can be computed directly

from the k-th sample function as follows:

Cxx τ; kð Þ ¼ lim
T!1

1

T

ð T

0

xk tð Þ � μx
� �

xk tþ τð Þ � μx
� �

dt ¼

¼ Rxx τ; kð Þ � μ2x

ð2:89Þ

Cyy τ; kð Þ ¼ lim
T!1

1

T

ð T

0

yk tð Þ � μy
� �

yk tþ τð Þ � μy
� �

dt ¼

¼ Ryy τ; kð Þ � μ2y

ð2:90Þ

Cxy τ; kð Þ ¼ lim
T!1

1

T

ð T

0

xk tð Þ � μx
� �

yk tþ τð Þ � μy
� �

dt ¼

¼ Rxy τ; kð Þ � μxμy

ð2:91Þ

and, the processes being ergodic, the results are independent of the chosen function

(Cxx(τ, k)¼Cxx(τ), Cyy(τ, k)¼Cyy(τ), Cxy(τ, k)¼Cxy(τ)).

It is worth pointing out that only stationary random processes can be ergodic.

When a stationary process is also ergodic, the generic sample function is represen-

tative of all others so that the first- and second-order properties of the process can

be computed from an individual sample function by means of time averages.

With stationary and ergodic processes, the auto- and cross-correlation functions

are given by the following expressions:

Rxx τð Þ ¼ lim
T!1

1

T

ð T

0

x tð Þx tþ τð Þdt ð2:92Þ

Ryy τð Þ ¼ lim
T!1

1

T

ð T

0

y tð Þy tþ τð Þdt ð2:93Þ

Rxy τð Þ ¼ lim
T!1

1

T

ð T

0

x tð Þy tþ τð Þdt: ð2:94Þ
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Ergodic random processes are definitely an important class of random processes.

Since the time-averaged mean value and correlation function are equal to the

ensemble-averaged mean and correlation function respectively, a single sample

function is sufficient to compute those quantities instead of a collection of sample

functions. In practical applications stationary random processes are usually ergodic.

From a general point of view, a random process is ergodic if the following sufficient

conditions are fulfilled:

• The random process is weakly stationary and the time averages μx(k) and

Cxx(τ, k) ((2.87) and (2.89)) are the same for all sample functions;

• The auto-covariance function fulfills the following condition:

1

T

ð T

�T

Cxx τð Þj jdτ ! 0 for T ! 1: ð2:95Þ

In practical applications, individual time history records are referred to as

stationary if the properties computed over short time intervals do not significantly

vary from one interval to the next. In other words, eventual variations are limited to

statistical sampling variations only. Since a sample record obtained from an ergodic

process is stationary, verification of stationarity of the individual records justifies

the assumption of stationarity and ergodicity for the random process from which the

sample record is obtained. Tests for stationarity of data (Bendat and Piersol 2000)

are advisable before processing.

From a sample record, the correlation function can be estimated either through

direct computation or by means of FFT procedures. The latter approach is faster than

the former but suffers some drawbacks related to the underlying periodic assumption

of the DFT. If the direct estimation of the autocorrelation is considered, it is given by:

R̂ xx rΔtð Þ ¼ 1

N � r

X

N�r

n¼1

xnxnþr r ¼ 0, 1, 2, . . . ,m ð2:96Þ

for a stationary record with zero mean (μ¼ 0) and uniformly sampled data at Δt.

Thus, (2.96) provides an unbiased estimate of the auto-correlation function at

the time delay rΔt, where r is also called the lag number and m denotes the

maximum lag.

2.2.4 Spectral Density Functions

Given a pair of sample records xk(t) and yk(t) of finite duration T from stationary

random processes, their Fourier transforms (which exist as a consequence of the

finite duration of the signals) are:

Xk f ; Tð Þ ¼
ð T

0

xk tð Þe�i2 π ftdt ð2:97Þ
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Yk f ; Tð Þ ¼
ð T

0

yk tð Þe�i2 π ftdt ð2:98Þ

and the two-sided auto- and cross-spectral density functions are defined as follows:

Sxx fð Þ ¼ lim
T!1

E
1

T
X�
k f ; Tð ÞXk f ; Tð Þ


 �

ð2:99Þ

Syy fð Þ ¼ lim
T!1

E
1

T
Y�
k f ; Tð ÞYk f ; Tð Þ


 �

ð2:100Þ

Sxy fð Þ ¼ lim
T!1

E
1

T
X�
k f ; Tð ÞYk f ; Tð Þ


 �

ð2:101Þ

where * denotes complex conjugate. Two-sided means that S(f) is defined for f in

the range (�1, +1); the expected value operation is working over the ensemble

index k. The one-sided auto- and cross-spectral density functions, with f varying in

the range (0, +1), are given by:

Gxx fð Þ ¼ 2Sxx fð Þ ¼ 2 lim
T!1

1

T
E Xk f ; Tð Þj j2
h i

0 < f < þ1 ð2:102Þ

Gyy fð Þ ¼ 2Syy fð Þ ¼ 2 lim
T!1

1

T
E Yk f ; Tð Þj j2
h i

0 < f < þ1 ð2:103Þ

Gxy fð Þ ¼ 2Sxy fð Þ ¼ 2 lim
T!1

1

T
E X�

k f ; Tð ÞYk f ;Tð Þ
� �

0 < f < þ1 ð2:104Þ

The two-sided spectral density functions are more commonly adopted in

theoretical derivations and mathematical calculations, while the one-sided spectral

density functions are typically used in the applications. In particular, in practical

applications the one-sided spectral density functions are always the result of Fourier

transforms of records of finite length (T<1) and of averaging of a finite number of

ensemble elements.

Before analyzing the computation of PSDs in practice, it is interesting to note

that PSDs and correlation functions are Fourier transform pairs. Assuming that

mean values have been removed from the sample records and that the integrals of

the absolute values of the correlation functions are finite (this is always true for

finite record lengths), that is to say:

ðþ1

�1
R τð Þj jdτ < 1 ð2:105Þ
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the two-sided spectral density functions are the Fourier transforms of the

correlation functions:

Sxx fð Þ ¼
ðþ1

�1
Rxx τð Þe�i2 π f τdτ ð2:106Þ

Syy fð Þ ¼
ðþ1

�1
Ryy τð Þe�i2 π f τdτ ð2:107Þ

Sxy fð Þ ¼
ðþ1

�1
Rxy τð Þe�i2 π f τdτ ð2:108Þ

Equations (2.106)–(2.108) are also called the Wiener-Khinchin relations in

honor of the mathematicians that first proved that correlations and spectral densities

are Fourier transform pairs. The auto-spectral density functions are real-valued

functions, while the cross-spectral density functions are complex-valued. In terms

of one-sided spectral density functions, the correspondence with the correlation

functions is given by:

Gxx fð Þ ¼ 4

ð1

0

Rxx τð Þ cos 2π f τð Þdτ ð2:109Þ

Gyy fð Þ ¼ 4

ð1

0

Ryy τð Þ cos 2π f τð Þdτ ð2:110Þ

Gxy fð Þ ¼ 2

ðþ1

�1
Rxy τð Þe�i2πf τdτ ¼ Cxy fð Þ � iQxy fð Þ ð2:111Þ

where Cxy(f) is called the coincident spectral density function (co-spectrum) and

Qxy(f) is the quadrature spectral density function (quad-spectrum). The one-sided

cross-spectral density function can be also expressed in complex polar notation as

follows:

Gxy fð Þ ¼ Gxy fð Þ
	

	

	

	e�iθxy fð Þ 0 < f < 1 ð2:112Þ

where the magnitude and phase are given by:

Gxy fð Þ
	

	

	

	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2
xy fð Þ þ Q2

xy fð Þ
q

ð2:113Þ

θxy fð Þ ¼ arctan
Qxy fð Þ
Cxy fð Þ : ð2:114Þ
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Taking into account that the cross-spectral density function is bounded by the

cross-spectrum inequality:

Gxy fð Þ
	

	

	

	

2 � Gxx fð ÞGyy fð Þ ð2:115Þ

it is possible to define the coherence function as follows:

γ2xy fð Þ ¼ Gxy fð Þ
	

	

	

	

2

Gxx fð ÞGyy fð Þ ¼
Sxy fð Þ
	

	

	

	

2

Sxx fð ÞSyy fð Þ ð2:116Þ

where:

0 � γ2xy fð Þ � 1 8 f : ð2:117Þ

Note that the conversion from two-sided to one-sided spectral density functions

doubles the amplitude (jSxy( f )j ¼ jGxy( f )j/2) while preserving the phase.

It is worth pointing out two important properties of Gaussian random processes

for practical applications. First, it can be shown (Bendat and Piersol 2000) that if a

Gaussian process undergoes a linear transformation, the output is still a Gaussian

process. Moreover, given a sample record of an ergodic Gaussian random process

with zero mean, it can be shown (Bendat and Piersol 2000) that the Gaussian

probability density function p(x):

p xð Þ ¼ 1

σx
ffiffiffiffiffiffi

2π
p e

� x2

2 σ2x ð2:118Þ

is completely determined by the knowledge of the auto-spectral density function.

In fact, taking into account that (Bendat and Piersol 2000):

σ2x ¼
ðþ1

�1
x2p xð Þdx �

ð 1

0

Gxx fð Þdf , ð2:119Þ

Gxx(f) alone determines σx. As a consequence, spectral density functions (and their

Fourier transform pairs, the correlation functions) play a fundamental role in the

analysis of random data, since they contain the information of interest.

In practical applications, PSDs can be obtained by computing the correlation

functions first and then Fourier transforming them. This approach is known as the

Blackman-Tukey procedure. Another approach, known as theWelch procedure, is,

instead, based on the direct computation of the FFT of the records and the estima-

tion of the PSDs in agreement with (2.102)–(2.104). The Welch procedure is less

computational demanding than the Blackman-Tukey method, but it requires some

operations on the signal in order to improve the quality of the estimates.

According to (2.102)–(2.104), the one-sided auto-spectral density function

can be estimated by dividing a record into nd contiguous segments, each of length

T¼NΔt, Fourier transforming each segment and then computing the auto-spectral
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density through an ensemble averaging operation over the nd subsets of data as

follows:

Ĝ xx fð Þ ¼ 2

ndNΔt

X

nd

i¼1

Xi fð Þj j2: ð2:120Þ

The number of data values N in each segment is often called the block size for the

computation of each FFT; it determines the frequency resolution of the resulting

estimates. The number of averages nd, instead, determines the random error of the

estimates, as discussed in Sect. 2.2.5.

Even if the direct computation via FFT of the spectral density function is

advantageous from a computational point of view, specific strategies are required

to eliminate the errors originating from the fact that the estimates are based on

records of finite length. A sample record x(t) can be interpreted as an unlimited

record v(t) multiplied by a rectangular time window u(t):

x tð Þ ¼ u tð Þv tð Þ u tð Þ ¼ 1 0 � t � T

0 elsewhere

�

: ð2:121Þ

As a consequence, the Fourier transform of x(t) is given by the convolution of

the Fourier transforms of u(t) and v(t). The Fourier transform of a rectangular signal is

basically a sinc function (Fig. 2.5) with side lobes characterized by a fairly large

amplitude with respect to the main lobe (the amplitude difference is just �13 dB).

The large side lobes of |U(f)| allow the energy at a certain frequency to spread to

nearby frequencies, causing large amplitude errors. This phenomenon is also known

as leakage and it may introduce significant distortions in the estimated spectra, in

particular in the presence of data characterized by narrow bandwidth. However, it

does not happen when the analyzed data are periodic with a period equal to the record

|U(f)|

1

0.9

0.8

0.7

0.6

A
m

p
li
tu

d
e

0.5

0.4

0.3

0.2

0.1

0
−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

Frequency (k/T)
1 2 3 4 5 6 7 8 9 10

Fig. 2.5 DFT of a rectangular window: amplitude

42 2 Mathematical Tools for Random Data Analysis



length. In such a case, in fact, the discrete frequency values, equally spaced at

Δf¼ 1/T, coincide with zeros of the spectral window in the frequency domain with

the only exception of the frequency line in the main lobe. The result is an exact

reproduction of the correct spectrum. Thus, in order to suppress the leakage problem,

data are made periodic by tapering them by an appropriate time window, which

eliminates the discontinuities at the beginning and end of the analyzed record. There

are different options for the choice of the window (Heylen et al. 1998). Here, the most

commonly employed window is introduced. It is the full cosine tapering window, also

known as Hanning window, which is given by:

uHanning tð Þ ¼ 1� cos 2
πt

T

0

@

1

A 0 � t � T

0 elsewhere

8

>

<

>

:

ð2:122Þ

The highest side lobe level of the Hanning window is 32 dB below the main

lobe. Thus, leakage is minimized. However, the use of the Hanning window to

compute spectral density estimates by Fourier transform techniques implies a loss

factor of 3/8:

ð T

0

u2Hanning tð Þdt
ð T

0

u2 tð Þdt
¼ 3

8
: ð2:123Þ

As a consequence, a rescaling is needed to obtain spectral density estimates

characterized by the correct magnitude.

It is worth noting that time history tapering by the Hanning window for leakage

suppression also increases the half power bandwidth of the main lobe. Such an

increase, in the order of about 60 %, may affect damping estimates (see also

Chap. 5). In order to avoid the increase in the half power bandwidth, the length of

each segment has to be increased until each FFT provides the same bandwidth with

tapering that would have occurred without it. For a given number of averages nd and,

therefore, a given random error, the increase in the length of the tapered segments

implies an increase in the total record length. If data are limited, an increase in

the length of the tapered segments is possible at the expenses of the number of

averages nd. In this case, however, the resulting PSD estimates are characterized by

an increased variability. A possible countermeasure to increase nd in the presence of

limited data consists in dividing the total record into partially overlapping segments.

The estimated auto- and cross-spectral densities can be assembled into a 3D

matrix where one dimension is represented by the discrete frequency values at

which the spectral densities are estimated. For a given value of frequency, the

resulting matrix has dimensions depending on the number of sample records

considered in the analysis, and it is a Hermitian matrix (see also Sect. 2.3.1) with

real-valued terms on the main diagonal, and off diagonal terms which are complex

conjugate of each other.

2.2 Stationary Random Data and Processes 43

http://dx.doi.org/10.1007/978-1-4939-0767-0_5


2.2.5 Errors in Spectral Density Estimates and Requirements
for Total Record Length in OMA

In Sect. 2.2.2 the definition of unbiased estimator has been reported. Attention is

herein focused on the errors affecting the estimates. In fact, a recommended length

of the records for OMA applications can be obtained from the analysis of errors in

spectral density estimates.

From a general point of view, the repetition of a certain experiment leads to a

number of estimates x̂ of the quantity of interest x. When the expected value of the

estimates over the K experiments is equal to the true value x, the estimate x̂ is

unbiased. On the contrary, when there is a scatter between expected value of the

estimates and true value, it is possible to define the bias b x̂½ � of the estimate:

b x̂½ � ¼ E x̂½ � � x: ð2:124Þ

The bias error is a systematic error occurring with the same magnitude and in

the same direction when measurements are repeated under the same conditions.

The variance of the estimate:

Var x̂½ � ¼ E x̂ � E x̂½ �ð Þ2
h i

ð2:125Þ

describes the random error, namely the not systematic error occurring in different

directions and with different magnitude when measurements are repeated under

the same conditions.

The mean square error:

mse x̂½ � ¼ E x̂ � xð Þ2
h i

¼ Var x̂½ � þ b x̂½ �ð Þ2 ð2:126Þ

provides a measure of the total estimation error. It is equivalent to the variance

when the bias is zero or negligible. It also leads to the definition of normalized rms

error of the estimate:

ε x̂½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E x̂ � xð Þ2
h i

r

x
: ð2:127Þ

In practical applications the normalized rms error should be as small as possible to

ensure that the estimates are close to the true value. Estimates characterized by large

bias error and small random error are precise but not accurate; estimates characterized

by small bias error and large random error are accurate but not precise. Since the bias

error can be removed when identified while the random error cannot, for the first type

of estimates the mean square error can be potentially reduced.

When the estimation of auto PSDs is considered, it can be shown (Bendat and

Piersol 2000) that, in the case of normally distributed data, the random portion of
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the normalized rms error of an estimate is a function only of the total record length

and of the frequency resolution:

ε2r ¼
1

TrΔf
: ð2:128Þ

Simple manipulations of (2.128) lead to a suggested value of the total record

length for OMA applications as a function of the fundamental period of the

structure under investigation. In fact, as previously mentioned, the random error

depends on the number of averages nd. It can be shown (Bendat and Piersol 2000)

that the required number of averages to get an assigned random error in the

estimation of the auto-spectral densities can be obtained by (2.129):

nd ¼
1

ε2r
: ð2:129Þ

A relatively small normalized random error:

εr ¼
1
ffiffiffiffiffi

nd
p � 0:10 ð2:130Þ

is associated to a number of averages:

nd � 100: ð2:131Þ

On the other hand, a negligible bias error, in the order of 2 %, can be obtained

by choosing (Bendat and Piersol 2000):

Δf ¼ 1

T
¼ Br

4
¼ 2ξnωn

4
ð2:132Þ

where Br is the half power bandwidth at the natural frequency ωn, ξn is the

associated damping ratio, while T is the length of the i-th data segment. The relation

between the total record length Tr and the length T of the i-th data segment is:

Tr ¼ ndT ) T ¼ Tr

nd
: ð2:133Þ

Taking into account the relation between natural circular frequency and natural

period of a mode and that the fundamental mode is characterized by the longest

natural period, the substitution of (2.133) into (2.132) yields the following

expression:

Tr ¼
nd

πξ1
T1 ð2:134Þ
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relating the total record length to the fundamental period of the structure under

investigation. Assuming nd¼ 100 and a typical value for the damping ratio—for

instance, about 1.5 % for reinforced concrete (r.c.) structures in operational

conditions—a suggested value for the total record length is about 1,000–2,000

times the natural period of the fundamental mode of the structure, in agreement

with similar suggestions reported in the literature (Cantieni 2004).

Taking into account the assumptions under the formula given in (2.134), the

suggested value for the total record length minimizes the random error εr and

suppresses the leakage (since a very small value for the bias error εb has been set).

2.3 Matrix Algebra and Inverse Problems

2.3.1 Fundamentals of Matrix Algebra

Most OMA methods are based on fitting of an assumed mathematical model to the

measured data. In such a case, the ultimate task is to determine the unknown modal

parameters of the system from the measured response of the structure under certain

assumptions about the input. This is an example of inverse problem. The solution of

inverse problems is based on matrix algebra, including methods for matrix

decomposition.

Matrix algebra plays a relevant role also in the case of those OMA methods that

extract the modal parameters without assumptions about the system that produced

the measured data. Thus, a review of basics of matrix algebra and of some methods

for the solution of inverse problems is helpful to understand the mathematical

background of the OMA methods described in Chap. 4.

Consider the generic matrix:

A½ � ¼
a1,1 . . . a1,M
� � � ai, j . . .

aL,1 � � � aL,M

2

4

3

5 ð2:135Þ

of dimensions L	M. Its generic element is ai,j, where the index i¼ 1, . . ., L refers

to the row number while the index j¼ 1, . . ., M refers to the column number.

In accordance with the usual starting point of counters in LabVIEW, a more

convenient notation is i¼ 0, . . ., L-1 and j¼ 0, . . ., M-1. The matrix [A] can be

real-valued or complex valued, depending if its elements are real or complex

numbers. When the matrix dimensions are equal (L¼M), the matrix is said to be

a square matrix. For a square matrix, the trace is the sum of the elements in the

main diagonal. If all the off-diagonal elements in a square matrix are zero while all

the elements in the main diagonal are equal to one, the obtained matrix is the

identity matrix [I].

It is worth noting that, while addition and scalar multiplication are element-wise

operations with matrices, the matrix multiplication is based on the dot product of

row and column vectors, as expressed by (2.136). This provides the generic element
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of the product matrix in terms of the elements in the i-th row and j-th column of the

two matrices in the product:

C½ � ¼ A½ � B½ �, cij ¼
X

k

ai,kbk, j ð2:136Þ

Switching of columns and rows of a certain matrix [A] provides the transpose

matrix [A]T. When a square matrix coincides with its transpose, it is said to be

symmetric. If the matrix [A] is complex-valued, its Hermitian adjoint [A]H is

obtained by transposing the matrix [A]*whose elements are the complex conjugates

of the individual elements of the original matrix [A]. A square matrix identical to its

Hermitian adjoint is said to be Hermitian; real-valued symmetric matrices are a

special case of Hermitian matrices.

The inverse [A]�1 of the matrix [A] is such that [A]�1[A]¼ [I]. A determinant

equal to zero characterizes a singular (noninvertible) matrix. On the contrary, if the

determinant is nonzero, the matrix is invertible (or nonsingular). The matrix [A] is

orthogonal if its inverse and its transpose coincide: [A]�1¼ [A]T (its rows and

columns are, therefore, orthonormal vectors, that is to say, orthogonal unit vectors).

If [A] is complex-valued, it is a unitary matrix if its Hermitian adjoint and its

inverse coincide: [A]�1¼ [A]H. The following relations hold:

A½ � B½ �ð Þ�1 ¼ B½ ��1
A½ ��1 ð2:137Þ

A½ � B½ �ð ÞT ¼ B½ �T A½ �T ð2:138Þ

A½ � B½ �ð ÞH ¼ B½ �H A½ �H ð2:139Þ

A½ ��1

 �T

¼ A½ �T

 ��1

: ð2:140Þ

The rank r([A]) of a matrix [A] is given by the number of independent rows or

columns in [A]. By definition, a row (column) in a matrix is linearly independent if

it cannot be computed as a linear combination of the other rows (columns). If the

rank of an L	L matrix [A] is r([A])¼ S, with S<L, then there exists a submatrix

of [A] with dimensions S	S and nonzero determinant.

When the matrix [A] acts as a linear operator transforming a certain vector {x}

into a new vector {y}:

yf g ¼ A½ � xf g ð2:141Þ

if the L	L matrix [A] is noninvertible, there are vectors {x} providing:

yf g ¼ A½ � xf g ¼ 0f g: ð2:142Þ
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Those vectors define a subspace of {x} called the null space. As a consequence,

not all the space of {y} can be reached from {x}; the range of [A] defines the subset

of the space of {y}, which can be reached through the transformation defined in

(2.141). The dimension of the range coincides with the rank of [A], and the sum of

the dimensions of the null space and the range equals the dimension L of the matrix.

If the matrix [A] is invertible:

yf g ¼ A½ � xf g ¼ 0f g , xf g ¼ 0f g ð2:143Þ

and the dimension of the null space is zero.

Whenever the vector {y} (2.141) can be computed via the matrix multiplication

[A]{x}, and via the scalar product λ{x}, λ is defined an eigenvalue of [A] and {x} is

the corresponding eigenvector. The eigenvalues are obtained as a solution of the

characteristic equation:

det A½ � � λ I½ �ð Þ ¼ 0 ð2:144Þ

and the corresponding eigenvectors are computed by replacing the obtained

eigenvalues λk into (2.145):

A½ � � λk I½ �ð Þ xkf g ¼ 0f g: ð2:145Þ

If the matrix [A] is Hermitian or symmetric, the eigenvectors corresponding to

distinct eigenvalues are orthogonal (their dot product is zero); its eigenvalues are

real. If the symmetric matrix [A] is positive-definite (2.146):

xf gT A½ � xf g > 0 8 xf g 6¼ 0f g ð2:146Þ

the eigenvalues are real and positive and the matrix [A] is invertible.

When dealing with systems of equations, the matrix inversion can be more

effectively implemented by decomposing the matrix into factors. There are differ-

ent types of matrix decomposition methods. The eigenvalue decomposition (EVD)

provides an expression for the invertible square matrix [A] as a product of three

matrices:

A½ � ¼ X½ � Λ½ � X½ ��1 ð2:147Þ

where the columns of [X] are the eigenvectors of [A] while [Λ] is a diagonal matrix

containing the corresponding eigenvalues of [A]. Taking advantage of the eigen-

value decomposition of [A] and of (2.137), the inverse of [A] can be obtained as:

A½ ��1 ¼ X½ � Λ½ � X½ ��1

 ��1

¼ X½ � Λ½ ��1
X½ ��1

: ð2:148Þ
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The elements in [Λ]�1 are the inverse of the eigenvalues of [A]. Note that,

whenever the matrix [A] is also symmetric, the matrix [X] is orthogonal.

The Singular Value Decomposition (SVD) can be considered an extension of the

EVD to rectangular matrices. The SVD of a real-valued matrix [A] of dimensions

L	M, with L�M and r([A])�M, is given by:

A½ � ¼ U½ � Σ½ � V½ �T ð2:149Þ

where [Σ] of dimensions L	M is a rectangular diagonal matrix containing the

singular values, arranged in descending order; in particular, the first r singular

values are positive, while the remaining singular values σr+1, . . ., σM are all equal

to zero. [U] and [V] are orthogonal matrices of dimensions L	L and M	M,

respectively. The column vectors {u1}, . . ., {ur} of [U] span the range of [A], while

the vectors {vr+1}, . . ., {vM} span the null space of [A]. If [A] is a complex-valued

matrix, the SVD is generalized by replacing the transpose with the Hermitian

operator.

The SVD has many applications in signal processing and for the solution of

inverse problems, including the computation of pseudo-inverse, least squares fitting

of data, matrix approximation and rank determination. In the common case in

which [A] is a square, real-valued matrix, [Σ] can be interpreted as a scaling matrix,

while [U] and [V]T can be regarded as rotation matrices; thus, the SVD can be also

interpreted as a sequence of three geometrical transformations, namely a rotation, a

scaling, and another rotation. The SVD is also used for the computation of the

Moore-Penrose pseudoinverse of a matrix. For instance, the pseudo-inverse of the

matrix [A] is given by:

A½ �þ ¼ V½ � Σ½ �þ U½ �T ð2:150Þ

where [Σ]+ is the pseudoinverse of [Σ], obtained by replacing every nonzero

diagonal entry by its reciprocal and transposing the resulting matrix. Note that the

product [A][A]+ usually does not provide the identity matrix. The pseudoinverse

[A]+, instead, satisfies the following property: [A][A]+[A]¼ [A].

Other decomposition methods (LQ decomposition, RQ decomposition) for

square matrices result in the conversion of the matrix [A] into a product of an

orthogonal matrix [Q] and an upper [R] or lower [L] triangular matrix. The Cholesky

factorization, instead, is a decomposition of a real-valued, symmetric, and positive-

definite matrix into the product of a lower triangular matrix and its transpose. Further

details about matrix algebra and decompositions can be found elsewhere (Golub and

Van Loan 1989).

2.3.2 Inverse Problems: Error Norms and Least Squares Solutions

A frequent approach in OMA is the fitting of a hypothesized model to the

measurements in order to extract the unknown modal parameters. The approach
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to fitting depends on the selected model. For the sake of clarity, in this section

the main concepts are illustrated with reference to a very simple and general

polynomial function:

y xð Þ ¼ c0 þ c1xþ c2x
2 þ . . .þ cL�1x

L�1 ð2:151Þ

No specific references are made to the theoretical background of OMA at this

stage, but the application of these concepts in different contexts is straightforward

and it will become clearer when the theory of some OMA methods is reviewed

in Chap. 4.

Assuming that M measurements have been carried out, the L unknown model

parameters (c0, c1, . . ., cL-1) can be determined from the following set of M

equations:

y1 ¼ c0 þ c1x1 þ c2x
2
1 þ . . .þ cL�1x

L�1
1

. . .

yi ¼ c0 þ c1xi þ c2x
2
i þ . . .þ cL�1x

L�1
i

. . .

yM ¼ c0 þ c1xM þ c2x
2
M þ . . .þ cL�1x

L�1
M

ð2:152Þ

which can be rearranged in matrix form as:

yf g ¼

y1
� � �
yi
� � �
yM

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

¼

1 x1 x21 . . . x L�1
1

. . . . . . . . . . . . . . .

1 xi x2i . . . x L�1
i

. . . . . . . . . . . . . . .

1 xM x2M . . . x L�1
M

2

6

6

6

6

4

3

7

7

7

7

5

c0
. . .

ci
. . .

cL�1

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

¼ M½ � cf g: ð2:153Þ

Note that the setting of the problem in matrix form does not require a linear

functional relation between y and x. A linear combination of basis functions of x is

also appropriate. In general, there are more measurements than unknowns (M>L),

so that an overdetermined set of equations is defined, and measurements are noisy.

It is worth pointing out that the problem is definitely underdetermined when the

number of unknowns L exceeds the number of equations M. In this case the inverse

problem cannot lead to a unique solution and additional information has to be

provided or the number of unknowns has to be reduced. On the contrary, when

M>L the problem may actually be overdetermined, but it can be also even-

determined or underdetermined, depending on the eventual presence of interrelated

measurements which do not provide additional information. Thus, the rank of the

matrix in (2.153) actually determines if the problem is overdetermined or

underdetermined. However, in practical applications, the sole determination of the

rank of a matrix can be misleading due to the presence of measurement noise. For

instance, the rank of the following matrix:

1 0

1 10�8


 �

ð2:154Þ
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is 2 but the second row can be considered linearly dependent on the first row from

the practical point of view, since it does not provide a significant contribution of

information to the solution of the inverse problem. In similar conditions the SVD of

the matrix can provide more valuable information about the type of inverse

problem. In fact, the condition number κ, defined as the ratio between the maximum

and minimum absolute values of singular values, can be computed to assess if the

matrix is noninvertible (κ¼1), ill-conditioned (κ very large) or invertible (small

κ). Since the small singular values in ill-conditioned problems magnify the errors,

considering only the subset of the largest singular values can reduce their effect.

The selection of the number of singular values to be retained is usually based on

sorting of the singular values and identification of jumps; in the absence of jumps, a

selection ensuring numerical stability is carried out.

Assuming that a curve fitting the measured data has been found and the

functional relation between y and x in (2.151) has been established, there will be

an error (or residual) associated to the i-th measurement. It can be computed as

difference between the predicted (yi,pred) and the measured (yi,meas) value of y:

εi ¼ yi,meas � yi,pred ð2:155Þ

Thus, the objective of the analysis is the estimation of the unknown coefficients

(c0, c1, . . ., cL-1) from the measured data in a way able to minimize the sum of the

residuals when all measurements are taken into account.

Different definitions for the residuals can be adopted, taking into account that the

selected error definition has an influence on the estimation of the unknown

parameters. For instance, when the data are characterized by the presence of very

large and very small values in the same set, the computation of the residuals

according to (2.155) biases the inversion towards the largest values. As an alterna-

tive, one of the following definitions of residual can be considered:

εi ¼
yi,meas � yi,pred

yi,pred
proportional errorð Þ ð2:156Þ

εi ¼ log yi,meas
� �

� log yi,pred
� �

log differenceð Þ ð2:157Þ

Additional error definitions can be found in the literature (see, for instance,

Santamarina and Fratta 2005).

A global evaluation of the quality of the fit can be obtained from the computation

of the norm of the vector of residuals {ε}:

εf g ¼

ε1
::::

εi
::::

εM
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2.3 Matrix Algebra and Inverse Problems 51



The generic n-norm is given by:

Ln ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i

εij jnn

r

: ð2:159Þ

The order of the norm is related to the weight placed on the larger errors:

the higher the order of the norm, the higher the weight of the larger errors.

Three notable norms are:

L1 ¼
X

i

εij j ð2:160Þ

L2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i

εij j2
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εf gT εf g
q

ð2:161Þ

L1 ¼ max ε1j j; . . . ; εij j; . . . ; εMj jð Þ: ð2:162Þ

The L1 norm provides a robust solution, since it is not sensitive to a few large

errors in the data; the L2 norm is compatible with additive Gaussian noise present in

the data; the L1 norm considers only the largest error and, as a consequence, is the

most sensitive to errors in the data.

Based on the previous definitions, the least squares solution of the inverse

problem can be defined as the set of values of the coefficients (c0, c1, . . ., cL-1)

that minimizes the L2 norm of the vector of residuals. Thus, setting the derivative of

this L2 norm with respect to {c} equal to zero, under the assumption that [M]T[M] is

invertible the least squares solution provides the following estimate of the model

parameters:

cf g ¼ M½ �T M½ �

 ��1

M½ �T ymeasf g ¼ M½ �þ ymeasf g: ð2:163Þ

The least squares method is a standard approach to the approximate solution of

overdetermined systems. However, it works well when the uncertainties affect the

dependent variable. If substantial uncertainties affect also the independent variable,

the total least square approach has to be adopted. It is able to take into account the

observational errors on both dependent and independent variables. The mathematical

details of the method are out of the scope of the book, and the interested reader can

refer to (Golub and Van Loan 1989) for more details. However, it is worth recalling

the geometrical interpretation of the total least squares method in comparison with

the least squares approach. In fact, when the independent variable is error-free, the

residual represents the distance between the observed data point and the fitted

curve along the y direction. On the contrary, in total least squares, when both

variables are measured in the same units and the errors on both variables are the

same, the residual represents the shortest distance between the data point and the

fitted curve. Thus, the residual vector is orthogonal to the tangent of the curve.

52 2 Mathematical Tools for Random Data Analysis



2.4 Applications

2.4.1 Operations with Complex Numbers

Task. Create a calculator to carry out the following operations with complex

numbers:

• Get real part and imaginary part of a complex number;

• Get amplitude and phase of a complex number;

• Compute complex conjugate of a complex number;

• Compute sum, product, and division between two complex numbers;

• Compute amplitude and phase of 1 + 0i and 0 + 1i;

• Compute: (1 + 0i) + (0 + 1i), (1 + 0i) * (0 + 1i), (1 + 0i)/(0 + 1i); (1 + 1i) + (1-1i),

(1 + 1i) * (1-1i), (1 + 1i)/(1-1i).

Suggestions. This is a very simple example to get confidence with the LabVIEW

environment and with basic operations with complex numbers. In the design of the

user interface on the Front Panel, place controls and indicators and set in their

properties a complex representation of the data (right click on the control/indicator,

then select “Representation” and “Complex Double CDB”). Then, write the code

in the Block Diagram (CTRL+E to open it from the Front Panel). Algebraic

operators are in the Functions Palette under “Programming – Numeric”; the

operations on complex numbers are under “Programming – Numeric – Complex.”

Appropriately connect controls and indicators. Use the While Loop structure under

“Programming – Structures” to develop a simple, interactive user interface. It is

possible to define the timing in the execution of the cycles by means of the “Wait

Until Next ms Multiple.vi” in “Programming – Timing.”

Sample code. Refer to “Complex values – calculator.vi” in the folder “Chapter 2” of

the disk accompanying the book.

2.4.2 Fourier Transform

Task. Compute the DFT of the following signals:

• Sine wave at frequency f¼ 3 Hz,

• Sine wave at frequency f¼ 6 Hz,

• Constant signal,

• Combinations of the previous signals,

and analyze how the magnitude and phase spectra change when:

• The windowed signal is periodic (for instance, when N is a multiple of 100),

• The windowed signal is not periodic (truncated),

• The length of the signal is doubled.

Consider a sampling interval Δt equal to 0.01 s, which implies a sampling

frequency fs¼ 100 Hz
 fmax¼ 6 Hz.

Suggestions. In the design of the user interface on the Front Panel, place a control

to input the number of data points N; place three “WaveformGraph” controls (it is in
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the Controls Palette under “Modern – Graph”) to show the signal in time domain and

the amplitude and phase spectra in frequency domain. In the BlockDiagram place the

“Sine.vi” (it can be found in the Functions Palette under “Mathematics – Elementary

– Trigonometric”); use a “For Loop” structure (it can be found in the Functions

Palette under “Programming – Structures”) to generate signals of the desired length.

Transform the obtained arrays of Double into Waveform type of data by wiring the

sampling interval and the array of values of the signal to the “Build Waveform.vi”

(it can be found in the Functions Palette under “Programming – Waveform”).

Compute the Fourier Transform of the signals by means of “SVT FFT Spectrum

(Mag-Phase).vi” (“Addons – Sound & Vibration – Frequency Analysis – Baseband

FFT”). Appropriately connect controls and indicators. Use the While Loop structure

under “Programming – Structures” to develop a simple, interactive user interface. It is

possible to define the timing in the execution of the cycles by means of the “Wait

Until Next ms Multiple.vi” in “Programming – Timing.”

Sample code. Refer to “FFT mag-phase.vi” in the folder “Chapter 2” of the disk

accompanying the book.

2.4.3 Statistics

Task. Compute mode, mean, maximum and minimum value, standard deviation,

and variance of the data in “Data for statistics and histogram.txt” in the folder

“Chapter 2\Statistics” of the disk accompanying the book. Use the data to plot a

histogram. Pay attention to the obtained results for different values of the number of

intervals.

Suggestions. Use the “Read from Spreadsheet File.vi” to load the data from file.

Maximum and minimum value in the data can be identified by means of the “Array

Max & Min.vi” under “Programming – Array.” Mean, standard deviation, and

variance can be computed by means of the “Std Deviation and Variance.vi” under

“Mathematics – Probability and Statistics.” In the same palette there are “Mode.vi”

and “Histogram.vi,” which can be used to compute the mode and plot the histogram.

Place a “XY Graph” on the Front Panel to plot the resulting histogram.

Sample code. Refer to “Statistics and histogram.vi” in the folder “Chapter 2\Statistics”

of the disk accompanying the book.

2.4.4 Probability Density Functions

Task. Plot the standardized probability density function of a sine wave in noise

(2.62) for different values of the variance ratio defined in (2.63).

Suggestions. Use the “For Loop” to set the vector of values of the standardized

variable z where the probability density function will be computed. Compute

the variance of the Gaussian noise from the values of the variance ratio. Use a
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“For Loop” to compute the values of the function in the integral at the selected values

of z. Use the “Numeric Integration.vi” under “Mathematics – Integration & Differ-

entiation” to compute the integral. Put the arrays of the values of z and p(z) into a

cluster (use the “Bundle.vi” under “Programming – Cluster & Variant”), create an

array of the plots of p(z) and show them in a “XY graph” on the Front Panel.

Sample code. Refer to “Sine wave in Gaussian noise.vi” in the folder “Chapter 2” of

the disk accompanying the book.

2.4.5 Auto- and Cross-Correlation Functions

Task. Compute and plot all the possible auto- and cross-correlation functions from

the data in “Sample record 12 channels – sampling frequency 10 Hz.txt” in the

folder “Chapter 2\Correlation” of the disk accompanying the book. Data in the file

are organized in columns: the first column gives the time; the next 12 columns

report the data for each of the 12 time histories.

Suggestions. Use the “Read from Spreadsheet File.vi” to load the data from file.

Compute the auto-correlation functions associated to the 12 time series and the

cross-correlation between couples of records. Use the formula (2.96) for the direct

estimation of correlation functions, eventually organizing the data into matrices

and taking advantage of the matrix product. Organize the resulting data into a 3D

matrix so that one of its dimensions is associated to the time lag, and at a certain

time lag a square matrix of dimensions 12	 12 is obtained. Use the “While Loop”

to create a user-interface for the selection of one of the auto- or cross-correlation

functions from the matrix. Plot the data into a “Waveform Graph” placed on the

Front Panel.

Sample code. Refer to “Correlation function.vi” in the folder “Chapter 2\Correlation”

of the disk accompanying the book.

2.4.6 Auto-Correlation of Gaussian Noise

Task. Generate a Gaussian white noise, compute its mean, variance, and standard

deviation, and plot its autocorrelation function. Use the “AutoCorrelation.vi” under

“Signal Processing – Signal Operation.”

Suggestions. Use the “Gaussian white noise.vi” under “Signal Processing – Signal

Generation” to generate the data. Use the “While Loop” structure to create a user-

interface for the selection of the parameters (number of samples and standard

deviation of simulated data) for data generation. Place the appropriate controls

for such parameters on the Front Panel. Use the “AutoCorrelation.vi” under “Signal

2.4 Applications 55



Processing – Signal Operation” to compute the auto-correlation function. Plot the

data into a “Waveform Graph” placed on the Front Panel.

Sample code. Refer to “Statistics and auto-correlation of Gaussian noise.vi” in the

folder “Chapter 2” of the disk accompanying the book.

2.4.7 Auto-Power Spectral Density Function

Task. Compute (according to the Welch procedure) and plot the auto-spectral density

functions of the data in “Sample record 12 channels – sampling frequency 10 Hz.txt”

(see Sect. 2.4.5). Divide the time series into a user-selectable number of segments;

consider a 50 % overlap of the data segments. Analyze the effects of windowing and

number of segments on the resulting spectra and the frequency resolution.

Suggestions. Create a SubVI that, given a time history, the number of segments and the

sampling frequency, provides an array of waveform data, where each waveform

consists of a (partially overlapping) data segment, and the number of data segments

nd. Take advantage of the “For Loop” structure to divide the total record into nd
segments. In the main VI, use the “Read from Spreadsheet File.vi” to load the data

from file. Compute the sampling frequency from the sampling interval. Select one

time history in the dataset and send it to the previously mentioned SubVI to divide it

into partially overlapping segments. Use the “For Loop” structure and the “SVT

Power Spectral Density.vi” under “Addons – Sound & Vibration – Frequency Analy-

sis – Baseband FFT” to compute the averaged PSDs. Plot the results into a “Waveform

Graph” placed on the Front Panel. Use the “While Loop” structure to create a user-

interface for the selection of the time histories and the analysis parameters.

Sample code. Refer to “Averaged PSD.vi” and “Overlap 0.5.vi” in the folder

“Chapter 2\PSD and overlap” of the disk accompanying the book.

2.4.8 Singular Value Decomposition

Task. Create a matrix [A] of dimensions 8	 8 and whose entries are random

numbers. Create a constant matrix [B] of dimensions 8	 8 and rank r([B])¼ 6.

Compute the matrices [A] + [B] and [A][B]. For each of the previously men-

tioned matrices compute the SVD, plot the obtained singular values after they

have been normalized with respect to the largest one, compute the condition

number.

Suggestions. Use the “Random number (0-1).vi” under “Programming – Numeric”

and two “For Loop” structures inside each other to create [A]. The matrix multipli-

cation can be carried out by the “A	B.vi” under “Mathematics – Linear Algebra.”
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The SVD can be carried out by the “SVD Decomposition.vi” under “Mathematics –

Linear Algebra.”

Sample code. Refer to “SVD and rank of a matrix.vi” in the folder “Chapter 2” of

the disk accompanying the book.
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Data Acquisition 3

3.1 Selection of the Measurement Scheme

High-quality measurements represent the first fundamental step for a successful

modal identification. Any OMA method is ineffective if measurements are totally

corrupted by noise. Poor measurements can be the result of an incorrect choice of

sensors or measurement hardware, but they can also be due to incorrect wiring. In

fact, for a given choice of the measurement hardware and sensors, different

measurement schemes can often be adopted. The choice of the most appropriate

cabling scheme and the adoption of the related specifications for the entire analog

signal path play a primary role in the collection of high-quality data. Nowadays

versatile data acquisition systems are available on the market, allowing different

wiring configurations. If such schemes can slavishly be implemented in the case of

commercial systems, attention is needed whenever sensors and data acquisition

systems do not come from the same manufacturer or programmable hardware is

used to develop an own measurement system. In both cases the proper wiring is

usually in the full responsibility of the user.

A detailed analysis of cabling schemes and noise control techniques is out of the

scope of the book (refer to Ott 1988, and Barnes 1987 for more details), but their

rough illustration can still provide useful guidelines to avoid common errors in

measurement execution. The herein reported suggestions cannot replace a detailed

analysis of documents and specifications accompanying sensors and measurement

systems for the definition of the appropriate wiring scheme, but they can definitely

support the inexperienced user in the selection of the measurement chain and

scheme.

Electronic supplementary material: The online version of this chapter (doi: 10.1007/978-1-4939-

0767-0_3) contains supplementary material, which is available to authorized users. Supplementary

material can also be accessed at http://link.springer.com/chapter/10.1007/978-1-4939-0767-0_3.

C. Rainieri and G. Fabbrocino, Operational Modal Analysis of Civil Engineering

Structures: An Introduction and Guide for Applications, DOI 10.1007/978-1-4939-0767-0_3,
# Springer Science+Business Media New York 2014
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The main components in a modal analysis test are the structure under investiga-

tion, a number of motion transducers, a data acquisition device, and a data

processing system for the extraction of the modal information from recorded data.

About the transducers, the function of any sensor is the conversion of a physical

quantity into an electrical one, typically voltage. Then, the electrical signal in the

form of voltage is transferred to the data acquisition hardware for digitization.

Sensors can, therefore, be interpreted as voltage signal sources. Since a voltage

signal represents a measure of the electrical potential difference between two

points, the selection of the reference point has a primary influence on voltage

measurements. As a consequence, sensors can be classified as grounded signal

sources and floating signal sources depending on the adopted reference in voltage

measurements.

The measurement reference point for grounded (or ground-referenced) signal

sources is represented by the ground of the building power system. Thus, the sensor

is already connected to a common ground point with the data acquisition device,

assuming that this is plugged into the same power system as the signal source. It is

worth noting that, even if two grounded signal sources are connected to the same

building power system, the reference potential can be slightly different. The

different ground potential in different points of the same power system has to be

taken into account in the choice of the cabling scheme. In fact, if grounded signal

sources are incorrectly wired, the differences in the ground potential can corrupt the

measurements, as it will be clarified next.

When none of the terminals of the source is referred to the building ground

system, there is no absolute reference for the voltage signal. A sensor characterized

by an isolated ground reference point is referred to as floating (or nonreferenced)

signal source. In the case of floating signal sources, the ground of the measurement

device is used to establish a reference for the signal and prevent excessive drift.

A similar classification can be adopted for the measurement devices. In fact, in a

single-ended (or grounded, or ground-referenced) measurement system, voltage

measurements are referred to the ground, while in a differential (or nonreferenced)

measurement system none of the terminals are tied to a ground reference. Variants

are the nonreferenced single-ended systems, where the potential at the reference

point can be different from the ground potential, and the pseudo-differential systems,

which combine some characteristics of differential and single-ended systems. In

fact, both the positive and negative input terminals are wired in pseudo-differential

systems, like in the differential ones; however, the negative input is also connected

to the system ground through relatively small impedance. This provides some

isolation between the ground of the sensors and that of the measurement device.

The above-mentioned different measurement schemes are characterized by

different capabilities in rejecting certain types of noise sources. Thus, the final

choice depends on the required level of immunity to these noise sources, taking into

account that certain combinations of signal sources and measurement device are

particularly vulnerable to measurement errors as an effect of the disturbance. In this

section common-mode voltage and ground-loop current are analyzed. Additional

noise sources, such as the noise picked up from the environment or the noise due to

inappropriate termination of the cable shield, will be discussed in Sect. 3.4.
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When a differential measurement device is considered, in the ideal case it

responds only to the potential difference between the noninverting (+) and the

inverting (�) terminal. Thus, the voltage value, with respect to the ground, that is

present at both terminals is completely rejected. Such a voltage is referred to as

common-mode voltage. The capability of actual devices of rejecting common-mode

voltage is limited and described by the following parameters: the common-mode

voltage range and the common-mode rejection ratio (CMRR). The CMRR is a

measure of the ability of an instrument to reject interference from a common-mode

signal. It is usually expressed in dB. The CMRR basically describes the ability of a

differential measurement system to reject noise common to both inputs: the higher

the CMRR, the better the circuitry can extract differential signals in the presence of

common-mode noise. The common-mode voltage range, instead, defines limits for

the voltage swing on each input with respect to the measurement system ground.

Violation of this constraint results in measurement errors and even in damage to the

data acquisition device. For this reason some device manufacturers provide an

equation which limits the sum of common-mode voltage, bias voltage of the sensor

and full-scale voltage of the sensor. This sum must be in the predefined voltage

range to ensure that the data acquisition device can be used with the selected

sensors.

The quality of measurements with differential systems primarily depends on

their capability of rejecting common-mode voltage, since unwanted noise is often

present in this form. Typical sources of common-mode voltage noise are 50/60 Hz

signals from power lines, power supply ripple, or electromagnetic fields.

Differential measurement devices are the best choice in the presence of

grounded signal sources. In fact, if a grounded sensor is connected to a single-

ended measurement device, the electrical potential difference between the ground

of the signal source and that of the measurement system induces a current, which is

called ground-loop current. Ground-loop induced noise may have both AC and DC

components. As a consequence, both noise and offset errors are introduced in the

measurements. Such noisy measurements often show the power line frequency

component. The signal degradation due to ground-loop effects can be tolerated

only in the presence of signals characterized by a high voltage level and low

impedance wires between signal sources and measurement device.

In the presence of floating signal sources, single-ended measurement systems

can be confidently used since no ground-loop is created. Floating signal sources can

also be measured by differential systems, provided that the common-mode voltage

range of the measurement device is respected. When floating signal sources are

acquired by differential systems, bias resistors connecting the two leads with the

measurement system ground are usually adopted to anchor the voltage level of the

source to a certain reference and prevent erratic or saturated readings.

In general terms, differential measurement systems probably represent the

favorite choice in many cases, since they are able to reject ground-loop induced

errors and also the noise picked up from the environment up to a certain degree. On

the other hand, single-ended measurement systems do not provide common-mode

voltage rejection and are susceptible of ground-loop problems but they may repre-

sent a valid alternative when a large number of channels are required. In fact, in this

3.1 Selection of the Measurement Scheme 61



case only a single analog input channel is required. Thus, single-ended devices

provide twice the number of channels with respect to the equivalent differential

systems. If the magnitude of the induced errors is smaller than the required accuracy

of the data, single-ended measurement devices can be adopted.

Commercial solutions available on the market sometimes permit the selection of

both single ended and differential configurations by simple settings of sensors and

data acquisition hardware. Following the configuration and wiring instructions, the

quality of data is usually preserved even in the presence of fairly long cables. More

attention is needed, instead, when sensors and data acquisition hardware do not

come from the same manufacturer. In this case, compatibility has to be checked,

and additional caution is needed to prevent unintentional introduction of noise. For

instance, ground connections have to be carefully planned to avoid ground-loops, in

particular if PC-based data acquisition systems and separate mains power supply for

the sensors are used.

In vibration measurements by programmable hardware the pseudo-differential

configuration is sometimes adopted. Similarly with differential devices, pseudo-

differential systems provide common-mode voltage rejection. However, while differ-

ential systems provide both AC and DC common-mode rejection, pseudo-differential

devices provide only DC common-mode voltage rejection. Even in the presence of

such a limitation in terms of common-mode voltage rejection, pseudo-differential

systems may represent a valid alternative for dynamic data acquisition. In fact, the

isolation between sensor ground and measurement device ground allows minimizing

ground-loop effects when grounded signal sources are used. In summary, pseudo-

differential measurements can be recommended for floating signal sources and can

eventually be used also for grounded signal sources; however, differential systems

providemore common-mode voltage rejection. Differential systems are recommended

for grounded signal sources; floating sources can be measured too, but additional

connections to ground by means of bias resistors are needed to prevent signal drifts

beyond the common-mode range.

3.2 Transducers

The role of transducers is the translation of physical quantities into electrical

signals. For instance, motion transducers convert displacement, velocity, or accel-

eration into an electrical quantity (typically, voltage) that is proportional to the

magnitude of the considered physical quantity. Different types of sensors are

available to measure the dynamic response of civil structures. In this section

attention is mainly focused on (both piezoelectric and force-balance)

accelerometers, even if different types of sensors, such as electromagnetic sensors

(seismograph, geophone), can also be adopted in output-only modal testing.

In piezoelectric sensors the conversion of the mechanical quantity into an

electrical quantity is obtained by taking advantage of the piezoelectric property of

some natural (quartz) or man-made (polycrystalline ceramics, such as barium

titanate) materials. As a consequence of piezoelectricity, when a force is applied

to the crystal, negative and positive ions accumulate onto the opposite surfaces of
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the crystal. The amount of accumulated charge is directly proportional to the

applied force. In piezoelectric accelerometers a mass is coupled to the crystal.

When an input acceleration is applied at the base of the accelerometer, the inertia

force associated to the mass causes a deformation of the crystal. The piezoelectric

material generates an electric charge proportional to its deformation.

The electrical charge on piezoelectric crystals can be induced by compression,

shear, or flexural deformation. Each method offers advantages and drawbacks.

Thus, piezoelectric accelerometers are alternatively built according to one of

these methods by choosing the most appropriate for the considered application. In

compression mode the seismic mass applies a compressive force on the piezoelec-

tric crystal mounted on a rigid base. This method leads to a high-frequency range

but it is susceptible to thermal transient effects because the crystal is in contact with

the base of the housing. Moreover, any deformation of the base is transmitted to the

crystal, which provides erratic readings not associated to the acceleration. For these

reasons, compressive design of piezoelectric accelerometers is being more and

more replaced by shear and flexural design. Accelerometers based on the shear

method show the best overall performance. In this case the crystal is clamped

between a center post and the outer mass: the larger the attached mass, the larger

the shear force applied to the crystal for a given acceleration. These accelerometers

work well over a high-frequency range and do not suffer strain or thermal transient

effects, since the crystal is not in direct contact with the base. Flexural design leads

to very high output signals because the crystal is subjected to high stress levels.

The bending of the crystal can be the result of inertia forces associated to the sole

mass of the crystal, but additional weight can be added to the crystal to enhance

bending. This type of accelerometers shows a limited frequency range in compari-

son with the previous ones, and they are more prone to damage if exposed to

excessive shock or vibration. Accelerometers based on flexural design are typically

well suited for low frequency, low vibration amplitude applications such as modal

testing of structures.

The charge collected by electrodes on the piezoelectric crystal is transmitted

to a signal conditioner, which converts the electric charge into voltage. A remote

signal conditioner characterizes chargemode sensors. On the contrary, a built-in signal

conditioner characterizes the so-called Integrated Electronics Piezo-Electric (IEPE)

accelerometers (also known as voltage mode accelerometers). In the presence of a

built-in signal conditioner, the signal cable carries also the required power supply.

As a consequence, the signal is high-pass filtered to remove the frequencies close to

DC. The (built-in or remote) signal conditioner output is a voltage signal available for

display, recording, and analysis. Nowadays IEPE accelerometers (Fig. 3.1) are

replacing charge mode sensors since they offer a number of advantages, such as

simplified operation, lower cost, resolution virtually unaffected by cable type and

length (long cables can be used without increase in noise, loss of resolution, or signal

attenuation).

From a mechanical point of view, a piezoelectric accelerometer is equivalent to a

SDOF system characterized by an oscillating mass subjected to an input ground

motion; the spring and the dashpot of the SDOF system are represented by the
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piezoelectric material. As a consequence, some characteristics of piezoelectric

accelerometers can be obtained from the analysis of the FRF of the system, relating

the input acceleration and the output voltage (Fig. 3.2).

In terms of amplitude, the widest frequency range with uniform gain is

associated to a damping ratio of 0.707. For this reason, some accelerometers are

designed with added damping in order to maximize their frequency range. This is

mainly the case of large accelerometers, characterized by low values of the first

natural frequency. From a general point of view, independently of the damping

ratio, the gain factor is basically uniform for frequencies up to 20 % of the

undamped natural frequency of the sensor. Thus, it may happen that no specific

design in terms of damping is carried out by the manufacturer, and the useful

frequency range of the sensor is simply up to 20 % of its natural frequency.

Fig. 3.1 IEPE

accelerometers (by PCB

Piezotronics Inc.)
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In terms of phase, a damping ratio equal to 0.707 leads to a phase function,

which is basically linear over the frequency range where the frequency response

amplitude is flat. The linear phase function induces only a time delay and, as a

consequence, it does not distort the time history. On the contrary, deviations from

the damping value of 0.707 lead to a phase distortion in the measured structural

response. However, in these cases the sensor can be used in a frequency range up to

20 % of its natural frequency without distortion of the measured structural response.

In fact, in this frequency range the phase is zero. It is worth noting that the

fundamental natural frequency of the sensor also depends on how it is mounted.

In fact, as it will be clarified in Sect. 3.5, when the attachment of the sensor to the

structure is not rigid, the natural frequency of the accelerometer can be lower than

the value declared by the manufacturer and referred to rigid mounting. As a

consequence, a narrower frequency range is obtained.

Force-balance accelerometers (Fig. 3.3) are based on a capacitor with moving

plates and a control system creating a restoring force when a minute displacement

of the plates occurs as an effect of the applied input ground motion. At rest the two

moving capacitor plates (also referred to as “the moving mass”) are symmetrical to

the fixed central plate and no voltage is generated. Acceleration causes the capaci-

tive sensor plates to move with respect to the fixed central plate. This displacement

results in an unbalanced signal. This error signal is manipulated in order to create a

DC error term. The feedback loop compensates for this error signal by creating a

magnetic restoring force to balance the capacitor plates back to their original

equilibrium position. The current traveling through the coil is thus directly propor-

tional to the applied acceleration.

Force balance accelerometers can measure also static forces, so their bandwidth

starts from DC. The upper bound of the frequency range is, instead, limited to a few

hundred Hz. Thus, a narrower frequency range typically characterizes force balance

accelerometers with respect even to the large seismic piezoelectric accelerometers,

but it still fulfills the requirements of testing and monitoring of civil structures. An

example of frequency response of force balance accelerometers is illustrated in

Fig. 3.4.

Fig. 3.3 Force balance

accelerometers

(by Kinemetrics Inc.)
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In recent years geophones have been adopted in a number of OMA tests

(Brincker et al. 2005, Schmidt 2007). These sensors provide velocity measurements

and they do not need power supply. In fact, the signal is produced by the relative

movement of the coil (representing the oscillating mass) with respect to a magnet

attached to the base of the sensor. Geophones are robust high-performance sensors,

in particular with respect to sensor self noise; however, they are characterized by

poor performance at low frequencies. Some proposals for digital correction of the

output signal in order to overcome these limitations can be found in the literature

(Brincker et al. 2005, Barzilai 2000).

When accelerometers are used for ambient vibration testing of civil structures,

the low amplitude of motion and the limited frequency range of the structure under

test orient the choice towards high-sensitivity accelerometers such as those used for

seismic networks. However, frequency band and sensitivity are not the only

parameters to be taken into account. Sensor specifications must be carefully

analyzed in order to properly select and use the sensors for a specific application.

In particular, it is worth noting that some sensor characteristics, such as dynamic

range or sensitivity, might be frequency dependent. Thus, a sensor might show

better specifications in a certain frequency band and worse specifications elsewhere.

This circumstance must be taken into account in the choice of a sensor.

Independently of the type of sensor, the output voltage signal is proportional to

the measured physical quantity through a constant, the sensitivity of the sensor.

Sensitivity is usually given as the gain of the sensor (for example, 10 V/g) and it is

in some way related to the smallest signal that can be resolved. In fact, the

sensitivity of a sensor is defined as the minimum input of physical parameter that

will create a detectable output change. However, the smallest detectable signal is

also limited by the noise generated in the electronics. From a general point of view,

a high gain should be preferred since an amplified signal minimizes the noise

effects associated to the transmission over cables. Besides, it is important to verify
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that the maximum sensor output has a level fitting the recorder maximum input so

that the sensor dynamic range is optimally used.

The dynamic range DRs of a sensor (often expressed in dB) is the ratio between

the largest and the smallest signal it can measure:

DRs ¼ 10 log
Vmax, s

Vn, s

� �2

ð3:1Þ

In (3.1) Vmax,s and Vn,s represent the maximum voltage signal and the noise

floor of the sensor, respectively. The noise floor typically depends on frequency

and it is expressed in V=
ffiffiffiffiffiffi

Hz
p

. Thus, it has to be squared and integrated over the

considered frequency range in order to compute the value of DRs. Nowadays, the

best accelerometers have a dynamic range higher than 150 dB. However,

the dynamic range of the total measurement chain depends also on the dynamic

range of the digitizer. As a consequence, a dynamic range in the order of

120–140 dB is also suitable since it fits well the dynamic range of the average

24 bit digitizers.

Sensor resolution represents the smallest incremental change of physical quan-

tity that leads to a detectable change in the sensor output. It is usually expressed in

absolute terms or as a percentage of the full-scale range. This provides the mini-

mum and maximum values of the physical quantity that can be measured by the

sensor. Some accelerometers are characterized by user-selectable full-scale range.

An ideal sensor should behave linearly, but a certain deviation from linearity is

always present. Such deviation should be as limited as possible and it is expressed

by the percentage of nonlinearity. Accelerometers with good performance typically

show a nonlinearity lower than 1 %.

The cross axis sensitivity of a sensor quantifies its sensitivity to motion perpen-

dicular to the main axis. Accelerometers for modal testing typically show a low

transverse sensitivity, in the order of 2 % or less.

Readings from accelerometers are often characterized by a certain offset. The

offset error is defined as the output of the sensor at zero input. Some accelerometers

permit the minimization of the offset error through a mechanical intervention.

Settling time of piezoelectric accelerometers is another parameter to be taken

into account during measurements. It represents the time needed by the sensor to

reach a stable output once power is supplied to the sensor. In other words, after

power is supplied, it is the amount of time to wait before starting recording in order

to get stable measurements.

Sensor self noise plays a primary role in determining the capability of the sensor

to properly resolve the structural response. In fact, if the signal to be recorded is

very small, it may drown in the electronic noise of the sensor. Reliable information

about or quantification of sensor self noise is, therefore, fundamental in the pres-

ence of very weak ambient excitation or in the case of very massive low-rise

structures.
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Methods to estimate the noise floor of sensors are described in Brincker and

Larsen (2007). An approach is based on the isolation of the sensor from any

vibration (for instance, by a seismic isolation chamber). When two or more sensors

are available, an alternative approach is based on measurements carried out in the

same location. In this case only one physical signal is present (the ambient vibration

signal), and the SVD of the PSD matrix makes possible the simultaneous estimation

of signal spectrum and noise floor of sensors.

Comparing the noise floor of the sensors with reference models of the seismic

background noise can be useful to check their effectiveness for ambient vibration

measurements. Even if such models were developed to deal with seismic back-

ground noise, Peterson’s noise curves (Peterson 1993) represent a valuable tool to

assess the performance of a sensor in the presence of very low levels of vibration. In

fact, seismic micro-tremors represent low-amplitude vibrations of the ground due to

artificial and natural noise sources. Starting from ground acceleration PSDs deter-

mined for noisy and quiet periods at 75 worldwide distributed digital stations and

averaging the spectra of the three quietest and the three noisiest independent records,

Peterson has derived two curves (Fig. 3.5) which represent upper and lower bounds

of the typical PSDs of the observed ambient noise. In very quiet conditions, the

sensor is able to properly resolve the seismic background noise if its noise floor is

below the Peterson’s low noise model. Otherwise, the sensor output signal is just

electronic noise. Thus, the Peterson’s curves are extremely useful as a reference for

assessing the quality of seismic stations, for predicting the detectability of small

Fig. 3.5 Peterson’s noise models: New Low Noise Model (NLNM), New High Noise Model

(NHNM)
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signals, and for the design of seismic sensors. By definition, the low noise model

represents a conservative estimate of the expected level of micro-tremor excitation.

Man-made activities, site amplification, and other factors influence the actual micro-

tremor input so that almost all sites have a noise level above the Peterson’s low-noise

model, often by a large factor. The Peterson’s low-noise model summarizes the

lowest observed vertical seismic noise levels throughout the seismic frequency

band. Peterson’s investigations have also shown that the minimum level of horizon-

tal acceleration is similar or slightly higher. As a consequence, the Peterson’s

low-noise model can be considered representative of both the vertical and horizontal

minimum vibration levels.

The expected level of vibration of a structure in operational conditions is

definitely higher than the seismic background noise, at least as an effect of site

and structural amplifications. As a consequence, a sensor that accomplishes the

Peterson’s low-noise model is also effective for OMA tests. Taking into account the

structural amplification at resonance and the Peterson’s low-noise model, a sensor

for OMA test in very quiet environment has to be characterized by a noise floor in

the order of �140 dB or better in the frequency range 0.1–100 Hz.

Both piezoelectric and force balance seismic accelerometers are very effective in

measuring the response of civil structures in operational conditions. Each type of

sensor has advantages and limitations. For instance, piezoelectric accelerometers

are easy to install and are characterized by a good frequency response (large

bandwidth), but they are also characterized by fragile sensing elements and by

some limitations in measuring low-frequency components; moreover, the coaxial

cable typically adopted to link the sensors with the data acquisition hardware is

more prone to pick up noise from the environment with respect to the cables (made

by individually shielded twisted pairs) adopted for force balance accelerometers

(see also Sect. 3.4). On the other hand, force balance sensors have a low-noise floor

and they are able to measure very low-frequency signals and even the DC compo-

nent. However, the upper bound of their bandwidth is much lower than the upper

frequency limit of piezoelectric sensors. Moreover, they suffer DC drifts and are

characterized by expensive and heavy cabling. Electromagnetic sensors can some-

times be used for OMA tests taking advantage of their low-noise floor and of the

cheap and noise robust cabling made by a single shielded twisted pair. However, the

bad response at low frequencies limits their use in many civil engineering

applications.

It is worth noting that the final choice of the sensors is always the result of a

number of factors. In this book the use of seismic (piezoelectric or force balance)

accelerometers is recommended because of their high performance in measuring

low-amplitude ambient vibrations. However, the test engineer has to be aware that

the market offers a large variety of sensors, characterized by a range of

specifications and prices: thus, the final choice must take into account different

factors, such as the final objective of measurements, the expected amplitude of the

motion to be measured, the characteristics of the sensors in relation to those of the

data acquisition hardware and of the tested structure, and, the last but not the least,

the available budget.
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3.3 Data Acquisition Systems

Data acquisition systems perform the conversion of the analog signals coming from

the sensors into digital signals, which can be stored into a digital medium and

analyzed by software. A large variety of systems for data acquisition are available

on the market. They show different characteristics, configurations, and price, and

the choice is made even more difficult when the available budget is not the sole

constraint. In fact, additional factors influencing the choice are portability, the

experience of the analyst, and the degree of compatibility with third-party hardware

and software. A rough distinction can be made between dedicated solutions offered

by specialized vendors (Fig. 3.6a) and customizable solutions based on program-

mable hardware (Fig. 3.6b). The first class of equipment is usually characterized by

a steep learning curve, so that basic knowledge about signal acquisition and limited

time to get confidence with the system are sufficient to carry out the first tests;

however, these systems are accompanied by proprietary software for configuration

and control of the measurement process and typically suffer for limited versatility.

On the other hand, the solutions based on programmable hardware require more

time, deeper theoretical knowledge, and larger efforts by the user to begin field

Fig. 3.6 Dynamic data

acquisition system by

Kinemetrics Inc. (a) and

programmable hardware by

National Instruments™ (b)

70 3 Data Acquisition



tests. In fact, the user has in charge the duty of selecting the hardware components

and developing the data acquisition software. However, the main advantages with

these solutions are the lower price and the higher versatility. In both cases, the

analysis of the main characteristics of analog-to-digital converters (ADCs) is

helpful in order to properly select, among different solutions, the system that better

fits the user’s needs.

An ADC is a device that converts the continuous signal coming from the sensors

into a sequence of digital numbers representing the amplitude of the signal. The

conversion is based on the discretization of time (sampling) and signal amplitude

(quantization). Quantization necessarily introduces a small amount of error, since

the continuous amplitude of the signal is approximated by a finite number of

discrete values. However, the quantization error is usually negligible with respect,

for instance, to measurement noise. It can become significant only in the case of

poor resolution.

The resolution of an ADC can be defined as the smallest step that can be

detected. This is related to one change of the Least Significant Bit (LSB). For

high dynamic range digitizers, the order of magnitude of resolution is about 1 μV.

The number of bits of an ADC is sometimes also referred to as resolution. However,

most ADCs have an internal noise higher than one count: in this case, the number of

noise free bits, rather than the total bit number, yields the effective resolution.

The noise level is related to the number of bits occupied by noise when the input

is zero. Only the last two bits are typically corrupted by noise in good quality 24-bit

digitizers.

The dynamic range is defined as the ratio between the largest and the smallest

value the ADC can acquire without significant distortion. It is usually expressed in

dB. Taking into account that the lowest bits often contain only noise, the dynamic

range is also defined as the ratio between the largest input voltage and the noise

level of the digitizer. This number may be dependent on the sampling frequency.

Good digitizers currently have a dynamic range higher than 100 dB.

An example is helpful to illustrate the previous concepts. Consider an ADC

characterized by a number of bits equal to Nbit. Assume that the maximum and

minimum input voltage have the same absolute value; in other words, the input

voltage varies between �Vmax, ADC (for instance, �5 V). The available number of

discrete amplitude values is N ¼ 2Nbit . As a consequence, the nominal value of the

ADC resolution is:

ΔVADC ¼ 2Vmax,ADC

N
¼ 2Vmax,ADC

2Nbit
¼ Vmax,ADC2

1�Nbit : ð3:2Þ

Since the noise floor Vn, ADC of the ADC is usually larger than ΔVADC, the least

significant bits are given by (3.3):

2LSB ¼ Vn,ADC

ΔVADC

ð3:3Þ
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and, as a consequence, the number of effective bits Nbit, eff is:

Nbit,eff ¼ Nbit � LSB: ð3:4Þ

The dynamic range of the ADC can be computed from the number of effective

bits as:

DRADC ¼ 20 log
Vmax,ADC

Vn,ADC

� �

¼ 20 log 2Nbit,eff�1
� �

� 6 Nbit,eff�1
� �

: ð3:5Þ

Thus, a dynamic range of about 120 dB corresponds to 21 effective bits and vice

versa. It is worth noting that the dynamic range of the complete measurement

system depends also on the dynamic range of the sensors. For this reason, maximum

input and noise floor of data acquisition system and sensors have to match.

The sampling rate is the number of samples acquired per second. The maximum

sampling rate of the ADC defines the largest frequency range that can be

investigated. For the majority of applications of OMA in civil engineering, a

maximum sampling rate of 100 Hz or 200 Hz is satisfactory. Moreover, when

large structures characterized by a high content of low-frequency modes are tested,

the data acquisition system, like the sensors, has to be able tomeasure low-frequency

components. In these conditions a frequency range starting from DC is required.

The absolute accuracy is a measure of all error sources. It is defined as the

difference between the input voltage and the voltage representing the output.

Ideally, this error should be �LSB/2 (the quantization error, that is to say the

error only due to the digitization steps).

Conversion time, that is to say the minimum time required for a complete

conversion, is defined only for converters based on a sample-and-hold architecture.

However, the sigma-delta architecture is currently preferred for 24-bit ADCs

because of its higher performance; because of the different architecture, based on

a continuous signal tracking, the conversion interval is not important for sigma-

delta ADCs. Without describing sigma-delta converters in details, it is worth noting

that their high performance is basically obtained by sampling the input signal at a

frequency much higher than the desired data rate. The samples then pass through a

filter which expands the data to 24 bits, rejects signal components higher than the

Nyquist frequency associated to the desired sampling frequency, and digitally

resamples the data at the chosen data rate. In general, the built-in anti-aliasing

filters automatically adjust themselves (see Sect. 3.6 for more details about

aliasing). The combination of analog and digital filtering provides a very accurate

representation of the signal.

If several channels are available in the same digitizer, a signal recorded in one

channel may be seen in another channel. This phenomenon is referred to as cross

talk. The amount of cross talk is expressed in dB and means how much lower the

level in a channel is in the neighboring channels. A good quality 24-bit digitizer has

120 dB of damping or better. Cheap multichannel digitizers, instead, usually use a

single ADC and an analog multiplexer, which connects different inputs sequentially
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to the ADC input. This limits the cross talk separation since analog multiplexers

have limited performance. For high-quality measurements, solutions with one

digitizer per channel are therefore recommended.

Nonlinearity is related to how two different signals at the input are

intermodulated (so that the amplitude of a signal depends on the other) at the

output. It is expressed as a percentage of the full scale. This is usually not a problem

with modern sigma-delta converters.

The offset represents the DC level of the output when the input is zero. Some

offset is always present, due to the ADC or the connected devices, but it can often

be minimized. It is worth noting that any offset limits the dynamic range, since the

ADC will reach its maximum value (positive or negative) for smaller input values

than its nominal full scale.

Additional characteristics influencing the choice of the solutions for data acqui-

sition are versatility and robustness. For instance, systems allowing the selection of

different measurement schemes (single ended and differential) or acquisition of

signals from sensors of different type are definitely more attractive. Portability, low

power consumption and possibility of battery operation, robustness in varying

environmental conditions also play a primary role in the choice of the equipment

for field testing. Finally, distributed measurements by modular instruments are

becoming more and more attractive thanks to the possibility to use the same device

to carry out tests with either a few or a large number of measurement channels. This

characteristic is particularly attractive in testing large or complex structures, when

pretests or local tests with a reduced number of sensors and global measurements

with a large number of channels have to be carried out on the same structure in a

limited amount of time.

3.4 Wired vs. Wireless

The last decade has been characterized by large efforts in the development of

wireless sensor networks for structural testing and health monitoring. The first

commercially available wireless sensor platform, originally developed at the Uni-

versity of California-Berkeley, appeared in 1999. Since then, this technology has

experienced a rapid development and an increasing interest of the scientific and

professional community in this field. The commercial success is mainly due to the

low cost and the possibility to combine different sensors in the same wireless node.

More details can be found elsewhere (Lynch and Loh 2006).

Even if a number of wireless sensing solutions are currently available, offering

attractive advantages such as the reduction of costs and installation time associated

to the use of cables, they have not fully replaced wired systems. The main

advantage of wired systems over wireless sensor network is in the time synchroni-

zation of the channels. Simultaneous sampling, in fact, ensures the phase coherence

among all the measurement channels, preventing errors in the computation of cross-

correlation and cross-spectral density functions. Time synchronization in wireless

sensor networks requires specific solutions while it represents an ordinary task
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when a single data acquisition system and wired sensors are adopted. In wireless

sensor networks, each node has an ADC of its own. As a consequence, time

synchronization of the different ADCs requires an external time base providing a

time reference. A possible solution for time synchronization of distributed ADCs is

represented by GPS. Whenever a GPS signal is available, wireless sensor networks

can be adopted.

The choice of the type of cable and the connection with the terminals also

influence the quality of measurements. The following types of cables are typically

used to carry the analog signals from the sensors to the data acquisition system:

• Coaxial cables (Fig. 3.7a)

• Cables consisting of a single shielded twisted pair

• Cables consisting of multiple twisted pairs with common shield

• Cables consisting of multiple individually shielded twisted pairs (Fig. 3.7b)

Coaxial cables (typically used for piezoelectric accelerometers) are very cheap

but they are the most vulnerable to electrical noise exposure; cables consisting of

multiple individually shielded twisted pairs (typically used for force balance

accelerometers) are heavy and expensive but they are the least prone to pick up

noise from the environment.

Fig. 3.7 Coaxial cable (a)

and cable consisting of

multiple individually shielded

twisted pairs (b)
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The connection of the wires with the terminals represents another critical aspect,

since a poor connection fosters the introduction of electrical noise. In this perspec-

tive, particular attention has to be focused on proper shield termination, avoiding

ground current flows through the shield. This is possible by connecting the shield to

the ground only at one end. Instructions for cable assembly provided by sensor and

data acquisition system manufacturers have to be carefully fulfilled.

Even when ground loops are avoided, there is always a certain amount of noise

picked up from the environment. Some rules of thumb can help to minimize these

effects. For instance, mobile phones must be switched off during tests, and cables

and data acquisition systems must be placed as far as possible from sources of

electromagnetic noise, including the computer screen. Moreover, dangling wires

must be avoided. Cables must be clamped during tests because their motion can

cause triboelectric effects. In simple words, the charge generated on the dielectric

within the cable can lead to changes in the magnetic field if the dielectric does

not maintain contact with the cable conductors, thus generating errors in the

measurements.

If the measurement scheme has been appropriately defined, and installation and

measurements are properly carried out, the collected data will be of good quality

and ready for the analysis. During data processing, techniques for noise reduction

can be adopted to further improve the quality of the obtained modal identification

results. However, it is worth emphasizing that there is no substitute to good

measurements. The acquired signal must carry the physical information together

with a certain amount of noise in order to successfully apply OMA techniques.

Signal processing techniques and advanced modal analysis techniques have no

effects if the recorded signal consists of noise only.

3.5 Sensor Installation

Sensor layout and attachment method influence the identifiability of the modal

properties of the structure under test. In particular, while the attachment method

might have an influence on the extension of the investigated frequency range, the

possibility to observe different and sometimes closely spaced modes depends on

sensor layout (as mentioned also in Chap. 1).

Accelerometers can be mounted by a variety of methods, including magnet,

adhesive, and stud or screwed bolt. The main drawback when using stud or screwed

bolt is the higher difficulty in moving the sensors in different positions of the

structure. However, a stiff connection ensures that the useful frequency range of

the accelerometer is not limited by the mounting method. In fact, the connection

between sensor and structure acts like a spring, leading to a spring-mass system

with the sensor itself. As a consequence, a reduction in the stiffness of the

connection narrows the useful frequency range of the accelerometer by a reduction

of its upper limit. The connection by stud or screwed bolt usually ensures a very

stiff connection. However, a smooth flat surface of the structure at the desired

sensor locations is also required to avoid a reduction of the upper frequency limit.
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In fact, the prepared surface allows the sensor to be installed normally to it and with

a very stiff contact between sensor and structure. On the contrary, a rough surface

can lead to misalignments or poor contact, causing a loss of stiffness of the

connection and the corresponding reduction of the frequency range. From a

general point of view, the choice of the attachment method depends on different

parameters, such as accessibility of the selected sensor positions, structural surface,

expected amplitude of vibration and frequency range, portability, and surface type

and conditions.

Sensor location mainly influences the observability of the structural modes. One

of the reasons which may require to move the sensors from one location to another

is their installation in correspondence or very close to nodes of the structural mode

shapes. In similar cases the data collected by those sensors do not provide effective

information for the identification of some of the structural modes (specifically,

those modes whose nodes correspond to the position of the sensors). In fact, as

already mentioned in Chap. 1, sensor placed at nodal points limits the rank of the

FRF matrix. Another reason to move the sensors could be the identification of

distinct resonances associated to very similar mode shape estimates as a result of

poor spatial resolution of measurements and unfortunate choice of sensor layout.

The choice of the sensor layout depends on the number of available sensors, the

needed information about the mode shapes, which may lead to different

requirements in terms of spatial density of the sensors, and the objectives of the

modal identification test. In the literature several studies aimed at the optimization

of sensor location are available (see, for instance, Papadimitriou and Lombaert

2012, Cyrille 2012, Marano et al. 2011). However, the results obtained from the

application of those methods depend on the adopted criteria and optimization

techniques, leading to different possible layouts. Thus, those techniques can support

the definition of the test layout but a careful planning by the test engineer and a

certain amount of physical insight still play a relevant role in the definition of

layouts able to maximize the observability of the modes and the amount of

information provided by the sensors. Nevertheless, it is possible to define the

minimum number of sensors that have to be installed to identify at least the

fundamental modes of a structure. In fact, assuming that at least a couple of closely

spaced modes exists and that the measurement noise limits the identifiability of

some modes, in particular in the case of weakly excited structures, the fundamental

modes can be identified by appropriate installation of at least 6–8 sensors. “Appro-

priate installation” means that the adopted sensor layout ensures the observability

of modes of different type (for instance, translational and torsional modes) and does

not limit the rank of the FRF matrix (for instance, installation of sensors in very

close points has to be avoided since the information they provide is basically the

same). When some a priori information about the mode shapes is available, an

effective sensor layout can be obtained by installing the sensors in a set of points

where all the modes of interest are well represented (that is to say, those modes

show fairly large modal displacements at the selected locations). Even if the sensor

layout varies from structure to structure and it can also be refined during the test if

the measurements do not appear satisfactory at a first preliminary analysis, some
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recurrent schemes for sensor placement can be identified. They are shown in

Fig. 3.8 for buildings and tower-like structures, and in Fig. 3.9 for bridges.

Under the assumption of rigid floors in building-like structures, at least three

sensors have to be installed on a floor. In order to ensure the observability of both

translational and torsional modes, the sensors have to be installed in two orthogonal

directions and in opposite corners of each instrumented floor. Installing the sensors

on, at least, two distinct floors allows, in principle, the identification of some higher

modes, too. When the tested structure is a bridge, both vertical and horizontal

components of acceleration have to be measured in order to ensure the identifica-

tion of both horizontal and vertical bending modes. Moreover, installation of

couples of sensors measuring the vertical component of acceleration at the same

abscissa along the main axis of the bridge but in symmetrical points with respect to

it ensures the observability of torsional modes.

Fig. 3.8 Recurrent sensor

layout for buildings and

tower-like structures

Fig. 3.9 Recurrent sensor

layout for bridge spans

3.5 Sensor Installation 77



The previously suggested layouts represent only crude guidelines for the instal-

lation of the sensors. The actual test layout has to be defined taking into account all

the previously discussed issues and the characteristics of the tested structure.

In some cases the objective of the tests can be the investigation of the dynamic

response of selected portions of a structure, such as the cables in cable-stayed

bridges or steel rods in ancient vaults. When similar lightweight structural

components are tested, it is important to ensure that the attached accelerometers

have a minimum influence on the vibratory behavior of the tested system. In

particular, the added mass represented by wires and sensors has to be as limited as

possible. Taking into account that the weight of the sensor typically increases with

its sensitivity, the influence of the added mass on the dynamic response has to be

carefully evaluated if high sensitivity accelerometers are going to be used. If a

significant influence of the added mass on the dynamic response is expected,

alternative solutions have to be adopted. They can range from the replacement of

the heavy high-sensitivity accelerometers with lighter accelerometers at the

expenses of a reduction in sensitivity, up to the adoption of wireless sensor networks.

In some cases the number of available sensors is not sufficient to obtain the

desired spatial resolution for the mode shape estimates. For instance, assume that

the mode shapes have to be estimated in M points and the number of available

sensors is Ns<M. The estimation of the mode shapes in all theM points, therefore,

requires the execution of multiple tests in order to cover all the points of interest.

Assuming that T tests have to be carried out, T datasets are obtained. However, the

mode shape estimates obtained from each dataset cannot simply be glued together

to obtain the mode shape estimate in the desired M locations. In fact, as mentioned

in Chap. 1, the excitation is not measured in OMA and, as a consequence, the

obtained mode shape estimates cannot be scaled in order to fulfill the property of

orthogonality with respect to the mass matrix. Only un-scaled mode shape estimates

can be obtained, and the scaling factor between mass-normalized mode shapes and

un-scaled mode shapes can vary from test to test. In these conditions the only

possibility to merge the different partial mode shape estimates is to carry out

multiple tests where a number of sensors Nref (called reference sensors) remain in

the same position during all tests and the other Nrov sensors (called roving sensors)

are moved until the structural response is measured at all the desired M locations.

The mode shape estimates obtained from each dataset can be then divided in two

parts: Nref components are defined over the set of points common to all tests, while

the remaining Nrov components are defined over non-overlapping sets of points. The

Nref components of the estimated mode shape obtained from the i-th test are related

to the Nref components obtained from the first dataset in the same locations through

a scaling constant:

ϕ k
ref ,1

n o

¼ α k
1, i ϕ k

ref , i

n o

ð3:6Þ

where {ϕ k
ref ,1} and {ϕ k

ref , i} are the portions of the k-th mode shape estimated from

the first and i-th dataset at the Nref reference points, respectively. Assuming Nref� 3,
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the scaling factor is easily determined by solving a least squares problem

(Fig. 3.10); the resulting scaling factors are finally used to merge the different

portions into the total mode shape vector:

ϕk
� �

¼

ϕ k
ref ,1

n o

ϕ k
rov,1

� �

α k
1,2 ϕ k

rov,2

� �

. . .
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: ð3:7Þ

It is worth noting that, if the k-th mode shape vector is characterized by small

components in the reference points, noise can heavily affect the resulting value of

the scaling factor. Thus, the use of a fairly large number of reference sensors is

recommended in order to ensure the availability of a number of reasonably large

mode shape components for all the modes. Additional details and more advanced

procedures to merge mode shape estimates from different setups can be found in the

literature (Reynders et al. 2009, Dohler et al. 2010a, Dohler et al. 2010b).

The previous discussions highlight the importance of an accurate design of the

test. A final suggestion can be given for those situations where the number of

sensors is not a limiting factor but there is the need for an improvement of the SNR

(this could be the case of very weak excitation, so that, even if the sensors are able

R1 R2 R3 R4

R'1

R'2

R'3

R'4

Reference amplitudes 

of the k-th mode in 

setup 1

Reference amplitudes of 

the k-th mode in setup 

i>1

Fig. 3.10 Determination of the scaling factor of mode shapes in multi-setup measurements
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to properly resolve the small amplitude vibrations, the peaks of mode resonances

are not so far from the noise level). In these conditions, if sensors are installed in

couples, so that the two sensors in the same couple measure the same physical

signal s(t) (that is, the two sensors are located in the same point and measure the

same component of acceleration):

y1 tð Þ ¼ s tð Þ þ n1 tð Þ, ð3:8Þ

y2 tð Þ ¼ s tð Þ þ n2 tð Þ, ð3:9Þ

assuming that each sensor has its own inherent noise:

n1 tð Þ 6¼ n2 tð Þ, ð3:10Þ

and that signal and noise for each sensor as well as the noise components of the two

sensors in the couple are uncorrelated:

E s tð Þn1 t� τð Þ½ � ¼ 0 ð3:11Þ

E s tð Þn2 t� τð Þ½ � ¼ 0 ð3:12Þ

E n1 tð Þn2 t� τð Þ½ � ¼ 0 ð3:13Þ

simple mathematical manipulations allow to recognize that the cross-correlation

between y1(t) and y2(t) is:

Ryiyj τð Þ ¼ E s tð Þs t� τð Þ½ � þ δijE ni tð Þnj t� τð Þ
	 


i, j ¼ 1, 2 : ð3:14Þ

As a consequence, the cross-correlation (or equivalently the cross-spectrum)

between the two channels extracts the signal from the noise of the sensors and can

be used to improve the signal-to-noise ratio when it is poor with only one sensor.

In a similar way, it is possible to compute the auto-correlation (auto-spectrum) of

the signal difference y1(t)� y2(t) and show that it is a measure of the sum of the

noises in the two sensors:

Ry1�y2,y1�y2 τð Þ ¼ Rn1,n1 τð Þ þ Rn2,n2 τð Þ ð3:15Þ

while the auto-correlation of the sum of the signals, y1(t) + y2(t), amplifies the signal

with respect to the noise:

Ry1þy2,y1þy2 τð Þ ¼ 4Rs, s τð Þ þ Rn1,n1 τð Þ þ Rn2,n2 τð Þ: ð3:16Þ

The installation of couples of sensors in the same position obviously does not

overcome the limits of the sensors. If the single sensor is not able to measure the

structural response, no physical information is included in the data but they are

just noise. However, if the sensors are properly selected, so that they are able to

resolve the structural response, this sensor layout can improve the SNR of the

collected data.
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3.6 Sampling, Filtering, and Decimation

The definition of the value of the sampling frequency represents one of the most

important settings in dynamic tests. It is always a compromise between the need for

an accurate representation of the signal in digital form and the available (eventually

large, but always limited) memory and hard disk space for data storage and

analysis. Thus, very long observation periods may require lower values of the

sampling frequency to avoid overburdening. However, the sampling frequency

cannot be set too low, because it determines the frequency range that can be

investigated. As a consequence, it has to be set depending on the maximum

frequency of the structure under test.

Assuming that the expected value of the maximum frequency is 20 Hz, the

sampling frequency has to be set in a way able to observe this maximum frequency.

The Shannon’s theorem (2.20) states that the sampling frequency has to be at least

twice the highest frequency contained in the time signal. In the present example, a

sampling frequency larger than 40 Hz is needed, so that the upper bound of the

observable frequency range (the so-called Nyquist frequency fN¼ fs/2) is higher

than 20 Hz.

Figure 3.11 shows the effect of an inadequate selection of the sampling rate

that causes an erroneous reconstruction of the waveform after digitization of the

continuous signal with a high-frequency signal appearing as a low-frequency one.

Thus, a typical problem of digital signal analysis caused by the discrete sampling of

continuous signals is the so-called aliasing. Aliasing originates from the

discretization of the continuous signal when the signal is sampled too slowly and,

as a consequence of this under-sampling, higher frequencies than the Nyquist
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frequency are reflected in the observed frequency range causing amplitude and

frequency errors in the spectrum of the signal.

For instance, assume that the analog signal includes the power line frequency

fPL¼ 50 Hz> fN; in the absence of any countermeasure, when the analog signal is

sampled at fs¼ 40Hz, the frequency fPLwill be aliased and itwill appear as a frequency

component of the signal at 10 Hz. In fact, the alias frequency is given by the absolute

value of the difference between the closest integer multiple of the sampling frequency

and the input frequency. In the present case: j fs� fPLj ¼ j40� 50jHz¼ 10 Hz.

This alias frequency cannot be distinguished from actual low-frequency

components in the signal. Effective countermeasures are, therefore, needed to

prevent distortions in the computation of the spectrum of the digital signal.

The only method to avoid aliasing is the removal of all frequency components

in the analog signal that are above the Nyquist frequency before the analog-to-

digital conversion. An analog low-pass filter applied before this conversion

allows restricting the frequency range of the original analog signal. Such an

analog filter with sharp cut-off is usually referred to as the anti-aliasing filter.

The presence of an analog anti-aliasing filter before the ADC is a critical

requirement in the selection of the data acquisition system, since it only can

minimize aliasing. It is worth pointing out that an ideal anti-aliasing filter passes

all the frequencies below and removes all the frequencies above the cut-off

frequency of the filter, but it is not physically realizable. Thus, real anti-aliasing

filters always have a transition band, which causes a gradual attenuation of the

input frequencies (Fig. 3.12). Thus, the frequencies in the transition band can still

cause aliasing.

Taking into account that no low-pass filter has an infinitely sharp roll-off, the

filter is often set at 80 % of the Nyquist frequency (40 % of the sampling frequency)

or even less, depending on the roll-off rate of the filter itself. Thus, the portion of the

spectrum close to the Nyquist frequency is inevitably distorted and should be

disregarded. In other words, due to the existence of this finite transition band

in the analog anti-aliasing filter, the sampling frequency has to be set higher than

Fig. 3.12 Ideal and real anti-aliasing filter
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twice the maximum frequency in the signal. In the previous sample case, assuming

that the filter is set at 80 % of the Nyquist frequency so that it cuts off all frequencies

above fN and the transition band is [0.8fN, fN], the frequency component at 20 Hz can

be properly measured by setting fs> 50 Hz.

Unwanted frequency components can still be present in the acquired data.

Digital filters can reject them. In Chap. 2 the modification of the signal in time

domain by windowing has been discussed. Like the windows, the filters modify the

signal but they act in frequency domain. They are usually classified as low-pass,

high-pass, band-pass, and band-stop, depending on the frequency range of the

signal that the filter is intended to pass from the input to the output with no

attenuation. In particular, a low-pass filter excludes all frequencies above the

cut-off frequency of the filter, while a high-pass filter excludes the frequencies

below the cut-off frequency; a band-pass filter excludes all frequencies outside its

frequency band, while a band-stop filter excludes the frequencies inside the filter

band. Since the real filters have certain roll-off features outside the design fre-

quency limits, the extension of the transition band and some effects on magnitude

and phase of the signal have to be taken into account in the applications of digital

filters.

An ideal low-pass filter removes all frequency components above the cut-off

frequency. Moreover, it is characterized by a linear phase shift with frequency. The

linear phase implies that the signal components at all frequencies are delayed by a

constant time. As a consequence, the overall shape of the signal is preserved.

However, the transfer functions of real filters only approximate the characteristics

of ideal filters. A real filter can show a ripple (that is to say, an uneven variation of

the gain with frequency) in the pass-band, a transition band outside the filter limits,

and finite attenuation and ripple in the stop-band. Real filters can also show some

nonlinearity in their phase response, causing a distortion of the shape of the signal.

Thus, center frequency (the frequency where the filter causes a �3 dB attenuation)

and roll-off rate of the filter play a primary role in the choice of the filter, together

with the presence of ripple in the pass-band (often present in high order filters) and

phase nonlinearity.

Two types of digital filters exist, the so-called Finite Impulse Response (FIR)

filters, characterized by a finite impulse response, and the Infinite Impulse Response

(IIR) filters, whose impulse response exists indefinitely. The main difference is that

the output of FIR filters depends only on the current and past input values, while the

output of IIR filters depends also on the past output values.

IIR filters have an ARMA structure (see also Chap. 4). They provide a fairly

sharp roll-off with a limited number of coefficients. Thus, the main advantage in

using IIR filters is that they require fewer coefficients than FIR filters to carry out

similar filtering operations. As a consequence, they are less computational demand-

ing. However, they often show nonlinear phase and ripples.

FIR filters are also referred to as moving average filters. Their main advantage

consists in a linear phase response, which makes them ideal for applications where

the information about the phase has to be preserved. Unlike IIR filters, FIR filters

are also always stable.
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It is worth pointing out once again that only analog filters can definitely ensure

that aliasing has not occurred. Alias frequencies cannot be recognized after the

signal has been sampled, and this makes digital filters ineffective for their removal.

When records of the structural response are filtered to remove unwanted fre-

quency components before modal parameter extraction, it is important to take into

account the errors on amplitude and phase induced by filters. However, if the same

filtering operation is applied to all measurement channels in the dataset, it does not

negatively affect the estimation of the mode shapes.

In the context of modal identification, high-pass filters are often used to remove

frequencies close to DC, while low-pass filters are used to exclude high-frequency

components in view of decimation. The acquired signals are often sampled at a

higher frequency than needed for the analysis. Decimation (or down-sampling) is

therefore used to resample the acquired signals to a lower sampling frequency. This

task cannot be accomplished simply by removing a certain number of samples

depending on the adopted decimation factor (for instance, one in every two samples

if the decimation factor is equal to 2). In fact, aliasing may occur due to the presence

of frequency components between the original Nyquist frequency and the new

value after decimation. These frequency components above the new Nyquist

frequency have to be removed before decimation by applying a low-pass filter.

Low-pass filtering ensures that the decimated data are not affected by aliasing.

3.7 Data Validation and Pretreatment

Validation of the collected data is recommended before they are analyzed and the

modal parameters estimated. The validation step is definitely feasible in the case of

offline data processing, while it is usually omitted in automated OMA. It consists in

the careful inspection of the time histories and, in particular, of their distribution to

identify common anomalies in the data. A usual assumption in data processing is

that data are stationary, with Gaussian distribution and no periodicities. Simple

considerations about the physical mechanisms that produced the data are often

sufficient to assess if the data can be considered stationary. For instance, this is the

case when data are generated by time-invariant phenomena (both the structure and

the loading). However, OMA methods are robust even in the presence of slightly

nonstationary data; on the contrary, application of OMA to large transients, such as

those associated to earthquake loading, leads to unpredictable and often erroneous

results. If data are collected under conditions that do not permit an assumption of

stationarity based on physical considerations, specific investigations based, for

instance, on the reverse arrangements test (Bendat and Piersol 2000) can be

carried out.

Periodic signals in otherwise random data lead to sharp peaks in the auto-

spectrum that can be confused with narrow-band resonances. Some techniques for

the identification of periodic components in random data will be illustrated in

Chap. 5.
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Even if specific tests, such as the chi-square goodness-of-fit test, can be carried

out (Bendat and Piersol 2000), an easy check for normality consists in the

comparison between the estimated probability density function of the data and

the theoretical normal distribution. This is especially true in the case of suffi-

ciently long records, such as those typically adopted in OMA tests. Deviations

from normality can also provide information about the presence of certain

anomalies in the data.

Different anomalies can affect the raw data. One of the most common is signal

clipping, which occurs when the signal saturates the ADC. Clipping may be

two-sided, thus revealing improper matching between sensor output and ADC

input, or one-sided, usually caused by excessive offset. It can be easily

recognized by a visual inspection of the time series (Fig. 3.13) or by the analysis

of the probability density function of the data (Fig. 3.14). It is worth noting that

low-pass filtering typically obscures clipping, making its identification impossi-

ble. Thus, digital filtering has to be applied after data validation.

Improper matching between sensor output and ADC input can also lead to

excessive instrumentation noise. This happens if the input signal from the sensor

has a very low voltage with respect to the maximum allowed input voltage of the

ADC. As a consequence, it occupies only a limited number of the available bits of

the ADC. Since the least significant bits are occupied by noise, it is clear that the

capabilities of the ADC are poorly exploited, and the resulting data are

characterized by a low SNR. An excessive instrumentation noise can be detected

through the inspection of the auto-spectrum of the signal, since the resonances

appear nearly buried in noise (Fig. 3.15). In extreme cases, the signal is so small that

it is totally obscured by the digital noise of the ADC. Excessive digital noise can be

easily identified by visual inspection of the time series. In fact, the signal appears as

a sequence of well-defined steps (Fig. 3.16). In these cases the measurement chain

is definitely inadequate and it has to be replaced.

Intermittent noise spikes may sometimes appear in the measured time histories

(Fig. 3.17). They can be the result of actual physical events, but malfunctioning of

the measurement chain (for instance, a defective connector or shielded cable when

subjected to vibration) might also cause them.
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Detection of noise spikes can take advantage of probability density analysis. In

fact, the noise spikes make the tails of the probability density function too thick

(Fig. 3.18) in comparison with the theoretical normal distribution. Moreover, since

intermittent noise spikes appear like very short pulses, thus approximating delta
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6

4

2

0

−2

−4

−6
0

A
m

p
li
tu

d
e

100 200 300 400 500 600

Plot 0

Time [sec]
700 800 900 1000 1100 1200

Fig. 3.16 Time history characterized by excessive digital noise

Signal affected by noise spikes

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375

Plot 0

400 425 450 475 500
Time [sec]

0.001

0.0005

−0.001

−0.0005

0

A
m

p
li

tu
d

e

Fig. 3.17 Random signal with noise spikes

pdf

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
−20 −15 −10 −5 0 5 10

theoretical Gaussian pdf

pdf with noise spikes

15 20

z

P
ro

b
a
b

il
it

y
 d

e
n

s
it

y

Fig. 3.18 Probability density function of a random signal with noise spikes

3.7 Data Validation and Pretreatment 87



functions (whose spectral density is flat), intermittent noise spikes will tend to

flatten the auto-spectrum of the data. In the extreme case, the effect of intermittent

noise spikes, as for the excessive instrumentation noise, is a burying of resonances

in noise so that the auto-spectrum is similar to that of white noise.

Electric power distribution systems radiate electromagnetic energy at the power

line frequency (50 or 60 Hz, depending on the Country). This energy is commonly

picked up by the data acquisition system. Power line pickup mainly occurs in the

presence of ground loop or break in the shielding. Power line pickup appears as a

sine wave at the power line frequency. It usually does not distort the information in

the signal and it causes saturation only in extreme cases. Power line pickup can be

detected by one of the techniques for identification of spurious harmonics, or by the

analysis of the probability density function, which looks like that of sine wave in

Gaussian noise (Chap. 2).

Malfunction of sensors or data acquisition system may cause temporary or

permanent dropouts of the signals, that is to say, the signal suddenly diminishes

into the instrumentation noise floor for no apparent reason. Signal dropouts may be

due, for instance, to malfunction in the transmission or to loss of power. They can

be easily recognized by visual inspection of the time series (Fig. 3.19) or the

associated probability density functions (Fig. 3.20). Ignoring signal dropouts

leads to major distortions of correlation and spectral density functions and, as a

consequence, to serious errors in the analysis of data.

Offsets and spurious trends are sometimes present in the time series. Assuming

that the mean value of the data is known to be zero (this is the case of structures

subjected to null net acceleration, such as civil structures), the offset can easily be

removed by subtracting the mean value to the corresponding time series.

Trends in the data can be detected by visual inspection. In general, they may be

physically meaningful if the signal has a time-varying mean value and the measure-

ment system frequency range goes to DC. However, trends are very often spurious

and they may occur for a number of reasons. In most cases, they are induced by

temperature. Spurious trends lead to a magnification of the low-frequency

components in the auto-spectrum of the signal. In particular, the frequencies

below 10/Tr are affected, where Tr is the total record length. These frequencies are

typically well below the frequency range of interest. Thus, a correction of the time
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series for removal of spurious trends usually does not affect the analysis results but,

on the contrary, it prevents a misinterpretation of the data. Two methods can be

adopted to remove spurious trends from the datasets. Whenever low-frequency

information in the data has to be preserved down to the minimum frequency 1/Tr,

regression analysis represents the best method for removal of spurious trends.

It consists in fitting a low-order polynomial to the data using least squares

procedures (Chap. 2). Then, the values of the polynomial are subtracted from the

time history. Removal of a linear trend is schematically illustrated in Fig. 3.21.
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More complex trends can also be removed, but they require fitting of polynomials of

order larger than 1. However, the use of polynomials of order not larger than 3 is

recommended (Bendat and Piersol 2000), in order to avoid removal of actual

low-frequency information in the data together with the spurious trend. If the

low-frequency components below 10/Tr are not of interest, spurious trends can be

removed by high-pass filtering. This is usually the case when the total time histories

are divided into blocks for the computation of ensemble-averaged spectra, since the

frequency resolution adopted in spectrum computation is typically larger than 10/Tr.

3.8 Applications

3.8.1 Aliasing

Task. Plot three sine waves characterized by the following values of frequency:

f1¼ 1 Hz, f2¼ 4 Hz, and f3¼ 6 Hz, respectively. Compare the results obtained by

adopting the following values for the sampling frequency: fs,1¼ 5 Hz and

fs,2¼ 100 Hz. The three sine waves will appear identical when fs¼ fs,1.

Suggestions. Set a 5 s duration for the signals. Use a “For Loop” structure to

generate the time instants for the computation of the sine functions. Convert the

frequencies of the sine waves in radians and compute the values of the functions at

the previously defined time instants: g(t)¼ sin(2πfit). Use the “Build Waveform.vi”

under “Programming – Waveform” to define the waveform associated to each sine

wave. Use the “Waveform Graph” to plot the sine waves. A “While Loop” structure

can be helpful to interactively set the value of the sampling frequency and analyze

the corresponding results.

Sample code. Refer to “Aliasing.vi” in the folder “Chapter 3” of the disk

accompanying the book.

3.8.2 Mode Shape Merging

Task. Mode shapes for the three fundamental modes of a steel cable obtained from

two different test setups are reported in two files (“Setup 1 mode shapes.txt” and

“Setup 2 mode shapes.txt”) in the “Chapter 3\Mode shape merging” folder of the

disk accompanying the book. The reference channels for the two setups are reported

in “Reference channels for mode shape merging.txt” in the same folder. For each of

the three mode shapes determine the scale factor for merging.

Suggestions. Load the mode shapes from file. Use the “Index Array.vi” under

“Programming – Array” to select the mode shape components corresponding to

the reference channels. Note that “0” (and not 1) denotes the first vector component
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in LabVIEW. Compute the scale factors by solving a least square problem (see

Chap. 2) for the unknown scale factor associated to the i-th mode shape.

Sample code. Refer to “Mode shape merging.vi” in the folder “Chapter 3\Mode

shape merging” of the disk accompanying the book.

3.8.3 Filtering and Decimation

Task. Develop software for offline filtering and decimation. Apply it to the dataset

“Sample record 12 channels – sampling frequency 100 Hz.txt” in the folder

“Chapter 3\Filtering and decimation” of the disk accompanying the book. The

time histories are organized in columns. The first column provides the time.

Resample the data in order to obtain a new sampling frequency of 20 Hz.

Suggestions. Load the data from file. The original sampling frequency (100 Hz) can

easily be computed as the inverse of the difference between two subsequent time

instants. Use a “While Loop” structure to manage input from the user interface.

Input will concern the selection of the type and order of the filter and its frequency

limits, and the setting of the decimation factor. Eventually, take advantage of the

Property Node (right click on the control and select “Create – Property Node”) of

the controls to disable some controls as a function of the selected type of filter

(for instance, the upper frequency limit control can be disabled if a high-pass filter

is selected). Select one of the filters under “Signal Processing – Filters”. Pass the

input data to the selected VI for filtering. Use a “For Loop” structure to pass the

individual time histories to the VI for filtering. Use the “TSA Resampling.vi” under

“Addons – Time Series Analysis – Preprocessing” to resample the filtered time

histories. Use the new sampling frequency and a “For Loop” structure to update the

column of time. Save into the same file the new column of time and the decimated

time histories. Pay attention to the selection of frequency limits and type of the filter

when the datasets are going to be decimated. An inappropriate selection may cause

aliasing.

Sample code. Refer to “Filtering and decimation.vi” in the folder “Chapter 3\Filtering

and decimation” of the disk accompanying the book.

3.8.4 Hardware Selection and Data Acquisition (Storage on File)

Task. Develop a low-cost data acquisition system for dynamic measurements based

on programmable hardware.

Suggestions. Programmable hardware can be a valuable low-cost solution for data

acquisition in the field of OMA. The present tutorial describes the practical appli-

cation of the basic concepts about the measurement hardware outlined in the
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chapter, up to the development of a simple and low-cost system for output-only

modal tests.

A simple and cheap data acquisition system can easily be developed starting

from the appropriate choice of sensors and programmable hardware. Taking into

account that the possibility to properly resolve the structural response to ambient

vibrations depends on the performance of the different components of the measure-

ment chain and their combination, a compromise between cost and performance of

hardware components could be necessary. In this framework, the development of a

low-cost measurement system, adequate for a number of applications and useful to

gain confidence with dynamic measurements and output-only modal tests, can rely

on IEPE accelerometers and National Instruments™ Compact DAQ device, and the

implementation of a software in LabVIEW environment for measurement system

management and data acquisition.

As an example, IEPE seismic accelerometers with the following characteristics:

�0.5g full-scale range, 10 V/g sensitivity, 0.15–1,000 Hz bandwidth, resolution

lower than 1E-5 g, and low noise, nonlinearity, and transverse sensitivity, show

good performance for a number of practical applications at an affordable cost. In

order to check the compatibility between sensors and measurement hardware, the

following data about the sensors have also to be inspected: excitation voltage and

current, output bias voltage. For instance, assume that the excitation voltage

required by the sensors is in the range 18–30 V DC, the excitation current is in

the range 2–20 mA, and the output bias voltage is in the range 8–12 V DC.

The development of a low-cost solution for acquisition of acceleration data can

take advantage of NI9234 modules, gathered into a Compact DAQ chassis and

linked via USB to a PC. Either ground-referenced or floating sensors can be used,

since the system is based on a pseudodifferential configuration. A 24-bit ADC of

the sigma-delta type (with analog prefiltering) characterizes the modules. The

internal master timebase fM is about 13 MHz while the data rate for sampling is

in the range 1.652–51.2 kHz. Equation (3.17) provides the available data rates:

f s ¼
fM

256ð Þ nð Þ n ¼ 1, 2, . . . , 31 ð3:17Þ

For instance, for n¼ 25 the sampling frequency is equal to 2,048 Hz. This

formula has to be implemented into the software for management of data acquisi-

tion and measurement hardware to automatically provide the available sampling

rates to the user.

The input coupling is user-selectable and it can be either AC or DC. The AC

cut-off frequency is 0.5 Hz at �3 dB: as a consequence, the selection of AC

coupling makes the recorder not suitable for very flexible structures, even if the

adopted sensors have a frequency range with a suitable lower bound. AC coupling

can be advantageous in some applications, but the limitations in terms of frequency

range have to be taken into account. For flexible structures DC coupling is

recommended. By the way, AC coupling can be used for a number of applications

with confidence.
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The modules provide adequate excitation voltage (19 V) and current (2.1 mA)

for IEPE accelerometers, as demonstrated by the comparison with the previously

mentioned sensor requirements.

The input range is �5 V and it exactly matches the maximum amplitude of

voltage signals coming from the sensors. Moreover, the full-scale voltage of the

sensor and its output bias voltage, together with the common mode voltage range of

the module, must comply with an allowable voltage range defined in the

specifications of the input module. The common mode voltage range is �2 V.

The allowable voltage range of the module is 0–19 V. According to the

characteristics of the adopted sensors and data acquisition modules, in the worst

case the sum of the common mode voltage range, output bias voltage, and full-scale

voltage equals 19 V. Thus, the modules are adequate to acquire the data coming

from the selected IEPE sensors.

CMRR is 47 dB (typical) while crosstalk value is �110 dB. The modules ensure

simultaneous sampling. The built-in anti-aliasing filters automatically adjust them-

selves according to the specified data rate. The dynamic range is also fairly good

(102 dB). The link between accelerometers and recorder can be made by RG-58/U

low-impedance coaxial cables.

After the selection of sensors and data acquisition modules, the measurement

system has to be completed by the implementation of the management and data

acquisition software.

The first step concerns the configuration of the data acquisition modules in the

Measurement & Automation Explorer (MAX). If the drivers are properly installed

and the measurement hardware is connected with the PC, the modules appear under

“Devices and Interfaces” on the left of the window (Fig. 3.22).

The development of the software can be initiated even if the hardware

components are not available, but the measurement device has to be simulated.

Assuming that this is the case and that the software is intended to manage a USB

9234 module, this can be simulated by the following procedure:

• Right-click “Devices and Interfaces”;

• Select “Create New”;

• Select “Simulated NI-DAQmx Device or Modular Instrument”;

• Select “NI USB-9234”;

• When the simulated device appears under “Devices and Interfaces”, open the

“Test Panel” (Fig. 3.23) to check the functionality of the device and set some

parameters, such as input coupling and power supply.

Once the hardware has been configured, some measurement parameters have to

be set in MAX. The expert user can set these parameters also by software. However,

this tutorial illustrates only the simplest and fastest method to carry out

measurements by means of programmable hardware. The interested reader can

find more details in the extensive documentation about data acquisition by

LabVIEW. In order to set measurement parameters such as sensitivity and full-

scale range, a measurement task has to be configured according to the following

procedure:
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Fig. 3.22 MAX interface

Fig. 3.23 Test panel
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• Right-click on “NI-DAQmx Tasks” under “Data Neighborhood” in MAX (left of

the window) and select “Create New NI-DAQmx Task. . .”;

• Select “Acquire Signals – Analog Input – Voltage” (Fig. 3.24);

• Choose the name of the task, for instance “Acceleration data”;

• Select the physical channels you are going to use; for instance, select all the

available channels (denoted as ai0, . . ., ai3) and click “Finish”;

• For each channel, use the sensitivity of the sensor connected at that channel to

convert voltage into acceleration; a scale has to be defined;

• Under “Custom Scaling” select “Create New – Linear” and enter the name for

the scale, for instance “Acceleration”;

• Set the value of “Slope” under “Scaling Parameters” equal to the inverse of the

sensitivity; the “Scaled” unit depends on the units of measurement of the

sensitivity: if it is expressed in V/g (as in the present case), the scaled unit is g

(Fig. 3.25);

• Selecting “Acceleration” under “Custom Scaling”, it is possible to set the full-

scale range in g; since the full-scale range of the selected accelerometers is

�0.5g, the “Max” and “Min” values under “Signal Input Range” have to be set

equal to 0.5 and �0.5, respectively (Fig. 3.26);

• The measurement scheme can be selected under “Terminal Configuration”;

Fig. 3.24 Configuration of the task for data acquisition
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Fig. 3.25 Setting of sensor sensitivity

Fig. 3.26 Setting of sensor full-scale range



• The “Acquisition Mode” is also selectable; the available choices are: “1 sam-

ple”, “N samples”, “Continuous samples”; in the present case, “Continuous

samples” is adopted;

• Click the “Save” button.

The configuration of the data acquisition modules in MAX is now completed and

it is possible to start with the implementation of the software in LabVIEW.

In practical applications it is useful to inspect the spectra of the signals during

data acquisition, so that it is possible to assess the quality of the acquired data and

identify predominant frequency components in the signals. Thus, adoption of a

Producer-Consumer architecture is recommended in the development of the data

acquisition software. The Producer cycle is devoted to the acquisition of raw data

from the measurement modules, while the spectra are directly computed in the

Consumer cycle from data segments coming from the Producer. Data storage is

carried out in the Consumer cycle, too.

The simplest and quickest way to set the data acquisition parameters of your

measurement system is to use the “DAQ Assistant.vi”. As an alternative, the expert

user can take advantage of the higher versatility of the DAQmx – Data Acquisition

VIs at the expense of an increase in the programming efforts. Assuming that the

“DAQ Assistant.vi” is used, it must be placed in the Producer cycle. When setting

the sample rate, refer to the manual of the measurement modules for the allowable

values. In the present case, suppose to adopt a sampling frequency of 2,048 Hz. This

value is usually much too high for practical applications in civil engineering. Thus,

data have to be filtered and decimated. This can be done on-line or off-line. In the

first case, a VI for filtering and decimation has to be implemented and it has to

follow the “DAQ Assistant.vi”. Data coming from the DAQ Assistant are of the

“dynamic data type” (DDT, denoted by a blue wire). Use “From DDT” under

“Express – Signal Manipulation” to convert dynamic data in any other type of

data (for instance, waveform data). The filtered and decimated time histories can be

then queued and sent to the Consumer cycle. If the time histories are going to be

filtered and decimated off-line, output data coming from the DAQ Assistant are

directly queued, eventually after the conversion of the type of data. The DAQ

Assistant allows the selection of the physical channels (use the “Add Channel”

button on the left of the window; Fig. 3.27) and the setting of parameters such as

sensitivity and full-scale range, on the analogy with the MAX.

Use a “Waveform Chart” (under “Modern – Graph” in the Controls Palette) to

show on the screen the raw data passed to the Consumer cycle. Use the “SVT Cross

Spectrum (Mag-Phase).vi” to compute ensemble averaged auto- and cross-power

spectra (Fig. 3.28).

On-line data processing and visualization are two relevant tasks of the Consumer

cycle, but it has to ensure also data storage through a continuous streaming of data

on disk. The simplest method to carry out the data streaming on disk is to use the

“Write To Measurement File.vi” under “Express – Output”. It has to be connected

with the data coming from the Producer. A Boolean control has to be used to

enable/disable data storage. The “Write To Measurement File.vi” allows a number

of settings, such as name of the file, delimiter, and so on. However, the most
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Fig. 3.27 DAQ Assistant

Fig. 3.28 Example of user interface of the data acquisition software

98 3 Data Acquisition



important setting concerns the file format. The available options are text file and

binary file. Use the text file to make the data available to other users or applications;

use the binary file to handle large amount of data and optimize the access time (this

is the case, for instance, when data are not resampled so that long records at high

sampling rate are stored on file).

Sample code. Refer to “Data acquisition.lvproj” in the folder “Chapter 3\Data

acquisition” of the disk accompanying the book.

3.8.5 Data Storage (MySQL Database)

Task. Create a MySQL database for data storage and develop software to read and

write data in a table of the database.

Suggestions. MySQL relational databases represent a profitable alternative for data

storage and management with respect to files, in particular when large amounts of

data have to be handled. MySQL is a free alternative to other databases. It can be

downloaded from www.mysql.com.

After the installation, enter the Query Browser and create your database for data

storage. It may include one or more tables. As an example, use the following

command line:

“create database vibrations;”

to create a database and assign it the name “vibrations”. Then type:

“use vibrations;”

to select the database. Finally, create a table where data are going to be stored. For

instance, the following command line:

“create table vibrationdata(id INT(10) NOT NULL AUTO_INCREMENT, a1

FLOAT(2,8), a2 FLOAT(2,8), a3 FLOAT(2,8), a4 FLOAT(2,8), PRIMARY

KEY(id));”

creates the table “vibrationdata” where “id” is an integer counter associated to the

record, “a1”, “a2”, “a3”, and “a4” represent the four measurement channels and the

associated data are of the floating type with two integer and six decimal positions.

“id” is also the primary key, that is to say the code univocally associated to each

record in the database. More details about MySQL syntax and commands can be

found on the website and in several technical publications.

The communication between LabVIEW and the created database requires the

configuration of the “data source name” (DSN) of the database. Open “Control

Panel – Administration tools – Data sources (ODBC)” in the operating system and

click on the “Add” button. Select the MySQL ODBC driver and configure it. In the

field “Data Source Name” insert the name LabVIEW will use to access the

database, for instance “measurements”. In the field “Server” write “localhost” if

the software developed in LabVIEW and the database are on the same computer,

otherwise insert the IP number of the PC hosting the MySQL database and set the

“Port” number under “Connect Options” (it is typically set equal to 3306). Insert the

username and password set during the installation of MySQL in the corresponding
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fields. Now, the database “vibrations” should appear in the list “Database”, and

clicking the “Test” button a window appears reporting the message of successful

connection.

The configuration of the DSN allows the execution of queries by LabVIEW. In

the development of the software it is possible to take advantage of the “Database

Connectivity Toolkit” where a number of VIs to communicate and operate with the

database are available. An alternative for more expert LabVIEW developers is

the communication with the database by means of the ActiveX technology and the

ActiveX Data Objects (ADO). In this case, use the “Automation Open.vi” under

“Connectivity – ActiveX” to start a connection with the ADODB._Connection

library, and then use properties and methods of ADOs to execute the query. In

particular, use the method “Open” to open the communication with the database by

providing DSN, UserID, and Password as strings. Use the method “Execute” to

execute a query passed as a string. If you are reading data from the database, use the

method “getstring” applied to “Recordset” to get the data from the database in

the form of string. Finally, close the references to “Recordset” and the database by

the method “Close”. If you are writing data in the database, they have to be

converted into string and sent by the appropriate query, for instance:

“insert into vibrations.vibrationdata set a1¼ value1, a2¼ value2, a3¼ value3,

a4¼ value4;”

replacing “value1, . . ., value4” with the acceleration data coming from the data

acquisition system. If you are reading data from the database, they are in the form of

string and they have to be manipulated and converted into the most appropriate type

of data. A sample query to read data from the database is:

“select * from vibrations.vibrationdata limit 10”

If the software has been properly developed, no errors appear when reading or

writing the data.

Sample code. In the folder “Chapter 3\Communication with MySQL database” of

the disk accompanying the book there are the files “Write MySQL DB.vi” and

“Read MySQL DB.vi”. In the first, four sine waves are generated (sampling

frequency equal to 100 Hz) and the values at each time instant are used to create

the query to write the data in the database. The query is then passed to the subVI

called “Query to write.vi” which communicates with the database and executes the

query. The simulated data of the four sine waves can be replaced by measured data

by combining this VI with the software developed in Sect. 3.8.4.

The “Read MySQL DB.vi” opens the communication with the database, gets the

data, converts them from string to numbers, and closes the communication with the

database.

3.8.6 Data Pretreatment

Task. Develop a software for data pretreatment (mean and spurious trend removal)

and validation.
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Suggestions. The software has to execute distinct actions:

• Offset removal,

• Removal of spurious trends,

• Computation of the probability density function of time histories for validation

purposes.

Thus, a state machine architecture can be adopted. As mentioned in Chap. 1, a

state machine architecture is based on the execution of distinct actions, each one

associated to a specific condition in a case structure. Data are passed among the

states by the shift register on the external While Loop. In order to move from one

state to another, the possible states have to be listed into a control of the enumerated

type (“Enum” under “Modern – Ring & Enum” of the Controls Palette). Place the

Enum control on the Front Panel, select it and click on “Edit – Customize Control”.

A new window appears, showing only the Enum control. On top of this window,

click on the “Control” button and select “Type Def.”. Right-click on the control and

select “Edit Items” to add the name of the states to the list (for instance, “remove

average”, “detrend”, “data validation”, and “end”). Save and rename the Enum

control, and use it to move from one state to another in the state machine architec-

ture. Create a startup VI to load the data (from file or database) and pass them to the

first state (“remove average”), where the offset associated to each time history is

removed. A SubVI can do offset removal. After offset removal, pass the data to the

next state, which removes spurious trends, by appropriately setting the value of the

previously defined Enum control. Removal of spurious trends can be done by a

specific SubVI, which appears on the screen when called and closes afterwards

(place the SubVI in the case structure, right-click its icon, and select “SubVI Node

Setup”; select “Show front panel when called” and “Close afterwards if originally

closed”). Removal of spurious trends is carried out in the SubVI by passing the

individual time histories to “TSA Detrend.vi” (under “Addons – Time Series

Analysis – Preprocessing”) and defining the polynomial order. A While Loop

structure can be adopted to manage user interactions via controls on the Front

Panel. When the SubVI for trend removal closes, its outputs are the preprocessed

data and a new value of the Enum control, which passes the data to the next state

(“data validation”). In the “Data validation.vi” data are standardized and the

probability density function associated to each time history can be plotted to detect

anomalies such as clipping, drop-out, and so on. Use a Boolean control and a case

structure to eventually remove corrupted time histories. Use a While Loop structure

to manage user interactions. After the validation, the Enum control is set equal to

“end” and the preprocessed data are ready to be saved.

Sample code. Refer to “Data pretreatment.lvproj” in the folder “Chapter 3\Data

pretreatment” of the disk accompanying the book.
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Output-only Modal Identification 4

4.1 Fundamental Assumptions in OMA

The expression Operational Modal Analysis means the class of modal identification

methods based on response measurements only. This discipline has been

systematized in the last two decades but early applications can be traced back to

the beginning of modal testing in the 1960s. At that time output-only modal

identification was referred to as ambient vibration testing. The first applications

of OMA were mainly based on the analysis of PSDs and the identification of

Operational Deflection Shapes (ODSs). An ODS represents the deflection of a

structure at a particular frequency under a generic input and it is usually the result

of the contribution of different modes. However, under certain assumptions, which

are going to be illustrated in Sect. 4.4.1, ODSs are a close estimate of the actual

mode shapes. In the 1990s a number of methods working in time domain were

developed and applied in combination with correlation functions, leading to the

so-called Natural Excitation Techniques (NExT) for output-only modal testing.

In the same period the use of ARMA models for modal parameter estimation,

first suggested in the late 1970s, started spreading. An increasing number of

applications appeared in the literature but output-only modal identification was

not fully developed and widely accepted as a reliable source of information,

yet. However, at the end of the 1990s new effective output-only modal identifi-

cation techniques, such as the Frequency Domain Decomposition (FDD) and the

Stochastic Subspace Identification (SSI), became available, overcoming the

limitations of the previous techniques in dealing with closely spaced modes and

noise. Nowadays, OMA is a widely accepted tool for modal identification, with

several successful applications in civil engineering (bridges, buildings, pedestrian

bridges, historical structures, offshore platforms, wind turbines, dams, stadia),
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mechanical and industrial engineering (ships, trucks, car bodies, engines, rotating

machineries), aerospace engineering (in-flight modal identification of aircrafts and

shuttles, studies about flutter).

OMA is based on the following assumptions:

• Linearity (the response of the system to a given combination of inputs is equal

to the same combination of the corresponding outputs),

• Stationarity (the dynamic characteristics of the structure do not change over

time, so that the coefficients of the differential equations governing the dynamic

response of the structure are independent of time),

• Observability (the sensor layout has been properly designed to observe the

modes of interest, avoiding, for instance, nodal points).

Moreover, unlike traditional modal testing where the input is controlled, OMA is

based on the dynamic response of the structure under test to noncontrollable and

immeasurable loadings such as environmental and operational loads (traffic, wind,

microtremors, and so on). As a consequence, some assumptions about the input are

needed. If the structure is excited by white noise, that is to say, the input spectrum

is constant, all modes are equally excited and the output spectrum contains full

information about the structure. However, this is rarely the case, since the excitation

has a spectral distribution of its own. Modes are, therefore, weighted by the spectral

distribution of the input and both the properties of the input and the modal parameters

of the structure are observed in the response. Additionally, noise and eventual

spurious harmonics due to rotating equipment are observed in the response. Thus,

in the general case, the structure is assumed to be excited by unknown forces that are

the output of the so-called excitation system loaded by white noise (Fig. 4.1). Under

this assumption, the measured response can be interpreted as the output of the

combined system, made by the excitation system and the structure under test in

series, to a stationary, zero mean, Gaussian white noise.

Since the excitation system and the structure under test are in series, the FRF of

the combined system is the product their respective FRFs:

Hc ωð Þ ¼ Hf ωð ÞHs ωð Þ ð4:1Þ

where Hc(ω), Hf(ω), and Hs(ω) are the FRFs of the combined system, the excitation

system, and the structure under test, respectively. In fact, for each subsystem,

output and input are related by the following equations:

Fig. 4.1 The combined system
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F ωð Þ ¼ Hf ωð ÞN ωð Þ ð4:2Þ

Y ωð Þ ¼ Hs ωð ÞF ωð Þ ð4:3Þ

where N(ω), F(ω), and Y(ω) denote the Fourier transforms of the white noise input

to the excitation system, the excitation system output, and the structure output,

respectively. In this context, the measured response includes information about the

excitation system and the structure under test but themodal parameters of the structure

are preserved and identifiable, and the characteristics of the excitation system have no

influence on the accuracy of modal parameter estimates (Ibrahim et al. 1996).

The discrimination between structural modes and properties of the excitation system

is possible since the structural system has a narrowband response and time invariant

properties, while the excitation system has a broadband response and it may have

either time varying or time invariant properties. The estimation of the modal model

(Sect. 4.2.1) of the structure gives the opportunity to estimate also the unknown forces,

according to (4.3).

The assumption of broadband excitation ensures that all the structural modes in

the frequency range of interest are excited. Assuming that the combined system is

excited by a random input, the second order statistics of the response carry all the

physical information about the system (Chap. 2) and play a fundamental role in

output-only modal identification. The focus on second order statistics is justified by

the central limit theorem. In fact, the structural response is approximately Gaussian in

most cases, no matter of the distributions of the (independent) input loads, which are

often not Gaussian. The spatial distribution of the input also affects the performance

of OMA methods, in particular in the presence of closely spaced modes (Herlufsen

et al. 2005). A distribution of random in time and space inputs provides better modal

identification results (Herlufsen et al. 2005). In fact, the identification of closely

spaced modes requires that the rank of the excitation PSD matrix is larger than 1 and,

therefore, multiple uncorrelated inputs are applied (Chap. 1). The presence of

measurement noise and spurious harmonics in response measurements requires

appropriate data processing to eventually mitigate their effects and discriminate

them from actual structural modes.

4.2 Structural Dynamics Models

4.2.1 Frequency Response and Impulse Response

The dynamic behavior of a structure can be represented either by a set of differen-

tial equations in time domain, or by a set of algebraic equations in frequency

domain. Equations of motion are traditionally expressed in time domain, thus

obtaining, for a general MDOF system, the following set of linear, second order

differential equations expressed in matrix form:

M½ � €y tð Þf g þ C½ � _y tð Þf g þ K½ � y tð Þf g ¼ f tð Þf g ð4:4Þ
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where €y tð Þf g, _y tð Þf g and {y(t)} are the vectors of acceleration, velocity, and

displacement, respectively; [M], [C], and [K] denote the mass, damping, and

stiffness matrices; {f(t)} is the forcing vector. This matrix equation is written for

a linear, time invariant ([M], [C] and [K] are constant), observable system with

viscous damping. It describes the dynamics of the NDOF discrete DOFs of the

structure and it is usually referred to as the spatial model. The definition of the

spatial model (of mass, stiffness, and damping properties) is the first step in

theoretical analyses and it usually requires a large number of DOFs (some order

of magnitude larger than the number of DOFs required for an accurate experimental

model) in order to adequately describe the dynamic behavior of the structure.

Equations of motion, which are coupled in this formulation, can be decoupled

under the assumption of proportional damping by solving an eigenproblem. As a

result, the complete solution is obtained by superposition of eigensolutions. This is

a standard formulation of the dynamic problem reported in several structural

dynamics and modal analysis books (Chopra 2000, Ewins 2000, Heylen

et al. 1998).

The matrix differential equation of (4.4) becomes a set of linear algebraic

equations by applying the Fourier transform and its properties (Chap. 2):

�ω2 M½ � þ iω C½ � þ K½ �
� �

Y ωð Þf g ¼ F ωð Þf g ð4:5Þ

where {Y(ω)} and {F(ω)} are the Fourier transforms of {y(t)} and {f(t)}, respec-

tively; i is the imaginary unit (Chap. 2). A linear time-invariant system can be,

therefore, represented through its FRF, which is given by the ratio between the

Fourier transforms of the output and the input. Equation (4.5) can be rewritten as:

Z ωð Þ½ � Y ωð Þf g ¼ F ωð Þf g ð4:6Þ

by adopting the following position:

�ω2 M½ � þ iω C½ � þ K½ � ¼ Z ωð Þ½ �: ð4:7Þ

According to its definition, the FRF is therefore given by:

H ωð Þ½ � ¼ Z ωð Þ½ ��1 ¼ adj Z ωð Þ½ �ð Þ
Z ωð Þj j ð4:8Þ

with adj([Z(ω)]) and jZ(ω)j the adjoint matrix and the determinant of the dynamic

stiffness matrix [Z(ω)], respectively; the FRF matrix carries all the information about

the inertial, elastic, and energy dissipating properties of the structure ((4.7) and (4.8)).

The FRF can be also expressed in terms of modal parameters through a partial

fraction expansion as (refer to Ewins 2000, and Heylen et al. 1998 for more details):

H ωð Þ½ � ¼
XNm

r¼1

Rr½ �
iω� λr

þ Rr½ ��
iω� λ�r

¼
XNm

r¼1

Qr ϕrf g ϕrf gT
iω� λr

þ Q�
r ϕrf g� ϕrf g�T
iω� λ�r

ð4:9Þ
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where Nm denotes the number of modes, {ϕr} is the mode shape, Qr holds the

information about the modal scaling factor, and λr¼ σr+ iωd,r is the pole of the r-th

mode holding the information about damped frequency fd,r¼ωd,r/(2π) and damping

ratio ξr ¼ �σr=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2r þ ω2

d, r

q� �
of the r-th mode. The structure of the FRF matrix

expressed by (4.9) highlights some useful results for modal analysis. First of all,

(4.9) shows that each mode gives a contribution to the response of the system at any

frequency. Thus, it is impossible to excite only one mode of a structure by means of

a single frequency sine wave (Richardson and Schwarz 2003). However, near a

resonance this summation can be approximated by the term related to the

corresponding mode. SDOF identification methods (Sect. 4.3) are based on this

assumption. Moreover, (4.9) shows that every element of the FRF matrix has the

same denominator. Thus, the eigenvalues (poles) of the system are given by the

common denominator and they can be estimated either from any individual FRF or

from multiple FRFs measured on the same structure. The selected approach leads to

the classification of modal analysis techniques as local or global, respectively. The

residue matrix [Rr], which is a complex-valued matrix basically given by an outer

product of the mode shape vector with itself (Heylen et al. 1998):

Rr½ � ¼ Qr ϕrf g ϕrf gT ð4:10Þ

holds the information about mode shapes.

The relation between input and output through the FRF matrix:

Y ωð Þf g ¼ H ωð Þ½ � F ωð Þf g ð4:11Þ

can be manipulated to obtain a fundamental equation of OMA. In fact, taking into

account the definition of PSD and the properties of transpose (Chap. 2), the product

{Y(ω)}*{Y(ω)}T can be computed and the following relation between PSD matrix

of the output and FRF matrix can be obtained:

SYY ωð Þ½ � ¼ H ωð Þ½ �� SFF ωð Þ½ � H ωð Þ½ �T : ð4:12Þ

Assuming that the PSDmatrix of the input is constant (as reported in Sect. 4.1, in

OMA the input to the combined system is a stationary, zero mean Gaussian white

noise), the output PSD matrix carries the same information and can be expressed in

pole-residue form as the FRF matrix:

SYY ωð Þ½ � ¼
XNm

r¼1

ϕrf g γrf gT
iω� λr

þ ϕrf g� γrf gH
iω� λ�r

þ γrf g ϕrf gT
�iω� λr

þ γrf g� ϕrf gH
�iω� λ�r

ð4:13Þ

where {γr} is the operational reference vector associated to the r-th mode: it

corresponds to the modal participation vectorQr{ϕr}
T appearing in the pole-residue

form of the FRF matrix but, unlike this, it depends on all the modal parameters of

the system, the input locations, and the input correlation matrix (Peeters 2000).
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In (4.13) the poles hold the information about natural frequencies and damping

ratios, while the residues hold the information about the mode shapes. However,

since the input is not measured, only un-scaled mode shapes can be obtained.

Equation (4.13) clearly shows that, for each mode, the output PSD provides four

poles in complex conjugate pairs (λr, λr
*, � λr, � λr

*).

Taking into account that FRF and IRF on one hand, and spectral density

functions and correlation functions on the other hand are Fourier transform pairs,

similar analogies are possible between IRFs and correlation functions in the

framework of OMA. In fact, in time domain the dynamic response of a structure

to a generic input is determined by the IRF, whose mathematical expression:

h tð Þ½ � ¼
XNm

r¼1

Rr½ �eλr t þ Rr½ ��eλ�r t
� �

ð4:14Þ

shows evident analogies with the mathematical structure of the FRF reported in

(4.9). The poles hold the information about natural frequencies and damping ratios,

while the information about the mode shapes is in the [Rr] matrices.

In the output-only case and under the same assumptions about the input as

above, it is possible to show (James et al. 1992, James et al. 1995) that also the

correlation function can be expressed as a sum of complex exponentials:

Ryy τð Þ
� �

¼

XNm

r¼1

ϕrf g γrf gTeλrτ þ ϕrf g� γrf gHeλ�r τ
� �

τ � 0

XNm

r¼1

γrf g ϕrf gTe�λr τj j þ γrf g� ϕrf gHe�λ�r τj j
� �

τ < 0

8
>>>><
>>>>:

: ð4:15Þ

The poles λr provide the natural frequencies and damping ratios, while the

information about the mode shapes is in the residue matrices. As with the PSD

matrix, only un-scaled mode shapes can be obtained from output-only modal

identification based on correlation functions. It is interesting to note that the causal

part (positive lags) of the correlation functions contains the stable poles (σ< 0)

while the noncausal part (negative lags) contains the unstable poles (σ> 0).

Time domain modal identification methods usually identify the modal

parameters from the causal part only, thus reducing the total number of poles by

a factor 2. Moreover, since the modal decomposition of the causal part of the

correlation functions and that of IRFs are very similar, modal parameter estimators

traditionally used in the context of input–output modal analysis can be applied also

in the context of OMA.

A similar reduction of the number of poles is sometimes carried out also in

frequency domain. In fact, the so-called positive power spectra are sometimes

preferentially adopted in practical applications—for instance, to enhance numerical

conditioning in the poly-reference Least Squares Complex Frequency (p-LSCF)

method-.
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The order n¼ 2Nm of the positive power spectra is the same as that of the FRF

and contains all the necessary information about the structure. The positive

power spectra are defined as the DFT of the correlation functions at positive time

lags only:

SþYY ωð Þ
� �

¼ DFT Ryy τð Þ
� �		

τ�0

� �
: ð4:16Þ

It is worth noting that the positive power spectra are different from the one-sided

spectra (Chap. 2). More details about positive power spectra and their role in

output-only modal identification are reported in Sects. 4.2.4, 4.4.3.2 and 4.9.

4.2.2 State-Space Models

State space-models are used to convert the second order problem, governed by the

differential equation of motion expressed in matrix form in (4.4) into two first order

problems, defined by the so-called state equation and observation equation.

The state equation can be obtained from (4.4) by some mathematical manipu-

lations. When the forcing vector {f(t)} is factorized into the matrix ½B �, which
defines the location of inputs, and the vector {u(t)} describing the time variation,

(4.4) can be rewritten as follows:

M½ � €y tð Þf g þ C½ � _y tð Þf g þ K½ � y tð Þf g ¼ B
� �

u tð Þf g ð4:17Þ

or, equivalently:

€y tð Þf g þ M½ ��1
C½ � _y tð Þf g þ M½ ��1

K½ � y tð Þf g ¼ M½ ��1
B
� �

u tð Þf g: ð4:18Þ

The definition of the state vector:

s tð Þf g ¼
_y tð Þf g
y tð Þf g

( )
ð4:19Þ

and its substitution in the set of equations consisting of (4.18) and the following

identity:

M½ � _y tð Þf g ¼ M½ � _y tð Þf g ð4:20Þ

yield:

_s tð Þf g ¼ � M½ ��1
C½ � � M½ ��1

K½ �
I½ � 0½ �

" #
s tð Þf g þ M½ ��1

B
� �

0½ �

" #
u tð Þf g: ð4:21Þ

4.2 Structural Dynamics Models 109

http://dx.doi.org/10.1007/978-1-4939-0767-0_2


From (4.21) the state matrix [Ac] and the input influence matrix [Bc] can be

defined as follows:

Ac½ � ¼ � M½ ��1
�
C
�

� M½ ��1
�
K
�

I½ � 0½ �

" #
, ð4:22Þ

Bc½ � ¼ M½ ��1
B
� �

0½ �

" #
, ð4:23Þ

and the state equation can be written as:

_s tð Þf g ¼ Ac½ � s tð Þf g þ Bc½ � u tð Þf g ð4:24Þ

where the subscript c denotes continuous time.

In the most general case, the observation equation can be written as:

yl tð Þf g ¼ Ca½ � €y tð Þf g þ Cv½ � _y tð Þf g þ Cd½ � y tð Þf g ð4:25Þ

under the assumption that measurements of the structural response are taken at

l locations and the sensors are accelerometers, velocimeters, and displacement

transducers; {yl(t)} is the vector of the measured outputs, [Ca], [Cv] and [Cd]

are the output location matrices for acceleration, velocity, and displacement,

respectively. In the following, the index l in {yl(t)} will be dropped wherever

{yl(t)} cannot be confused with the vector of displacements {y(t)}. It is worth

emphasizing that, while a real structure is characterized by an infinite number of

DOFs (which becomes a finite but large number in the lumped mass models usually

set for numerical analyses), in a practical vibration test this number decreases down

to a few dozens or even less. Substitution of the expression for €y tð Þf g obtained from
(4.18) into (4.25) yields the following equation:

yl tð Þf g ¼ Cv½ � � Ca½ � M½ ��1
C½ �

� �
_y tð Þf g

þ Cd½ � � Ca½ � M½ ��1
K½ �

� �
y tð Þf g

þ Ca½ � M½ ��1
B
� �� �

u tð Þf g
: ð4:26Þ

The observation equation:

y tð Þf g ¼ Cc½ � s tð Þf g þ Dc½ � u tð Þf g ð4:27Þ

provides the vector of the measured outputs as a function of the state and the input;

it is obtained from (4.26), taking into account the definition of state vector (4.19),

with the following positions:

Cc½ � ¼ Cv½ � � Ca½ � M½ ��1
C½ � Cd½ � � Ca½ � M½ ��1

K½ �
h i

, ð4:28Þ
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Dc½ � ¼ Ca½ � M½ ��1
B
� �

: ð4:29Þ

[Cc] is the output influence matrix, [Dc] is the direct transmission matrix. The direct

transmission matrix disappears if no accelerometers are used for output

measurements. The physical sense of this matrix is related to the circumstance

that a step change in the input {u(t)} causes a step change in the acceleration

response.

The state equation (4.24) and the observation equation (4.27) define the contin-

uous-time state-space model. An important characteristic of this model is the

existence of an infinite number of equivalent state-space representations for a

given system: each one is referred to as a realization. As a consequence, the

experimental test allows establishing only one of these infinite realizations.

Application of a similarity transformation proves the multiplicity of realizations.

In fact, said [T] an arbitrary nonsingular square matrix, substitution of:

s tð Þf g ¼ T½ � z tð Þf g ð4:30Þ

into the equations of the continuous-time state-space model yields:

_z tð Þf g ¼ T½ ��1
Ac½ � T½ � z tð Þf g þ T½ ��1

Bc½ � u tð Þf g ð4:31Þ

y tð Þf g ¼ Cc½ � T½ � z tð Þf g þ Dc½ � u tð Þf g ð4:32Þ

Comparisons of (4.31) with (4.24) and of (4.32) with (4.27) show that the

matrices [T]� 1[Ac][T], [T]
� 1[Bc], [Cc][T] and [Dc] describe the same relationships

as the matrices [Ac], [Bc], [Cc] and [Dc]. Moreover, since the state matrices of any

couple of realizations are related by a similarity transformation, the eigenvalues

(carrying the information about the modal parameters of the system) are preserved.

Taking into account that experimental tests yield measurements taken at discrete

time instants while (4.24) and (4.27) are expressed in continuous time, the

continuous-time state-space model has to be converted to discrete time. For a given

sampling period Δt, the continuous-time equations can be discretized and solved at

all discrete time instants tk¼ kΔt, k ∈ N. An assumption about the behavior of

the time-dependent variables between two samples has to be made to this aim.

For instance, the Zero Order Hold (ZOH) assumption states that the input is piecewise

constant over the sampling period. Under this assumption the continuous-time state-

space model can be converted to the discrete-time state-space model:

skþ1f g ¼ A½ � skf g þ B½ � ukf g ð4:33Þ

ykf g ¼ C½ � skf g þ D½ � ukf g ð4:34Þ

where {sk}¼ {s(kΔt)} is the discrete-time state vector yielding the sampled

displacements and velocities; {uk} and {yk} are the sampled input and sampled

output, respectively; [A] is the discrete state matrix, [B] is the discrete input
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matrix, [C] is the discrete output matrix and [D] is the direct transmission matrix.

The relations between continuous-time matrices and the corresponding discrete

time matrices are:

A½ � ¼ e Ac½ �Δt ð4:35Þ

B½ � ¼ A½ � � I½ �ð Þ Ac½ ��1
Bc½ � ð4:36Þ

C½ � ¼ Cc½ � ð4:37Þ

D½ � ¼ Dc½ � ð4:38Þ

Thus, the ZOH sampling does not influence these last two matrices. As an

alternative, assuming a piecewise linear behavior between two subsequent

samples—First Order Hold (FOH) assumption—different, more complex relations

between continuous-time and discrete-time state-space matrices can be derived

(see, for instance, Franklin et al. 2006). Mathematical derivation of (4.33) and

(4.34) and of the relations between continuous-time and discrete-time matrices is

beyond the scope of the present book. The interested reader can refer to the

literature (Juang 1994) for more details.

The model expressed by (4.33) and (4.34) is a deterministic model since the

system is driven by a deterministic input only. Stochastic components must be

necessarily included in order to describe actual measurement data. When stochastic

components are included in the model, the following discrete-time combined

deterministic-stochastic state-space model is obtained:

skþ1f g ¼ A½ � skf g þ B½ � ukf g þ wkf g ð4:39Þ

ykf g ¼ C½ � skf g þ D½ � ukf g þ vkf g ð4:40Þ

where {wk} is the process noise due to disturbances and model inaccuracies, while

{vk} is the measurement noise due to sensor inaccuracies. The state equation

models the dynamic behavior of the system; the observation equation defines that

part of the dynamic response of the system that can be observed in the output of the

model.

In the context of OMA, structures are excited by immeasurable inputs. Since the

information about the input {uk} is not available, the measured system response

{yk} is generated only by the two stochastic processes {wk} and {vk}, and

the following discrete-time stochastic state-space model is obtained:

skþ1f g ¼ A½ � skf g þ wkf g ð4:41Þ

ykf g ¼ C½ � skf g þ vkf g: ð4:42Þ

In the absence of {uk}, its role is implicitly modeled by process noise and

measurement noise. In particular, the process noise becomes the input that drives
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the dynamics of the system, while the measurement noise accounts for the direct

disturbance of the response of the system. Thus, when a stochastic state-space

model is adopted, the objective is the determination of the order n of the unknown

system and of a realization of the matrices [A] and [C] (up to within a similarity

transformation) from a large number of measurements of the output {yk} generated

by the system itself. The state matrix [A] transforms the current state of the system

{sk} in the next state {sk+ 1}, while the product of the observation matrix [C]

with the state vector provides the observable part of the dynamics of the system.

More precisely, the response vector {yk} is given by the observable part of the state

plus the measurement noise. The process noise and the measurement noise are both

immeasurable. They are assumed to be zero mean, stationary white noise processes

with covariance matrices given by:

E
wp


 �

vp

 �

( )

wq


 �T
vq

 �TD E" #

¼
Qww½ � Swv½ �
Swv½ �T Rvv½ �

" #
p ¼ q

0½ � p 6¼ q

8
><
>:

ð4:43Þ

where p and q are two arbitrary time instants. The estimation of the matrices [Qww],

[Rvv] and [Swv] is also part of the identification process. The assumption of white

noise for {wk} and {vk} is fundamental in the proof of SSI methods (see Van

Overschee and De Moor 1996 for more details). Thus, if the unmeasured input

includes some dominant frequency components, they appear as poles of the state

matrix [A] together with the eigenvalues of the system. This is equivalent to the

identification of the dynamic properties of both the structure under investigation

and the excitation system forming the combined system (driven by stationary, zero

mean Gaussian white noise as input) that is the generally assumed objective of

identification in OMA.

In agreement with the stochastic framework of OMA, the system response in the

state-space model is represented by a zero mean Gaussian process. The output

covariance matrices are given by:

Ri½ � ¼ E ykþi


 �
ykf gT

� �
ð4:44Þ

and they carry all the information to describe the process. A covariance equivalent

model can be then defined as the estimated state-space model characterized by

correct covariance and, therefore, able to describe the statistical properties of the

system response. The estimator producing this model is referred to as an optimal

estimator.

The state {sk} is also a zero mean Gaussian process described by its covariance

(which is independent of the time instant k):

Σ½ � ¼ E skf g skf gT
� �

ð4:45Þ

and it is uncorrelated with the process noise and the measurement noise:

E skf g wkf gT
� �

¼ 0½ � ð4:46Þ
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E skf g vkf gT
� �

¼ 0½ �: ð4:47Þ

Taking into account the previous assumptions about the noise terms, the system

response and the state, mathematical manipulations of the state-space equations

((4.41) and (4.42)) lead to the following fundamental relations:

Σ½ � ¼ A½ � Σ½ � A½ �T þ Qww½ � ð4:48Þ

R0½ � ¼ C½ � Σ½ � C½ �T þ Rvv½ � ð4:49Þ

G½ � ¼ A½ � Σ½ � C½ �T þ Swv½ � ð4:50Þ

Ri½ � ¼ C½ � A½ �i�1
G½ � ð4:51Þ

where:

G½ � ¼ E skþ1f g ykf gT
� �

ð4:52Þ

is the next state-output covariance matrix (covariance between the response of the

system {yk} and the updated state vector {sk+ 1}). The last property expressed by

(4.51) is very important. In fact, since the output covariance sequence [Ri] can be

directly estimated from the measured data (4.44), its decomposition according to

(4.51) permits the estimation of the state-space matrices and the solution of the

system identification problem.

The stochastic state-space model in (4.41) and (4.42) can be expressed in an

alternative form through the introduction of the so-called Kalman filter. Without

going into the details (the interested reader can refer to Juang 1994 for a more

detailed discussion about the Kalman filter and the related mathematical

derivations), the so-called forward innovation model is briefly illustrated below.

For a given time instant tk, suppose that the system matrices [A], [C], [Qww],

[Rvv], [Swv] and all previous measurements [Yk� 1] are known:

Yk�1
� �

¼ y0f g; y1f g; . . . ; yk�1f g½ �T : ð4:53Þ

A classical estimation problem concerns the ability to optimally predict the

response measurements. Thus, an optimal predictor can be defined as the one

minimizing the error between the predicted and measured response. The system

response can be optimally predicted if an optimal predictor of the states is available.

The quality of the predictor of the states is quantified by the state prediction error:

εkf g ¼ skf g � ŝ kf g, ð4:54Þ

which represents the part of {sk} that cannot be predicted by the one-step-ahead

predictor of the state vector ŝ kf g. This is defined as the conditional mean of {sk}

given all previous measurements:
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ŝ kf g ¼ E skf gj Yk�1
� �� �

: ð4:55Þ

In a similar way it is possible to define the innovation:

ekf g ¼ ykf g � ŷ kf g ð4:56Þ

as the part of the measured response {yk} that cannot be predicted by the one-

step-ahead predictor ŷ kf g. This is defined as the conditional mean of {yk} given all

previous measurements:

ŷ kf g ¼ E ykf gj Yk�1
� �� �

¼ E C½ � skf g þ vkf gð Þj Yk�1
� �� �

¼ C½ � ŝ kf g ð4:57Þ

The last part of (4.57) is obtained by taking into account (4.42) and assuming no

correlation between the measurement noise {vk} at instant tk and the previous

measurements [Yk� 1]. Since {yk} is assumed zero mean and Gaussian distributed,

{ek} is a zero mean Gaussian white noise process.

The Kalman filter for linear and time-invariant systems relates the predictors

given by (4.55) and (4.57) as follows:

ŝ kþ1f g ¼ A½ � ŝkf g þ Kk½ � ekf g ð4:58Þ

ekf g ¼ ykf g � C½ � ŝkf g: ð4:59Þ

Thematrix [Kk] is referred to as nonsteady state Kalman gain. Given the initial state

estimate ŝ0f g¼ 0f g, the initial covariance of the state estimate P0½ � ¼E ŝ0f g ŝ0f gT
� �

¼
0½ � and the output measurements [Yk�1], the nonsteady-state Kalman state estimate at

time tk can be obtained from the following recursive formulas providing the Kalman

state estimate, the Kalman gain, and the Kalman state covariance, respectively:

ŝ kf g ¼ A½ � ŝ k�1f g þ Kk�1½ � yk�1f g � C½ � ŝ k�1f gð Þ ð4:60Þ

Kk�1½ � ¼ G½ � � A½ � Pk�1½ � C½ �T
� �

R0½ � � C½ � Pk�1½ � C½ �T
� ��1

ð4:61Þ

Pk½ � ¼ A½ � Pk�1½ � A½ �Tþ
G½ � � A½ � Pk�1½ � C½ �T

� �
R0½ � � C½ � Pk�1½ � C½ �T

� ��1

G½ � � A½ � Pk�1½ � C½ �T
� �T

ð4:62Þ

Equation (4.62) is also known as the Ricatti equation. The Kalman filter

provides the state estimate ŝ kf g at instant tk given the previous state estimate

ŝ k�1f g and the measurements {yk� 1}. Obtained the Kalman state covariance

matrix [Pk] as a solution of the Ricatti equation:
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Pk½ � ¼ E ŝ kf g ŝ kf gT
� �

ð4:63Þ

the covariance of the innovation can be computed, taking into account (4.59), as:

E ekf g ekf gT
� �

¼ R0½ � � C½ � Pk½ � C½ �T : ð4:64Þ

When the measurements are Gaussian distributed, the Kalman filter provides an

optimal prediction of the states. It is worth pointing out that the Kalman state

covariance is not steady at startup, since the Kalman filter experiences a transient

phase. However, under certain assumptions about the state matrix ([A] is stable,

that is to say the real parts of all its eigenvalues are negative), the steady state is

quickly reached and the state covariance matrix and the Kalman gain become

constant (independent of time: [Pk]¼ [P] and [Kk]¼ [K]). In steady-state:

ŝ kþ1f g ¼ A½ � ŝ kf g þ K½ � ekf g ð4:65Þ

ekf g ¼ ykf g � C½ � ŝ kf g: ð4:66Þ

The steady-state Kalman gain [K] is obtained by finding the solution [P] of the

algebraic Ricatti equation:

P½ � ¼ A½ � P½ � A½ �T þ G½ � � A½ � P½ � C½ �T
� �

R0½ � � C½ � P½ � C½ �T
� ��1

G½ � � A½ � P½ � C½ �T
� �T ð4:67Þ

and substituting it into the following equation:

K½ � ¼ G½ � � A½ � P½ � C½ �T
� �

R0½ � � C½ � P½ � C½ �T
� ��1

: ð4:68Þ

Then, the covariance matrix of the innovation can be computed:

E ekf g ekf gT
� �

¼ R0½ � � C½ � P½ � C½ �T : ð4:69Þ

Rearranging (4.66), the forward innovation model is obtained:

ŝ kþ1f g ¼ A½ � ŝ kf g þ K½ � ekf g ð4:70Þ

ykf g ¼ C½ � ŝ kf g þ ekf g: ð4:71Þ

Comparison of the forward innovation model with the state-space model given

by (4.41) and (4.42) shows that in the forward innovation model the prediction of

the state replaces the state vector and the two processes {wk} and {vk} are converted

into a single process, the innovation.

The closed form solution for the Kalman gain given by the Ricatti equation

makes the Kalman filter very attractive. However, in the context of dynamic

identification the system matrices [A], [C], [Qww], [Rvv], [Swv] are not known.
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Thus, the state sequence has to be determined directly from the output data through

geometric manipulations without solving the Ricatti equation. The Data-Driven

Stochastic Subspace Identification (DD-SSI) method allows the estimation of the

states directly from the experimental data by applying robust numerical techniques,

such as SVD and QR decomposition (see Sect. 4.5.3.2 for more details).

4.2.3 ARMA Models

The equation of motion of a randomly excited linear time-invariant system can be

also written as follows:

M½ � €y tð Þf g þ C½ � _y tð Þf g þ K½ � y tð Þf g ¼ w tð Þf g ð4:72Þ

where {w(t)} is a continuous-time, zero mean Gaussian white noise. It is possible to

show (Andersen et al. 1996, Andersen 1997) that this system can be also described

by a discrete-time Auto-Regressive Moving Average Vector (ARMAV) model (the

ARMA model is referred to as an ARMA vector model to point out its multivariate

character) by approximating the differential operator with finite differences over a

finite time step Δt.

Historically, ARMAV models have been used for the estimation of the modal

parameters of civil structures. Due to a number of shortcomings (in particular for

systems with many outputs and many modes, where the large set of parameters to

be estimated leads to large computational burden and convergence problems),

stochastic state-space models have progressively replaced them in the context of

modal identification. However, the basics of ARMA models and their relation with

state-space models are herein briefly illustrated for the sake of completeness.

In order to explain how modal parameters can be extracted from an ARMA

model, assume that a continuous-time system is observed at discrete time instants k

with a sampling interval Δt. The discretization is based on the covariance equiva-

lence technique (Bartlett 1946, Pandit and Wu 1983). Since the input on the

structure is not available (it is immeasurable), the equivalent discrete-time system

can be obtained only by requiring that the covariance function of its response to a

Gaussian white noise input is coincident at all discrete time lags with that of the

continuous-time system. This implies that the first and second order moments of the

response of the discretized model are equal to the first and second order moments of

the response of the continuous-time system at all the considered discrete time

instants. Under the assumption that the response of the system is Gaussian distri-

buted, the covariance equivalent model is the most accurate approximated model,

since it is exact at all discrete time lags. The generalization of this approach to

multivariate second order systems is illustrated elsewhere (Andersen et al. 1996).

When the dynamic response of the system is driven by the Gaussian white

noise {w(t)} but there are also some disturbances (process and measurement

noise), the latter have also to be taken into account by the equivalent
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discrete-time model. In the presence of such disturbances, an ARMAV(nα, nγ)

model has the form:

ykf g þ α1½ � yk�1f g þ . . .þ αnα½ � yk�nα


 �

¼ ekf g þ γ1½ � ek�1f g þ . . .þ γnγ

h i
ek�nγ


 �
ð4:73Þ

where, as in the case of the state-space model, {yk} is the vector of the output at the

time instant tk, and {ek} is the innovation and it is a zero mean Gaussian white

noise. The left-hand side of (4.73) is the Auto-Regressive (AR) part, while the right-

hand side is the Moving Average (MA) part. The matrices [αi] contain the AR

parameters, while the matrices [γi] contain the MA parameters; nα and nγ represent

the AR and MA order of the model, respectively.

It is possible to show (see, for instance, Andersen 1997, Andersen and Brincker

1999) that a covariance equivalent ARMAV model can be converted into a forward

innovation state space model, and vice versa. Let us consider a minimal realization

of the state-space model of (4.70) and (4.71). A minimal realization corresponds to

the minimal state space dimension ensuring that all modes are appropriately excited

and observed in the output. In fact, if the order of the state-space model is too large,

the model will contain redundant information; on the contrary, if the state-space

dimension is too small, a certain amount of information about the modeled system

will be lost. More details about the mathematical conditions to obtain a minimal

realization can be found elsewhere (see, for instance, Kailath 1980). Said n the

order of the minimal realization of the considered forward innovation model and

l the number of outputs, if the ratio n/l¼ p is an integer value it is possible to show

that, independently of the specific realization, an ARMAV(p, p) model is equivalent

to the considered forward innovation model (Andersen 1997).

The conversion of an ARMAV model into a state-space representation requires

the selection of a specific realization. A realization, which can be easily constructed

from the AR and MA matrices and is well conditioned (so that it is numerically

efficient when implemented into a system identification software), must be adopted.

The so-called observability canonical state-space realization is usually adopted in

this case (Andersen 1997). It is given by:

A½ � ¼

0½ � I½ � 0½ � . . . 0½ �
0½ � 0½ � I½ � .

.
.

0½ �
⋮

.
.

.
.
.

.
.
.

.
⋮

0½ � 0½ � 0½ � .
.

.
I½ �

� αp
� �

� αp�1

� �
� αp�2

� �
. . . � α1½ �

2
66666664

3
77777775

ð4:74Þ
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K½ � ¼

I½ � 0½ � 0½ � . . . 0½ �
α1½ � I½ � 0½ � .

.
.

0½ �
⋮

.
.

.
.
.

.
.
.

.
⋮

αp�2

� �
αp�3

� �
αp�4

� �
.
.

.
0½ �

αp�1

� �
αp�2

� �
αp�3

� �
. . . I½ �

2
66666664

3
77777775

γ1½ � � α1½ �
γ2½ � � α2½ �

⋮

γp�1½ � � αp�1½ �
γp½ � � αp½ �

2
66666664

3
77777775

ð4:75Þ

C½ � ¼ I½ � 0½ � 0½ � � � � 0½ �
h i

: ð4:76Þ

When the state matrix [A] is expressed in the form of (4.74), it is also known as

the companion matrix for the auto-regressive matrix polynomial. The EVD of the

companion matrix provides the modal parameters of the system:

A½ � ¼ Ψ½ � M½ � Ψ½ ��1 ð4:77Þ

where the columns {ψm} of [Ψ] are the pl eigenvectors of [A], while the

corresponding pl eigenvalues μm are collected in the diagonal matrix [M]. The

eigenvectors are a combination of mode shapes {ϕm} and eigenvalues μm:

Ψ½ � ¼

ϕ1f g . . . ϕpl


 �

μ1 ϕ1f g . . . μpl ϕpl


 �

⋮ . . . ⋮

μ
p�1
1 ϕ1f g . . . μ

p�1
pl ϕpl


 �

2
666664

3
777775
: ð4:78Þ

Thus, taking into account (4.76), the mode shapes of the system can be obtained as:

ϕmf g ¼ C½ � ψmf g ð4:79Þ

while natural frequencies and damping ratios of the continuous-time system are

obtained from the eigenvalues, after their conversion from discrete-time to

continuous-time taking into account (4.35):

λm ¼ ln μmð Þ
Δt

, λm ¼ �ξmωm � iωm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2m

q
ð4:80Þ

where m¼ 1, . . ., pl is the index denoting the generic pole. If the modes are under-

damped (this is the case of the structural systems considered in this book), the poles

appear in complex conjugate pairs (4.80) and the number of modes Nm is half the

order pl of the system. The modal properties of the structure are obtained by

the EVD of the companion matrix, holding only the AR coefficient matrices.

Thus, the MA coefficient matrices do not influence them, and the possibility to

use AR models for modal parameter estimation has been investigated (Pandit

1991). However, an AR model of order p is not an equivalent representation of

the previously mentioned minimal realization of the forward innovation model.
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The use of AR instead of ARMAmodels can be justified if the AR model order goes

to infinity. In fact, it can be shown that an AR model with infinite order is

theoretically equivalent to an ARMA model of finite order. However, for very

large values of the order of the AR model many spurious poles are introduced and

they have to be separated from the true system poles.

4.2.4 Fraction Polynomial Models

The FRF matrix can be expressed not only in pole-residue form (4.9) but also using

a Matrix Fraction Description (MFD), that is to say, a ratio of two matrix

polynomials. In particular, both a Left MFD (LMFD):

H ωð Þ½ � ¼ AL ωð Þ½ ��1
BL ωð Þ½ � ð4:81Þ

and a Right MFD (RMFD):

H ωð Þ½ � ¼ BR ωð Þ½ � AR ωð Þ½ ��1 ð4:82Þ

can be adopted. The common-denominator model (also known as scalar matrix

fraction model) of the FRF represents a special case of MFD where the numerator is

a matrix polynomial while the denominator is a polynomial characterized by scalar

coefficients:

H ωð Þ½ � ¼ B ωð Þ½ �
A ωð Þ ¼

Xn

j¼0

βj ωð Þ
� �

Ω j ωð Þ

Xn

j¼0

αjΩ
j ωð Þ

ð4:83Þ

where Ω(ω) is the polynomial basis function. Comparison of (4.83) and (4.9) leads

to recognize that the denominator holds the information about the poles of

the structure, while the numerator holds the information about the mode shapes.

When a common-denominator model is considered, the poles are obtained as roots

of the denominator polynomial; in the case of MFD, the poles are obtained as

solutions of a generalized eigenvalue problem (Sect. 4.4.3).

When an MFD is adopted, the size (Nc�Nc) of the matrix coefficients [Aj]

(with Nc depending on the number of inputs or outputs according to the selected

description) and the order n of the matrix polynomial determine the number of

modes that can be identified in accordance with the following relation:

Nc � n ¼ 2Nm: ð4:84Þ
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Based on this relation, a low order model with large matrix coefficients can be

expanded to a high order matrix polynomial with smaller matrix coefficients in

order to identify Nmmodes in the presence of a reduced number of inputs or outputs

(low Nc). A polynomial of order 2Nm with scalar coefficients represents the limit of

this expansion.

In the OMA framework, MFD is applied to power spectra instead of FRFs.

As mentioned in Sect. 4.2.1, positive power spectra are also sometimes adopted to

improve numerical conditioning (see also Sects. 4.4.3.2 and 4.9). In fact, power

spectra show a 4-quadrant symmetry and, therefore, they provide four poles in

complex conjugate pairs for each mode. Poles characterized by negative real part

are denoted as stable poles, while unstable poles are characterized by positive real

part. The 4-quadrant symmetry (Fig. 4.2) requires doubling the order with respect to

FRFs to identify a certain number of modes Nm, and this may result in worse

numerical conditioning. Thus, the estimation of positive power spectra, resulting in

a prior separation of stable and unstable poles, improves the numerical conditioning

and this simplifies the identification of the structural modes by the p-LSCF estimator

(Sect. 4.9). Processing positive power spectra could have a detrimental effect on the

accuracy and reliability of mode shape estimates. However, the procedure for their

computation is illustrated below for the sake of completeness.

The computation of positive power spectra (see also Cauberghe 2004) is based

on the procedure for the estimation of unbiased correlation functions via FFT

Fig. 4.2 4-quadrant symmetry of cross-power spectra
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(Bendat and Piersol 2000). The Wiener-Khinchin relations between correlation and

spectral density functions have been introduced in Chap. 2. Those relations make

possible the computation of correlation functions as inverse Fourier transforms of

spectral density functions, and the computation of spectral density functions as

Fourier transforms of correlation functions. However, as a consequence of the

periodic assumption of the finite Fourier transform, the correlation functions

obtained by this procedure appear as if they were computed from periodic

functions. As a result, the value of the correlation function at the generic time lag

τ is a combination of two terms, R̂yy(τ) and R̂yy(T� τ). In particular, it is possible

to show that the following equation holds (Bendat and Piersol 2000):

Ŝ YY fð Þ ¼ 1

T

ð T

0

τR̂ yy T � τð Þe�i2πf τdτ þ 1

T

ð T

0

T � τð ÞR̂ yy τð Þe�i2πf τdτ

¼
ð T

0

R̂ c τð Þe�i2πf τdτ ð4:85Þ

where:

R̂ c τð Þ ¼ T � τð Þ
T

R̂ yy τð Þ þ τ

T
R̂ yy T � τð Þ ð4:86Þ

is the circular correlation function, whose expression in discrete time becomes:

R̂ c rΔtð Þ ¼ N � rð Þ
N

R̂ yy rΔtð Þ þ r

N
R̂ yy N � rð ÞΔt½ �: ð4:87Þ

A procedure to separate the two contributions consists in adding N zeroes to the

original N data values so that the first half of the correlation function estimate shows

the correlation function values for the positive lags (the causal part of the corre-

lation function which contains the stable poles) and the second half of the estimate

shows the correlation function values for the negative lags (the noncausal part of the

correlation function which contains the unstable poles). Equation (4.88) gives the

two portions of the correlation function obtained by adding N zeroes:

R̂ s rΔtð Þ ¼

N � rð Þ
N

R̂ yy rΔtð Þ r ¼ 0, . . . ,N � 1

r � Nð Þ
N

R̂ yy 2N � rð ÞΔt½ � r ¼ N, . . . , 2N � 1

8
>>><
>>>:

ð4:88Þ

where the subscript s is referred to the separation of the two contributions. Thus, the

causal part of the unbiased correlation function estimate is:

R̂ yy rΔtð Þ ¼ N

N � r
R̂ s rΔtð Þ r ¼ 0, . . . ,N � 1: ð4:89Þ
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The above discussion leads to the following procedure for the computation of

positive power spectra:

• Divide the record of the structural response into nb independent (no overlap)

blocks of N samples, where the number of samples N in each block has to be

larger than the maximum lag number of interest m: N�m;

• Extend each block with additional N zeroes;

• Use the extended blocks to compute the power spectra according to the Welch

procedure;

• Compute the inverse Fourier transform and consider only the first m samples for

m<N, or discard the second half of the obtained correlation function if m¼N;

rescale the values of the obtained correlation function by N/(N� r). For m¼N,

since the tail of the correlation function is affected by high noise levels, an

exponential window can be applied to reduce the effect of leakage and the

influence of the higher lags characterized by larger variance; however, this

requires a correction of the damping values obtained from modal identification:

said β the factor determining the ratio between the amplitude at the last time lag

and the initial amplitude of the exponential window, the damping associated to

the r-th pole λr can be corrected taking into account that λr
corrected¼ λr

estimated + β

(Verboven 2002, Heylen et al. 1998); a suggested value for β is such that the

amplitude at the last time lag of the window is 0.1 % of its initial amplitude

(Verboven 2002);

• The positive power spectra are finally obtained by Fourier transform of the

retained portion of the causal part of the correlation function.

The positive power spectra show a 2-quadrant symmetry and, therefore, the

same order n¼ 2Nm of FRFs. As a consequence, only one pair of complex conju-

gate poles is present in the data for each mode. The relation between power spectra

and positive power spectra is (Peeters and Van der Auweraer 2005):

SYY ωð Þ½ � ¼ SþYY ωð Þ
� �

þ SþYY ωð Þ
� �H

: ð4:90Þ

4.2.5 The Unified Matrix Polynomial Approach to Modal Analysis

A number of input–output modal identification techniques have been developed

over the years according to the theoretical expressions of FRF or IRF. Different

physically based models and different mathematical manipulations produced a

number of different methods. However, it has been shown (Allemang and Brown

1998) that those apparently unrelated procedures could be treated according to a

unified approach. Such an approach is herein summarized because it can be easily

extended to OMA. It is useful to highlight the similarities and differences among

the various modal identification methods, whose correlation is stronger than it

appears at a first insight.
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The original approach starts from the polynomial model historically used for the

FRF; assuming that the response to the input applied at location q is measured at

location p, the related FRF can be expressed as follows:

Hpq ωð Þ ¼ Yp ωð Þ
Fq ωð Þ ¼

βn iωð Þn þ βn�1 iωð Þn�1 þ . . .þ β1 iωð Þ1 þ β0 iωð Þ0

αm iωð Þm þ αm�1 iωð Þm�1 þ . . .þ α1 iωð Þ1 þ α0 iωð Þ0
ð4:91Þ

or:

Hpq ωð Þ ¼ Yp ωð Þ
Fq ωð Þ ¼

Xn

k¼0

βk iωð Þk

Xm

h¼0

αh iωð Þh
: ð4:92Þ

Equation (4.92) can be rewritten in order to obtain the following linear equation

in the unknown αh and βk terms:

Xm

h¼0

αh iωð ÞhYp ωð Þ ¼
Xn

k¼0

βk iωð ÞkFq ωð Þ: ð4:93Þ

For a general MIMO case, (4.93) is expressed in matrix form as follows:

Xm

h¼0

αh½ � iωð Þh
� �

Y ωð Þf g ¼
Xn

k¼0

βk½ � iωð Þk
� �

F ωð Þf g ð4:94Þ

or:

Xm

h¼0

αh½ � iωð Þh
� �

H ωð Þ½ � ¼
Xn

k¼0

βk½ � iωð Þk
� �

: ð4:95Þ

A similar expression can be derived in the time domain where, in terms of

sampled data, the time domain matrix polynomial results from a set of finite

difference equations (Allemang and Brown 1998):

Xm

h¼0

αh½ � yi�hf g ¼
Xn

k¼0

βk½ � f i�kf g ð4:96Þ

This model corresponds to an ARMA(m, n) model (compare (4.96) with (4.73)).

If only free decay or IRF data are considered, (4.96) can be further simplified since

the forcing function can be set equal to zero and the [βk] coefficients can be

eliminated (Allemang and Brown 1998):

Xm

h¼0

αh½ � yi�hf g ¼ 0f g: ð4:97Þ
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The number of roots is given by the product of the order of the polynomial by the

number of measurement locations, as for the classical ARMA models.

Comparison of (4.94) and (4.96) leads to recognize that the time and frequency

domain models can be expressed in terms of functionally similar matrix polynomial

models. Since the ARMA terminology is traditionally related to the time domain,

the Unified Matrix Polynomial Approach (UMPA) terminology has been proposed

(Allemang and Brown 1998) in order to describe the common polynomial structure

characterizing the various modal identification methods in either time or frequency

domain. Following the original discussion, the same nomenclature for the coeffi-

cient matrices has been used in both time and frequency domain in order to point

out the similarities. However, the coefficient matrices in the frequency domain are

different from those in the time domain. Moreover, while the characteristic matrix

polynomial equation in frequency domain can be expressed in the same domain,

for time domain methods it is expressed in the z-domain and the roots zr in this

domain have to be converted in the continuous-time domain (4.80). Once the

matrices [αh] have been found, the modal parameters can be estimated according

to the previously described approach (Sect. 4.2.3) based on the construction of the

companion matrix.

The extension of UMPA to the output-only case is immediate if FRFs and IRFs

are replaced by spectral density functions and correlation functions into (4.95) and

(4.97), respectively. Thus, the development of UMPA allowed gathering a number

of time domain and frequency domain algorithms in a unified framework, pointing

out the relations among different modal identification algorithms beyond their

mathematical model (time domain, frequency domain, state-space, AR, ARMA).

Nonparametric methods can be seen as zero order models where only the spatial

information related to the sensor position is used and data are processed at a single

frequency line at a time.

Even if the unifying characteristic of different OMAmethods, represented by the

matrix polynomial structure, has been remarked, for historical reasons OMA

methods are illustrated in the next sections according to the usual classification

based on the adopted model and domain of implementation. For instance, the

methods based on the analysis of correlation functions, such as Least Squares

Complex Exponential (LSCE), Ibrahim Time Domain (ITD), Eigensystem Reali-

zation Algorithm (ERA), and Instrumental Variable (IV), will be discussed in

different contexts in spite of the previously described common formulation. Simi-

larly, time domain methods based on the analysis of raw data, such as DD-SSI and

Prediction Error Method (PEM), will be separately analyzed according to the state-

space and ARMA formulation, respectively. The separate discussion follows the

historical development of the methods and it is helpful to point out the main

differences among them that are mainly related to the role played by noise.

Moreover, the separate discussion allows pointing out a specific difference between

state-space and ARMAmodels. In fact, in the state-space representation the internal

structure of the system is described, while ARMA models simply map the input–

output behavior of the system. For this reason, a state-space model is also referred

to as an internal representation of a system, while the ARMA model as an external

representation.
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4.3 Classification of OMA Techniques

Most OMA techniques are derived from traditional input–output modal identification

procedures, but refer to a different mathematical framework. In fact, OMA is

developed in a stochastic framework and it is based on the analysis of random signals

(Chap. 2). OMA techniques are always of the multiple input type. Thus, classification

of OMA methods according to the number of inputs (single input, multiple input), as

in the case of input–output modal analysis, is not applicable.

Different criteria may apply for the classification of OMA methods. Each

criterion points out a specific aspect common to different analysis methods and it

is helpful to guide the user towards the choice of the favorite or most appropriate

analysis method, depending on the advantages and limitations related to specific

assumptions and data processing procedures.

A first distinction is between parametric and nonparametric methods. If a model

is fitted to data, the technique is referred to as parametric. These procedures are

more complex and computational demanding with respect to the nonparametric

ones. However, they usually show better performance with respect to the faster and

easy-to-use nonparametric techniques. Nonparametric techniques, on the other

hand, are particularly useful during field tests to get a quick insight about effective-

ness of measurements and results of dynamic identification. In the class of

parametric models, a further distinction is made between low order and high

order models. A low order model is used for those cases where the number of

physical coordinates is greater than the number of measurable eigenvalues. On the

contrary, a high order model is usually adopted when the system is under-sampled

in the spatial domain.

Another distinction is between SDOF and MDOF methods, depending on the

assumption about the number of modes determining the structural response in a

given bandwidth. If only one mode is dominant, it is possible to assume that the

structural response in that frequency range depends only on that mode and its

parameters can be separately determined. SDOF methods are based on this assump-

tion. They are very fast and characterized by low computational burden, but the

SDOF assumption is a reasonable approximation only if the modes of the structure

are well separated. In the presence of closely spaced or even coincident modes,

MDOF methods have to be adopted in order to properly identify the different modes

contributing to the overall structural response.

Modal frequencies and damping ratios are independent of the output location

and they can be estimated on a local basis, that is to say, from the separate analysis

of the individual response time histories. In this case, each analyzed time history

can provide a slightly different estimate of the same modal parameter: as a result, a

set of local estimates is obtained. On the contrary, if data processing affects all

response measurements at the same time, global estimates for the modal parameters

are obtained. A further distinction is between one-stage and two-stage methods.

In the first case, natural frequencies, damping ratios, and mode shapes are estimated

at the same time; in the second case, instead, selected parameters (for instance,

natural frequencies and damping ratios) are estimated first, while the remaining
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parameters (for instance, the mode shapes) are estimated in a second data

processing step based on the modal estimates obtained in the first stage of analysis.

A classical distinction is based on the domain of implementation. OMAmethods

based on the analysis of response time histories or correlation functions are referred

to as time domain methods. Methods based on spectral density functions are,

instead, referred to as frequency domain methods. This distinction may look like

artificial, since they simply consider different representations of the same signal

(in fact, it is always possible to transform the signal from one domain to the other).

However, when parametric methods are considered, the selection between time and

frequency domain can be relevant in practical applications since different

mechanisms of noise rejection and quality of numerical conditioning characterize

the two classes of methods.

Time domain methods are usually better conditioned than the frequency domain

counterparts. This is mainly related to the effect of the powers of frequencies in

frequency domain equations; numerical conditioning has been recently improved

through the adoption of polynomial basis functions formulated in the z-domain

(see also Sect. 4.4.3 for more details).

The adopted strategy to deal with noisy measurements represents another

discriminating aspect between time domain and frequency domain methods. Time

domain methods are usually more suitable to handle noisy data, and they can avoid

some signal processing errors, such as leakage. Time domain methods take advan-

tage of the SVD to reject noise or, as in the case of ARMAmodels, they try to model

also the noise. However, in this latter case a higher model order is required to fit

noise effects and, as a consequence, a lot of additional spurious poles appear.

Averaging is, instead, the strategy adopted by frequency domain methods to deal

with noisy measurements (see also Chap. 2).

Among the parametric time domain methods a further distinction is between

covariance-driven and data-driven methods. The former require a preprocessing

step to estimate the correlation functions from response measurements; the latter,

instead, directly process the raw data.

4.4 Frequency Domain Methods

4.4.1 The Basic Frequency Domain (Peak-Picking) Method

The most undemanding method for output-only modal parameter identification is

the Basic Frequency Domain (BFD) method, also known as the Peak-Picking

method. It is based on the computation of auto- and cross-spectra and it has been

widely used in the past for modal identification purposes (see, for instance, Felber

1993 for its application in civil engineering). The name of the method comes from

the fact that the modes are identified by picking the peaks in the PSD plots.

The BFD technique can be classified as a SDOF method for OMA. In fact, it is

based on the assumption that, around a resonance, only one mode is dominant.

As a consequence, the pole-residue form of the output PSD matrix (4.13) can be
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approximated by the contribution of the dominant mode only. For instance, if only

the r-th mode is dominant, the structural response is approximately equal to the

modal response:

y tð Þf g 	 ϕrf gpr tð Þ ð4:98Þ

where pr(t) is the modal coordinate related to the r-th mode. As a consequence, the

correlation functions are approximately given by:

Ryy τð Þ
� �

¼ E y tþ τð Þf g y tð Þf gT
h i

¼ Rprpr τð Þ ϕrf g ϕrf gT ð4:99Þ

where:

Rprpr τð Þ ¼ E pr tþ τð Þpr tð Þ½ � ð4:100Þ

is the modal auto-correlation function, and the spectral density matrix is given by:

GYY ωð Þ½ � ¼ GPrPr
ωð Þ ϕrf g ϕrf gH ð4:101Þ

where GPrPr
ωð Þ is the auto-spectral density function of the modal coordinate. It is

clear from (4.101) that in this case the PSDmatrix is of rank one. Thus, at resonance

any column of the PSD matrix can be considered as an estimate of the corre-

sponding mode shape, up to a scaling factor (the input being unmeasured).

From a practical point of view, the trace of the PSD matrix (the sum of the auto-

spectra) at each discrete frequency value is computed first to identify the peaks

corresponding to structural resonances. Then, the mode shapes associated to the

identified frequencies are obtained from one of the columns of the PSD matrix.

A reference sensor for the computation of the cross-spectral densities with all other

measurement channels has to be selected. The reference sensor has to be selected so

that most of the modes can be observed. As a consequence, sensors close to nodes of

the mode shapes cannot be adopted as reference sensors. The ideal choice for the

reference sensor makes possible the identification of all the modes through the

computation a single column of the PSD matrix (the column made by the cross-

spectral densities between the selected reference sensor and all other sensors).

However, depending on the geometry of the structure and the adopted sensor layout,

a single reference sensor could be insufficient to identify all the modes and at least a

couple of reference sensors with different orientation have to be adopted. For instance,

in the case of a building-like structure characterized by two bending modes in two

orthogonal directions—x and y—and sensors parallel to these directions, the selection

of a sensor measuring along x as reference permits the identification of the bending

modes in the x direction and eventually torsionalmodes, but it is inadequate to identify

the bendingmodes in the y direction. These can be observed only through the selection

of an additional reference sensor measuring along y.

The inspection of the coherence functions (Chap. 2) between couples of channels

also supports the identification of the actual modes of the structure (Fig. 4.3).
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In fact, in correspondence of a resonant frequency, the coherence function is close to

1 because of the high signal-to-noise ratio at that frequency. This characteristic is

helpful in the discrimination between real eigenfrequencies and peaks due to

disturbances. Moreover, the coherence function can support the identification of the

nature of a mode. For instance, assume that the structure under investigation shows

two bending modes in two orthogonal directions—x and y—and a torsional mode in a

certain frequency range. When the torsional mode is considered, the coherence

function shows a value close to 1 if either the two channels are in the same direction

or in two orthogonal directions. On the contrary, bending modes are associated to

low values of the coherence when it is computed for two orthogonal sensors.

The combination of information from spectra and coherence functions, therefore,

makes possible the identification of structural modes. This procedure sometimes

makes possible the identification even of closely spacedmodes. However, the success

of the identification process heavily depends on the geometry of the structure and the

skill of the analyst. The results of modal identification suffer a certain degree of

subjectivity also in the case of noisy measurements, when the peaks in the spectra

are not clear.
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Fig. 4.3 Auto-power spectra of two reference channels in orthogonal directions (a, b) and

coherence functions with channels in the same directions of the references (c, d); note that the

torsional mode (marked in the plots) yields high coherence with both the reference channels
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The BFD method provides local estimates of the modal properties. Moreover,

the accuracy of the estimated eigenfrequencies depends on the frequency resolution

of the spectra. A fine frequency resolution is fundamental to obtain good natural

frequency estimates.

In principle, the BFD should be applied to evaluate natural frequencies and mode

shapes only. The half-power bandwidth method is sometimes applied to get

damping estimates from the spectra. However, a number of studies have shown

that they are not accurate (see, for instance, Peeters 2000, Rainieri et al. 2010).

In summary, the BFD technique is effective when damping is low and modes

are well separated. If these conditions are violated it may lead to erroneous results.

In fact, the method identifies ODSs instead of the actual mode shapes, and they are

generally a combination of all mode shapes; they are good approximations of the

actual mode shapes if only one mode is dominant at the considered frequencies. In

the case of closely spaced modes, the respective contributions are significant and

the ODS is the superposition of multiple modes. Despite of these drawbacks, the

method is very simple and undemanding from a computational point of view. Thus,

it is a basic but useful analysis tool for the analyst, in particular during field tests, to

get a quick insight about effectiveness of measurements and results of dynamic

identification.

4.4.2 The Frequency Domain Decomposition Method

The introduction of the FDD technique (Brincker et al. 2001) has overcome the

previously discussed drawbacks of the BFDmethod concerning the identification of

closely spaced modes. This method was originally applied to FRFs and known as

Complex Mode Indicator Function (CMIF) to point out its ability to detect multiple

roots and, therefore, the possibility to count the number of dominant modes at a

certain frequency (Shih et al. 1988). The method has been then systematized for the

use with response spectrum data.

A theoretical proof of the method is based on the modal expansion of the

structural response:

y tð Þf g ¼ Φ½ � p tð Þf g ð4:102Þ

where [Φ] is the modal matrix and {p(t)} the vector of modal coordinates. From

(4.102) the correlation matrix of the responses can be computed:

Ryy τð Þ
� �

¼ E y tþ τð Þf g y tð Þf gT
h i

¼ Φ½ � Rpp τð Þ
� �

Φ½ �T ð4:103Þ

The PSD matrix can be obtained from (4.103) by taking the Fourier transform:

GYY ωð Þ½ � ¼ Φ½ � GPP ωð Þ½ � Φ½ �H ð4:104Þ
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The PSD matrix of the modal coordinates is diagonal if they are uncorrelated.

A similar decomposition is obtained in the case of uncorrelated excitation forces

characterized by a flat spectral density function (Brincker and Zhang 2009).

Taking into account that the SVD of the PSD matrix at a certain frequency ω

leads to the following factorization:

GYY ωð Þ½ � ¼ U½ � Σ½ � V½ �H ð4:105Þ

where [U] and [V] are the unitary matrices holding the left and right singular

vectors and [Σ] is the matrix of singular values (arranged in descending order),

for a Hermitian and positive definite matrix, such as the PSD matrix, it follows that

[U]¼ [V] and the decomposition of (4.105) can be rewritten as:

GYY ωð Þ½ � ¼ U½ � Σ½ � U½ �H: ð4:106Þ

The comparison between (4.104) and (4.106) suggests that it is possible to

identify a one-to-one relationship between singular vectors and mode shapes;

moreover, the singular values are related to the modal responses and they can be

used to define the spectra of equivalent SDOF systems characterized by the same

modal parameters as the modes contributing to the response of the MDOF system

under investigation. Since the SVD provides the singular values arranged in

descending order, near a resonance the first singular value contains the information

about the dominant mode at that frequency. Moreover, since the number of nonzero

elements in [Σ] equals the rank of the PSD matrix at the considered frequency, this

property can be used to identify closely spaced or even coincident modes. In fact,

the number of dominant singular values (defining the rank of the output PSD

matrix) at a certain frequency equals the number of modes that give a significant

contribution to the structural response at that particular frequency. Assuming that

only one mode is dominant at the frequency ω, and that the selected frequency is

associated to the peak of resonance of the k-th mode, the PSD matrix approximates

to a rank one matrix with only one term on the right side of (4.106):

GYY ωð Þ½ � ¼ σ1 u1f g u1f gH, ω ! ωk: ð4:107Þ

In such a case, the first singular vector {u1} represents an estimate of the mode

shape of the k-th mode:

ϕ̂ k


 �
¼ u1 ωkð Þf g ð4:108Þ

and the corresponding singular value σ1 belongs to the auto PSD function of the

equivalent SDOF system corresponding to the mode of interest. The equivalent

SDOF PSD function is identified as the set of singular values around a peak of the

singular value plots (Fig. 4.4) that are characterized by similar singular vectors.

In the enhanced version of the method, the so-called Enhanced Frequency Domain

Decomposition (EFDD) (Brincker et al. 2001, Gade et al. 2005), this SDOF PSD

function is used to estimate also the modal damping ratio. The comparison of the
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mode shape estimate ϕ̂ k


 �
at the peak with the singular vectors associated to the

frequency lines around the peak leads to the identification of the singular values

whose singular vectors show a correlation with ϕ̂ k


 �
higher than a user-defined

threshold, the so-called MAC Rejection Level. Such singular values define the

equivalent SDOF PSD function. The Modal Assurance Criterion (MAC) is used

as a measure of the correlation between two modal vectors (see also Sect. 4.8.2.2 for

more details about the MAC index); it is given by (Allemang and Brown 1982):

MAC uj

 �

; ϕ̂k


 �� �
¼

uj

 �H

ϕ̂ k


 �			
			
2

uj

 �H

uj

 �� �

ϕ̂ k


 �H
ϕ̂ k


 �� � ð4:109Þ

where {uj} is the generic singular vector in the vicinity of the peak in the singular

value plots corresponding to the k-th mode.

By definition, the MAC is a number in the range [0, 1]; it is equal to zero when the

vectors under comparison are orthogonal, and equal to 1 when the vectors differ by a

scale factor only. A typically adopted value of the MAC Rejection Level is about 0.8.

The identified equivalent SDOF PSD function is used to evaluate the modal damping

ratio, and to get estimates of the natural frequency independent of the frequency

resolution of the spectra. The inverse Fourier transform of the equivalent SDOF PSD

function yields an approximated correlation function of the equivalent SDOF system.

Thus, an estimate of the modal damping ratio is obtained in the time domain through

a linear regression on the logarithmic decrement. In a similar way, an estimate of the

natural frequency independent of the frequency resolution can be obtained through

a linear regression on the zero crossing times of the equivalent SDOF system

correlation function, eventually taking into account that damped fd,k and undamped
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natural frequency fk (which are very similar at low values of the modal damping

ratio ξk) are related as follows:

f d,k ¼ f k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2k

q
: ð4:110Þ

The FDD method permits the identification of closely spaced modes. However,

it is worth pointing out that in this case the mode shape estimates could be biased.

In fact, since the SVD forces the singular vectors to be orthogonal, if the experi-

mental mode shapes are also orthogonal the obtained estimates are unbiased. On the

contrary, if the mode shapes are not orthogonal, the mode shape estimates for

the closely spaced modes are biased and the bias mainly affects the weak mode,

while the mode shape estimate for the dominant mode is still good. The bias

depends on the difference between the first and second singular value: the larger

this difference, the smaller the error. Thus, the mode shape estimates should be

obtained from singular vectors at frequencies characterized by the largest difference

between the first and second singular value. In the presence of closely spaced

modes, this frequency might be different from the frequency of the peak.

In the literature it is possible to find variants to the above-described classical

implementation of the FDD/EFDD method (Jacobsen et al. 2008, Rodrigues

et al. 2004). In particular, an alternative implementation of FDD based on EVD

instead of SVD is also available (Brincker and Zhang 2009). Among the FDD

variants, it is worth mentioning the so-called Frequency-Spatial Domain Decom-

position (FSDD), where spatial filtering is adopted to enhance the estimation of

modal frequencies and damping ratios. The spatial filtering, also known as coherent

averaging, is a method for data condensation based on a dot product of the data with

a weighting vector. Information in the data that is not coherent with the weighting

vectors is averaged out of the data. Typical spatial filtering procedures are based on

the use of data coming from sensors located in a local area of the system in order to

enhance local modes, or on the use of mode shape estimates as weighting functions

to enhance particular modes. The spatial filtering belongs to the class of the

so-called condensation algorithms together with least squares and transformations

(such as SVD). The FSDD makes use of mode shape estimates computed via SVD

of the output PSD matrix to enhance PSDs. The use of a mode shape estimate

(provided by FDD) as weighting vector leads to an enhanced PSD, which

approximates the PSD of a SDOF system. As a consequence, a SDOF curve fitter

may be profitably used to estimate the natural frequency and the damping ratio of

the considered mode. More details about FSDD can be found elsewhere (Zhang

et al. 2005a).

4.4.3 Frequency Domain Parametric Methods for OMA

Frequency domain parametric modal identification methods are based on either

fraction polynomial models or the modal (pole-residue) model. Modal identifi-

cation methods based on the modal model, such as the Least Squares Frequency
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Domain (LSFD) estimator, have an historical relevance but they are not in wide use.

In fact, when an estimate of the pole is not available, the LSFD method leads to a

nonlinear least squares problem that needs for an optimization algorithm to be

solved and good starting values to reduce the iterations. As a consequence, the

LSFD estimator is used only to obtain global estimates of the mode shapes in

combination with other methods providing the poles.

The methods based on MFD are basically curve-fitting techniques based on

the minimization of an equation error between the measured and the predicted

PSD matrix. For instance, the equation error for a common-denominator model is

given by:

εYY ωf

� �
¼ Ĝ YY ωf

� �
� BYY ωf ; θf g

� �

A ωf ; θf g
� � ð4:111Þ

where Ĝ YY ωf

� �
is the measured value of the spectrum at the frequency line f for a

generic couple of measurement channels; BYY and A are the numerator and denomi-

nator polynomials, respectively; the polynomial coefficients {θ} are the parameters to

be estimated. In order to identify the parameters {θ}, a cost function is defined as the

sum of squares of the Frobenius norms of the errors at all frequency lines:

‘ θf gð Þ ¼
XNf

f¼1

ε ωf

� �� ��� ��2
F

ð4:112Þ

where εYY(ωf) is the generic element of [ε(ωf)].

The cost function has a nonlinear expression in the unknown parameters. Thus,

iterative algorithms, such as the Gauss-Newton approach, have to be applied.

However, they typically suffer problems of convergence, local minima, and compu-

tational burden. Moreover, since the solution is sensitive to the initial value, good

starting values are required. Maximum Likelihood Estimators (MLEs) are based on

this approach. In order to find good initial values for the application of the MLE,

some approaches to linearize the cost function have been introduced. As a conse-

quence, sub-optimal initial values of the parameters are obtained as a solution of a

linear least squares problem.

The Least Squares Complex Frequency (LSCF) method is a parametric

frequency domain modal identification method originally developed to provide

good initial values of the parameters to the MLE with low computational efforts.

However, it has been found that it is also able to provide fairly accurate modal

parameter estimates and, as a consequence, it can be confidently applied as modal

identification technique (Verboven 2002, Zhang et al. 2005b).

For this reason and the previously mentioned drawbacks related to the solution

of an optimization problem by iterative algorithms, the MLE is not widely used in

practical applications. The interested reader can refer to the literature on this topic

for more details (Schoukens and Pintelon 1991, Pintelon et al. 1994). In the

following, attention is focused on the LSCF estimator. The main advantage with
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its use is in the possibility to get very clear stabilization diagrams (see Sect. 4.9 for

more details). This simplifies the identification of the structural modes and provides

interesting opportunities for the automation of the modal identification process.

However, the LSCF method shows some limitations in the identification of closely

spaced modes. Thus, a poly-reference version of the method, the Poly-reference

LSCF estimator (also known under the commercial name of PolyMAX), has been

introduced to deal with the identification of closely spaced poles. Both the LSCF

method and its poly-reference version can be classified as two stage modal identifi-

cation methods. In fact, the identification of the mode shapes is based on previous

estimates of natural frequencies and damping ratios. In particular, as explained

next, the identification of the mode shapes is usually carried out according to the

LSFD approach once the poles associated to structural modes have been identified

in the first stage of analysis.

4.4.3.1 The Least Squares Complex Frequency Method
The LSCF estimator takes advantage of the global character of the structural poles

and the common-denominator model to identify the modal parameters. It can

be classified as a parametric, frequency domain modal identification procedure.

The analysis parameter is represented by the order of the polynomial in the model.

Assume that the numerator polynomial and the common-denominator polyno-

mial are characterized by the same order n. For a generic couple k of output channels

(k¼ 1, . . ., l·l), the cross-power spectrum at frequency line f (f¼ 1, . . ., Nf)

is modeled as:

Gk ωf

� �
¼ Nk Ωf ; θf g

� �

d Ωf ; θf g
� � ð4:113Þ

where:

Nk Ωf ; θf g
� �

¼
Xn

j¼0

Nk, jΩ
j
f ð4:114Þ

d Ωf ; θf g
� �

¼
Xn

j¼0

djΩ
j
f ð4:115Þ

are the numerator polynomial and the common-denominator polynomial, respec-

tively. The coefficients dj and Nk,j are the unknown, complex-valued parameters

{θ} to be estimated. Ωf is the generalized transform variable, evaluated at the

frequency line f. Different choices for Ωf are possible.

In its classical implementation, the LSCF estimator was based on a continuous-

time domain model with real-valued coefficients. In that case the generalized

transform variable was Ωf¼ iωf.

Nevertheless, the problem was numerically ill-conditioned, in particular for high

order systems, and even the normalization of the frequency axis led to moderate
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improvements of the numerical conditioning. A significant improvement of nume-

rical conditioning of continuous-time domain models was obtained through the

introduction of orthogonal polynomials—Forsythe and Chebyshev polynomials—

(Verboven et al. 2005) as generalized transform variable. Nevertheless, numerical

conditioning problems were still present to a certain extent and the coefficients

estimated according to the polynomial basis had to be transformed back to the

original power polynomial basis in order to extract the modal parameters. In order

to overcome these drawbacks, the LSCF estimator is currently based on a common-

denominator model in the discrete-time domain, and the generalized transform

variable has the following formulation in the z-domain:

Ωf ¼ eiωfΔt ¼ zf : ð4:116Þ

This complex polynomial basis function ensures good numerical conditioning.

As a consequence, only the z-domain formulation is considered in the following.

From (4.116) it follows that:

Ω
j
f ¼ e iωfΔtð Þj ¼ z

j
f ð4:117Þ

The estimation of the coefficients {θ} requires the application of a constraint in

the solution of the least squares problem. In fact, multiplication of numerator and

denominator by a scalar a 6¼ 0 yields an equivalent scalar matrix fraction

description:

Gk ωf

� �
¼ Nk Ωf ; θf g

� �

d Ωf ; θf g
� � ¼ a � Nk Ωf ; θf g

� �

a � d Ωf ; θf g
� � : ð4:118Þ

Possible strategies to remove the parameter redundancy consist in setting one of

the denominator coefficients equals to 1 (the effect of different choices for the

restrained coefficient is discussed in Sect. 4.9) or in imposing that the vector of the

parameters {θ} (or eventually the vector holding only the denominator coefficients)

has norm 1.

In the following derivations the highest order coefficient of the denominator is

constrained to be equal to 1:

dn ¼ 1 ð4:119Þ

since this choice simplifies the identification of the structural poles (Sect. 4.9).

The polynomial coefficients are obtained as a solution of a linear least squares

problem. In order to obtain equations that are linear in the parameters, the following

approximation is considered:

εk ωf ; θf g
� �

¼ Nk Ωf ; θf g
� �

� Ĝ k ωf

� �
d Ωf ; θf g
� �

	 0 ð4:120Þ
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where Ĝ k ωf

� �
is the measured spectrum for the k-th couple of output channels,

evaluated at the frequency line f. The unknown polynomial coefficients are

obtained through the minimization of the following equation error:

‘ θf gð ÞLS ¼
Xl�l

k¼1

XNf

f¼1

Nk Ωf ; θf g
� �

� Ĝ k ωf

� �
d Ωf ; θf g
� �		 		2: ð4:121Þ

Since (4.120) is linear in the unknown parameters {θ}, it can be rewritten

as follows, taking into account that a common-denominator model has been

adopted:

εf g ¼ J½ � θf g ¼

Γ1½ � 0½ � . . . 0½ � Υ1½ �

0½ � Γ2½ � .
.

.
0½ � Υ2½ �

⋮ ⋮
.
.

.
⋮ ⋮

0½ � 0½ � . . . Γl�l½ � Υl�l½ �

2
666664

3
777775

θN1
f g
θN2

f g
⋮

θNl�lf g

θdf g

8
>>>>>>>>>><
>>>>>>>>>>:

9
>>>>>>>>>>=
>>>>>>>>>>;

	 0f g ð4:122Þ

where:

εf g ¼

ε1f g
⋮

εkf g
⋮

εl�lf g

8
>>>><
>>>>:

9
>>>>=
>>>>;

, εkf g ¼

εk ω1ð Þ
εk ω2ð Þ

⋮

εk ωNf

� �

8
>>><
>>>:

9
>>>=
>>>;

ð4:123Þ

θNk
f g ¼

Nk,0

Nk,1

. . .

Nk,n

8
>><
>>:

9
>>=
>>;

ð4:124Þ

θdf g ¼
d0
d1
. . .

dn

8
>><
>>:

9
>>=
>>;

ð4:125Þ

Γk½ � ¼

Γk ω1ð Þf gT

Γk ω2ð Þf gT

. . .

Γk ωNf

� �
 �T

8
>>>>><
>>>>>:

9
>>>>>=
>>>>>;

¼

z0 ω1ð Þ z1 ω1ð Þ . . . zn ω1ð Þ
z0 ω2ð Þ z1 ω2ð Þ . . . zn ω2ð Þ
. . . . . . . . . . . .

z0 ωNf

� �
z1 ωNf

� �
. . . zn ωNf

� �

2
66664

3
77775

ð4:126Þ
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Υk½ � ¼
Υk ω1ð Þf gT
Υk ω2ð Þf gT

⋮

Υk ωNf

� �
 �T

8
>><
>>:

9
>>=
>>;

¼
�Ĝ k ω1ð Þz0 ω1ð Þ . . . �Ĝ k ω1ð Þzn ω1ð Þ

⋮ . . . ⋮

�Ĝ k ωNf

� �
z0 ωNf

� �
. . . �Ĝ k ωNf

� �
zn ωNf

� �

2
64

3
75

ð4:127Þ

The unknown parameters can be estimated directly from the Jacobian matrix

[J]. However, a significant reduction in computational time and memory

requirements can be achieved through the formulation of normal equations. The

normal matrix:

J½ �H J½ � ¼

Γ1½ �H Γ1½ � 0½ � . . . Γ1½ �H Υ1½ �
0½ � Γ2½ �H Γ2½ � . . . Γ2½ �H Υ2½ �

⋮ ⋮
.
.

.
⋮

Υ1½ �H Γ1½ � Υ2½ �H Γ2½ � . . .

Xl�l

k¼1

Υk½ �H Υk½ �

2
666666664

3
777777775

ð4:128Þ

consists of submatrices that are structured (Toeplitz) matrices (a Toeplitz matrix is a

matrix in which each diagonal is characterized by the repetition of the same

element). If the following submatrices are defined:

Rk½ � ¼ Γk½ �H Γk½ � ð4:129Þ

Sk½ � ¼ Γk½ �H Υk½ � ð4:130Þ

Tk½ � ¼ Υk½ �H Υk½ � ð4:131Þ

the normal equations can be written in this form:

J½ �H J½ � θf g ¼

R1½ � 0½ � . . . S1½ �
0½ � R2½ � . . . S2½ �

⋮ ⋮
.
.

.
⋮

S1½ �H S2½ �H . . .

Xl�l

k¼1

Tk½ �

2
666666664

3
777777775

θN1
f g
θN2

f g
⋮

θNl�lf g
θdf g

8
>>>>>>><
>>>>>>>:

9
>>>>>>>=
>>>>>>>;

	 0f g: ð4:132Þ

Since the parameter constraint has been applied to the denominator coefficients

{θd} only, the numerator coefficients can be eliminated from the normal equations

by substitution of:

θNk
f g ¼ � Rk½ ��1

Sk½ � θdf g ð4:133Þ
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into (4.132); this results in the so-called reduced normal equations:

Xl�l

k¼1

Tk½ � � Sk½ �H Rk½ ��1
Sk½ �

� �" #
θdf g ¼ M½ � θdf g 	 0f g: ð4:134Þ

A significant reduction in the dimension of the problem has been obtained,

since the square (n + 1)� (n + 1) matrix [M] is much smaller than the normal

matrix [J]H[J]. Under the constraint given by (4.119), the least squares solution is

obtained as:

θdf g ¼ � M 1:n,1:nð Þ
� ��1

M 1:n,nþ1ð Þ
� �

1


 �
ð4:135Þ

where [M(1 : n,1 : n)] is the submatrix made by the first n rows and n columns of [M],

while [M(1 : n,n+ 1)] is the submatrix made by the first n rows and the last column of

[M]. Once the coefficients {θd} have been computed, the poles in the z-domain are

obtained as the roots of the denominator polynomial. Taking into account the

relation between the poles in the z-domain and those in the Laplace domain:

zr ¼ eλrΔt ) λr ¼
ln zrð Þ
Δt

ð4:136Þ

the natural frequency, the damped modal frequency, and the damping ratio of the

r-th mode can be computed as follows:

f r ¼
λrj j
2π

ð4:137Þ

f d, r ¼
Im λrð Þ
2π

ð4:138Þ

ξr ¼ �Re λrð Þ
λrj j : ð4:139Þ

Once the denominator coefficients {θd} are known, the numerator coefficients

can be obtained from (4.133); the mode shapes can be theoretically estimated from

those polynomial coefficients. However, the numerator coefficients are actually

computed only if the LSCF estimator is used to determine the starting value for the

MLE. In practical applications mode shapes are, instead, obtained from the modal

model as a solution of a second least squares problem. The reason under this

two-stage approach is that the common-denominator model does not force rank-

one residue matrices on the measurements, while it is known from modal analysis

theory that the residue matrix is of rank one.
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Once the structural modes are identified, the corresponding poles are passed

to the LSFD estimator for the identification of the residue matrices and, as a

consequence, the mode shapes associated to the selected physical poles. Since

the poles are known from the previous stage, the modal model is linear in the

parameters (the residues), which can be obtained as a solution of a linear least

squares problem.

The residue matrices can be computed by minimizing the following functions:

gk Rk, j

� �
¼
XNf

f¼1

Ĝ k ωf

� �
�
XNm

j¼1

Rk, j

iωf � λj
þ

R�
k, j

iωf � λ�j

 ! !2
ð4:140Þ

with respect to Rk,j (k¼ 1, . . ., l·l) in a least squares sense. In general, two additional

terms, the upper (UR) and lower (LR) residual terms, can be considered (Peeters

and Van der Auweraer 2005). They are introduced to approximate the effects of

out-of-band modes (below the lower bound and above the upper bound of the

analyzed frequency range). However, their use is restricted to continuous-time

fraction polynomial models (Verboven 2002).

The minimization of gk implies that its partial derivatives with respect to the

unknown residual coefficients Rk,j are zero:

∂gk
∂Rk, j

¼ 2
XNf

f¼1

Ĝ k ωf

� �
�
XNm

j¼1

Rk, j

iωf � λj
þ

R�
k, j

iωf � λ�j

 ! !
� 1

iωf � λj

� �
¼ 0

ð4:141Þ

with k¼ 1, . . ., l·l and j¼ 1, . . ., 2Nm, where Nm denotes the number of identified

physical modes. The obtained equations can be expressed in matrix form as

follows:

ΛΛ½ � Rkf g ¼ GΛf g ð4:142Þ

where:

ΛΛ½ � ¼
XNf

f¼1

Λ ωf

� �
 �
Λ ωf

� �
 �T ð4:143Þ

GΛf g ¼
XNf

f¼1

Ĝ k ωf

� �
Λ ωf

� �
 �
ð4:144Þ
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Λ ωf

� �
 �
¼

1

iωf � λ1

⋮

1

iωf � λj

⋮

1

iωf � λNm

1

iωf � λ�1
⋮

1

iωf � λ�j
⋮

1

iωf � λ�Nm

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð4:145Þ

Rkf g ¼

Rk,1

⋮

Rk, j

⋮

Rk,Nm

R�
k,1

⋮

R�
k, j

⋮

R�
k,Nm

8
>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

: ð4:146Þ

As a consequence, since the physical poles are known, the residues can be

determined as follows:

Rkf g ¼ ΛΛ½ ��1
GΛf g, k ¼ 1, . . . , l � l: ð4:147Þ

The l� l residue matrix [Rj] corresponding to the j-th mode is easily constructed

by taking the elements of the {Rk} vectors corresponding to λj for k¼ 1,. . ., l·l.

Once the [Rj] matrices ( j¼ 1, . . .,Nm) have been determined, the mode shapes {ϕj}

are obtained by SVD of the residue matrices:

Rj

� �
¼ U½ � Σ½ � V½ �T ð4:148Þ

In fact, assuming that rank([Rj])¼ 1, the first column of [U] is an estimate of the

mode shape {ϕj} of the j-th mode.
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4.4.3.2 The Poly-Reference Least Squares Complex Frequency Method
The poly-reference version of the LSCF estimator is based on an RMFD. The

development of the p-LSCF method was motivated by some inherent limitations of

the LSCF estimator based on the common-denominator model. In particular, they

concern the identification of closely spaced modes and the reduction of the quality

of fit when the polynomial model is converted to a modal model (Peeters and Van

der Auweraer 2005). In fact, closely spaced poles might erroneously show up as a

single pole in LSCF, in particular at low values of the model order. The reduction of

the quality of fit is instead related to the fact that the common-denominator model

does not force the residue matrices to be rank-one. This extra freedom leads to an

“artificial” enhancement of the quality of fit, since the model does not fulfill the

modal analysis theory in terms of rank of the residue matrices.

The p-LSCF method is herein illustrated with reference to one-sided spectra,

but positive power spectra are analyzed in the same way by replacing [GYY(ωf)]

with ½SþYYðωf Þ� (or their respective estimates), and Ĝ o ωf

� �� �
with Ŝ þ

o ωf

� �� �
.

A comparison between the results obtained from the application of the method to

positive power spectra and one-sided spectra is reported in Sect. 4.9. In p-LSCF the

PSD matrix at each frequency line f (f¼ 1, . . ., Nf) is modeled by the RMFD

(Cauberghe 2004):

GYY ωf

� �� �
¼ B Ωf ; θ½ �

� �� �
A Ωf ; θ½ �
� �� ��1 ð4:149Þ

where [θ] is the matrix of the unknown parameters. For every output channel

o (o¼ 1, . . ., l), hBo(Ωf, [θ])i is the numerator matrix polynomial:

Bo Ωf ; θ½ �
� �� �

¼
Xn

j¼1

Bo, j

� �
Ω

j
f ð4:150Þ

and [A(Ωf, [θ])] is the denominator matrix polynomial:

A Ωf ; θ½ �
� �� �

¼
Xn

j¼0

Aj

� �
Ω

j
f : ð4:151Þ

The 1� l matrices hBo,ji and the l� l matrices [Aj] are the unknown parameters

to be estimated. The polynomial coefficients can be collected in a single complex-

valued matrix as follows:

θ½ � ¼
β1½ �
⋮

βl½ �
α½ �

2
664

3
775 ð4:152Þ
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where:

βo½ � ¼
Bo,0h i
⋮

Bo,nh i

2
4

3
5 ð4:153Þ

α½ � ¼
A0½ �
. . .

An½ �

2
4

3
5 ð4:154Þ

and n is the model order. As in the case of the common-denominator model, the

polynomial basis function can be expressed in the continuous Laplace domain

(Ωf¼ iωf) or in the discrete z-domain. As already mentioned in the illustration of

the LSCF method, the z-domain formulation (4.116) is recommended to improve

numerical conditioning.

The following error formulation:

Eo ωf ; θ½ �
� �� �

¼ Bo Ωf ; θ½ �
� �� �

� Ĝ o ωf

� �� �
A Ωf ; θ½ �
� �� �

ð4:155Þ

is introduced to obtain a linear least squares problem. This is defined by minimizing

the following cost function:

‘ θ½ �ð Þ ¼
Xl

o¼1

XNf

f¼1

tr Eo ωf ; θ½ �
� �� �H

Eo ωf ; θ½ �
� �� �� �

: ð4:156Þ

The minimization of the cost function given by (4.156) corresponds to the

solution of the following matrix equation:

J½ � θ½ � ¼ 0½ � ð4:157Þ

where the Jacobian matrix [J] is given by:

J½ � ¼

Γ1½ � 0½ � . . . 0½ � Υ1½ �
0½ � Γ2½ � . . . 0½ � Υ2½ �

⋮ ⋮
.
.

.
⋮ ⋮

0½ � 0½ � . . . Γl½ � Υl½ �

2
66664

3
77775

ð4:158Þ

with:

Γo½ � ¼

1 z1 . . . zn1h i
1 z2 . . . zn2h i

. . .

1 zNf
. . . znNf

� �

2
66664

3
77775

ð4:159Þ
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Υo½ � ¼

� 1 z1 . . . zn1h iN Ĝ o ω1ð Þ
� �

� 1 z2 . . . zn2h iN Ĝ o ω2ð Þ
� �

� 1 zNf
. . . znNf

� �N
Ĝ o ωNf

� �� �

2
66664

3
77775
: ð4:160Þ

N
denotes the Kronecker product. The matrices [Γo] and [Υo] have dimensions

Nf� (n + 1) and Nf� (n + 1)·l, respectively.

It is possible to show that (Cauberghe 2004):

‘ θ½ �ð Þ ¼
Xl

o¼1

XNf

f¼1

tr Eo ωf ; θ½ �
� �� �H

Eo ωf ; θ½ �
� �� �� �

¼ tr θ½ �H J½ �H J½ � θ½ �
� �

ð4:161Þ

and, on the analogy with the LSCF estimator, it is possible to reduce the dimensions

of the matrix equation through the definition of the normal equations:

J½ �H J½ � θ½ � ¼

R1½ � . . . 0½ � S1½ �

⋮
.
.

.
⋮ ⋮

0½ � . . . Rl½ � Sl½ �

S1½ �H . . . Sl½ �H
Xl

o¼1

To½ �

2
666666664

3
777777775

β1½ �
⋮

βl½ �
α½ �

2
66664

3
77775
¼ 0½ � ð4:162Þ

with:

Ro½ � ¼ Γo½ �H Γo½ � ð4:163Þ

So½ � ¼ Γo½ �H Υo½ � ð4:164Þ

To½ � ¼ Υo½ �H Υo½ �: ð4:165Þ

[Ro], [So] and [To] have dimensions (n + 1)� (n + 1), (n + 1)� (n + 1)·l and

(n + 1)·l� (n + 1)·l, respectively. The [βo] coefficients can be eliminated from

(4.162) taking into account that:

βo½ � ¼ � Ro½ ��1
So½ � α½ �: ð4:166Þ

As a final result, the reduced normal equations are obtained:

Xl

o¼1

To½ � � So½ �H Ro½ ��1
So½ �

� �
α½ � ¼ M½ � α½ � ¼ 0½ � ð4:167Þ

where [M] is a square (n + 1)·l� (n + 1)·l matrix.

On the analogy with the LSCF method, the parameter redundancy is removed by

setting one of the denominator coefficients equal to the identity matrix. If the
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highest order coefficient is constrained to be equal to the identity matrix of

dimensions l� l:

An½ � ¼ Il½ � ð4:168Þ

the least squares solution is given by:

α½ � ¼ � M 1:nl,1:nlð Þ
� ��1

M 1:nl, nlþ1ð Þ: nþ1ð Þlð Þ
� �

Il½ �

" #
: ð4:169Þ

The matrix [M(1 : nl,1 : nl)] is the submatrix of [M] made by its first n·l rows and

columns; the matrix [M(1 : nl,(nl+ 1) : (n+ 1)l )] is the submatrix of [M] made by its first

n·l rows and its last n·l columns. Once the [α] coefficients have been determined, the

[βo] coefficients can be computed by substitution of [α] into (4.166).

The roots of the denominator polynomial [A(Ωf, [θ])] are the eigenvalues of the

following companion matrix:

A½ � ¼

� A0½ ��1
An½ � � A0½ ��1

An�1½ � . . . � A0½ ��1
A2½ � � A0½ ��1

A1½ �
I½ � 0½ � . . . 0½ � 0½ �

⋮ ⋮
.
.

.
⋮ ⋮

0½ � 0½ � . . . I½ � 0½ �

2
666664

3
777775

ð4:170Þ

The companion matrix is a square n·l� n·l matrix and it models a dynamic

system with (n·l)/2 modes. Its eigenvalues zr have to be converted into the poles

expressed in the Laplace domain as per (4.136). Equations (4.137)–(4.139) provide

the natural frequency, the damped modal frequency, and the damping ratio of the

r-th mode, respectively.

Once the poles associated to physical modes have been selected, the LSFD

estimator is used to get the corresponding mode shapes. The residue matrices can

be computed by minimizing the scatter between the experimentally estimated PSD

matrix and the modeled one (De Troyer et al. 2009a):

g Rj

� �� �� �
¼
XNf

f¼1

Ĝ YY ωf

� �� �
�
XNm

j¼1

Rj

� �

iωf � λj
þ Rj

� ��

iωf � λ�j

 ! !2

: ð4:171Þ

The minimization of [g([Rj])] implies that its partial derivatives with respect to

the unknown residues are zero. The obtained equations can be expressed in matrix

form as follows:

ΛΛ½ � R½ � ¼ GΛ½ � ð4:172Þ

4.4 Frequency Domain Methods 145



where:

ΛΛ½ � ¼
XNf

f¼1

Il½ �
iωf � λ1
� �

iωf � λ1
� � Il½ �

iωf � λ�1
� �

iωf � λ1
� � . . .

Il½ �
iωf � λNm

� �
iωf � λ1
� � Il½ �

iωf � λ�Nm

� �
iωf � λ1
� �

⋮ ⋮ .
.

. ⋮ ⋮

Il½ �
iωf � λ1
� �

iωf � λ�Nm

� � Il½ �
iωf � λ�1
� �

iωf � λ�Nm

� � . . .
Il½ �

iωf � λNm

� �
iωf � λ�Nm

� � Il½ �
iωf � λ�Nm

� �
iωf � λ�Nm

� �

2
66666666664

3
77777777775

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð4:173Þ

R½ � ¼

R1½ �
R1½ ��

⋮

RNm
½ �
RNm
½ ��

2
66664

3
77775

ð4:174Þ

GΛ½ � ¼
XNf

f¼1

Ĝ YY ωf

� �� �

iωf � λ1
� �

Ĝ YY ωf

� �� �

iωf � λ�1
� �

⋮

Ĝ YY ωf

� �� �

iωf � λNm

� �

Ĝ YY ωf

� �� �

iωf � λ�Nm

� �

2
66666666666666666664

3
77777777777777777775

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

: ð4:175Þ

The mode shape of the j-th mode can be finally estimated once the corresponding

l� l residue matrix [Rj] has been computed from (4.172) (Sect. 4.4.3.1).

4.5 Time Domain Methods

4.5.1 NExT-Type Procedures

A number of modal identification techniques, initially developed in the determi-

nistic framework of traditional input–output modal analysis, have been extended to

output-only modal analysis recognizing that the correlation functions of random

responses can be expressed as a sum of decaying sinusoids (4.15) holding the

information about the modal parameters. As a consequence, correlation functions

of the random responses of the structure under natural excitation have replaced the

experimental estimates of IRFs in the application of such modal analysis techniques

in the output-only case. For this reason, this class of OMA methods is traditionally

referred to as NExT.
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The three main methods in this class are:

• The LSCE method,

• The ITD method,

• The ERA method (Juang and Pappa 1985, Juang 1994).

In this section, only the LSCE and the ITD methods are presented. In fact,

ERA relies on the system realization theory and it is not herein illustrated because

of its similarities with subspace methods. The reader can refer to Sect. 4.5.3.1 for

output-only modal identification based on correlation functions and state-space

model.

NExT-type methods were very popular at the beginning of OMA. LSCE and

ITD have also experienced some enhancements over the years, for instance in order

to deal with closely spaced modes (Olsen and Brincker 2013) and spurious

harmonics (Mohanty 2005). Due to their historical relevance, they are herein

illustrated in their most relevant aspects. However, these methods have been

progressively abandoned in favor of the more robust subspace methods. The

interested reader can refer to the literature for more details (Allemang and Brown

1998, Vold et al. 1982, Ibrahim and Mikulcik 1977, Mohanty 2005, Olsen and

Brincker 2013).

The LSCE method is the time-domain counterpart of the LSCF estimator. Thus,

it is basically a curve-fitting algorithm aimed at the extraction of the modal

parameters from correlation functions. From (4.15) the generic correlation function

can be rewritten as follows in discrete-time and for k� 0:

Rij kΔtð Þ ¼
XNm

r¼1

Cij, re
λrkΔt þ C∗

ij, re
λ∗r kΔt

� �
ð4:176Þ

where Cij,r is the element ij of the residue matrix associated to the r-th mode (the

notation for the residues has been slightly modified in this section with respect to

the rest of the chapter for the sake of clarity). Taking into account that the poles

appear in complex conjugate pairs and considering all the poles in sequence,

(4.176) can be rewritten as:

Rij kΔtð Þ ¼
Xn

r¼1

Cij, re
λrkΔt ð4:177Þ

where Cij, r is the constant associated to the r-th pole λr and the sum is extended to

n¼ 2Nm terms. Moreover, since the poles are in complex conjugate pairs, there

exists a polynomial of order n of which zr ¼ eλrΔt (r¼ 1, . . ., n) are roots:

β0z
0
r þ β1z

1
r þ . . .þ βn�1z

n�1
r þ znr ¼ 0 ð4:178Þ

Equation (4.178) is also known as Prony’s equation. The highest order coeffi-

cient βn is set equal to 1.
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In order to determine the polynomial coefficients βk, assuming that a number of

samples q larger than 2n are available, (4.177) can be written for the full dataset as

follows:

Rij kΔtð Þjk¼0 ¼ Cij,1 þ Cij,2 þ . . .þ Cij,n

Rij kΔtð Þjk¼1 ¼ Cij,1z
1
1 þ Cij,2z

1
2 þ . . .þ Cij,nz

1
n

⋮

Rij kΔtð Þjk¼q ¼ Cij,1z
q
1 þ Cij,2z

q
2 þ . . .þ Cij,nz

q
n

: ð4:179Þ

Multiplying the correlation at time instant k by the coefficient βk:

β0Rij kΔtð Þjk¼0 ¼ β0Cij,1 þ β0Cij,2 þ . . .þ β0Cij,n

β1Rij kΔtð Þjk¼1 ¼ β1Cij,1z
1
1 þ β1Cij,2z

1
2 þ . . .þ β1Cij,nz

1
n

⋮

βqRij kΔtð Þjk¼q ¼ βqCij,1z
q
1 þ βqCij,2z

q
2 þ . . .þ βqCij,nz

q
n

: ð4:180Þ

and summing up these values, the following equation is obtained:

Xq

k¼0

βkRij kΔtð Þ ¼
Xn

r¼1

Cij, r

Xq

k¼0

βkz
k
r

 !
: ð4:181Þ

It is convenient to set q¼ n¼ 2Nm. Taking into account (4.178) and that βn¼ 1,

the following equation is obtained:

Xn�1

k¼0

βkRij kΔtð Þ ¼ �Rij nΔtð Þ: ð4:182Þ

Repeating this process for different sets of samples (for instance, the next set can

be made by the samples k¼ 1, . . ., n + 1), a set of n equations in the n unknown βk
coefficients is obtained:

Rij

� �
βf g ¼ � eRij

n o
ð4:183Þ

where:

Rij

� �
¼

Rij kΔtð Þjk¼0 Rij kΔtð Þjk¼1 . . . Rij kΔtð Þjk¼n�1

Rij kΔtð Þjk¼1 N N Rij kΔtð Þjk¼n

⋮ N N ⋮

Rij kΔtð Þjk¼n�1 Rij kΔtð Þjk¼n . . . Rij kΔtð Þjk¼2n�2

2
66664

3
77775

ð4:184Þ
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is the Hankel matrix (a Hankel matrix is a matrix that is constant along its

anti-diagonals) holding the values of the correlation function,

βf g ¼
β0
β1
⋮

βn�1

8
>><
>>:

9
>>=
>>;

ð4:185Þ

is the vector of the unknown βk coefficients, and:

eRij

n o
¼

Rij nΔtð Þ
Rij nþ 1ð ÞΔtð Þ

⋮

Rij 2n� 1ð ÞΔtð Þ

8
>>><
>>>:

9
>>>=
>>>;
: ð4:186Þ

[Rij], {β} and eRij

n o
have dimensions n� n, n� 1 and n� 1, respectively.

The unknown coefficients are given by:

βf g ¼ � Rij

� ��1 eRij

n o
: ð4:187Þ

They are also the coefficients of the Prony’s equation (4.178), whose roots

zr ¼ eλrΔt provide the natural frequency, the damped modal frequency, and the

damping ratio ((4.137)–(4.139)) after the conversion into the continuous Laplace

domain (4.136).

The above procedure uses a single correlation function. However, since the {β}

coefficients are global quantities related to the modal parameters, the correlation

between any couple of response time series has to provide the same polynomial

coefficients (Mohanty 2005). As a consequence, repeating the above procedure for

any couple of response time histories leads to the following overdetermined set of

equations:

R11½ �
R12½ �
⋮

Rll½ �

2
664

3
775 βf g ¼ �

eR11

n o

eR12

n o

⋮

eRll

n o

8
>>>><
>>>>:

9
>>>>=
>>>>;

ð4:188Þ

which can be solved in a least squares sense by pseudo-inverse techniques (Chap. 2).

Once the physical poles have been identified, they can be inserted into (4.177) to

determine the constants Cij, r from the following set of equations:

z01 z02 . . . z0n

z11 z12 . . . z1n

⋮ ⋮ . . . ⋮

zn�1
1 zn�1

2 . . . zn�1
n

2
66664

3
77775

Cij,1

Cij,2

⋮

Cij,n

8
>>>><
>>>>:

9
>>>>=
>>>>;

¼

Rij kΔtð Þ
		
k¼0

Rij kΔtð Þ
		
k¼1

⋮

Rij kΔtð Þ
		
k¼n�1

8
>>>>><
>>>>>:

9
>>>>>=
>>>>>;

: ð4:189Þ
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Thus, the LSCE method is a two-stage method for OMA, where mode shapes

are estimated only in a second stage of analysis following the identification of

the physical poles. On the analogy with the LSCF estimator, there exists also a

poly-reference version of the algorithm, which considers all the measurement

channels as references, computes thematrix coefficients [β1], . . ., [βn] by least squares,

and extracts the poles as a solution of a generalized eigenvalue problem. The interested

reader can refer to the literature (Heylen et al. 1998, Vold et al. 1982) for more details.

The ITD method is a global modal identification procedure based on processing

of all the measured correlation functions at once. Taking into account that the

generic correlation function can be decomposed as a sum of complex exponentials

and arranging the measured correlation functions in a block Hankel matrix:

H0jn�1

� �
¼

R̂yy 0ð Þ
� �

R̂yy 1ð Þ
� �

. . . R̂yy n� 1ð Þ
� �

R̂yy 1ð Þ
� �

N N R̂yy nð Þ
� �

⋮ N N ⋮

R̂yy n� 1ð Þ
� �

R̂yy nð Þ
� �

. . . R̂yy 2n� 2ð Þ
� �

2
66664

3
77775

ð4:190Þ

the following decomposition can be considered:

H0jn�1

� �
¼ Ψ½ � Λ½ � ð4:191Þ

where [Ψ] contains the information about the mode shapes, and [Λ] holds the

information about the poles.

A second set of equations is obtained by a time-shift Δt of all the entries in the

[H0jn� 1] matrix. The second block Hankel matrix is related to [Λ] as follows:

H1jn
� �

¼ Ψ
� �

Λ½ �: ð4:192Þ

The relation between the matrices [Ψ] and Ψ
� �

is expressed by the system

matrix [A] as:

A½ � Ψ½ � ¼ Ψ
� �

: ð4:193Þ

Substitution of (4.193) into (4.192) yields:

H1jn
� �

¼ A½ � Ψ½ � Λ½ � ð4:194Þ

and, taking into account (4.191), the following equation is obtained:

A½ � H0jn�1

� �
¼ H1jn
� �

ð4:195Þ

which provides the system matrix [A] from the measured data contained in the

matrices [H0|n� 1] and [H1|n]:

A½ � ¼ H1jn
� �

H0jn�1

� �þ
: ð4:196Þ
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The modal parameters are finally estimated by the eigenvalue decomposition of

the system matrix. Its eigenvalues are the system poles in the z-domain. The natural

frequency, the damped modal frequency, and the damping ratio are obtained from

(4.137), (4.138), and (4.139), respectively, once the eigenvalues have been

converted into the continuous Laplace domain (4.136). The eigenvector of the

system matrix corresponding to a certain eigenvalue is finally used to obtain an

estimate of the mode shape for that mode. It is worth pointing out that the ITD

method is a low order method. As a consequence, the number of measurement

channels l limits the number of identifiable poles (and therefore modes).

4.5.2 AR- and ARMA-Type Methods

The use of ARMA models for output-only modal identification has been attempted

in the past, but they never became popular in this field due to a number of

drawbacks (convergence problems, excessive computational time). Nevertheless,

for their historical relevance, the main concepts under the application of AR and

ARMA models to OMA are herein briefly summarized.

In Sect. 4.2.3 it has been mentioned that an ARMAV(p, p) model:

ykf g þ α1½ � yk�1f g þ . . .þ αp
� �

yk�p


 �
¼ ekf g þ γ1½ � ek�1f g þ . . .þ γp

� �
ek�p


 �
:

ð4:197Þ

is an equivalent representation of a dynamic system with n¼ p·l poles in the

presence of noise (namely, low signal-to-noise ratio; in the absence of noise, a

covariance equivalent model is an ARMAV(p, p� 1) model; Andersen 1997,

Andersen et al. 1996). It can be used to describe a linear, time-invariant structure

vibrating under unknown input forces, which can be modeled as a zero-mean

Gaussian white noise process. Since the order p of the ARMA model is related to

the order n of the system, the poles of the structure are included in the model only if

pl� n. Thus, a preliminary estimate of the model order and, therefore, of the number

of modes in the investigated frequency range is needed. In the case pl> n, additional

nonphysical poles appear next to the physical poles and have to be distinguished

(Peeters 2000). The poles are extracted from the AR matrix coefficients, while the

MA parameters ensure that the statistical description of the data is optimal.

PEM is a data-driven method for the estimation of an ARMA model. A detailed

description of the method and an extensive discussion about its application for the

identification of the modal parameters of civil engineering structures can be found

elsewhere (Ljung 1999, Andersen 1997). The ARMAV model is fitted to the

measured time signals by minimizing the output prediction error:

e tk; αi½ �; γi½ �ð Þf g ¼ y tkð Þf g � ŷ tkj Yk�1
� �

, αi½ �, γi½ �
� �
 �

ð4:198Þ

given by the difference between the measured time signals and the predicted output

of the ARMAV model, which depends on the model parameters [αi] and [γi] and on
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the past data [Yk� 1] up to tk�1. Unfortunately, the minimization of the prediction

error requires a nonlinear optimization procedure. Since in practical applications a

large number of parameters have to be estimated, this may lead to problems with

computational time and convergence. An optimization scheme able to reduce the

set of parameters to be estimated has been therefore proposed (Brincker and

Andersen 1999a). It basically carries out a translation of the ARMA model in

state-space form, defines a reduced set of parameters in the modal domain and

then goes back to the ARMA domain to perform the optimization according to

PEM. However, in the presence of good quality data this optimization scheme does

not significantly improve the modal parameter estimates with respect to the sto-

chastic state-space model (Brincker and Andersen 1999b). Thus, even if ARMA

models can be potentially applied in the field of OMA, limited applications of PEM

can be found in the literature as a result of the highly nonlinear parameter estima-

tion problem. Since the nonlinearity is associated to the MA terms and the infor-

mation about the poles is in the AR coefficients, alternative strategies have been

developed where the MA coefficients are not estimated.

A first strategy completely omits the MA part, and the application of PEM to

the following AR model:

ykf g þ α1½ � yk�1f g þ . . .þ αp
� �

yk�p


 �
¼ ekf g ð4:199Þ

leads to a linear least squares problem, which can be easily solved. However, as

mentioned in Sect. 4.2.3, an ARmodel of order p is not an equivalent representation

of a vibrating structure with pl poles, and the use of the AR model is justified only if

its order goes to infinity. Unfortunately, this causes the introduction of a lot of

spurious poles that have to be distinguished from the physical ones.

The IV method represents an attempt to overcome the limitations associated to

the estimation of the AR terms only. This result is obtained through the formulation

of a linear problem for the identification of the AR parameters, but an ARMA

model is retained as underlying structure. The method starts recognizing that the

ARMAV(p, p) model of (4.197) is adequate for modal parameter estimation if,

when fitting the measured data {yk}, it extracts the maximum of information from

them and returns residuals {ek} uncorrelated with the past data:

E ekf g yk�if gT
� �

¼ 0½ � 8i > 0: ð4:200Þ

Since {ek� p} is the oldest term in the MA part of (4.197), post-multiplying both

sides of (4.197) by {yk� p� i}
T (i> 0) and taking the expectation yield the following

equation:

E ykf g yk�p�i


 �Th i
þ α1½ �E yk�1f g yk�p�i


 �Th i

þ . . .þ αp
� �

E yk�p


 �
yk�p�i


 �Th i
¼ 0½ � 8i > 0 ð4:201Þ
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where the equality follows from (4.200). The assumption of stationarity implies:

E ykf g yk�if gT
� �

¼ E ykþi


 �
ykf gT

� �
¼ Ri½ � 8i > 0 ð4:202Þ

so that the fundamental equation of the IV method can be expressed in terms of the

output correlations [Ri] as:

Rpþi

� �
þ α1½ � Rpþi�1

� �
þ . . .þ αp

� �
Ri½ � ¼ 0½ � 8i > 0: ð4:203Þ

Equation (4.203) can be rewritten as:

α1½ � Rpþi�1

� �
þ . . .þ αp

� �
Ri½ � ¼ � Rpþi

� �
8i > 0 ð4:204Þ

pointing out the similarity with the (poly-reference) LSCE method. This is a further

example of how different algorithms can be traced back to a common mathematical

background, as discussed in Sect. 4.2.5.

If the output correlations are replaced by their estimates R̂ i

� �
and (4.204) is

written for all the available time lags i, the AR parameters [α1], . . ., [αp] can be

obtained as a least squares solution of an overdetermined set of equations. Natural

frequencies, damping ratios, and mode shapes are finally computed from the results

of the eigenvalue decomposition of the companion matrix of the AR coefficients, as

described in Sect. 4.2.3.

4.5.3 Stochastic Subspace Identification

4.5.3.1 Covariance-Driven Stochastic Subspace Identification
The Covariance-driven Stochastic Subspace Identification (Cov-SSI) method

addresses the stochastic realization problem, that is to say the problem of identi-

fying a stochastic state-space model from output-only data. The origin of the

method can be traced back to the system realization theory for deterministic

(input–output) cases and the concept of minimal realization developed by Ho and

Kalman (Ho and Kalman 1966).

An extensive discussion about the system realization theory can be found else-

where (Juang 1994). Here just some basic concepts are reported. As mentioned in

Sect. 4.2.3, a minimal realization is the state-space model with the smallest state-

space dimension among all the realizable systems characterized by the same input–

output relation. To construct such a model, it is important to check whether or not all

the system states of interest can be excited (controlled) and/or observed (Juang 1994).

By definition, a state of a system is controllable if it can be reached from any

initial state of the system in a finite time interval by some control actions; in a

similar way, a state of the system is observable if the knowledge of input and output

over a finite time interval completely determines the state.

It is possible to show (Juang 1994) that, if a certain condition about the rank

of two specific matrices is fulfilled, the system is observable and controllable.
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Such matrices are the so-called observability and controllability matrices and they

will be introduced next in this section.

A system of order n is observable/controllable if and only if the observability/

controllability matrix is of rank n. The solution of the realization problem consists

in determining a minimal realization of order n of the state-space matrices from the

measured data. As clarified next in this chapter, in practical applications the actual

order of the system is unknown and its determination is always affected by a certain

degree of uncertainty due to noise effects. As a consequence, even if a minimal

realization of a system of order n can be theoretically identified from the measured

data and used to extract the modal parameters, the determination of the correct

order of the system is usually a very complex task. A conservative approach to

identify all the structural modes in the data consists in the overestimation of the

order of the system. This causes the appearance of additional nonphysical poles

next to the physical poles, and specific criteria and tools to sort the structural poles

are needed (refer to Sect. 4.9 for more details).

The Cov-SSI method can be classified as a time-domain, parametric, covariance-

driven procedure for OMA. It starts from the computation of output correlations:

R̂ i

� �
¼ 1

N � i
Y 1:N�ið Þ
� �

Y i:Nð Þ
� �T ð4:205Þ

where [Y(1 :N� i)] is obtained from the l�N data matrix [Y] by removal of the last i

samples, while [Y(i :N )] is obtained from [Y] by removal of the first i samples; R̂ i

� �

denotes the unbiased estimate of the correlation matrix at time lag i based on a finite

number of data. The estimated correlations at different time lags are gathered into

the following block Toeplitz matrix:

T1 ij
� �

¼

R̂ i

� �
R̂ i�1

� �
. . . R̂ 1

� �

R̂ iþ1

� �
R̂ i

� �
.
.

.
R̂ 2

� �

⋮ ⋮
.
.

.
⋮

R̂ 2i�1

� �
R̂ 2i�2

� �
. . . R̂ i

� �

2
666664

3
777775

ð4:206Þ

Each correlation matrix has dimensions l� l; thus, the block Toeplitz matrix has

dimensions li� li. For the identification of a system of order n, the number of block

rows i has to fulfill the following condition:

li � n ð4:207Þ

In practical applications the actual order of the system is obviously unknown.

However, an estimate of the number of modes in the frequency range of interest can

be obtained in a number of ways, for instance as the number of peaks in the trace of

the PSD matrix or in the singular value plots given by the SVD of the PSD matrix

(see Sects. 4.4.1 and 4.4.2).
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Assuming that the order of the system has been estimated and taking into

account that the number of outputs l is a constant of the identification problem, a

value for i larger than or equal to n/l can be set. The adopted value for i is basically a

user’s choice and it is definitely based on a physically insight of the problem.

Applying the factorization property given by (4.51) to the block Toeplitz matrix:

T1 ij
� �

¼
C½ �

C½ � A½ �
⋮

C½ � A½ �i�1

2
664

3
775 A½ �i�1

G½ � � � � A½ � G½ � G½ �
h i

¼ Oi½ � Γi½ � ð4:208Þ

the observability matrix:

Oi½ � ¼
C½ �

C½ � A½ �
⋮

C½ � A½ �i�1

2
664

3
775 ð4:209Þ

and the reversed controllability matrix:

Γi½ � ¼ A½ �i�1
G½ � � � � A½ � G½ � G½ �

h i
ð4:210Þ

are obtained. [Oi] and [Γi] have dimensions li� n and n� li, respectively. If the

condition of (4.207) is fulfilled and the system is observable and controllable, the

rank of the block Toeplitz matrix equals n. In fact, it is a product of a matrix with n

columns—[Oi]—and a matrix with n rows—[Γi]—.

The SVD of the block Toeplitz matrix:

T1ji
� �

¼ U½ � Σ½ � V½ �T ¼ U1½ � U2½ �½ � Σ1½ � 0½ �
0½ � 0½ �


 �
V1½ �T
V2½ �T


 �
ð4:211Þ

provides its rank, which equals the number of nonzero singular values (Sect. 2.3.1).

If the zero singular values and the corresponding singular vectors are omitted,

(4.208) and (4.211) yield:

T1ji
� �

¼ Oi½ � Γi½ � ¼ U1½ � Σ1½ � V1½ �T ð4:212Þ

where the matrices [U1] and [V1]
T have dimensions li� n and n� li, respectively,

and the n� n diagonal matrix [Σ1] holds the positive singular values arranged in

descending order. The matrices [Oi] and [Γi] can be computed by splitting the SVD

in two parts as follows:

Oi½ � ¼ U1½ � Σ1½ �1=2 T½ � ð4:213Þ

Γi½ � ¼ T½ ��1
Σ1½ �1=2 V1½ �T ð4:214Þ
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where [T] is a nonsingular matrix which plays the role of a similarity transformation

applied to the state-space model (Sect. 4.2.2); since the choice of [T] simply

determines one of the infinite equivalent realizations of the state-space model, it

can be set equal to the identity matrix:

T½ � ¼ I½ � ð4:215Þ

Taking into account the definitions of observability matrix (4.209) and control-

lability matrix (4.210), the output influence matrix [C] and the next state-output

covariance matrix [G] can be easily obtained as the first l rows of [Oi] and the last l

columns of [Γi], respectively.

The state matrix [A] can be computed according to different approaches. The

first is based on the decomposition property of the one-lag shifted Toeplitz matrix:

T2 iþ1j
� �

¼

R̂iþ1

� �
R̂i

� �
. . . R̂ 2

� �

R̂iþ2

� �
R̂iþ1

� �
.
.

.
R̂ 3

� �

⋮ ⋮
.
.

.
⋮

R̂2i

� �
R̂2i�1

� �
. . . R̂iþ1

� �

2
666664

3
777775
¼ Oi½ � A½ � Γi½ � ð4:216Þ

Introducing (4.213) and (4.214) into (4.216), taking into account (4.215) and

solving for [A], the following expression for the state matrix is obtained:

A½ � ¼ Oi½ �þ T2 iþ1j
� �

Γi½ �þ ¼ Σ1½ ��1=2
U1½ �T T2 iþ1j

� �
V1½ � Σ1½ ��1=2: ð4:217Þ

This variant of the Cov-SSI algorithm is basically equivalent to the NExT-ERA

method.

As an alternative, the state matrix [A] can be estimated by exploiting the shift

structure of the observability matrix. Pre- and post-multiplying the matrix [T1ji] by
the invertible weighting matrices [W1] and [W2], computing the SVD of the

weighted Toeplitz matrix and omitting the zero singular values yield the following

expression for the observability matrix (Yi and Yun 2004):

Oi½ � ¼ W1½ ��1
U1½ � Σ1½ �1=2 ð4:218Þ

and the state matrix is given by:

A½ � ¼ O
"
i

h iþ
O

#
i

h i
ð4:219Þ

where [Oi
"] and [Oi

#] are obtained from the matrix [Oi] by removal of the last and the

first l rows, respectively.

Depending on the adopted weighting matrices, the following two variants of

Cov-SSI can be considered: Balanced Realization (BR) and Canonical Variate

Analysis (CVA).
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The BR Cov-SSI uses identity matrices as weights:

W1½ � ¼ W2½ � ¼ I½ � ð4:220Þ

In a balanced realization the controllability grammian—[Γi] [Γi]
T—and the

observability grammian—[Oi]
T[Oi]—are equal and diagonal (taking into account

that [U1] and [V1] are orthonormal matrices):

Oi½ �T Oi½ � ¼ Σ1½ �1=2 U1½ �T U1½ � Σ1½ �1=2 ¼ Σ1½ � ¼ Σ1½ �1=2 V1½ �T V1½ � Σ1½ �1=2

¼ Γi½ � Γi½ �T ð4:221Þ

and this implies that the realized system is controllable as well as observable (Juang

1994). A balanced realization means that the signal transfers from the input to the

state and from the state to the output are similar and balanced (Juang 1994).

In the CVA variant of Cov-SSI the Cholesky factorization (Chap. 2) of the

following matrices:

Tþ
0 i�1j

h i
¼

R̂ 0

� �
R̂ 1

� �T
. . . R̂ i�1

� �T

R̂ 1

� �
R̂ 0

� �
.
.

.
R̂ i�2

� �T

⋮
.
.

.
.
.

.
⋮

R̂ i�1

� �
R̂ i�2

� �
. . . R̂ 0

� �

666666664

777777775
¼ Lþ½ � Lþ½ �T ð4:222Þ

T�
0 i�1j

h i
¼

R̂ 0

� �
R̂ 1

� �
. . . R̂ i�1

� �

R̂ 1

� �T
R̂ 0

� �
.
.

.
R̂ i�2

� �

⋮
.
.

.
.
.

.
⋮

R̂ i�1

� �T
R̂ i�2

� �T
. . . R̂ 0

� �

666666664

777777775
¼ L�½ � L�½ �T ð4:223Þ

provides the weights (Hermans and Van Der Auweraer 1999):

W1½ � ¼ Lþ½ ��1
, W2½ � ¼ L�½ ��1 ð4:224Þ

In CVACov-SSI the singular values of the weighted Toeplitz matrix [W1][T1ji][W2]

can be interpreted as the cosines of the angles, the so-called canonical angles, between

two subspaces (Hermans and Van Der Auweraer 1999). The CVA weighting can be

physically interpreted as a weighting that leads to balanced modes in terms of energy.

As a consequence, it enhances the possibility to identify those modes that are less

excited in operational conditions.

Once the matrices [A] and [C] have been estimated, the modal parameters can be

extracted. The (complex conjugate pairs of) poles in discrete-time are in the diagonal

matrix [M] obtained from the eigenvalue decomposition of the state matrix (4.77).

After the conversion of the poles corresponding to physical modes from discrete-time

to continuous-time (4.136), the natural frequencies, the damped modal frequencies,
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and the damping ratios can be estimated according to (4.137), (4.138), and (4.139),

respectively. The mode shape of the r-th mode is estimated from the eigenvector {ψ r}

of [A] corresponding to the selected pole zr according to (4.79).

About the transformation from continuous-time to discrete-time and vice versa,

it is worth noting that the restriction of the Laplace variable to purely imaginary

values corresponds to a restriction to values on the unit circle in discrete-time

(Verboven 2002). Moreover, the transformation from discrete-time to continuous-

time is not unique (Juang 1994). Any couple of frequencies differing by a multiple

of 2π/Δt is indistinguishable when observed at the sampled times. As a conse-

quence, Δtmust be sufficiently short or a filter has to be adopted in order to prevent

that the frequencies beyond the Nyquist frequency are mirrored at a lower

frequency in the realization (aliasing).

The output correlations and the identified state-space matrices are estimates of

the corresponding true quantities based on a finite number of samples (for this

reason, they should be denoted with ^: Â
� �

, Ĉ
� �

, Ĝ
� �

. . .). The presence of noise can

determine some errors in the estimates. Typical noise sources are:

• modeling inaccuracies (for example, the system that generated the data cannot

be exactly modeled as a stochastic state-space model),

• measurement noise (due to sensors and measurement hardware),

• computational noise (due to the finite precision),

• the finite number of data points (leading to estimates of the output correlations).

As a consequence of noise and the finite number of samples, also the factoriza-

tion property of the Toeplitz matrix (4.208) does not hold exactly. If, in principle,

the order n of the system can be obtained as the number of nonzero singular values

of the block Toeplitz matrix [T1ji], the presence of noise makes all singular values

different from zero. Thus, the rank of [T1ji] is “approximately” n, and the truncation

of the smallest singular values leads to a certain error in the estimation of the state-

space matrices. A rule of thumbs for the evaluation of the order n of the system

suggests to look at the gap between two subsequent singular values. The model

order is identified in correspondence of the maximum value of this gap. However,

this criterion cannot be slavishly applied, since clear gaps are often absent in the

case of real records of the structural response. As a consequence, as previously

mentioned, a usual practice consists in overestimating the model order to a certain

extent and in sorting out the physical poles by appropriate tools and criteria. They

are illustrated in Sect. 4.9.

An assessment of the quality of the identified state-space model is possible

through the comparison of the synthesized spectra with those directly estimated

from the measurements. A closed-form expression for the spectrum of a discrete-

time stochastic state-space model is as follows (Peeters 2000):

SYY zð Þ½ � ¼ C½ � z I½ � � A½ �ð Þ�1
G½ � þ R0½ � þ G½ �T z�1 I½ � � A½ �T

� ��1

C½ �T
				
z¼eiωΔt

:

ð4:225Þ
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4.5.3.2 Data-Driven Stochastic Subspace Identification
DD-SSI algorithms have become very popular in the system identification

community in recent years. Such techniques are very attractive for a number of

reasons. They rely on an elegant mathematical framework and robust linear algebra

tools to identify the state-space matrices from the raw data. As a result, in com-

parison with other data driven algorithms such as PEM, nonlinear optimization

problems are avoided. In fact, the identification problem is linearized, that is to say

it is reduced to a simple least squares problem. Moreover, the use of well-known

tools from numerical linear algebra, such as SVD and LQ decomposition, leads to a

numerically very efficient implementation.

An innovative aspect of DD-SSI consists in the identification of the state

sequence before the estimation of the state-space matrices. A number of theorems

show that the states can directly be calculated from measurements through some

geometric operations (Van Overschee and De Moor 1996). These are the so-called

orthogonal and oblique projections. In the context of OMA, only orthogonal

projections are used. The concept of projection can be easily understood if the

rows of a matrix are interpreted as a basis for a vector space. Therefore, it is possible

to define the operator [ΠE], which projects the row space of a matrix on the row

space of a reference matrix [E]:

ΠE½ � ¼ E½ �T E½ � E½ �T
� �þ

E½ �: ð4:226Þ

The orthogonal projection of the row space of a generic matrix [F] on the row

space of [E] is:

F½ �= E½ � ¼ F½ � ΠE½ � ¼ F½ � E½ �T E½ � E½ �T
� �þ

E½ �: ð4:227Þ

More details about projections and their role in DD-SSI can be found elsewhere

(Van Overschee and De Moor 1996). The key idea, which has to be remarked here,

is that the Kalman filter state estimates can be obtained as a linear combination of

the rows of certain block Hankel matrices holding the raw data. As discussed in

Sect. 4.2.2, the role of the Kalman filter is to produce an optimal prediction of the

state vector {sk} from observations of the outputs up to the time instant k� 1.

The Kalman filter state sequence Ŝi
� �

, therefore, collects all the state estimates

obtained from the output data at the previous i time instants. Each column of Ŝi
� �

represents one of these state estimates. For instance, assuming that the filter is

started at j different time instants, so that the Kalman filter state sequence is:

Ŝi
� �

¼ ŝif g ŝiþ1f g . . . ŝiþj�1


 �� �
ð4:228Þ

the (q + 1)-th column ŝ iþq


 �
of Ŝi
� �

represents the state estimate based on the

following i output values: {yq}, . . ., {yi+ q� 1} (Van Overschee and De Moor 1996).
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The DD-SSI algorithm starts from a block Hankel matrix constructed directly

from the measurement data. It has 2i block rows and j columns (for the statistical

proof of the method, the following assumption is made: j!1; thus, j must be

rather large). The value of i is determined in agreement with (4.207). The block

Hankel matrix has dimension 2li� j and it can be partitioned into the two

sub-matrices of the past—[Yp]—and future—[Yf]—outputs as follows:

H
0

		2i�1


 �
¼ 1ffiffi

j
p

y0f g y1f g . . . yj�1

n o

y1f g N N yj

n o

⋮ N N ⋮

yi�1f g yif g . . . yiþj�2

n o

yif g yiþ1


 �
. . . yiþj�1

n o

yiþ1


 �
N N yiþj

n o

⋮ N N ⋮

y2i�1f g y2if g . . . y2iþj�2

n o

2
66666666666666666664

3
77777777777777777775

¼ Y0ji�1

� �

Yij2i�1

� �
" #

¼ Yp

� �

Yf

� �
" #

: ð4:229Þ

The sub-matrices [Yp] and [Yf] have dimensions li� j. The output data are scaled

by the factor 1=
ffiffi
j

p
to be consistent with the definition of correlation (Chap. 2).

In fact, it is possible to show that, under the assumptions of ergodicity and j!1,

the block Toeplitz matrix of correlations can be computed from the block Hankel

matrices of output data as follows:

Tlji
� �

	 1

j
Yf

� �
Yp

� �T
: ð4:230Þ

In practical applications the number of columns j is taken equal to N� 2i + 1, so

all given data samples are used. Adding one block row to the past outputs and

omitting the first block row of the future outputs yield another division of the

Hankel matrix:

H0j2i�1

� �
¼

Y0ji�1

� �

Yiji
� �

Yiþ1j2i�1

� �

2
64

3
75 ¼ Y0ji

� �

Yiþ1j2i�1

� �
" #

¼
Yþ
p

� �

Y�
f

� �
" #

: ð4:231Þ

where [Yp
+] is the block Hankel matrix of the past outputs with one block row added,

and [Yf
�] is the block Hankel matrix of the future outputs with the first block row

removed. The identification of the Kalman filter state sequences and, as a conse-

quence, of the state-space matrices is based on the orthogonal projection of the row

space of the future outputs on the row space of the past outputs. The definition of this

projection:

Pi½ � ¼ Yf

� �.
Yp

� �
¼ Yf

� �
Yp

� �T
Yp

� �
Yp

� �T� �þ
Yp

� �
: ð4:232Þ
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points out that correlations and projections are closely related. In fact, [Yf][Yp]
T

and [Yp][Yp]
T are basically block Toeplitz matrices holding output correlations.

The orthogonal projection of (4.232) can be efficiently computed by the LQ

factorization of the block Hankel matrix of the outputs [H0j2i� 1]:

H0j2i�1

� �
¼ L½ � Q½ � ð4:233Þ

so that the Hankel matrix is expressed as the product of a lower triangular

matrix [L]:

li

$
l

$
l i� 1ð Þ

$
li l

L½ � ¼ l l
l i� 1ð Þ l

L11½ � 0½ � 0½ �
L21½ � L22½ � 0½ �
L31½ � L32½ � L33½ �

2
4

3
5

ð4:234Þ

and an orthonormal matrix [Q]:

j

$

Q½ � ¼
Q1½ �T
Q2½ �T
Q3½ �T

2
4

3
5

:

ð4:235Þ

The projections [Pi] and [Pi� 1] of the row space of the future outputs on the

row space of the past outputs can be obtained from the LQ decomposition as

follows:

Pi½ � ¼ Yf

� �.
Yp

� �
¼ L21½ �

L31½ �


 �
Q1½ �T ð4:236Þ

Pi�1½ � ¼ Y�
f

h i�
Yþ
p

h i
¼ L31½ � L32½ �
� � Q1½ �T

Q2½ �T

 �

: ð4:237Þ

Moreover, the output sequence [Yiji] (4.231) can be expressed as:

Yiji
� �

¼ L21½ � L22½ �
� � Q1½ �T

Q2½ �T

 �

: ð4:238Þ

Assuming that the system is controllable and observable (so that all its modes are

excited by the process noise and can be identified) and the condition expressed by

(4.207) is satisfied, the main theorem of DD-SSI states that the projection matrix

[Pi] can be factorized into the product of the observability matrix [Oi] and the

Kalman filter state sequence Ŝ i

� �
(Van Overschee and De Moor 1996):
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Pi½ � ¼ Oi½ � Ŝ i

� �
¼

C½ �
C½ � A½ �
⋮

C½ � A½ �i�1

2
664

3
775 ŝ if g ŝ iþ1f g � � � ŝ iþj�1


 �� �
: ð4:239Þ

The factorization of the projection matrix into the product of a matrix with n

columns—[Oi]—and a matrix with n rows— Ŝ i

� �
—implies that rank([Pi])¼ n.

Estimating the rank of [Pi] by SVD and retaining only the nonzero singular values:

Pi½ � ¼ U1½ � U2½ �½ � Σ1½ � 0½ �
0½ � 0½ �


 �
V1½ �T
V2½ �T


 �
¼ U1½ � Σ1½ � V1½ �T ð4:240Þ

the observability matrix and the Kalman filter state sequence can be computed as:

Oi½ � ¼ U1½ � Σ1½ �1=2 T½ � ð4:241Þ

Ŝ i

� �
¼ Oi½ �þ Pi½ � ð4:242Þ

where the similarity transformation [T] can be set equal to the identity matrix.

A factorization similar to (4.239) can be applied to [Pi� 1], obtaining:

Pi�1½ � ¼ O
"
i

h i
Ŝ iþ1

� �
: ð4:243Þ

Since O
"
i

h i
can be directly obtained from [Oi] by deleting the last l rows, while

[Pi� 1] has been obtained from the LQ decomposition of the Hankel matrix of the

output data, the Kalman state sequence Ŝ iþ1

� �
can be computed from (4.243) as

follows:

Ŝ iþ1

� �
¼ O

"
i

h iþ
Pi�1½ �: ð4:244Þ

The state-space matrices can be now derived according to three different

approaches. They differ for the capability to ensure the positive realness of covari-

ance sequences. In simple words, the first two algorithms that are going to be

illustrated provide asymptotically unbiased estimates (if i!1) of the noise

covariances [Qww], [Rvv] and [Swv] (4.43) and of the matrices [G] and [R0] but

they do not ensure the positive realness. This can lead to a synthesized spectrum

matrix which is not positive definite at all frequencies. Since for a positive definite

matrix all its diagonal entries are positive (Golub and Van Loan 1996), the

synthesized spectrum might become negative at certain frequencies and this is

obviously meaningless. Moreover, when the covariance sequence is not positive

real, an innovation model cannot be computed. When the positive realness of

covariance sequences is of interest, the third algorithm has to be adopted which,

however, is not asymptotically unbiased. More details about positive realness and

its implications can be found elsewhere (Van Overschee and De Moor 1996). It is
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worth pointing out that also the Cov-SSI algorithm does not ensure the positive

realness of the identified covariance sequence and, as a consequence, a forward

innovation model cannot be obtained.

The first algorithm uses the state sequences to estimate the state-space matrices.

In fact, once the Kalman filter state sequences Ŝ i

� �
and Ŝ iþ1

� �
have been estimated

according to (4.242) and (4.244), the matrices [A] and [C] can be computed

from the following overdetermined set of linear equations, obtained by stacking

the state-space models for the time instants from i up to i + j� 1:

Ŝ iþ1

� �

Yiji
� �


 �
¼ A½ �

C½ �


 �
Ŝ i

� �
þ ρw½ �

ρv½ �


 �
: ð4:245Þ

Since the Kalman filter residuals [ρw] and [ρv] are uncorrelated with the states

Ŝ i

� �
(see also (4.46) and (4.47)), this set of equations can be solved in a least squares

sense. In fact, taking into account that the least squares residuals are orthogonal and,

therefore, uncorrelated with the regressors Ŝ i

� �
, asymptotically unbiased least

squares estimate of [A] and [C] are obtained as follows (Van Overschee and

De Moor 1993):

A½ �
C½ �


 �
¼ Ŝ iþ1

� �

Yiji
� �


 �
Ŝ i

� �þ
: ð4:246Þ

It is worth noting that all quantities on the right side of (4.246) can be expressed

in terms of the LQ factors. As a result of their orthonormality, the Q factors cancel

out in (4.246). A significant data reduction can be therefore obtained by expressing

the right-side quantities in (4.246) in terms of the L factors only.

The matrix [G] corresponds to the last l columns of the reversed controllability

matrix, which can be computed as follows:

Γi½ � ¼ Oi½ �þ T1ji
� �

ð4:247Þ

while [R0] is obtained as the autocorrelation of [Yiji]:

R0½ � ¼ 1

j
Yiji
� �

Yiji
� �T

: ð4:248Þ

The second algorithm takes advantage of the shift structure of the observability

matrix, which implies that:

O
"
i

h i
A½ � ¼ O

#
i

h i
: ð4:249Þ
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As a consequence, the discrete state matrix can be computed in agreement with

(4.219). Alternatively, it can be computed by SVD of the concatenated matrix

O
#
i

h i
� O

"
i

h i
 �
:

O
#
i

h i
� O

"
i

h i
 �
¼ U½ � Σ½ � V½ �T ð4:250Þ

where the matrix [V] can be then partitioned as follows:

n n

$ $
V½ � ¼ n l

n l
V11½ � V12½ �
V21½ � V22½ �


 � : ð4:251Þ

The matrix [A] is finally given by (Van Overschee and De Moor 1996):

A½ � ¼ V22½ � V12½ ��1 ð4:252Þ

while the matrix [C] is directly obtained from the first l rows of [Oi]. The matrices

[G] and [R0] are obtained as for the previous algorithm.

The third algorithm computes [A] and [C] by least squares in agreement with

(4.245) and (4.246), as in the case of the first algorithm, but the matrices [G] and

[R0] are obtained by a different procedure. The covariances of the process and

measurement noise are obtained from the residuals as follows:

1

j

ρw½ �
ρv½ �


 �
ρw½ �T ρv½ �T

h i
¼ Qww

i

� �
Swv
i

� �

Swv
i

� �T
R vv
i

� �
" #

ð4:253Þ

where the subscript i indicates that they are nonsteady state covariance matrices of

the nonsteady state Kalman filter equation (see also Sect. 4.2.2):

Σiþ1½ � ¼ A½ � Σi½ � A½ �T þ Qww
i

� �
ð4:254Þ

G½ � ¼ A½ � Σi½ � C½ �T þ Swv
i

� �
ð4:255Þ

R0½ � ¼ C½ � Σi½ � C½ �T þ R vv
i

� �
: ð4:256Þ

Since the Kalman filter converges when i!1, the following approximations:

Qww½ � ¼ Qww
i

� �
, Swv½ � ¼ Swv

i

� �
, Rvv½ � ¼ R vv

i

� �
: ð4:257Þ
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introduce a bias when i is finite but they ensure the positive realness of the

covariance sequences, since the matrix
Qww½ � Swv½ �
Swv½ �T Rvv½ �


 �
is positive definite by

construction and this condition leads to positive real covariance sequences

(Van Overschee and De Moor 1996). Once the matrices [A], [C], [Qww], [Rvv] and

[Swv] are known, the matrices [G] and [R0] can be obtained from (4.48)–(4.50).

Solution of the Ricatti equation (4.67), together with (4.68), provides the Kalman

gain and, as a consequence, the forward innovation model is finally obtained

(Van Overschee and De Moor 1996).

Once the matrices [A] and [C] have been determined according to one of the

previous algorithms, the modal parameters can be obtained from the eigenvalue

decomposition of the discrete state matrix as discussed in the previous sections

((4.77), (4.79), (4.137), (4.138), (4.139)), after the conversion of the eigen-

values from discrete-time to continuous time (4.136). Since the modal parameter

estimates depend on [A] and [C] only, they are not affected by eventual bias on the

matrices [G] and [R0]. When also these last two matrices are estimated, the

spectrum matrix of the model can be computed from (4.225).

It is worth emphasizing that, due to the finite data length, the identified state-

space model (and therefore the matrices [A], [C], [G] and [R0]) is just an estimate of

the model that actually generated the data. On the analogy with the Cov-SSI

method, the order of the system can be obtained as the rank of the projection matrix

[Pi], if the number of block rows has been set in agreement with (4.207). Since none

of the singular values will exactly be zero as a result of the presence of noise, the

rank of the matrix can only approximately be determined in correspondence with

the maximum gap between two subsequent singular values (which are arranged in

descending order). In practical applications, since a clear drop in the sequence of

singular values is often not detectable, the order of the system is overestimated to a

certain extent and specific tools and criteria are used to identify the physical poles

(Sect. 4.9).

On the analogy with Cov-SSI, some variants of DD-SSI can be obtained through

the application of some weights to the projection matrix [Pi] before SVD.

The weighting matrices [W1] and [W2] have dimensions li� li and j� j, respec-

tively, and they obey some conditions. In particular, [W1] is of full rank, while [W2]

is such that:

rank Yp

� �� �
¼ rank Yp

� �
W2½ �

� �
: ð4:258Þ

The variants of DD-SSI and the corresponding weighting matrices are:

• the Unweighted Principal Component (UPC) algorithm: [W1]¼ [Ili], [W2]¼ [Ij]

(where the subscripts li and j denote the dimensions of the identity matrix);

• the principal component (PC) algorithm: [W1]¼ [Ili],

W2½ � ¼ Yp

� �T 1
j
Yp

� �
Yp

� �T� ��1=2
Yp

� �
;

• the CVA: W1½ � ¼ 1
j
Yf

� �
Yf

� �T� ��1=2
, [W2]¼ [Ij].
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In the case of CVADD-SSI the singular values of the weighted projection matrix

[W1][Pi][W2] can be interpreted as the cosines of the principal angles between two

subspaces, the row space of the past outputs [Yp] and the row space of the future

outputs [Yf] (see Van Overschee and De Moor 1996 for more details).

As a practical rule, UPC DD-SSI should be used in the presence of modes of

equal strength and data with a good signal-to-noise ratio; on the contrary, CVA

DD-SSI should be used in the presence of noisy data and modes characterized by

widely different strength. The PC variant can be considered as a compromise

between UPC and CVA. Even if these three variants have different physical

explanations, a number of computer simulations and practical applications have

demonstrated that there are no significant accuracy differences among them in the

field of OMA (Zhang et al. 2005b).

The above discussion about Cov-SSI and DD-SSI is certainly not compre-

hensive, but, in agreement with the objectives of this book, it provides the main

concepts for the implementation of those algorithms for OMA applications. The

interested reader can refer to the literature for an extensive discussion about SSI

methods and their variants (Van Overschee and De Moor 1996, Aoki 1987,

Katayama 2005).

4.5.4 Second Order Blind Identification

A recent proposal in the field of OMA concerns the possibility to apply Blind

Source Separation (BSS) techniques to identify the modal parameters. BSS tech-

niques allow extracting a set of signals, the so-called sources, from observations of

their mixtures (Ans et al. 1985), based on fairly general assumptions about the

sources and the mixing process.

Applicability of BSS techniques to OMA has been investigated in detail in a

number of fairly recent publications (Kerschen et al. 2007, Poncelet et al. 2007,

Zhou and Chelidze 2007, McNeill and Zimmerman 2008). In the context of OMA,

such techniques can be referred to as time domain methods. Moreover, since no

model is fitted to the data, they can be classified as nonparametric methods. Even if

BSS techniques, which are based only on a statistical treatment of data, show

promising performance in the field of output-only modal identification of civil

structures, some limitations can be identified. They are related to the basic

assumptions under different BSS techniques and their compatibility with the

dynamic systems of interest. These aspects are discussed in this section right after

a short introduction about BSS.

BSS techniques can be classified as linear or nonlinear, depending on the type of

combination of the sources. Moreover, linear simultaneous (static) mixing and

convolutive mixing can be considered. Even if the convolution product of the

IRF of a structure with the external forcing vector gives the dynamic response of

the structure itself, the problem of extraction of the sources from convolutive

mixtures is not completely solved yet. For this reason, the possibility to interpret
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the dynamic response of a structure as a static mixture of sources has been

investigated for modal identification purposes (Kerschen et al. 2007).

Assuming that the dynamic response of a structure can be modeled as a linear

and static mixture of sources, it can be expressed in matrix form as follows

(Poncelet et al. 2007):

y tð Þf g ¼ A½ � s tð Þf g ð4:259Þ

where {s(t)} are the source signals and [A] is now referred to as the mixing matrix.

BSS techniques aim at recovering the mixing matrix [A] and the sources {s(t)} from

their observed mixtures {y(t)}, based on general assumptions about the sources

themselves.

The applicability of BSS to vibration data is obvious if the modal expansion of the

dynamic response of the structure (4.102) is compared to (4.259). Such a comparison

shows that there is a one-to-one relationship between mixing matrix and sources on

one hand and modal matrix and modal coordinates on the other hand. Thus, under

given assumptions, the modal coordinates may act as virtual sources regardless of the

number and type of the physical excitation forces (Kerschen et al. 2007, Poncelet

et al. 2007). Nomathematical model is assumed to describe the process that produced

the measured data. The mixing model is the only assumption, confirming that BSS

techniques can be referred to as nonparametric procedures for modal identification.

The above-mentioned concepts and the moderate complexity of BSS justify the

increasing application of these statistical signal-processing techniques in the field of

OMA. In the case of static mixing, two approaches can be identified: the first is based

on higher-order statistics, if the sources are statistically independent and nomore than

one source is Gaussian (Comon 1994); the second relies on second-order statistics, if

the sources are uncorrelated (Belouchrani et al. 1997). In both cases separation is

affected by some indeterminacies related to the order of the sources (any permutation

of the sources is also a solution of the blind identification problem) and their

amplitude.

Early use of BSS for modal identification can be found in a number of publications

(Feeny and Kappagantu 1998, Kerschen and Golinval 2002) focused on the relation

between proper orthogonal modes provided by a Principal Component Analysis

(PCA) and normal modes. Applicability of PCA to real case studies has been limited

by the need for information about the mass matrix (Kerschen et al. 2007). Chelidze

and Zhou (Chelidze and Zhou 2006) investigated this issue, developing a new

multivariate data analysis method (the so-called smooth orthogonal decomposition).

Additional details about applicability of PCA in structural dynamics can be found in

the literature (Kerschen et al. 2005).

Independent Component Analysis (ICA) appears much more suitable than PCA

to vibration data processing for modal identification purposes (Kerschen

et al. 2007). The main assumptions of ICA for the solution of the blind identification

problem are the mutual independence (so that the joint probability density of the

sources can be factorized into the product of their marginal densities) and

non-Gaussianity of the sources (only one source with Gaussian distribution can
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be tolerated; Even and Moisan 2005). Under these assumptions, the solution of

an optimization problem based on a given cost function provides the sources.

In particular, ICA is based on the maximization of non-Gaussianity of the

sources. Moreover, as many other BSS algorithms, it includes some preprocessing

steps. In particular, centering (removal of mean values from measurements) and

whitening (basically, a PCA) are carried out in order to reduce the noise level and

improve convergence.

The main drawbacks of ICA are related to the use of high-order statistics, whose

estimation is computational demanding and difficult in the presence of a scarcity of

data, and to some limitations strictly related to modal identification. In fact, ICA

works well only in the case of weakly damped systems, characterized by damping

ratios lower than 1 % (Kerschen et al. 2007). These reasons make ICA unattractive

for modal identification purposes.

Methods based on second-order statistics of the observed signals assume that the

sources are uncorrelated for all delays and have different spectra. Among these, the

Algorithm for Multiple Unknown Signal Extraction (AMUSE) (Tong et al. 1991)

and the Second Order Blind Identification (SOBI) algorithm are based on a similar

theoretical background. In fact, they exploit the information contained in cova-

riance matrices. However, while SOBI jointly diagonalizes several time-shifted

covariance matrices, AMUSE relies on the EVD of the covariance matrix eventu-

ally at one time lag only. Thus, SOBI overcomes the shortcoming of AMUSE

related to an eventually inappropriate choice of the time lag. This can result in two

similar eigenvalues and makes unfeasible the identification of the corresponding

sources. It has been shown that SOBI is also much more robust to noise than

AMUSE (Zhou and Chelidze 2007).

When SOBI is applied to vibration data, the real-valued mixing matrix implies

real-valued mode shape estimates. This can be a drawback of the method in the

presence of complex modes. An evolution of SOBI able to deal with complex

modes is the Blind Modal Identification (BMID) algorithm (McNeill and

Zimmerman 2008).

In this section attention is focused on SOBI, with an illustration of the main

steps of the algorithm and its theoretical assumptions in agreement with relevant

publications available in the literature (Belouchrani et al. 1997, Poncelet et al. 2007,

Zhou and Chelidze 2007). In fact, normal modes are typically identified from modal

identification tests of civil structures, so SOBI can be profitably applied in most

cases.

On the analogy with other BSS techniques, the measured response is assumed to

be a linear mixture of the sources (the modal coordinates), as expressed by (4.259).

If some (additive) noise {n(t)} is present in the measured response, (4.259) can be

rewritten as follows:

y tð Þf g ¼ A½ � s tð Þf g þ n tð Þf g: ð4:260Þ

The l recorded time histories are, therefore, modeled as a linear combination of

Nm sources plus noise. As a consequence, if there are Nm modes in the frequency
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range under investigation, they can be identified only if rank([A])¼Nm. Since the

mixing matrix has dimensions l�Nm, this implies that the number of measurement

channels has to be equal or larger than the number of active modes: l�Nm.

Moreover, since the columns of the mixing matrix represent estimates of the

mode shapes of the structure under test, a careful selection of sensor locations is

needed so that the observed mode shape vectors are linearly independent and the

rank of [A] is preserved. Taking into account the previously mentioned limitations,

SOBI can be classified as a low order method for OMA. The issues related to the

identifiability of a limited number of modes can be mitigated through the repeated

application of band-pass filtering until the entire frequency range of interest is

investigated. However, this procedure leads to a major increase in the time of

analysis.

Assuming that the sources are stationary, uncorrelated, and scaled to have unit

variance, their covariance matrix is the identity matrix:

Rss 0ð Þ½ � ¼ E s tð Þf g s tð Þf gT
n o

¼ I½ �: ð4:261Þ

The additive noise is assumed to be a temporally and spatially white stationary

random process, with:

E n tð Þf g½ � ¼ 0f g ð4:262Þ

E n tð Þf g n tð Þf gT
h i

¼ σ2 I½ � ð4:263Þ

If the added noise is also independent of the source signals, this implies:

E n tð Þf g s tð Þf gT
h i

¼ 0½ �: ð4:264Þ

Thefirst step of the algorithmconsists ofwhitening the signal part {x(t)}¼[A]{s(t)}

of the observeddata. This is achievedbyapplying a linear transformation to {x(t)} such

that the whitened data {z(t)} are uncorrelated and have unit variance:

z tð Þf g ¼ W½ � x tð Þf g ) Rzz 0ð Þ½ � ¼ E z tð Þf g z tð ÞT

 �� �

¼ I½ �: ð4:265Þ

The matrix [W] defining this transformation is referred to as the whitening

matrix. From (4.265) and (4.261) it is easy to recognize that:

Rzz 0ð Þ½ � ¼ W½ � A½ �E s tð Þf g s tð ÞT

 �� �

A½ �T W½ �T ¼ W½ � A½ � A½ �T W½ �T ¼ I½ �: ð4:266Þ

Thus, if [W] is a whitening matrix, [A 0]¼ [W][A] is an Nm�Nm unitary matrix.

As a consequence, the mixing matrix can be factored as the product of the inverse of

the whitening matrix and a unitary matrix (to be determined).
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Whitening of the measured response {y(t)} also obeys a linear model:

W½ � y tð Þf g ¼ W½ � A½ � s tð Þf g þ n tð Þf gð Þ ¼ A0½ � s tð Þf g þ W½ � n tð Þf g: ð4:267Þ

From the covariance matrix of the observed mixture:

Ryy 0ð Þ
� �

¼ E y tð Þf g y tð Þf gT
h i

¼ A½ � A½ �T þ σ2 I½ � ð4:268Þ

the following equation is obtained:

A½ � A½ �T ¼ Ryy 0ð Þ
� �

� σ2 I½ �: ð4:269Þ

Combining (4.267) with (4.269) and taking into account (4.261), (4.263), and

(4.264), it is possible to show that the whitening matrix [W] can be derived from

the covariance matrix [Ryy(0)], provided that the noise covariance is known or can

be estimated:

W½ � Ryy 0ð Þ
� �

W½ �T ¼ W½ � A½ � A½ �T W½ �T þ W½ �σ2 W½ �T : ð4:270Þ

From a practical point of view, once the measured data have been centralized by

removal of the mean value from each component of {y(t)}, whitening is obtained

via PCA as follows.

First of all, the eigenvalue decomposition of [Ryy(0)] is computed:

Ryy 0ð Þ
� �

¼ E y tð Þf g y tð Þf gT
h i

¼ E½ � D½ � E½ �T ð4:271Þ

where [E] is the orthogonal matrix of eigenvectors and [D] is the diagonal matrix of

eigenvalues. If only the Nm largest eigenvalues d1, . . . , dNm
and the corresponding

eigenvectors e1f g, . . . , eNm
f g of [Ryy(0)] are retained, the average of the remaining

l�Nm eigenvalues provide an estimate σ̂ 2 of the noise variance, under the

assumption of white noise (Belouchrani et al. 1997). The whitened signals are

then computed from the largest eigenvalues and the corresponding eigenvectors as:

z tð Þf g ¼ DNm
½ � � σ̂ 2 INm

½ �
� ��1=2

ENm
½ �T y tð Þf g ¼ W½ � y tð Þf g ð4:272Þ

where DNm
½ � is the submatrix of [D] holding only the Nm largest eigenvalues, ENm

½ � is
the submatrix of [E] collecting the eigenvectors corresponding to the Nm largest

eigenvalues of [Ryy(0)] and the whitening matrix is given by:

W½ � ¼ DNm
½ � � σ̂ 2 INm

½ �
� ��1=2

ENm
½ �T : ð4:273Þ

Taking into account (4.272), p time-shifted covariance matrices have to be

computed:
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Rzz τkð Þ½ � k ¼ 1, . . . , p: ð4:274Þ

In order to estimate the sources and the mixing matrix, an approximate

joint diagonalization of those p time-shifted covariance matrices is carried out

according to the Joint Approximate Diagonalization (JAD) technique (Belouchrani

et al. 1997). The objective of JAD is to find the unitary matrix eA0
h i

that approximately

diagonalizes the time-shifted covariancematrices.An optimization problem is defined

with respect to the matrix eA0
h i

which minimizes the sum of the off-diagonal terms of

eA0
h iT

Rzz τkð Þ½ � eA0
h i

(k¼ 1, . . ., p) for the p time-shifted covariance matrices:

min
eA 0
� �

Xp

k¼1

off eA0
h iT

Rzz τkð Þ
� � eA0

h i� �
ð4:275Þ

The solution to the minimization problem is pursued by means of a numerical

algorithm based on the Jacobi rotation technique (Cardoso and Souloumiac 1996).

Two parameters have to be set: the number p of time-shifted covariance matrices to

be jointly diagonalized, and the threshold t used to stop JAD. About the threshold t,

the problem of its setting has been analyzed by Cardoso and Souloumiac (Cardoso

and Souloumiac 1996), showing that very small values for t have no sense because

the diagonality criterion is approximate itself. Thus, it is usually unnecessary to

push the accuracy of the rotation matrix to the machine precision. A value equal to

its square root can be recommended. About the number p of time-shifted covariance

matrices, the diagonalization performance improves when p increases and it seems

to rapidly converge (Belouchrani et al. 1997). Once the matrix eA0
h i

has been

obtained, the de-mixing matrix [U] and the mixing matrix [A] can be computed:

U½ � ¼ eA0
h iT

W½ � ð4:276Þ

A½ � ¼ W½ �þ eA0
h i

ð4:277Þ

The resulting sources are shift-uncorrelated because the matrices [Rss(τk)] are

nearly diagonal. They are obtained as follows:

s tð Þf g ¼ U½ � y tð Þf g: ð4:278Þ

The mode shapes of the structure are obtained from the columns of the mixing

matrix. The technique for the estimation of natural frequencies and damping ratios

depends on the type of data used for modal identification. In the literature SOBI

has been applied to free responses, impulse responses, and responses to random

excitation (Zhou and Chelidze 2007, McNeill and Zimmerman 2008, Poncelet

et al. 2007). In the first two cases, the estimation of natural frequencies and damping
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ratios from the obtained sources is straightforward. In fact, taking into account that

the free vibration response can be expressed as a sum of exponentially decaying

sinusoids, fitting this expression to the data permits the estimation of the modal

parameters (refer to McNeill and Zimmerman 2008 for more details). In the case of

response to random excitation, if the estimation of natural frequencies from the

identified sources is again straightforward, this is not the case of damping ratios,

whose estimation requires the knowledge of the applied random excitation

(Poncelet et al. 2007). However, the extension of SOBI to the analysis of random

responses for the estimation of modal parameters including damping is immediate

by taking into account that also the correlations of random responses can be

expressed as a sum of decaying sinusoids. This is the same basic assumption of

the NExT-type procedures. Thus, for random responses there is no need to recover

the sources, since natural frequencies and damping ratios can be directly estimated

from their correlations Rss(τk) (Fig. 4.5) as obtained from JAD. A simplified

approach to the estimation of the modal properties by SOBI in the case of random

response can be outlined as follows:

• Compute the whitening matrix [W] from the centralized dataset according to

(4.271) and (4.273); since the number of modes is not known a-priori and the

criterion for proper selection of the number Nm of eigenvalues to be retained is

still debated, it is possible to set Nm¼ l; since l sources are extracted from the

data but the number of modes is likely lower than l, the sources associated to the

actual structural modes have to be selected based, for instance, on the error in

fitting the correlations Rss(τk) by exponentially damped harmonic functions; this

approach has been originally proposed by Poncelet et al. (Poncelet et al. 2007)

for the analysis of impulse responses;

• Compute {z(t)}¼ [W]{y(t)};

• Compute the time-shifted covariance matrices [Rzz(τk)] and select p of them to

apply JAD;

0.8

1

0.6

0.4

0.2

−0.2

−0.4

−0.6

−0.8

−1
0 20 40 60 80 100 120 140 160 180 200 220

Number of time lags p

Source (auto-correlation)
A

m
p

li
tu

d
e

240 260 280 300 320 340 360 380 400 420 440 460 480 500

0

Fig. 4.5 Sample auto-correlation of a source

172 4 Output-only Modal Identification



• The JADof thep time-shifted covariancematrices [Rzz(τk)]with k¼ 1,. . .,p provides

the unitary matrix eA0
h i

, which permits the computation of the mixing matrix [A]

according to (4.277), and the autocorrelations of the sources Rss(τk);

• Natural frequencies and damping ratios are estimated from the correlations of

the sources Rss(τk); regression on zero-crossing times and logarithmic decrement

(as with EFDD) or other SDOF estimators can be used; the use of SDOF curve

fitting estimators permits the computation of the fitting error and, as a result, a

quantitative selection of the correlations associated to actual structural modes in

the case noise rejection has not been previously carried out in the computation of

the whitening matrix; the selection of the number of time lags p now plays a

primary role in the process, since it is not responsible only for the matrix eA0
h i

but

it also defines the length of the correlation functions Rss(τk); thus, taking into

account the physics of the problem, p has to be set as a function of the period of

the fundamental mode so that a sufficient number of cycles are present in the

auto-correlation of the source associated to the fundamental mode;

• The mode shapes are obtained from the columns of the mixing matrix corres-

ponding to the source correlations selected in the previous step of analysis.

It is interesting to note that, unlike other two-stage modal identification methods,

SOBI provides the mixing matrix and, therefore, the mode shapes first, while

natural frequencies and damping ratios are estimated in a second stage through

post-processing of the obtained sources. Finally, it is worth pointing out that only

source signals having different spectral shape can be recovered by JAD

(Belouchrani et al. 1997). This means that SOBI can identify distinct modes but

it shows serious limitations in the presence of repeated modes.

4.6 Other Methods for OMA

Several different methods for OMA have appeared in the literature over the years.

Most of them are just variants of the previously described algorithms, aiming at

improving specific aspects or overcoming some drawbacks inherent in those

procedures. However, additional original tools and methods for OMA have also

been proposed. For instance, examples of wavelet analysis for output-only modal

identification of natural frequencies and damping ratios only (Ruzzene et al. 1997,

Gouttebroze and Lardies 2001) or also of mode shapes (Lardies and Gouttebroze

2002, Han et al. 2005) are available. Other researchers have instead proposed the

use of cepstral analysis for OMA (Hanson et al. 2007). Even if wavelet and cepstral

analysis show some advantages, they are not widely used. The interested reader can

refer to the literature for more details. Other techniques for OMA that have been

systematized over the years and are currently in use are based on transmissibility

functions and the RD signature.
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4.6.1 Transmissibility Functions

The use of transmissibility functions for OMA was first proposed in 2007

(Devriendt and Guillaume 2007). The method has been progressively refined and

improved over the years: the basic concepts are herein reported.

The transmissibility function is defined as a sort of FRF and, as such, it can

be estimated in a nonparametric preprocessing step. However, transmissibility

functions are computed from variables of the same type instead of conjugate

variables (i.e.: motion response and force input) as in classical FRFs. The transmis-

sibility function between the output i and a reference output j is given by the ratio of

their Fourier transforms:

Tij ωð Þ ¼ Yi ωð Þ
Yj ωð Þ : ð4:279Þ

In the practice it is estimated from the spectra as:

Tij ωð Þ ¼ SYiYj
ωð Þ

SYjYj
ωð Þ : ð4:280Þ

Since the reference output is present in all transmissibility functions, it has to be

carefully selected so that it carries the maximum amount of information about the

structural modes.

Starting from the definition of transmissibility function and taking into account

the modal model or, equivalently, the common denominator model, it is possible

to show that the transmissibility does not depend on the coloring of the unknown

forces, which can be arbitrary, but it only depends on the location and amplitude of

the unknown forces. Moreover, the poles of the transmissibility functions are not

the system poles, which are canceled out by taking the ratio between the response

spectra. Thus, the peaks in the magnitude of transmissibility functions do not

coincide with the structural resonances. However, an opportune combination of

transmissibility functions obtained under different loading conditions makes possi-

ble the identification of the system poles. In fact, the transmissibility functions

approach a constant value when converging to a pole of the system (Devriendt and

Guillaume 2007):

lim
ω!ωn

Tij ωð Þ ¼ ϕi,n

ϕj,n

: ð4:281Þ

As shown by (4.281), such a value is directly related to the mode shape

components at the measurement locations i and j. Moreover, since the limit is

independent of the input, transmissibility functions pertaining to the same responses

but computed from two tests characterized by different loading conditions a and b
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exactly cross each other in correspondence with the structural resonances. As a

consequence, their difference is zero at a structural resonance:

lim
ω!ωn

T a
ij ωð Þ � T b

ij ωð Þ
� �

¼ ϕi,n

ϕj,n

� ϕi,n

ϕj,n

¼ 0: ð4:282Þ

This implies that the poles of the system are also poles of the following rational

function, given by the inverse of the difference between transmissibility functions

associated to the same responses but computed for different loading conditions:

1

ΔT ab
ij ωð Þ ¼

1

T a
ij ωð Þ � T b

ij ωð Þ : ð4:283Þ

The application of parametric frequency domain estimators based on the com-

mon denominator model to (4.283) provides the structural poles. The mode shapes

are estimated in a second stage from the residues (Devriendt et al. 2010).

The functions given by (4.283) might contain additional poles not related to the

structure. However, the poles of the system can be easily distinguished from the

additional mathematical poles by using a SVD (Devriendt and Guillaume 2008).

Even if the method is still under development, the main advantage consists in its

robustness even in the presence of spurious harmonics. In fact, the method seems to

be able to provide unbiased estimates of the modal parameters even in the case of

spurious harmonics close to the structural resonances (Devriendt et al. 2009), thus

overcoming a relevant limitation of standard OMA methods (see also Chap. 5).

Nor prior knowledge about the frequency of the spurious harmonic neither filtering/

interpolation are required. The only requirement affects the loading conditions,

which must differ for location, number, or amplitude of the applied forces.

4.6.2 The Random Decrement Technique

The Random Decrement (RD) technique is a simple method for the estimation of

functions that can be interpreted as free decays and, therefore, processed by

covariance-driven identification methods. Thus, it represents a preliminary signal

processing step for OMA rather than an autonomous OMA method. However, it is

discussed here because it represents an alternative method for the estimation of

correlation functions that is often applied in combination with some of the previ-

ously discussed OMA methods.

The RD technique was developed in the late 1960s at NASA (Cole 1968, Cole

1973) as a method to characterize stochastic time series. It was soon extended to

modal identification of structures (Ibrahim 1977). The theoretical basis of the

method has been later systematized and extended by other researchers (Vandiver

et al. 1982, Asmussen et al. 1999).

The RD technique provides an estimate of the so-called RD signature. Under the

assumption of ergodic stochastic processes, the cross-RD signature is estimated
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from two time series y1(t) and y2(t) by averaging Nb segments of the time series y1(t)

associated to the Nb triggering points where the time series y2(t) satisfies at the

time instants tn the triggering condition Cy2 tnð Þ:

D̂ y1y2 τð Þ ¼ 1

Nb

XNb

n¼1

y1 tn þ τð ÞjCy2 tnð Þ: ð4:284Þ

Up to M data points before and M points after the trig points (τ¼mΔt,

�M 
m
M ) are used in the computation of the signature, where M is user-

defined. The number Nb of averages depends on the length of the time series and

the adopted triggering condition. Different triggering conditions Cy2 tnð Þ can be

applied:

• Level crossing: y2 tnð Þ ¼ y2,

• Slope crossing: _y2 tnð Þ ¼ _y2,

• Positive value: y2(tn)> 0,

• Positive slope: _y2 tnð Þ > 0,

and any combination of the previous conditions (for instance, zero crossing condi-

tion with positive slope: y2 tnð Þ ¼ 0 ^ _y2 tnð Þ > 0). When the triggering condition

is applied to the same time series, whose data segments are averaged in (4.284), the

auto-RD signature is estimated:

D̂ y1y1 τð Þ ¼ 1

Nb

XNb

n¼1

y1 tn þ τð ÞjCy1 tnð Þ: ð4:285Þ

When the condition affects both level and slope, it has been shown (Brincker

et al. 1992) that the RD signature estimate is a linear combination of the correlation

function and its derivative:

Dy1y2 τð Þ ¼ Ry1y2 τð Þ
σ2y2

y2 þ
_Ry1y2 τð Þ
σ2
_y2

_y2 ð4:286Þ

where σ2y2 is the variance of the triggering process y2(t) and σ
2
_y2
is the variance of the

derivative _y2 tð Þof the triggering process. The triggering condition can be selected in
order to obtain an RD-signature, which is proportional only to the correlation

function or its derivative. In particular, conditions applied only to the triggering

process (i.e. level crossing, positive value) lead to an RD-signature proportional to

the correlation function only, while the application of triggering conditions only

to the derivative of the triggering process (i.e. slope crossing, positive slope) yields

an RD signature proportional to the derivative of the correlation function.

A relevant application of the RD signature concerns the investigations about the

amplitude dependence of modal damping ratios by appropriately varying the

triggering condition. The interested reader can refer to the literature (Tamura and

Suganuma 1996) for more details.
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4.7 Some Remarks About OMA Methods

The theoretical background of a number of output-only modal identification

procedures has been analyzed in the previous sections, discussing in detail those

aspects related to the software implementation of selected algorithms. Far from being

a comprehensive discussion about OMA techniques, the analysis of the individual

methods in their most relevant aspects provides an overview of the advantages and

drawbacks, from a practical point of view, related to the use of different analysis

procedures. Relevant results of a comparative analysis of the previously illustrated

OMA methods are summarized in this section, also to explain the larger attention

devoted to some methods with respect to the others. The following considerations

have also guided the selection of the procedures implemented into the software

accompanying this book and used for the applications proposed at the end of this

chapter. Even if the test engineer typically has a favorite OMA method of his own,

selected according to criteria related to the simplicity or accuracy of the method

itself, the concurrent use of different OMA techniques is always recommended for

successful modal parameter identification. In fact, the comparison of the estimates

provided by different OMA methods ensures the reliability of the modal identifi-

cation results.

Even if developed since a long time and widely applied to civil engineering

structures, NExT-type procedures have been progressively abandoned in favor

of the more robust subspace methods. When NExT-type procedures appeared,

they represented a significant enhancement in the field of output-only modal

analysis with respect to the classical Peak Picking technique. In fact, they

improved the accuracy of data analysis, especially in the presence of closely

spaced modes, and allowed the extraction of actual mode shapes instead of

ODSs. Notwithstanding their historical relevance, they show some limitations

with respect to the subspace methods. The ITD method, for instance, suffers the

lack of noise truncating mechanisms, thus leading to several spurious poles.

Moreover, high order modes require filtering procedures to be extracted and this

leads to the repeated application of the procedure to the same dataset, resulting in

a time consuming process.

ARMA models aim at modeling the dynamics of both the structural system and

the noise. Since also noise is modeled, lots of additional spurious poles, not

related to the dynamics of the system under test, appear. This makes the selection

of the system poles difficult, and the presence of noise can affect the modal

parameter estimates as well. For instance, the lack of a noise truncating mecha-

nism in the IV method is reflected in less accurate mode shape estimates with

respect to subspace methods; moreover, higher order models are required to

obtain good modal parameter estimates (Peeters 2000). When PEM is considered,

the advantage of an optimal statistical description of data due to the presence of

the MA matrix polynomial is paid by the need to solve a highly nonlinear

optimization problem. Since the application of PEM does not improve too
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much the modal parameter estimates (Brincker and Andersen 1999b), subspace

methods, characterized by lower computational time and no convergence pro-

blems, are preferred.

Subspace methods have noise truncating mechanisms based on SVD. Since the

identification problem is solved by means of linear algebra tools, nonlinear optimi-

zation problems are avoided. This results also in a lower computational burden.

In the presence of noise or poorly excited modes, weighting matrices can be applied

to improve the performance of the estimators. Both Cov-SSI and DD-SSI perform

equally well in terms of quality of the modal parameter estimates; however,

DD-SSI can be implemented in a way that positive realness of the covariance

sequences is ensured. All the above-mentioned characteristics have made SSI

methods very popular in the modal analysis community.

The availability of nonparametric frequency domain OMA procedures in the

equipment of the modal analyst is also recommended. They can be profitably used

for a quick check and analysis of data in the field. In fact, they are less computa-

tional demanding with respect to subspace methods and give reasonable estimates

of the modal parameters. The use of FDD is recommended because of its less

restrictive assumptions with respect to BFD. Moreover, due to the simplicity of

nonparametric frequency domain methods, they can be used to get a first insight

into the identification problem and, as a result, to guide the setting of the analysis

parameters in subspace algorithms.

Other methods such as LSCF (and its poly-reference version) and SOBI

are becoming more and more popular because they simplify the identification of

the structural modes and provide interesting opportunities for the automation of the

modal identification process (Chap. 6).

Whatever is the adopted OMA method, modal identification tests often require

processing of a large amount of data. However, a certain degree of redundancy or

overdetermination is always present in the data. As a consequence, techniques for

the reduction of the amount of data to processed can profitably be applied in order to

keep the computational time within reasonable values. Filtering and decimation are

usually used to reject unnecessary information and to limit the frequency band

under investigation. Selected reference channels (Peeters 2000) are also sometimes

adopted in order to reduce data redundancy. They have to be carefully chosen to

avoid that some modes are lost together with the redundant information. The use of

reference channels can lead to problems of missing modes mainly in the presence of

repeated roots and a too small number of reference channels, or in the case of local

modes, which do not appear in the selected reference channels. An approach to the

selection of the best reference channels is based on the computation of the correla-

tion coefficients of the measured data:

ρ2yiyj ¼
R2
yiyj

0ð Þ
Ryiyi 0ð ÞRyjyj 0ð Þ ð4:287Þ
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and on the construction of the following matrix:

ρyiyj

h i
¼

1 ρy1y2 ρy1y3 . . . ρy1yl

ρy2y1 1 ρy2y3 . . . ⋮

ρy3y1 ρy3y2
.
.

.
. . . ⋮

⋮ . . . . . .
.
.

.
⋮

ρyly1 . . . . . . . . . 1

2
66666666664

3
77777777775

: ð4:288Þ

For each channel, the following index can be computed:

Mi ¼
Xl

j¼1

ρyiyj

			
			 j 6¼ i, i ¼ 1, . . . , l ð4:289Þ

and the reference channels are finally selected as those characterized by the largest

values of the Mi index.

The use of reference channels leads to an appreciable reduction of computational

efforts and response time. In the previous sections about OMA methods all

measurement channels have been taken as references. When only some channels

are selected as references, slight changes to the previously described algorithms are

required in order to take into account that the number r of reference channels is

lower than the total number of measurement channels. The interested reader can

refer to the literature for reference-based versions of some of the OMA procedures

discussed in this chapter (see, for instance, Peeters and De Roeck 1999 for the

reference-based version of SSI algorithms).

Another interesting aspect, which is beyond the scope of the present book, concerns

the possibility to estimate the uncertainty bounds of the modal parameter estimates

from a single output-only modal identification test. This information plays a primary

role in a variety of applications, ranging from the analysis of the influence of selected

parameters on the vibration response to SHM. Moreover, the information about the

uncertainty bounds can support the discrimination between physical and spurious

poles, since the latter are usually characterized by larger variance. The interested

reader can refer to the literature for more details (Reynders et al. 2008, Pintelon

et al. 2007, De Troyer et al. 2009a, De Troyer et al. 2009b).

4.8 Post-Processing of Modal Parameter Estimates

4.8.1 Analysis of Mode Shape Estimates

Most of the OMA methods provide their results in the form of complex eigenvalues

and complex eigenvectors. Since the mode shape estimates are in the form of

complex vectors, a distinction between normal modes, characterized by real-valued

mode shape vectors, and complex modes is needed.
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In particular, it is worth realizing if complex mode shape estimates actually

represent the dynamics of the structure under investigation or they are the result of

other factors.

In the case of normal (real) modes, the displacements at the various DOFs reach

their maximum at the same time and pass through the equilibrium position at the

same time. This is not the case of complex modes, where both the maximum values

and the null values of modal displacements are attained at different time instants for

the various DOFs (Chopra 2000). As a result, while the phase angles are all 0� or
180� for normal modes, both amplitude and phase characterize the motion of the

different DOFs in the case of complex modes.

Complex modes may originate for a number of reasons, such as gyroscopic

effects, aerodynamic effects, nonlinearities, and nonproportional damping (Ewins

2000, Chopra 2000).

Close modes sometimes show significant complexity, too (Ewins 2000). In this

regard it is worth noting that two modes characterized by some frequency separa-

tion (that is to say, the difference between the respective natural frequencies) may

be close or not depending on the value of damping: the larger the damping, the

closer the modes. As a measure of separation of two modes, the modal overlap

factor (MOF) (Srikantha Phani and Woodhouse 2007) can be computed:

MOFn ¼
f nξn

f n � f n�1

ð4:290Þ

where fn and fn� 1 represent the natural frequencies of the two modes under

consideration, while ξn is the damping ratio associated to the n-th mode.

Even if in the majority of cases the identified modes are normal, it is important to

recognize those situations where complex modes have to be expected and properly

estimated.

Complex modes are often obtained from modal tests as a result of measurement

noise (poor signal-to-noise ratio). However, the degree of complexity is usually

moderate. Even if slight complexities can be encountered in practical applications

and a complex-to-real conversion of mode shapes can be carried out with negligible

errors, the evaluation of specific indicators can provide a quantitative measure of

the degree of complexity of the estimated mode shapes.

The simplest method to assess modal complexity consists in plotting the com-

ponents of the i-th eigenvector in the complex plane, thus obtaining the so-called

complexity plot (Fig. 4.6). It permits the evaluation of the degree of complexity by a

simple visual inspection. A method based on complexity plots for the quantitative

assessment of the degree of complexity of the estimated mode shapes is described

elsewhere (Ewins 2000). Other indexes measuring the mode shape complexity are the

Modal Phase Collinearity (MPC) and theMean Phase Deviation (MPD).

If a structure is proportionally damped, the mode shape components for a certain

mode lie on a straight line in the complex plane (Fig. 4.6a).
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Deviations from this behavior can be quantified by the MPC for nearly real

normal modes (Pappa et al. 1992). It can be computed by subtracting the mean

value of the r-th mode shape vector components to each of them:

eϕi, r ¼ ϕi, r �

Xl

k¼1

ϕk, r

l
i ¼ 1, . . . , l: ð4:291Þ

The MPC of the r-th mode shape is then given by:

MPCr ¼
Re eϕr

n o� ����
���
2

þ Re eϕr

n oT
� �

Im eϕr

n o� �� �
2 ε2MPC þ 1
� �

sin 2 θMPCð Þ � 1
� �.

εMPC

Re eϕr

n o� ����
���
2

þ Im eϕr

n o� ����
���
2

ð4:292Þ

where:

εMPC ¼
Im eϕr

n o� ����
���
2

� Re eϕr

n o� ����
���
2

2 Re eϕr

n oT
� �

Im eϕr

n o� �� � ð4:293Þ

θMPC ¼ arctan εMPCj j þ sgn εMPCð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε2MPC

q� �
ð4:294Þ

k � k and sgn(�) denote the L2 norm and the signum function, respectively.

MPC values are dimensionless and bounded between 0 and 1. For real modes, the

index approaches unity, while its value is low in the case of a complex mode.
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Fig. 4.6 Complexity plots for normal (a) and complex (b) modes
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If normal modes are expected, a low value of MPC may indicate nonstructural

modes.

As an alternative, the degree of complexity can be quantified by computing

the MPD. A simple expression for MPD (Heylen et al. 1998) starts from the

computation of the following index for the r-th mode shape vector:

MPr ¼

Xl

k¼1

φk, r

l
ð4:295Þ

with:

φk, r ¼ arctan
Re ϕk, r

� �

Im ϕk, r

� �

0
@

1
A if arctan

Re ϕk, r

� �

Im ϕk, r

� �

0
@

1
A � 0

φk, r ¼ arctan
Re ϕk, r

� �

Im ϕk, r

� �

0
@

1
Aþ π if arctan

Re ϕk, r

� �

Im ϕk, r

� �

0
@

1
A < 0:

ð4:296Þ

Then, the MPD index is computed as follows:

MPDr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xl

k¼1

φk, r �MPr

� �2

l
:

vuuuut
ð4:297Þ

In the case of normal mode shapes, the value of MPD is zero. An improvement

of the MPD index for those cases where there are mode shape components with a

large imaginary part but a small real part can be found in the literature (Reynders

et al. 2012).

Taking into account the previous discussion and that OMA provides only

un-scaled mode shapes, there is the need for simple approaches to scaling and

complex-to-real conversion of the estimated mode shape vectors.

The need for complex-to-real conversion of the estimated mode shapes stems

from one of the typical applications of modal data, the comparison between the

experimental values of the modal properties and those obtained from numerical

models. In fact, the latter are usually obtained from undamped models and, as a

consequence, the mode shapes are real-valued. Whenever normal modes are

expected from the modal test, the simplest approach to carry out the complex-

to-real conversion consists in analyzing the phase of each mode shape component

and setting it equal to 0� or 180� depending on its initial value. If the phase angle

lies in the first or in the fourth quadrant it is set equal to 0�; it is set equal to 180� if
it lies in the second or in the third quadrant. To be rigorous, this approach should be

applied only in the case of nearly normal modes, when the phase angles differ
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no more than �10� from 0� to 180�. However, it is frequently extended to all phase
angles (Ewins 2000).

The mode shape vectors obtained from the different OMA methods are often

rescaled so that the magnitude of the largest modal displacement is equal to 1.

A simple procedure to obtain normalized, real mode shapes starting from the

experimental results is the following:

• starting from the complex-valued components of the r-th experimental mode

shape, find the component ϕr,max characterized by the largest modulus;

• divide every component of the experimental vector by ϕr,max;

• carry out the complex-to-real conversion as previously illustrated;

• return the normalized mode shape vector in terms of amplitude and phase;

alternatively, return the modal displacement with sign (+ if the phase is 0�, � if

it is 180�).
The experimentally identified mode shapes have to be graphically displayed,

because the visual inspection of the estimated mode shapes represents the simplest

method for a preliminary check of the modal identification results. Two approaches

exist for the graphical display of mode shape estimates. The static display provides

a picture of the mode shape, eventually superimposed to the undeformed configu-

ration of the structure (Fig. 4.7). This is the display format used in reports.

Taking into account the measurement directions of the sensors installed on the

structure and their positions, the deformed shape is obtained by assigning to each

measured point in each measured direction a displacement proportional to the

corresponding component of the mode shape vector. The scaling constant is set in

a way that the various modal displacements are appreciable but not too large,

otherwise the basic geometry of the structure might appear heavily altered. The

sign of the mode shape component determines if the measured point is moving

in-phase (+) or out-of-phase (�) with respect to the reference direction of the

sensor.

The static display is able to represent only real modes. As a consequence, a

preliminary complex-to-real conversion of the estimated mode shapes is necessary.

The visual inspection of complex mode shapes by static plots can be, therefore,

misleading. Fortunately, normal or nearly normal modes are typically encountered

in practical applications. Plotting animated mode shapes overcomes the limitations

of static display. Animated plots simulate the swing of the structure according to the

selected mode shape, so they can effectively represent also the complex modes.

One of the main drawbacks inherent in the visual inspection of the identified

mode shapes is related to the fact that the identified model is incomplete, since

measurements are carried out in a few points. The number of measurement points is

typically much lower (by some order of magnitudes) than the number of DOFs

adopted, for instance, in numerical models. Since there are several unmeasured

DOFs during tests, in the grid of points adopted to represent the geometry of the

structure some of them will always be characterized by null modal displacements.

This effect, caused by the finite number of measurement channels, has to be

taken into account in the visual inspection of mode shapes. In fact, those points

probably exhibit some displacements, which are not represented in the plots.
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Neglecting the effect of incomplete measurements can lead to misleading results in

the interpretation of the experimental mode shapes. In some cases interpolation

of modal displacements or consideration of some constraints (for instance, the

presence of rigid diaphragms) can compensate the lack of information about

some modal displacements in the experimental estimates.

However, erroneous plots are obtained if, for instance, the assumption of

constrained DOFs is not verified or interpolation of modal displacements is applied

in the case of a structure characterized by the presence of joints or abrupt changes in

its section. In summary, an effective display of the identified mode shapes is always

the result of a good choice of the sensor layout and the installation of a sufficient

number of sensors to ensure the observability of the modes of interest (see also

Chap. 3).

In the extreme case, when the adopted sensor layout is too coarse with respect to

the geometric complexity of the structure under test, there are problems not only in

Fig. 4.7 Steel structure for road sign (a) and static display of some of its experimentally estimated

mode shapes (b–d)
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displaying the deformation patterns but also in the analysis of the deformed shapes.

In fact, an insufficient number of sensors leads to the well-known problem of spatial

aliasing (Ewins 2000) with the related problems of distinction of the various modes,

which appear very similar each other. An effective tool to assess (ex post) the

quality of the adopted sensor layout is introduced in Sect. 4.8.2.2.

4.8.2 Quality Checks and Comparisons

4.8.2.1 Natural Frequencies
Validation of modal identification results mainly relies on consistency checks

obtained by comparing the experimental estimates provided by different OMA

methods. If the experimental estimates provided by the different methods are in

good agreement each other, they can eventually be compared with the results of

numerical models of the structure under investigation. Comparisons and correlations

between experimental and numerical estimates of the modal properties represent the

primary tools to verify numerical models. A verified model is a model that includes all

the necessary features to provide an acceptable representation of the actual dynamic

behavior of the structure. A verified model can eventually undergo some adjustments

to make its dynamic properties closer to the experimental values. The calibration of a

numerical model based on experimental estimates of the modal properties is referred

to as model updating. This is one of the main applications of modal testing. Even if

most of the necessary tools to compare numerical and experimental results are

discussed in this section, the interested reader can refer to the literature (Friswell

and Mottershead 1995, Mottershead et al. 2011, Ewins 2000) for an extensive

discussion about model updating techniques, which are beyond the scope of the

present book.

Natural frequencies can be compared by a simple tabulation, quantifying the

relative scatter, expressed in percent, as follows:

Δf n ¼
f 2,n � f 1,n

f 1,n
� 100 ð4:298Þ

where f1,n and f2,n are the two values of the natural frequency for the n-th mode

under comparison; f1,n and f2,n can be either experimental estimates, obtained from

two different OMA methods, or represent the numerical and the experimental

estimate of the experimental frequency of the n-th mode, respectively.

An alternative approach to compare two sets of natural frequency estimates

consists of plotting the natural frequencies in the second set against the natural

frequencies of the first set in a Cartesian plane (Fig. 4.8). The first set holds the

reference natural frequency estimates (for instance, those provided by a certain

OMA method, or average values of the estimates obtained from different methods)

while the second set holds the values of the natural frequencies that have to be

compared with the corresponding estimates in the first dataset. The natural

frequencies in the second set can be experimental estimates obtained from a
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different OMA method or the values predicted by a numerical model. In the ideal

case of very good correlation between the two sets of natural frequencies, the points

lie very close to the line passing through the origin of the axes with 45� slope.

However, mainly in the case of the comparison between numerically predicted and

experimentally estimated natural frequencies, it may happen that the points lie

along a different line or they are fairly scattered with respect to the 45� line.

Depending on how the points are distributed, it is possible to determine the reasons

for the deviations. For instance, about the comparison between numerically

predicted natural frequencies and the corresponding experimental estimates, if the

numerical model is representative of the actual behavior of the structure, only small

and randomly distributed deviations of the points from the 45� line are expected.

When the points lie close to a line with slope different from 45�, the deviation can

be addressed to erroneous setting of the material properties in the numerical model.

If the points are widely scattered with respect to the 45� line, the model is unfit to

represent the experimental data and a new model has to be set. Finally, if the

deviations are small but all or nearly all the points lie on one side of the 45� line,
they suggest the presence of a systematic error (Ewins 2000). Similar consi-

derations can be done in the analysis of the experimental results provided by

different methods.

In both cases of tabulation and graphical representation, a correct mode pairing

plays a critical role in determining the results and effectiveness of the comparisons.

It is not sufficient to compare two sets of ordered frequencies since there is no

guarantee of one-to-one correspondence between the modes in the first set and those

in the second set. For a correct mode pairing the information about the mode shapes

has also to be taken into account, in order to ensure that the two natural frequency

estimates under comparison are representative of the same mode. An incorrect

mode pairing can lead to misleading results. The evaluation of the correlation

between couples of mode shapes is based on the tools discussed in the next section.

Fig. 4.8 Comparison of

natural frequencies

186 4 Output-only Modal Identification



4.8.2.2 Mode Shapes
Classical books about experimental modal analysis suggest the comparison of mode

shapes through their graphical representation according to one of the methods

discussed in Sect. 4.8.1; plots in the Cartesian plane similar to that discussed in

Sect. 4.8.2.1 to compare natural frequencies can also be used. Even if those methods

can provide a certain amount of information, for instance about poor numerical

modeling (Ewins 2000), they suffer problems in the presence of some scaling errors

in the data and they are inadequate to compare complex-valued mode shapes. This

can lead to major errors in the analysis of results and mode pairing. A more

effective comparison of mode shapes, able to deal also with complex modes, is

based on some numerical indexes. The MAC (Allemang and Brown 1982)

represents the most popular index to quantify the correlation between mode shapes,

but it also shows some limitations. For this reason, a number of other indexes have

been developed over the years. The use of MAC and other indexes to evaluate the

correlation between couples of mode shapes is discussed in this section, pointing

out the respective advantages and limitations. In particular, the role of those indexes

in proper mode pairing, in the assessment of the quality of the adopted sensor layout

and in the verification of numerical models is illustrated.

Given the two mode shape vectors under comparison, for instance the experi-

mentally estimated mode shape {ϕn
e} and the numerically predicted mode shape

{ϕn
a} of the n-th mode of the investigated structure, in the most general case of

complex-valued vectors the MAC is computed as follows:

MAC ϕa
n


 �
; ϕ e

n


 �� �
¼

ϕa
n


 �H
ϕ e
n


 �			
			
2

ϕa
n


 �H
ϕa
n


 �� �
ϕ e
n


 �H
ϕ e
n


 �� � : ð4:299Þ

If both vectors are real-valued, as usually happens in the presence of numerically

predicted mode shapes, the transpose operator replaces the Hermitian and (4.299)

can be rewritten as follows:

MAC ϕa
n


 �
; ϕ e

n


 �� �
¼

ϕa
n


 �T
ϕ e
n


 �			
			
2

ϕa
n


 �T
ϕa
n


 �� �
ϕ e
n


 �T
ϕ e
n


 �� � : ð4:300Þ

The MAC index is basically a squared, linear regression correlation coefficient

and it provides a measure of the consistency (degree of linearity) between the two

vectors under comparison. The MAC values are bounded between 0 and 1,

representing inconsistent and perfectly consistent correspondence between the

two vectors, respectively. Even if the MAC between analytical and experimental

mode shapes is generally used for verification and updating of finite element

models, it is worth taking into account that it provides only a measure of consis-

tency between the vectors but it does not ensure validity.
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For instance, when the experimental mode shapes are measured at few locations,

the incomplete information can lead to a MAC value near unity with the corre-

sponding analytical mode shape, but the consistency between the two vectors does

not ensure that the analytical mode shape is correct. If more points are measured,

the consistency between analytical and experimental mode shapes can decrease to

values much lower than 1.

It is also worth pointing out that the MAC is sensitive to large differences

between the corresponding components of the vectors under comparison, but it is

basically insensitive to small changes and small magnitudes of the modal displa-

cements. Moreover, the MAC is not able to distinguish between random errors and

systematic deviations from the reference mode shape components. Notwithstanding

the previous limitations, the MAC is by far the most used index for mode shape

comparisons.

Taking into account the relative scatter between the natural frequencies (4.298)

and the consistency of the mode shape vectors (4.299), an effective mode pairing is

possible. The information about the mode shapes plays a primary role for a correct

mode pairing above all in the case of closely spaced modes, when proper matching

between analytical and experimental mode shapes can be difficult if only the

information about the natural frequencies is available.

When the mode shapes under comparison exhibit a consistent, linear relation-

ship, it is possible to compute the modal scale factor (MSF) as follows:

MSF ϕ e
n


 �
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n


 �� �
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 �H
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 �H
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n


 �� � ð4:301Þ

if the analytical mode shape is considered as reference, or as:
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if the experimental mode shape is considered as reference. The MSF does not

provide information about the quality of the fit, but it only gives the scale factor

between consistent vectors.

An alternative index to assess the mode shape correlation is represented by the

Normalized Modal Difference (NMD) (Waters 1995, Maia et al. 1997):

NMD ϕa
n


 �
; ϕ e

n


 �� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�MAC ϕa

n
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; ϕ e
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 �� �

MAC ϕa
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 �
; ϕ e

n


 �� �
s

ð4:303Þ

The NMD basically represents a close estimate of the average difference between

the components of the two vectors {ϕn
a} and {ϕn

e}. It appears much more sensitive to

mode shape differences than the MAC and, therefore, it is sometimes used to better

remark the differences between highly correlated mode shapes.
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In practical applications, given Nm
e experimentally identified modes and Nm

a

numerically predicted modes, the Nm
e�Nm

a MAC matrix (Fig. 4.9) is computed.

Assuming without loss of generality that Nm
e¼Nm

a, if the numerical and experimen-

tal mode shape vectors are consistent the MAC matrix will show values close to

1 along its main diagonal, where the MAC is computed for mode shapes

corresponding to the same mode, and close to 0 elsewhere, where the MAC is

related to two different modes.

When the MAC matrix is different from this ideal case, for instance because of

the presence of low MAC values along the main diagonal or of off-diagonal terms

characterized by large values of the MAC, a supplement of investigation is needed

since these anomalies can be the result of poor modeling, poor analysis of the

experimental data, inappropriate choice of the DOFs included in the correlation or

incorrect mode pairing.

MAC values between mode shapes corresponding to the same mode are always

expected to be slightly lower than 1 in practical applications, due to the unavoidable

uncertainties associated to the experimental estimates and the approximations

inherent in numerical models. However, when the objective of the comparison is

simply a verification of the numerical model, values of MAC in excess of 0.8–0.9

can be accepted as indicators of good consistency, while values less than 0.1–0.2

can be accepted as indicators of poor consistency. These limit values for the MAC

must not be regarded in absolute terms, since there are some applications that

demand high levels of consistency and some others that can accept lower MAC

values, depending on the final use of the verified or updated model.

The MAC index is a measure of the overall consistency between two vectors, but

it gives no information about the scatter between corresponding DOFs. When the

information about the spatial distribution of the degree of correlation is of interest,

extensions of the MAC have to be considered.

The Coordinate Modal Assurance Criterion (COMAC) (Ewins 2000) has been

developed to identify the DOFs that yield low MAC values. In the case of
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real-valued mode shapes and a set of Nm couples of paired experimental-numerical

mode shapes, the COMAC associated to the r-th DOF can be computed as follows:

COMACr ¼

XNm

j¼1

ϕa
r, j � ϕ e

r, j

			
			
2

XNm

j¼1

ϕa
r, j

� �2
�
XNm

j¼1

ϕ e
r, j

� �2
ð4:304Þ

where ϕr,j
a and ϕr,j

e denote the r-th component of the j-th analytical and experimental

mode shape, respectively. Thus, the COMAC preserves the information about the

individual DOFs. Low values of COMAC indicate poor correlation.

An Enhanced Coordinate Modal Assurance Criterion (ECOMAC) has also been

proposed (Hunt 1992) to overcome the potential problems caused by erroneous

calibration scaling or definition of the orientation of the sensors. In particular, the

erroneous definition of sensor orientations causes the inversion of the sign of the

associated components of the experimental mode shapes. Given a set of Nm couples

of paired experimental-numerical mode shapes, the ECOMAC associated to the r-th

DOF can be computed as follows:

ECOMACr ¼

XNm

j¼1

ϕa
r, j � ϕ e

r, j

			
			

2Nm

: ð4:305Þ

Thus, the ECOMAC basically represents a measure of the average difference

between the vector components corresponding to a certain DOF.

The role of the MAC index in the verification of numerical models has been

already introduced. However, it can be used also to check the effectiveness of the

adopted sensor layout and to assess the consistency between mode shape estimates

provided by different OMA methods.

For instance, the effectiveness of sensor layout can be assessed through the

computation of the AutoMAC matrix of the experimental mode shape estimates

provided by a given OMA method. The entries of this matrix are represented by the

values of the MAC obtained when a set of experimental mode shapes are correlated

with themselves. Thus, the AutoMAC matrix is a symmetric matrix characterized

by values all equal to 1 along the main diagonal. When the off-diagonal terms are

all close to 0, the adopted sensor layout is effective in distinguishing the different

modes; on the contrary, the presence of large off-diagonal terms means that similar

mode shape vectors have been obtained for distinct modes. This requires a supple-

ment of investigation to define the reasons of the correlation. It could be due to the

fact that the orthogonality condition of the modes with respect to the mass matrix

cannot be translated into a perfectly diagonal AutoMAC matrix. However, it is

frequently an indicator of problems, such as spatial aliasing or spurious modes

erroneously included into the set of identified physical modes. Including additional
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sensors and eventually changing the measurement positions to enhance the observ-

ability of the different modes can solve the problems related to spatial aliasing and

poor discrimination of the modes.

The consistency between mode shape estimates provided by different OMA

methods can be assessed by the construction of the CrossMAC matrix. It is

basically a MAC matrix but both the sets of vectors under comparison are made

by experimental mode shape estimates. The two sets of experimental mode shapes

have been obtained from the application of different OMA techniques. If the two set

of mode shape estimates are consistent, a CrossMAC matrix characterized by

values very close to 1 along the main diagonal and close to 0 elsewhere is obtained,

provided that the AutoMAC matrices of the two sets of experimental mode shapes

are approximately diagonal (absence of large off-diagonal terms).

4.9 Stabilization Diagrams for Parametric OMA Methods

An appropriate parameter setting in parametric OMA methods requires some prior

knowledge about the order of the model to identify all modes in the analyzed

frequency range. As a consequence, the number of modes has to be estimated in

advance based on a physical insight or from the peaks in the output power spectra or

in the singular value plots obtained by SVD of the output PSD matrix at all discrete

frequency values.

More formal procedures are based on the comparison of models characterized by

different orders according to some predefined criteria, which can eventually include

penalties to avoid overfit (Ljung 1999). In the case of SSI methods it has also been

shown that the order of the model can theoretically be determined from the experi-

mental data as the rank of the Toeplitz matrix of correlations (Sect. 4.5.3.1) or of the

projection matrix (Sect. 4.5.3.2) provided that the condition expressed by (4.207) is

fulfilled. Unfortunately, due to noise and modeling inaccuracies, it often happens

that no clear gap is visible in the sequence of the singular values of those matrices,

thus resulting in serious problems for the determination of the correct model order.

This is due to the fact that the factorization properties given by (4.208) and (4.239)

do not exactly hold in the case of a finite number of data points. However, in the

case of experimental/operational modal analysis the final objective is the identifi-

cation of accurate and reliable modal parameter estimates rather than a good

model as such. As a consequence, in practical applications a conservative approach

is adopted based on the overspecification of the order of the model, which is set

large enough to ensure the identification of all physical modes.

The amount of overspecification mainly depends on the characteristics of the

analyzed dataset. In any case overmodeling introduces spurious poles, which have

to be separated from the physical poles. This makes the modal parameter estimation

more complicated. Spurious modes can be:

• noise modes: they are represented, for instance, by poles of the excitation system

and, as such, they are due to physical reasons;
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• mathematical modes: they are created by the model in addition to the physical

poles to ensure the mathematical description of the measured data, which are

inevitably affected by slight imperfections (measurement noise, computational

noise, modeling inaccuracies); thus, they are the result of the overestimation of

the order of the model.

The separation of the physical poles from the spurious mathematical ones can

take advantage of the construction of the so-called stabilization diagram

(Fig. 4.10). It shows the poles obtained for different model orders as a function of

their frequency. By tracking the evolution of the poles for increasing model orders,

the physical modes can be identified from alignments of stable poles, since the

spurious mathematical poles tend to be more scattered and typically do not stabi-

lize. The alignments of stable poles can start at lower or higher values of the model

order, depending on the level of excitation of the modes.

The construction of the stabilization diagram is based on the comparison of the poles

associated to a given model order with those obtained from a one-order lower model.

Only the poles that fulfill assigned user-defined stabilization criteria are labeled as

stable. Typical stability requirements are expressed by the following inequalities:

j f nð Þ � f nþ 1ð Þj
f nð Þ

� �
< 0:01 ð4:306Þ

jξ nð Þ � ξ nþ 1ð Þj
ξ nð Þ

� �
< 0:05 ð4:307Þ
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1�MAC ϕ nð Þf g; ϕ nþ 1ð Þf gð Þ
h i

< 0:02: ð4:308Þ

In other words, (4.306) implies that the scatter between the estimates of the

natural frequency at two subsequent model orders has to be lower than 1 % for a

pole to be labeled as stable. Similar conditions on damping ratios and mode shapes

are expressed by (4.307) and (4.308), respectively.

If all the conditions expressed by the previous inequalities are satisfied, the

pole is labeled as stable. In the case of two stage methods, when the information

about mode shapes is not available, the stabilization criteria apply to natural

frequency and damping ratio estimates, only. It is worth pointing out that the

relative criteria to assess the stability of the poles have to be used with caution.

In fact, they can be particularly severe in the case of lightly damped modes, when

the damping ratios are small and their percentage variations can be larger than the

preset limit.

After the identification of the alignments of stable poles, eventual noise modes

can be discarded according to physical criteria based on the expected damping ratio

or the expected properties and aspect of the mode shapes.

It is worth pointing out that a bias of the modes can sometimes occur at low orders

of the model. The estimates are biased since the poles represent a combination of

different modes. This phenomenon is denoted by the splitting of a certain alignment

of stable poles in the stabilization diagram into two separate columns from a certain

model order. Thus, only if the maximummodel order in the stabilization diagram has

been set large enough, the bias of the modes can be identified. In this case, the modal

parameters have to be estimated from the two alignments of poles generated after the

splitting.

In the case of SSI methods, the stabilization diagram can be efficiently

constructed once the factorization property given by (4.208) for Cov-SSI or

(4.239) for DD-SSI has been computed for the maximum order of the model. In

fact, models of lower order can be directly obtained by excluding an increasing

number of singular values and vectors in the computation of [Oi] and [Γi] or Ŝ i

� �

(Peeters 2000). Moreover, the poles in complex conjugate pairs allow plotting the

stabilization diagram considering only those characterized by positive imaginary

component (and, therefore, positive damped frequency). As a result, the state-space

model provides modal parameters for a number of modes equal to half of its order

(Magalhaes and Cunha 2011).

In the case of OMA methods based on least squares estimators (LSCE, LSCF,

and their poly-reference versions), coefficient constraint and basis function have a

relevant influence on the discrimination between physical and mathematical modes.

In fact, an appropriate choice of the constraint applied to the coefficients with

respect to the adopted basis function can force the mathematical poles to be

unstable (positive real part, negative damping) while the physical modes are stable

(negative real part, positive damping). As a result, the distinction between

4.9 Stabilization Diagrams for Parametric OMA Methods 193



mathematical and physical poles is simplified, because it is based on the sign of

damping. Mathematical poles are forced to be unstable by adopting the following

combinations of coefficient constraint and basis function (Cauberghe et al. 2005):

• the lowest-order coefficient is unitary and the basis function is z� 1;

• the highest-order coefficient is unitary and the basis function is z.

When the adopted basis function is z� 1, the denominator coefficients in the

LSCF method are computed as follows:

θdf g ¼ 1

� M 2:nþ1,2:nþ1ð Þ
� ��1

M 2:nþ1,1ð Þ
� �


 �
ð4:309Þ

where [M(2 : n+ 1,2 : n+ 1)] is the submatrix made by the last n rows and n columns of

[M] (4.134), while [M(2 : n+ 1,1)] is the submatrix made by the last n rows and the first

column of [M]. In the case of the p-LSCF method, instead, the denominator

coefficients are computed as follows:

α½ � ¼ Il½ �
� M lþ1: nþ1ð Þl, lþ1: nþ1ð Þlð Þ
� ��1

M lþ1: nþ1ð Þl,1:lð Þ
� �


 �
ð4:310Þ

where [M(l+ 1 : (n+ 1)l,l + 1 : (n+ 1)l )] is the submatrix made by the last nl rows and nl

columns of [M] (4.167), while [M(l+ 1 : (n+ 1)l,1 : l )] is the submatrix made by the last

nl rows and the first l columns of [M]. In this last case, the roots of the denominator

polynomial are the eigenvalues of the following companion matrix:

A½ � ¼

� An½ ��1
An�1½ � � An½ ��1

An�2½ � � � � � An½ ��1
A1½ � � An½ ��1

A0½ �
I½ � 0½ � � � � 0½ � 0½ �

⋮ ⋮
.
.

.
⋮ ⋮

0½ � 0½ � � � � I½ � 0½ �

2
6666664

3
7777775
:

ð4:311Þ

In Sect. 4.4.3.2, the procedure for mode shape estimation in the context of the

p-LSCFmethodhasbeendiscussed.Another approachconsists in the conversionof the

RMFDmodel into a state-space model (Magalhaes and Cunha 2011). In this case, the

model coefficients have to be rearranged into the output influence matrix as follows:

C½ � ¼ Bn�1½ � � Bn½ � An½ ��1
An�1½ � � � � B0½ � � Bn½ � An½ ��1

A0½ �
h i

ð4:312Þ
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where:

Bj

� �
¼

B1, j

� �

⋮

Bo, j

� �

⋮

Bl, j

� �

2
66664

3
77775
: ð4:313Þ

The theoretical derivations can be found elsewhere (Reynders 2009). Once the

matrices [A] and [C] are known from (4.311) and (4.313), the modal parameters are

obtained as described in Sect. 4.5.3.1.

The combination coefficient constraint-basis function has an influence on

damping ratio estimates only in the case of discrete-time models. The superior

quality of the stabilization diagram, that simplifies its interpretation, explains why

discrete-time models are preferred over continuous-time models.

Some authors (Peeters and Van der Auweraer 2005, Cauberghe 2004) suggest

the application of p-LSCF in combination with positive power spectra instead of

one-sided spectra, because this yields very clear stabilization diagrams. The

improvement in the quality of stabilization can be appreciated by comparing the

plots shown in Fig. 4.11. They represent the stabilization diagrams obtained from

the application of p-LSCF to one-sided spectra (Fig. 4.11a) and positive power

spectra (Fig. 4.11b) estimated from the same dataset. However, the accuracy of

mode shape estimates might be negatively affected when positive power spectra are

used. For this reason, the comparison of the mode shape estimates obtained from

the application of p-LSCF to positive power spectra with those obtained from

one-sided spectra is recommended.

4.10 Applications

4.10.1 Basic Frequency Domain

Task. Develop software for output-only modal identification based on the Basic

Frequency Domain (Peak Picking) method. Alternatively, install and use the

software in “Chapter 4/BFD”. Use the data in “Sample record 12 channels –

sampling frequency 10 Hz.txt” in the folder “Chapter 2/Correlation” of the disk

accompanying the book. Data in the file are organized in columns: time is in the first

column; data are in the next 12 columns. Assume that the data have been collected

on a framed structure made by three floors and that four sensors per floor have been

installed according to the layout shown in Fig. 4.12. Assume that the time series

in the file are ordered for increasing sensor number (excluding the column of time,

the first column holds the data from sensor #1, the second column holds the data

from sensor #2, and so on; the last column holds the data from sensor #12).
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Suggestions. Starting from the sample code for computation of power spectra devel-

oped in Chap. 2, develop software for output-only modal identification based on the

BFD (Peak Picking) method. It should be able to carry out the following operations

(adoption of state machine architecture or event structure is recommended):

• At start-up, load the data and set the main analysis parameters (window, number

of segments, decimation factor, overlap);

• Compute the PSD matrix and show its trace in a plot to identify the peaks that

can be recognized as possible structural modes (possible structural modes can be

eventually identified also as recurrent peaks in the auto-power spectra);
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Fig. 4.11 Stabilization diagram obtained from the application of p-LSCF to one-sided spectra

(a) and positive power spectra (b)
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• After having identified the peak frequencies, select a reference channel and

compute its auto-power spectrum and the cross-power spectra with all the

remaining channels;

• Show the spectra in terms of amplitude and phase and the coherence

functions;

• Collect the values of amplitude, phase, and coherence at the previously identified

peak frequencies; take advantage of the coherence plots to identify structural

modes and to define the nature (bending, torsion) of the mode; if certain peaks

are missing in the auto-power spectrum of the reference channel, repeat the

previous steps with a different choice of the reference channel in order to

identify also those modes;

• Normalize the mode shape vectors so that the component with maximum amplitude

is equal to 1;

• Create a report of modal identification results in terms of natural frequencies and

mode shapes.

It is worth pointing out that the accuracy of natural frequency estimates depends

on the frequency resolution; thus, long records of the structural response to ambient

vibrations are recommended to compute spectra characterized by a large number of

averages and a fine frequency resolution (in the order of 0.01 Hz).

Use the BFD method to identify at least the three fundamental modes of

the structure. Create a report with the identified natural frequencies and mode

shape estimates; plot the mode shapes considering the floors as rigid diaphragms.

Compute the AutoMAC matrix (Sect. 4.8.2.2).

Fig. 4.12 Sensor layout for

applications
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Results obtained by the Authors of this book by applying the BFD method are

reported in Tables 4.1, 4.2, and 4.3 as reference. The identified mode shapes are

also shown in Fig. 4.13, based on the assumption of rigid diaphragms. Real-

valued normalized mode shapes were constructed as discussed in Sect. 4.8.1.

Channel #2 was selected as reference for the identification of the first and the third

mode, while channel #1 was the reference for the identification of the second

mode.

Sample software. Sample software to carry out output-only modal identification

based on the BFD method can be found in “Chapter 4/BFD” of the disk

accompanying the book.

Table 4.1 Mode shape

estimate for the first mode

(0.92 Hz—channel #2 as

reference)

Amplitude Phase Normalized mode shape

6.31E�06 �0.02 �0.114

5.49E�05 0.00 �0.990

2.11E�05 �0.03 �0.380

5.54E�05 3.14 1.000

4.44E�06 �0.03 �0.080

4.19E�05 �3.14 0.756

1.10E�05 3.11 0.198

4.24E�05 3.14 0.764

3.36E�06 0.00 �0.061

1.82E�05 �3.13 0.329

5.27E�06 3.12 0.095

1.90E�05 �3.13 0.343

Table 4.2 Mode shape

estimate for the second

mode (0.98 Hz—channel

#1 as reference)

Amplitude Phase Normalized mode shape

7.42E�0.5 0.00 �0.828

6.54E�06 �0.27 �0.073

8.96E�05 �3.12 1.000

1.85E�05 3.05 0.207

4.60E�05 0.00 �0.513

6.01E�06 2.92 0.067

5.52E�05 0.01 �0.616

9.03E�06 2.99 0.101

1.86E�05 �0.02 �0.207

1.64E�06 2.80 0.018

2.12E�05 0.00 �0.236

4.21E�06 3.02 0.047
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4.10.2 Frequency Domain Decomposition

Task. Develop software for output-only modal identification based on the FDD

method. Alternatively, install and use the software in “Chapter 4/FDD”. Repeat the

identification of the fundamental modes of the structure of Sect. 4.10.1. Operational

response data are in “Sample record 12 channels – sampling frequency 10 Hz.txt” in

Table 4.3 Mode shape

estimate for the second

mode (1.30 Hz—channel

#2 as reference)

Amplitude Phase Normalized mode shape

4.62E�05 �3.13 1.000

8.58E�06 0.00 �0.186

4.17E�05 �3.12 0.903

6.43E�07 2.88 0.014

2.79E�05 �3.13 0.603

5.36E�06 3.14 0.116

2.49E�05 0.02 �0.539

1.32E�06 0.09 �0.029

1.01E�05 �3.13 0.218

2.16E�06 �3.14 0.047

8.91E�06 0.02 �0.193

7.27E�07 0.03 �0.016

Fig. 4.13 Plots of the identified mode shapes
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the folder “Chapter 2/Correlation” of the disk accompanying the book. Organiza-

tion of data in the file has been described in Sect. 4.10.1. Sensor layout is shown in

Fig. 4.12.

Suggestions. The previously developed software for Peak Picking can be easily

extended to carry out output-only modal identification according to the FDD

method. Here is the list of the main tasks in software development:

• At start-up, load the data and set the main analysis parameters (window, number

of segments, decimation factor, overlap);

• Compute the PSD matrix, organizing the data into an array of l� l square

matrices; each matrix holds the values of the power spectra at a certain frequency

line in the form of complex values;

• At each frequency line compute the SVD of the complex-valued PSD matrix;

concatenation of the vectors of the singular values obtained at the various

discrete frequencies yields the singular value plots;

• Plot all the singular values as a function of frequency in the same plot; create and

use cursors to identify the peaks corresponding to structural modes; the peak

frequency can be considered an estimate of the natural frequency (for lightly

damped systems) as in the case of the BFD method; the peaks are usually

selected in the first singular value plot, unless repeated modes are present;

• Collect the singular vectors associated to the selected singular values at the

various frequencies; normalize these vectors so that the component

characterized by the largest amplitude is set equal to 1; with a few exceptions

for closely spaced modes (Sect. 4.4.2), the singular vectors at the peak

frequencies are good mode shape estimates;

• Create a report of modal identification results in terms of natural frequencies and

mode shapes.

It is worth noting that also in the case of FDD the accuracy of natural frequency

estimates depends on the frequency resolution; thus, long records of the structural

response to ambient vibrations are recommended to obtain high quality singular

value plots as a result of spectra characterized by a large number of averages and a

fine frequency resolution (in the order of 0.01 Hz). Natural frequency estimates

independent of the frequency resolution and damping estimates can be obtained by

the EFDDmethod. In this case, the following additional steps have to be included in

the previous list before reporting:

• For each peak frequency, compare the singular vector associated to the selected

peak frequency with the singular vectors at the nearby frequencies; retain all the

singular values in the vicinity of the peak whose singular vectors yield a MAC

(4.109) with the singular vector associated to the peak frequency larger than a

user-defined MAC Rejection Level (usually, 0.8); the selected singular values

belong to the SDOF Bell function of the considered mode;

• Compute the IFT of the SDOF Bell functions to obtain the approximated SDOF

correlation functions (Sect. 4.4.2);

• For each correlation function, select the portion characterized by large amplitude

(removing the tails where the influence of noise is relevant, and eventually

neglecting also the first cycle) and estimate the damping ratio by the logarithmic
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decrement technique; get an estimate of the damped frequency independent of

the frequency resolution from the number of zero crossing points in the selected

interval; use the estimates of damped frequency and damping ratio to compute

the natural frequency (4.110).

Use the FDD method to identify the three fundamental modes of the structure.

Cursors can be added by right-clicking on the cursor legend (marked by the oval in

Fig. 4.14) and selecting “Create Cursor – Single-Plot”; cursors are attached to one

of the singular value plots by right-clicking on the cursor legend and selecting

“Snap To” and the number of the plot.

Since the fundamental modes are normal, real-valued mode shapes can be easily

recovered from the (normalized) complex-valued singular vectors (Sect. 4.8.1).

Compute the AutoMAC (Sect. 4.8.2.2). Compare the obtained results with the

corresponding natural frequency and mode shape estimates obtained from BFD

(Sect. 4.10.1). Report the results of the comparison in a table showing, for each

mode, the frequency scatter between the natural frequency estimates (4.298) and

the CrossMAC (Sect. 4.8.2.2) between corresponding mode shapes. Use COMAC

(4.304) or ECOMAC (4.305) to identify the DOFs causing the major differences in

the mode shape estimates provided by the two methods.

Sample software. Sample software to carry out output-only modal identification

based on the FDD method can be found in “Chapter 4/FDD” of the disk

accompanying the book.

4.10.3 Least Squares Complex Frequency

Task. Develop software for output-only modal identification based on the LSCF

method. Alternatively, install and use the software in “Chapter 4/LSCF”. Repeat

the identification of the fundamental modes of the structure of Sect. 4.10.1.

Fig. 4.14 Singular value plots and cursor legend (in the oval)
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Operational response data are in “Sample record 12 channels – sampling

frequency 10 Hz.txt” in the folder “Chapter 2/Correlation” of the disk

accompanying the book. Organization of data in the file has been described in

Sect. 4.10.1. Sensor layout is shown in Fig. 4.12.

Suggestions. The previously developed software for Peak Picking can be extended

to carry out output-only modal identification according to the LSCF method. Here

is the list of the main tasks in software development:

• At start-up, load the data and set the main analysis parameters (window, number

of segments, decimation factor, overlap, maximum polynomial order for the

construction of the stabilization diagram);

• Compute the PSD matrix;

• Select the z-domain basis function: zf (4.116) or zf
� 1;

• Assuming that zf has been adopted as basis function (in the case of zf
� 1 the

implementation steps are the same; the only difference is in the coefficient

constraint and, therefore, in the formulation for computation of the denominator

coefficients; refer to Sect. 4.9 for more details), compute zf
j (j¼ 0, . . ., n, where n

denotes the polynomial order) at all discrete frequency lines and build the

matrices [Γk] (4.126) and [Υk] (4.127) for k¼ 1, . . ., l� l;

• Compute the matrices [Rk] (4.129), [Sk] (4.130), and [Tk] (4.131) for k¼ 1, . . .,

l� l;

• Compute the (n + 1)� (n + 1) matrix [M] as follows:

M½ � ¼
Xl�l

k¼1

Tk½ � � Sk½ �H Rk½ ��1
Sk½ �

� �
ð4:314Þ

• Compute {θd} (4.135);

• Use “Polynomial Roots.vi” under “Mathematics – Polynomial” in the Functions

Palette to compute the roots zr;

• Convert the poles from discrete time to continuous time (4.136);

• Remove the unstable poles (Sect. 4.9);

• Compute natural frequencies (4.137) and damping ratios (4.139) from the

remaining poles;

• Repeat the last eight steps for different model orders and plot the stabilization

diagram reporting the poles as a function of frequency for different model orders

(Sect. 4.9);

• Identify the alignments of stable poles in the stabilization diagram, which

correspond to structural modes; select a pole for each identified structural mode;

• Use the selected poles (holding the information about natural frequencies and

damping ratios) to compute the residues according to the LSFD method (4.147);

rearrange the vector {Rk} into the l� l residue matrices [Rj];

• Compute the SVDs of the residue matrices [Rj] (4.148); for each SVD the first

singular vector yields a mode shape estimate;

202 4 Output-only Modal Identification



• Normalize the mode shape vectors so that the component with maximum

amplitude is equal to 1;

• Create a report of modal identification results in terms of natural frequencies and

mode shapes.

Appropriately replacing the equations (Sect. 4.4.3.2), the p-LSCF method can be

implemented in a similar way.

Use the LSCF method to identify the three fundamental modes of the structure.

Since they are normal modes, real-valued mode shapes can be easily recovered

from the (normalized) complex-valued singular vectors (Sect. 4.8.1). Compute the

AutoMAC matrix (Sect. 4.8.2.2). Compare the obtained results with those provided

by FDD or BFD. In particular, compute the scatters between corresponding natural

frequency estimates (4.298) and the CrossMAC matrix (Sect. 4.8.2.2).

Sample software. Sample software to carry out output-only modal identification

based on the LSCF method can be found in “Chapter 4/LSCF” of the disk

accompanying the book.

4.10.4 Stochastic Subspace Identification

Task. Develop software for output-only modal identification based on the Cov-SSI

method. Alternatively, install and use the software in “Chapter 4/Cov-SSI”. Repeat

the identification of the fundamental modes of the structure of Sect. 4.10.1. Opera-

tional response data are in “Sample record 12 channels – sampling frequency 10 Hz.

txt” in the folder “Chapter 2/Correlation” of the disk accompanying the book.

Organization of data in the file has been described in Sect. 4.10.1. Sensor layout

is shown in Fig. 4.12.

Suggestions. The software implementation of the Cov-SSI algorithm for output-

only modal identification is based on the following steps:

• At start-up, load the data and eventually set the filter parameters and the

decimation factor;

• Compute the PSD matrix and show its trace in a plot to estimate the number of

structural modes in the frequency range under investigation; set the number of

block rows accordingly; the condition expressed by (4.207) must be fulfilled; the

product l� i defines the limit value of the maximum model order that can be

adopted in the construction of the stabilization diagram; however, the maximum

model order in the stabilization plot is usually much lower than l� i, and it is

defined so that only a subset of the singular values and vectors of the block

Toeplitz matrix of correlations ((4.206), (4.211), and (4.212)) is retained;

• Compute the SVD of the block Toeplitz matrix of correlations ((4.206), (4.211),

and (4.212)) and define the maximum model order in the construction of the

stabilization diagram (Sect. 4.9);

• From the retained subset of singular values and vectors of the block Toeplitz

matrix of correlations compute the observability matrix [Oi] (4.213) and the

reversed controllability matrix [Γi] (4.214); the first l rows of [Oi] and the last

4.10 Applications 203



l rows of [Γi] yield the output influence matrix [C] and the next state-output

covariance matrix [G], respectively;

• Compute the state matrix [A] from (4.216) and (4.217); alternatively, it can be

computed according to (4.218) and (4.219), with the weights given by (4.220) or

(4.224);

• The poles in discrete time are obtained by the eigenvalue decomposition of [A]

(4.77); they have to be converted from discrete time to continuous time (4.136)

in order to compute natural frequency (4.137) and damping ratio (4.139) from

each pole; the corresponding mode shapes are obtained from the eigenvectors of

[A] according to (4.79);

• Repeat the last three steps for different model orders and plot the stabilization

diagram reporting the poles as a function of frequency for different model orders

(Sect. 4.9); in this case, also the information about the mode shapes (4.308) is

used for the construction of the stabilization diagram;

• Identify the alignments of stable poles in the stabilization diagram, which

correspond to structural modes; select a pole for each identified structural mode;

• Normalize the mode shape vector associated to each pole so that the component

with maximum amplitude is equal to 1;

• Create a report of modal identification results in terms of natural frequencies and

mode shapes.

DD-SSI can be implemented in a similar way according to the following list

of steps:

• The first two steps are the same of Cov-SSI; the only difference is that the block

Toeplitz matrix of correlation is replaced by the block Hankel matrix of raw data

(4.229);

• Compute the LQ factorization of the block Hankel matrix of the outputs and the

projections [Pi] and [Pi� 1] ((4.234), (4.235), (4.236), and (4.237));

• Compute the SVD of [Pi] (4.240) and define the maximum model order in the

construction of the stabilization diagram;

• From the retained subset of singular values and vectors of [Pi] compute the

observability matrix [Oi] (4.241) and the Kalman filter state sequence Ŝ i

� �
(4.242);

• Compute Ŝ iþ1

� �
from (4.244);

• Compute the state matrix [A] and the output influence matrix [C] from (4.246);

alternatively, the state matrix can be computed directly from the observability

matrix according to (4.219) or (4.252), while the first l rows of [Oi] yield the

output influence matrix;

• The poles in discrete time are obtained by the eigenvalue decomposition of [A]

(4.77); they have to be converted from discrete time to continuous time (4.136)

in order to compute natural frequency (4.137) and damping ratio (4.139) from

each pole; the corresponding mode shapes are obtained from the eigenvectors of

[A] according to (4.79);

• Repeat the last four steps for different model orders and plot the stabilization

diagram reporting the poles as a function of frequency for different model orders

(Sect. 4.9); in this case, also the information about the mode shapes (4.308) is

used for the construction of the stabilization diagram;
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• Proceed as in the case of Cov-SSI (last three steps) to select the parameters of the

structural modes and create a report of modal identification results.

Use the Cov-SSI method to identify the three fundamental modes of the struc-

ture. Since they are normal modes, real-valued mode shapes can be easily recovered

from the (normalized) complex-valued singular vectors (Sect. 4.8.1). Compute the

AutoMAC matrix (Sect. 4.8.2.2). Compare the obtained results with those provided

by FDD and LSCF. In particular, compute the scatters between corresponding

natural frequency and damping ratio (LSCF/Cov-SSI only) estimates, and the

CrossMAC matrices (Sect. 4.8.2.2) with the mode shape estimates provided by

LSCF and FDD.

Sample software. Sample software to carry out output-only modal identification

based on the Cov-SSI method can be found in “Chapter 4/Cov-SSI” of the disk

accompanying the book.

4.10.5 Second Order Blind Identification

Task. Install and use the software in “Chapter 4/SOBI” for output-only modal

identification according to the SOBI method. Identify the modes of the structure

of Sect. 4.10.1 in the range 0–5 Hz. Compare the results provided by SOBI with

those obtained from Cov-SSI or any other method yielding complex-valued mode

shape estimates. Operational response data are in “Sample record 12 channels –

sampling frequency 10 Hz.txt” in the folder “Chapter 2/Correlation” of the disk

accompanying the book. Organization of data in the file has been described in

Sect. 4.10.1. Sensor layout is shown in Fig. 4.12.

Suggestions. When SOBI is used for output-only modal identification, mode shapes

are directly obtained from the mixing matrix (Sect. 4.5.4). Natural frequencies and

damping ratios can be estimated from the auto-correlations of the sources as

follows:

• for each correlation function, select the portion characterized by large amplitude

(removing the tails where the influence of noise is relevant, and eventually

neglecting also the first cycle);

• get an estimate of the damping ratio by the logarithmic decrement technique;

• get an estimate of the damped frequency independent of the frequency resolution

from the number of zero crossing points in the selected interval;

• use the estimates of damped frequency and damping ratio to compute the natural

frequency (4.110).

Use the Cov-SSI method to identify also the higher modes of the structure.

Among them, the mode at 2.59 Hz shows appreciable imaginary parts in the mode

shape components (Fig. 4.15). Comparison of the modal parameter estimates

provided by Cov-SSI with those obtained from SOBI results in a good agreement

for the fundamental modes. The mode at 2.07 Hz cannot be properly identified

by SOBI. About the mode at 2.59 Hz, SOBI yields a mode shape estimate

characterized by a CrossMAC with the corresponding estimate by Cov-SSI that is
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slightly lower than the CrossMAC values obtained for the fundamental modes.

The difference can be addressed to the fact that SOBI forces the mode shape

estimates to be real-valued.

Sample software. Sample software to carry out output-only modal identification

based on the SOBI method can be found in “Chapter 4/SOBI” of the disk

accompanying the book.

4.10.6 Influence of Sensor Layout

Task. Remove channels #3, #7, and #11 from the dataset in “Sample record

12 channels – sampling frequency 10 Hz.txt” in the folder “Chapter 2/Correlation”

of the disk accompanying the book and update the sensor layout shown in Fig. 4.12.

Repeat the identification of the modes of the structure of Sect. 4.10.1 by a method of

your choice among the previous ones. Compare the AutoMAC matrices before and

after the removal of the above-mentioned channels.

Suggestions. Even if both translations and torsions are still observable after sensor

removal, the presence of large off-diagonal elements in the AutoMAC matrix

highlights that the new layout is less effective than the previous one in

distinguishing some of the modes.
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Applications 5

5.1 Assessing the Adequacy of the Measurement Chain

The first case study illustrates a possible approach to assess the adequacy of the

measurement chain band for an application to historical buildings and in particular

to the output-only modal identification of a masonry star vault.

The “star vault,” also known as Lecce’s edge vault, is typical of the local culture

in the city of Lecce, Southern Italy (Marseglia 2013). It is the most common

structural element in several historical buildings. The vaulted surface is generated

defining some reference lines in agreement with the available area and height and

moving them along the generating lines. The star vault is “groined” because it is

composed of orthogonally intersecting barrel vaults. In particular, the four barrel

groins do not meet at the crown but are moved backwards leaving at the center

a surface with double curvature similar to a star (Fig. 5.1). The complexity of the

star vault is associated to the “lines of discontinuity” between the groins and

the double curvature.

Some experimental and numerical investigations on a star vault belonging

to an historical building (Caserma Cimarrusti, formerly known as Convento dei

Carmelitani Scalzi) in the old city center of Lecce have been carried out in the past

by the Italian research groups of the University of Salento and the University

of Molise. The objective of the research was the reduction of the modeling

uncertainties, related to the material properties and the degree of constraint induced

by the nearby vaults in the building (Fig. 5.2), via nondestructive techniques. Thus,

modal identification tests in operational conditions were carried out in order to

reduce such uncertainties and support the setting of a reliable numerical model.

In this framework, dynamic identification tests in operational conditions can

be considered as effective tools to enhance the knowledge about the dynamic

behavior of the structure under investigation with limited interference. The relevant

role of experimental modal analysis in the characterization of the dynamic behavior

of historical structures is widely recognized in the literature and by the most

advanced design codes and guidelines for interventions on historical structures

C. Rainieri and G. Fabbrocino, Operational Modal Analysis of Civil Engineering

Structures: An Introduction and Guide for Applications, DOI 10.1007/978-1-4939-0767-0_5,
# Springer Science+Business Media New York 2014
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Fig. 5.1 Star vault:

schematic illustration (a)

and in operation after sensor

installation (b)

Fig. 5.2 Series of star

vaults in a building in Lecce

(Southern Italy)

212 5 Applications



(see, for instance, Gentile and Saisi 2007, Ministero dei Beni e delle Attività

Culturali 2010). In particular, output-only modal analysis techniques are

recommended over input–output techniques, since artificial excitation often leads

to problems in test execution and input control while the environmental loads are

always present. In addition, tests are cheap and fast and imply a minimum interfer-

ence with the normal use of the structure. The identified modal parameters are

representative of the structural behavior in operational conditions and they can be

used to verify or update FE models; moreover, changes in the modal parameters

over time can be correlated to structural damage (Doebling et al. 1996).

In this section, attention is focused on the opportunities offered by appropriately

conceived FE models for the assessment of the adequacy of a measurement chain

for a given application, the modal identification of a masonry star vault in opera-

tional conditions. A discussion about the correlation between the numerical model

of the vault and the experimental results can be found elsewhere (Conte et al. 2011).

The problem of input control is one of the reasons that induce to prefer OMA to

traditional experimental modal analysis for applications to historical masonry

structures. In fact, these are usually fairly massive and, therefore, it is difficult to

excite them. Moreover, they can also be affected by static deficiencies that prevent the

application of significant dynamic loads. The main issue in the application of OMA to

historical masonry structures is generally related to the low amplitude of vibrations,

which requires the installation of a high-performance measurement chain. As

discussed in Chap. 3, programmable hardware can be used to develop a customized

data acquisition system for dynamic tests. However, a careful selection of the

hardware is of paramount relevance for the successful measure of the ambient

vibration response of the structure under investigation. Numerical models and

sensitivity analyses with respect to different modeling assumptions can support the

assessment of the adequacy of a measurement chain for a specific OMA application.

In the case of the star vault under test, a preliminary numerical model has been set

according to the results of a number of in-situ investigations for the assessment of

geometry and the characterization of material properties (surveys, nondestructive

tests, limited destructive tests). Attention has been focused on the “masonry cell”

made by the star vault, the boundary arches (representing the connection between

consecutive vaults) and the masonry piers supporting the vault itself. The masonry

piers have beenmodeled as fixed at the base. Dead loads have been applied taking into

account the contributions of filler at the vault extrados, plaster and floor. No live loads

have been applied in compliance with the state of the structure at time of testing.

The main issue in setting the numerical model was related to the definition of the

boundary conditions, since the “masonry cell” is not isolated (Fig. 5.2). Modeling

the interactions with the nearby macroelements usually requires a calibration

process to validate the adopted assumptions. However, in the preliminary stage of

test planning, a simplified numerical model of the vault, omitting the interactions,

can support the assessment of the adequacy of the bandwidth of the adopted

measurement hardware. Such an assessment is based on the comparison between

the bandwidth of the measurement system (sensors and data acquisition hardware)

and the minimum and/or maximum expected value of the natural frequency of the

structure under test. In the present case, the fairly large value of the AC cut-off
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frequency response of the adopted data acquisition system required the preliminary

evaluation of a lower bound for the expected value of the fundamental natural

frequency of the vault. Neglecting the constraints due to the nearby vaults and

taking into account all masses referring to the considered vault due to finishing

materials (filler of vault extrados, screed, floor), the numerical model was expected

to be representative of the real structure in terms of mass distribution but it was

characterized by a lower stiffness. The adopted approach to model setting and the

consideration of the range of variability of the material properties made possible the

evaluation of the limit for the underestimation of the structural stiffness and, as a

consequence, the estimation of the minimum expected value of the fundamental

frequency of the vault that resulted about 3.51 Hz.

The selected measurement chain consisted of ten seismic, ceramic shear, high-

sensitivity IEPE accelerometers with the following characteristics:

• bandwidth from 0.1 to 200 Hz,

• 10 V/g sensitivity,

• �0.5 g full scale range.

The data acquisition modules were characterized by a 24-bit sigma-delta ADC

with a dynamic range of 102 dB and an on-board anti-aliasing filter. The connection

between accelerometers and recorder was made by RG-58/U coaxial cables. For

their characteristics (resolution, sensitivity, dynamic range, and so on), ADC and

sensors could be considered adequate to measure the dynamic response of the vault

even in the presence of low-amplitude vibrations such as those due to ambient noise

(see also Chap. 3). The sole possible limitation could be related to the bandwidth of

the measurement system with respect to that of the vault.

The comparison between the expected minimum value of the fundamental

natural frequency of the vault (3.51 Hz) and the AC cut-off frequency response

of the data acquisition hardware (Fig. 5.3) shows a moderate attenuation (about

�0.1 dB). In any case, the first natural frequency is realistically higher than the

numerically estimated limit value. This ensures the adequacy of the bandwidth of

the selected data acquisition system for the present application. Since the lower

bound of the frequency range of the accelerometers used for the present application

Fig. 5.3 AC cut-off

frequency response of the

data acquisition hardware
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is much lower than 0.5 Hz, no further limitations came from the sensors. As a final

result, the bandwidth of the measurement chain was expected to be adequate for the

present application and able to properly resolve the response signals.

The dynamic response of the vault has been measured by ten accelerometers

placed at the intrados (setup A) and, in a second stage, also on two column heads

(setup B). The two layouts are shown in Fig. 5.4. Sensors have been installed

according to a regular mesh covering as much as possible all portions of the vault.

The accelerometers have been placed in contact with the vault surface through a

small anchor plate. Sensors have been screwed on the plates and mounted orthogo-

nally to the vault surface. In the second test layout four sensors were installed

parallel to the main directions of the columns, in order to observe also the behavior

of the piers the vault stands on.

Data have been acquired by means of the above mentioned measurement system

based on programmable hardware. The procedure for its development and the

software for data acquisition have already been discussed in Chap. 3.

The analysis of the collected datasets according to some of the OMA methods

described in Chap. 4 has shown that the fundamental natural frequency of the vault

was about 4.3 Hz (Conte et al. 2011), proving the ability of the described approach

to provide a reliable assessment of the adequacy of the measurement system.

5.2 Damping Estimation

The accurate experimental estimation of damping is still an open problem. Modal

frequencies and mode shapes can be confidently and quite easily measured by

means of dynamic tests on civil structures, while damping ratio estimates are

Fig. 5.4 Sensor layouts: setup A (a) and setup B (b)
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usually characterized by large error bounds. In this section the main issues

concerning the experimental identification of modal damping ratios are discussed

and methods to obtain sufficiently reliable and accurate estimates are summarized.

Most of them have been identified from an extensive literature aimed at finding best

practice criteria for modal parameter and, in particular, damping estimation.

The effect of damping on the dynamic behavior of structures has been analyzed by

many researchers over the years but, despite of the large amount of literature available

on the subject, the definition of a well-established formulation to represent damping

forces is still debated (Woodhouse 1998). Several damping mechanisms can be found

on a given structure. They can be generally classified as (Lagomarsino 1993):

• Damping intrinsic to the structural material;

• Damping due to friction in the structural joints and between structural and

nonstructural elements;

• Energy dissipated in the foundation soil;

• Aerodynamic damping;

• Damping introduced by passive and active dissipation systems.

Damping is associated to the energy dissipation of the structure during motion

and, therefore, it limits the magnitude of forced vibrations in a structure. In this

perspective, the specific damping capacity of a structure can be defined as the

percentage of the total energy of vibration lost in a cycle, given by the ratio between

the energy lost in a cycle and the corresponding maximum stored energy.

The different damping mechanisms acting on a structure are usually represented

by a unique model, the equivalent viscous damping (also known as structural

damping) model. It is defined in a way that it takes into account all dissipation

sources in a structure. However, damping in structures usually consists of one or a

combination of the following damping mechanisms: viscous damping, hysteretic

damping, friction (or Coulomb) damping, and aerodynamic (or atmospheric)

damping. A concise discussion about the different damping mechanisms can be

found elsewhere (Rainieri et al. 2010a). Reviewing the different damping models

can help to better understand the behavior of the equivalent viscous damping and

the main factors influencing its magnitude.

Much of the energy dissipated in vibrating structures is due to friction. However,

real structures usually exhibit at least a combination of hysteretic damping and

friction damping (proportional to the amplitude of motion). Aerodynamic damping

may arise as a result of the drag and lift forces on an object in air. Such forces are

proportional to the square of the velocity of the object with respect to the air stream.

In summary, real structures typically show a combination of linear (that is to say,

damping independent of the amplitude of motion) and nonlinear (namely,

amplitude-dependent) damping mechanisms. As a consequence, there is not a

single way to mathematically describe all vibrating structures. In the engineering

practice, due to the difficulty of defining the true damping characteristics of typical

structural systems, the equivalent viscous damping model is usually adopted,

because it leads to linear equations of motion. Even when viscous damping may

be not active, such model is generally assumed, and a distinction between existence
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of pure viscous damping and assumption of equivalent viscous damping is rarely

found in the literature.

It is well known that damping exhibits an increase with amplitude of motion in

full-scale data sets. This effect can be addressed to the use of the equivalent viscous

damping model to represent all the different damping mechanisms. In fact, this

model is nonideal under a wide range of amplitudes of motion and, if it is assumed,

actual structures may exhibit a damping that changes with amplitude. Thus, a model

for total damping with respect to the amplitude of motion has been proposed for

buildings (see, for instance, Jeary 1986). Assuming that frictional losses give a large

contribution to the energy dissipation in structures, at low levels of motion there are

no significant slipping phenomena in the structure. Once a sufficient number of

interfaces are activated, they dissipate energy in proportion to their relative

displacements, so that a linear increase in damping can be assumed. At high

amplitudes of motion, all interfaces have been activated and friction forces become

constant even for increasing amplitudes, thus defining the maximum level of

damping that cannot be exceeded unless damage occurs within the structure.

In fact, in large amplitude regime, damping ratios can increase only if there are

additional sources of damping forces, such as those associated to damage to

secondary elements. In the absence of damage, higher damping ratios cannot be

expected for structures vibrating within their elastic limit. When the amplitude

exceeds this limit, the contribution of hysteretic damping may become predomi-

nant. The justification of the nonlinear model of damping behavior with vibration

amplitude goes back to the principles of fracture mechanics (refer to Jeary 1997 for

more details).

When ambient vibration tests are carried out, the (unknown) spectral distribution

of the input, noise in the signal and, eventually, the errors caused by windowing in

spectral analysis are responsible for the large variability of damping estimates.

Measurement noise affects the quality of fit in curve fitting procedures and, as a

consequence, the reliability of damping estimates. The use of the Hanning window

in spectrum computation, instead, yields a bias error with respect to the true

damping value. However, fine frequency spacing and high number of averages

can minimize this effect (Chap. 2; refer also to Brincker et al. 2003 for more

details). Thus, reliable damping estimates in frequency domain can be obtained

only from long records of the structural response, in order to compute spectra

characterized by a high number of averages and a fine frequency resolution. This

recommendation applies also to the EFDD method (Chap. 4).

The effect of frequency resolution on modal damping ratios estimated by the

EFDD method has been extensively investigated (see, for instance, Tamura

et al. 2005), showing that the damping ratio estimates for all modes decrease

when the frequency resolution improves, and they converge for a frequency resolu-

tion equal to 0.01 Hz or better. Moreover, the error in damping estimation is kept

low by inverse Fourier transforming the identified SDOF Bell functions and by

fitting the data related only to the first few cycles of the obtained approximate

SDOF correlation functions for the considered modes. Particular attention is needed

in the case of closely spaced modes, when damping estimates by EFDD might
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be inaccurate. In fact, partial identification of SDOF Bell functions, beating

phenomena and errors due to windowing can significantly affect the estimates.

SSI methods yield more accurate damping estimates in the presence of closely

spaced modes. This is crucial above all for very flexible structures, characterized

by low natural frequencies and damping ratios and by several close modes. SSI

methods are used to get modal parameter estimates even in the presence of limited

amounts of data, since no averages are required. However, it is worth noting that, in

principle, an unbiased estimate of modal parameters can be obtained only by means

of infinite records. Nevertheless, SSI methods provide reliable estimates of natural

frequencies even in the case of short records. Even if record length seems to be less

critical for this class of methods, long durations yield more stable and reliable

modal parameter and, in particular, damping ratio estimates. A numerical study

(Pridham and Wilson 2003) has shown that at least 4,000 data points are necessary

for a reasonable identification of system frequencies lower than 1 Hz and damping

ratios lower than 1 %. In addition, a sensitivity analysis is recommended to take into

account the effect of the number of block rows on the modal estimates provided by

SSI methods (Rainieri et al. 2010a).

The roles of the number of block rows in the determination of the order of the

system (4.207) and of the stabilization diagram in the discrimination between

physical and spurious modes have been discussed in the previous chapter. Attention

is herein focused on the influence of the number of block rows on the quality of the

stabilization diagram.

Equation (4.207) provides a lower bound for the setting of the number of block

rows. However, the engineering practice has shown that, if the system has a low

fundamental frequency with respect to the sampling frequency and the number of

block rows is set much too low, only a few samples of that modal response are

included in the block matrix. As a result, the corresponding modal parameters

are not well identified. For this reason, the number of block rows should be set as

large as possible, but this might cause an unacceptable increase in computational

time and memory usage (Reynders and De Roeck 2008). As an alternative, the

number of block rows can be set in agreement with the following equation

(Reynders and De Roeck 2008):

i �
f s
2f 0

ð5:1Þ

where fs is the sampling frequency and f0 is the lowest frequency of interest.

Equation (5.1) is more effective than (4.207) in the case of very flexible structures

since it provides a higher lower bound for the number of block rows. However,

when f0 increases, (5.1) also gives a low limit value for i. Since both (4.207) and

(5.1) do not suggest optimal settings of i, the identification of the range of values

of i that enhance the quality of the stabilization diagram and, therefore, simplify

the identification of the structural modes is recommended. Such values depend

on several factors (the structure under test, the quality of measurements, etc.).

A sensitivity analysis can support their identification.
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Some remarks about the role of the condition number in inverse problems can

benefit also the analysis of the influence of the number of block rows on the quality

of the stabilization diagram.

As mentioned in Chap. 2, the condition number tracks the transition from

invertible to noninvertible matrices. A matrix is noninvertible when the condition

number approaches infinity, while it is ill conditioned when the condition number is

very large. In this case the effect of numerical inaccuracies on the solution may be

relevant, and errors in the data are magnified during the inversion. Since the small

singular values in ill-conditioned problems magnify the errors, retaining only the

largest singular values can limit error magnification. In the context of SSI methods for

OMA, the selection of the smallest singular value to be considered in the analysis is

associated to the selection of the order of the system from the SVD of the block

Toeplitz matrix of correlations ((4.211) and (4.212)) or the projection matrix (4.240).

This is a key step in view of the estimation of the state-space matrices.

As already mentioned in Chap. 4, clear jumps in the sequence of singular values

and, therefore, the order of the system can be hardly identified in real applications.

As a consequence, modal identification is usually based on setting a sufficiently

large value for i and on the construction of the stabilization diagram, whose

maximum model order is selected in a conservative way (and it is typically much

lower than the product l� i). Sensitivity analyses where the maximum model order

in the construction of the stabilization diagram is kept constant and the number of

block rows varies in a given range are equivalent to changing the condition number.

Thus, it is possible to identify a range of values of the number of block rows that

ensure numerical stability and enhance the quality of the stabilization diagram.

Figure 5.5 is helpful to clarify this aspect of the discussion. The sequences of

retained singular values and the corresponding stabilization diagrams obtained

from application of Cov-SSI to a real dataset (Rainieri et al. 2010b) are shown

for different settings of the number of block rows and constant maximum model

order (equal to 60). The number of channels in the dataset was equal to 8 (l¼ 8) and

the number of modes in the investigated frequency range was equal to

4 (n¼ 2Nm¼ 8 was the theoretical order of the system); a sensitivity analysis has

been carried out by changing the number of block rows between 10 (l� i¼ 80 was

the maximum allowable model order in the construction of the stabilization

diagram) and 200 (l� i¼ 1,600). As the number of block rows increases, the effect

of inconsistencies due to measurement noise is more and more reduced. Since the

maximum model order is set to a constant value, an increase in the number of block

rows yields an increase in the magnitude of the smallest retained singular value and

the rejection of a larger amount of noise or inconsistent information. On the other

hand, the singular values associated to modal information are always retained, due

to the conservative approach adopted in setting the maximum model order (much

higher than the estimated order of the system). Since an increase in the number of

block rows yields a decrease of the condition number, another consequence is the

asymptotic transition from an ill conditioned to a well-posed inverse problem.

However, if the number of block rows is set much too high, the mathematical

poles are pushed towards the alignments of physical poles (Fig. 5.5e, f). In the
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outermost case, physical and mathematical poles are grouped together in small

regions nearby the actual structural resonances. Likely modal properties (some-

times very similar to the actual modal properties of the system) are often associated

to these mathematical poles, which can eventually form additional alignments of

stable poles. Thus, the identification of the poles associated to structural modes by

stabilization and physical criteria becomes very complicated or even virtually

impossible, and a slight bias in the modal parameter estimates can be observed

(Rainieri et al. 2010b).

The enhancement of the quality of the stabilization diagram is the result of more

stable estimates of the modal parameters at different model orders. If the variability

of the modal parameter estimates at different model order is kept low by an

appropriate setting of the number of block rows, the physical poles are more
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prone to fit the stabilization criteria, with the related benefits in terms of quality of

stabilization and consistency of modal parameter estimates. In particular, from the

analysis of the modal parameter estimates obtained at different model orders it is

possible to observe (Rainieri et al. 2010b) that the variance of the estimates first

decreases when the number of block rows increases, because of noise rejection, and

then it increases when the number of block rows is set much too high. The selection

of the groups (clusters) of poles associated to the structural modes and their analysis

can provide a measure of the level of uncertainty associated to the modal parameter

estimates. This information plays a primary role in a number of applications of

OMA (Reynders et al. 2008, Rainieri et al. 2010b). In conclusion, the value of the

number of block rows can be set in a way able to minimize the variance of the

modal parameter estimates obtained at different model orders for the physical

modes of interest. This is relevant above all for damping ratios, whose estimates

are usually the most scattered.

5.3 Correlation Between Numerical and Experimental
Modal Property Estimates

This section deals with the role of ambient vibration tests and correlation between

numerical and experimental estimates of the modal properties in the tuning of

selected parameters of the numerical model. This topic is discussed with reference

to a real case study. It shows how OMA can contribute to the indirect noninvasive

assessment of relevant structures belonging to the architectural heritage of a Country.

The analysis and modeling of historical structures is usually very challenging

from the scientific and technical viewpoint due to their unique structural

configurations, the large modeling uncertainties and the need of keeping destruc-

tive investigations very limited. In this framework the results of output-only modal

identification tests can support the rational validation of the numerical model;

moreover, the tuning of selected parameters makes possible the setting of a repre-

sentative model of the structural behavior in operational conditions. It is worth

noting that model updating is one of the typical applications of modal identification

results. However, illustration of model updating techniques and their application

to the present case study would require a dedicated chapter that is beyond the

scope of the book. The interested reader can refer to the literature for extensive

discussions about model updating and tutorials for applications (Friswell and

Mottershead 1995, Ewins 2000, Mottershead et al. 2011).

On the contrary, the present explanatory application basically aims at remarking

the potential of OMA in the structural and dynamic assessment of historical

structures. This topic is discussed with reference to the case study of the Tower

of the Nations (Fig. 5.6), a structure belonging to the modern Italian architectural

heritage. It is located within the Mostra D’Oltremare urban park in Naples (the

interested reader can refer to Rainieri et al. 2013 for a more complete discussion

about the refinement of the numerical model of the Tower based on the results of

output-only modal identification tests). The background of the output-only modal
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identification tests can be traced back to the structural assessment activities

aimed at the evaluation of the seismic capacity of the Tower of the Nations

before the design of restoration and seismic upgrading interventions. The valuable

characteristics of the Tower required the execution of limited destructive

investigations. Thus, ambient vibration tests have been carried out to effectively

complement the structural assessment with the information about the dynamic

properties. They provided reference values of the modal parameters useful for the

validation of the numerical model. It is worth pointing out that the present applica-

tion refers to the investigation of structures subjected to frequent but weak ground

motions, so that they are expected to show an elastic response with a relevant role of

the participating mass ratios (PMRs) in the characterization of the seismic response.

Moreover, attention has mainly been focused on the appropriate modeling of

the stiffness properties of the structure, taking also into account the influence of

interacting structural and nonstructural members on the dynamic response in

operational conditions.

About the applicability of the obtained results in the assessment of the seismic

performance of the structure, it is well known that earthquakes cause a lengthening

of the period: the stronger the motion, the larger the effect. In serviceability

conditions, frequent ground motions are associated to minor lengthening effects.

Fig. 5.6 The Tower of the

Nations (Naples, Italy),

(# Elsevier Ltd. 2013),

reprinted with permission
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They are often in the same order of magnitude of the variations induced by

environmental factors and operational loads (Rainieri et al. 2011, Hu et al. 2012),

or of the increase of the natural period with the vibration amplitude (Gentile and

Saisi 2013). For this application, model refinement accounting for the uncertainties

in the modal parameter estimates was out of the scope of the work. On the other

hand, the small variations of the modal properties induced by increasing levels

of vibration in structures vibrating within their elastic limit lead to recognize the

validity of the proposed methodological approach, even in the absence of correction

factors (Ministero dei Beni e delle Attività Culturali 2010) accounting for the

effect of vibration amplitude on the modal parameter estimates in serviceability

conditions. With the exception of very stiff structures, a very small increase in the

natural period leads to an unchanged or slightly reduced magnitude of the seismic

acceleration and the associated forces, as pointed out by the shape of the response

spectrum adopted in conventional seismic analyses (Consiglio Superiore dei Lavori

Pubblici 2008). An approach based on modal parameter estimates in operational

conditions is conservative also when the dissipative forces are considered. In fact,

despite of the fairly large uncertainty bounds usually affecting damping estimates,

a clear trend for its magnitude with the amplitude of vibrations can be identified

(Jeary 1997). In particular, frequent earthquakes cause an increase in the magnitude

of damping with respect to the operational conditions as a consequence of the

activation of a number of damping mechanisms and, in particular, of the interaction

(friction) between structural and nonstructural members in buildings and tower-like

structures (Rainieri et al. 2010a). The original aspect of the present application

lies in the evaluation of the correlation between numerical and experimental

estimates of the modal properties and in tuning of selected model parameters by a

process able to pursue the goal of setting a representative model of the structure for

seismic assessment purposes in the linear regime. As discussed below, this result

has been obtained by tuning selected parameters of the numerical model of the

Tower in a way able to minimize the scatter with the experimental data and, at the

same time, to enhance as much as possible the accuracy of response spectrum and

seismic time-history linear analyses.

5.3.1 Preliminary Geometric and Structural Survey

The present example is intended as a basic guide for the rational and systematic

nondestructive assessment of the dynamic behavior of architectural heritage

structures taking into account the results of OMA tests. The adopted methodological

approach is also in agreement with well-established principles for seismic assessment

of historical structures (Ministero dei Beni e delle Attività Culturali 2010).

The assessment of the Tower of the Nations started from the collection and analysis

of a number of sources of information, and in-situ survey and investigations aimed at:

• Completely defining the geometric characteristics of both structural and

nonstructural elements;

• Defining the structural scheme and detailing;

• Evaluating the mechanical characteristics of concrete and steel.
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In particular, they consisted in the careful review of structural drawings, visual

inspections and survey, and execution of destructive and nondestructive tests

to assess mechanical properties of materials and structural detailing of members

(CEN 2005), such as longitudinal and transverse reinforcement. These preliminary

activities play a relevant role in determining the reliability and accuracy of the

numerical evaluations of the structural response to dead loads and earthquakes.

The analysis of complementary sources of information (structural design drawings,

visual inspections, geometric survey, nondestructive tests) is definitely crucial in

the rational setting of the numerical model of the structure. However, the model can

still be affected by relevant uncertainties, and this requires rational methods to

validate or reject some modeling assumptions. In this context dynamic tests can

definitely support the setting of a reliable numerical model, representative of the

actual dynamic behavior of the structure under test. The main results of in-situ

survey of the Tower and inspection of structural drawings are herein summarized in

order to clarify the most relevant aspects related to the rational definition of its

numerical model.

The Tower of the Nations is an r.c. building characterized by two blind and two

completely see-through parallel façades (Fig. 5.6), with elevator shafts and stairs

located in the center of the building. Apart from the first, the second, the third and the

tenth level, the others are characterized by alternate floors, which cover just a half of

the imprint area of the building. The structural system is very attractive and original.

Even if the structure was designed to bear gravity loads only, it is very interesting also

from the seismic point of view. Two couples of frames with r.c. diagonals and tuff

masonry walls within the fields of the frames increase the stiffness in the longitudinal

direction (Fig. 5.7a). In the transverse direction (Fig. 5.7b) the structural system is

even more complex due to the presence of r.c. walls and alternate floors. Some walls,

characterized by a small thickness, link the two frames that represent the exterior

Fig. 5.7 The Tower of the Nations: longitudinal (a) and transverse (b) sections, (# Elsevier Ltd.

2013), reprinted with permission
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systems; some others, having larger dimensions, are located near the elevator at the

center of the building. The structure has a central body (the Tower) with a nearly

square shape (23.10 m � 23.60 m), which does not change in elevation. At the first

level there is also a basement along the whole perimeter with an extension of 6.0 m

outside the edge of the Tower. Short deep beams make the link between basement

and Tower. This is characterized by a height of 41.0 m with respect to the ground

level and of 43.7 m from the foundation level.

The mechanical properties of the concrete have been estimated through a

combination of destructive and nondestructive tests (CEN 2005). A relevant

uncertainty affected the experimental evaluation of the mechanical properties of

concrete, including the elastic modulus (Rainieri et al. 2013). Because of these

and other uncertainties in setting the numerical model of the Tower, dynamic

tests in operational conditions have been carried out. The results have been used

to validate the modeling assumptions and to tune some model parameters, as

discussed in the next sections.

5.3.2 Output-Only Modal Identification

The ambient vibration response of the Tower has been measured at the fourth

and the fifth level of the building and at the roof (Fig. 5.8a). The roof and the fifth

level have been instrumented in two corners. At each corner two force balance

accelerometers, measuring in two orthogonal directions (Fig. 5.8b), have been

placed. Another couple of accelerometers has been placed at the fourth level.

FLOOR 3

FLOOR 4

FLOOR 5

FLOOR 6

FLOOR 7

FLOOR 8

FLOOR  9

FLOOR 10a

b

FLOOR 1

FLOOR  2

Fig. 5.8 Instrumented floors (a) and sensors in operation (b), (# Elsevier Ltd. 2013),

reprinted with permission
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The ten accelerometers have been placed directly in contact with the concrete

slab and parallel to the main directions of the building, in order to get both

translational and torsional modes.

A bandwidth of about 200 Hz (starting from DC) and a high dynamic range

(140 dB) characterized the sensors. The full-scale range was�0.25 g, and the sensitiv-

ity was equal to 10 V/g in single-ended configuration. A 24-bit DSP, an analog anti-

aliasing filter and a high dynamic range (>114 dB at 200 sps) were the main

characteristics of the adopted digital recorder. Ten 24AWG cables, characterized by

individually shielded twisted pairs, linked accelerometers and recorder. The collected

measurements were originally sampled at 100 Hz. They have been decimated by a

factor of 5 before processing. The record duration was about half an hour.

After the preliminary validation and pretreatment of data (offset removal,

filtering, etc.), they have been processed according to the EFDD, Cov-SSI and

DD-SSI methods. Hanning window and 66 % overlap have been used for spectrum

computation and modal identification in frequency domain. A frequency resolution

of 0.01 Hz has been adopted.

Figure 5.9 reports the stabilization diagram obtained from the analysis of the

collected data through Cov-SSI. It shows the alignments of stable poles corres-

ponding to the identified structural modes. In particular, the first six modes of the

Tower can be straightforwardly identified. The structure is characterized by well-

separated modes. The last two modes (in particular, the fifth) were weakly excited.

This circumstance slightly affected the quality of the estimates (above all damping).

The modal identification results (average values) are reported in Table 5.1. Very

consistent modal identification results have been obtained from the different OMA

methods, also in terms of mode shape estimates as pointed out by CrossMAC values

higher than 0.99.
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Fig. 5.9 Stabilization diagram (Cov-SSI), (# Elsevier Ltd. 2013), reprinted with permission
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The first and the fourth mode are translational in the X direction (parallel to the

open side of the building—Fig. 5.6); the second and the fifth mode are translational

in the Y direction (parallel to the blind side); finally, the third and the sixth mode are

torsional. Taking into account the geometry of the structure, test results have

confirmed that the tuff masonry walls and the diagonal braces increase the stiffness

of the structure along the Y direction (blind side) with respect to the X direction

(open side).

The influence of tuff masonry walls on the dynamics of the structure is also

remarked by the damping values. Weak excitation limited the reliability of

damping estimates for the higher modes. However, focusing the attention on the

three fundamental modes, it is possible to note that the second mode shows a

higher damping with respect to the others. This circumstance can be probably

addressed to the contribution of the friction that arises between masonry infills

and the surrounding r.c. frames along the blind side. The first and the third mode,

conversely, show similar damping values, slightly higher for the third mode than

for the first.

In Fig. 5.10 a 3D histogram of the AutoMAC matrix is reported. It confirms

the effectiveness of the experimental setup to distinguish the different modes, as

Table 5.1 Results of output-only modal identification (average values), (# Elsevier Ltd. 2013),

reprinted with permission

Mode # Type Natural frequency (Hz) Damping ratio (%)

I Translation (open side) 0.80 0.4

II Translation (blind side) 1.33 1.2

III Torsion 1.66 0.6

IV Translation (open side) 2.96 1.7

V Translation (blind side) 4.23 �5

VI Torsion 4.90 �1
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Fig. 5.10 AutoMAC matrix,

(# Elsevier Ltd. 2013),

reprinted with permission
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demonstrated by values equal to 1 along the main diagonal and close to 0 elsewhere.

Another validation of the obtained mode shapes has been carried out through the

complexity plots. As shown in Fig. 5.11, all modes are normal or nearly normal.

Slight imaginary components can be observed only in the mode shape of the fifth

mode. They can be probably related to noise effects and weak excitation.

5.3.3 Finite Element Modeling

The numerical characterization of the dynamic response of the Tower was based

on the implementation of a number of FE models. Modal analyses have been

carried out through the SAP2000® software (Computers and Structures 2006).

The model of the building represented in detail, under different assumptions,

the geometric and mechanic characteristics of the structural elements and the

mass distribution on plain and along height. Position and geometry of the structural

and nonstructural elements at each floor have been defined according to the results

of in-situ investigations and original drawings. One-dimensional structural

elements (columns, beams, braces) have been modeled by “beam” elements while

two-dimensional structural elements (r.c. walls, stairs) have been modeled by

“shell” elements. Nonstructural walls made of tuff masonry have been modeled

by shell elements as well. This assumption leads to overall stiffness characteristics

that are similar to the uncracked shear stiffness evaluated according to relevant

behavioral models (Fardis 1996). Finally, at each floor, 0.05 m thick shell elements

have been used to model the floors. The structure is assumed fixed at the base,

so no soil-structure interaction has been considered.

The masses have been directly associated to the structural elements according to

the specific mass of the material (concrete) and the geometric dimensions of the

cross section. In a similar way, a uniform area mass has been assigned to floors

and stairs. This mass has been evaluated according to the section geometry. No live

loads have been applied, in accordance with the state of the structure at time of

testing. As regards tuff masonry walls, a linear mass has been externally applied to

the beams they stand on.

Correlation with the experimental results has been assessed by defining a

number of model classes through the combination of the following modeling

assumptions:

• Absence vs. presence of tuff masonry walls;

• Absence vs. presence of the basement structure;

• Shell elements vs. rigid diaphragms to model floors.

The relevant uncertainties in the numerical modeling of the structure required a

rational assessment of the effectiveness of these different modeling assumptions.

In particular, the evaluation of the correlation with the results of the dynamic test

was aimed at the assessment of the influence of curtain walls on the dynamic

behavior of the structure, the characterization of the level of interaction between

the Tower and the surrounding basement, and the assessment of the sensitivity to

different assumptions about the in-plane stiffness of the floors.
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As the role of tuff masonry walls is concerned, the correlation with the model

characterized by absence of curtain walls has been evaluated mainly because this

represents a traditional assumption in structural design. However, as expected,

under low levels of excitation the dynamic response of the structure is definitely

influenced by the presence of the masonry infills, as pointed out also by the results

of the modal identification tests in operational conditions. This circumstance has

been confirmed by the poor correlation between experimental and numerical results

obtained for the model without walls. As a consequence, this case will be no more

discussed hereinafter.

About the basement structure, the main source of uncertainty was related to the

specific link (short deep beams) with the inner Tower and the related level of

restraint offered to this. A simplified approach has been considered first. It was

based on the assumption that the basement can be considered as a translational

restraint along the perimeter of the first level of the Tower (Fig. 5.12a). This

assumption takes into account the high transverse stiffness of the basement, due

to the presence of perimeter r.c. walls and r.c. stairs for the access to the Tower,

and its reduced height with respect to the Tower, resulting in a low contribution

in terms of participating mass. On the other hand, because of the low level of

vibrations in operational conditions, an additional model based on the assumption

of full interaction between the Tower and the basement has been considered

(Fig. 5.12b). This condition mainly affects the values of natural frequencies,

in particular at higher modes.

Fig. 5.12 Numerical models of the Tower under: simplified (a) and complete modeling of the

basement (b), (# Elsevier Ltd. 2013), reprinted with permission

230 5 Applications



Floors have been alternatively modeled by shell elements or diaphragms. At the

upper levels, characterized by the alternate floors, the diaphragm has been applied

only to the portion of structure characterized by the presence of the floor. The

influence on the modal properties of the structure has been evaluated, in order to

assess from a quantitative point of view the effects of the different assumptions.

Slightly better results were expected in the case of floors modeled by shell elements.

In fact, due to the role of masonry infills at low levels of excitation and the alternate

floors, the adoption of rigid diaphragms at the various levels was not rigorous.

However, as discussed below, the application of diaphragms to the half portions of

floors at the upper levels also yields a fairly reliable model, characterized by good

correlation with the experimental results.

The combination of the above mentioned modeling assumptions has led to

definition of the following four classes of models:

• Floor¼Diaphragm�With basement,

• Floor¼ Shell�With basement,

• Floor¼Diaphragm�Without basement,

• Floor¼ Shell�Without basement.

Within each class, the elastic modulus of concrete and the shear modulus

(obviously correlated to the elastic modulus) of tuff masonry were the para-

meters to be tuned. The elastic modulus of concrete has been taken in the range

(Ec,min, Ec,max)¼ [13,000, 30,000] MPa in accordance with the large uncertainties

in the definition of the mechanical properties of concrete by compressive tests.

The shear modulus of tuff masonry has been, instead, taken in the range (Gt,min,

Gt,max)¼ [300, 420] MPa in agreement with the range of values provided by

the Italian seismic code for existing structures (Consiglio Superiore dei Lavori

Pubblici 2008). The corresponding values for the elastic modulus of tuff masonry

are (Et,min, Et,max)¼ [900, 1,260] MPa.

A fine increment for the values of elastic modules has been adopted and all

possible combinations of values of elastic modules of tuff masonry and concrete

have been processed, resulting in a total number of 2,132 models. These have been

automatically generated and analyzed starting from a basic model for each class by

means of software developed on purpose in LabVIEW environment.

As a result, sensitivities of the different model classes to changes in the material

properties have been assessed. Typical response surfaces in terms of natural

frequencies of the first six modes with respect to the values of elastic modules of

concrete and tuff masonry are reported in Fig. 5.13. As expected, the natural

frequencies of the first and the fourth mode were mainly influenced by the elastic

modulus of concrete. On the contrary, a larger influence of the shear modulus of tuff

masonry can be observed for the remaining modes.

5.3.4 Tuning of Selected Model Parameters

The validation of the modeling assumptions and the tuning of the model parameters

have taken advantage of the sensitivity analyses carried out for each class of models

and of the evaluation of correlations with the experimental results. In particular,
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correlations have been evaluated as discussed in Chap. 4, while the systematic tuning

of the parameters of the FE model has required the minimization of a user-defined

objective function accounting for the correlation between numerical and experimen-

tal estimates of the modal properties. In the literature it is possible to find several

objective functions accounting for deviations between numerical and experimental

results. Widely used objective functions are defined in terms of the cumulative scatter

between analytical and experimental values of natural frequencies only:

Jf ¼
X

Nm

i¼1

Δf ij j ð5:2Þ
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where the scatter between the numerical and the experimental estimate of the

natural frequency of the i-th mode is computed according to 4.298; alternatively,

they can take into account also the mode shape correlation expressed by the MAC

or the NMD (see also Chap. 4):

Jf , ϕf g ¼
X

Nm

i¼1

w1 � Δf ij j þ w2 �MAC ϕ e
i

� �

; ϕa
i

� �� �� �

ð5:3Þ

Jf , ϕf g ¼
X

Nm

i¼1

w1 � Δf ij j þ w2 � NMD ϕ e
i

� �

; ϕa
i

� �� �� �

ð5:4Þ

where w1 and w2 are optional weighting factors, which can be adopted when the

dynamic properties are measured with different accuracy (Jaishi and Ren 2005).

In the present case, the model parameter tuning was aimed at setting a refined model

able to reproduce as close as possible the actual dynamic behavior of the structure

and, at the same time, enhance the accuracy of response spectrum and seismic time-

history linear analyses. Thus, checks not only of the mode shapes but also of the

values of the PMRs (in particular those associated to the less correlated modes)

throughout the model refinement process were necessary to properly fit the

requirements of seismic analyses.

The PMR of a mode provides a measure of how important that mode is for

computing the response of the modeled structure to the ground acceleration loads in

each of the three global directions defined into the model. Thus it is useful for

determining the accuracy of response spectrum analyses and seismic time-history

analyses. International seismic codes (CEN 2003) require that response spectrum

analyses are carried out combining, according to appropriate rules, all the modes

characterized by a PMR larger than 5 % or, alternatively, a number of modes

characterized by a total PMR larger than 85 %. This rule provides also a guide to

select the number of modes to be taken into account in model refinement. The

values of the PMRs obviously depend on the modeling assumptions and can vary

from one model to another. Nevertheless, they represent global parameters, which

can be estimated with adequate accuracy if the model to be optimized already

shows a good correlation with the experimental data at the beginning of the tuning.

The PMR depends on the mode shapes of the structure and its mass distribution.

The latter can usually be estimated with high accuracy. Thus, if the model also

shows a good correlation with the experimental mode shapes, the values of the

PMRs provided by the model can be considered fairly reliable. This is also the case

of the herein considered four model classes. Thus, in the presence of a fairly

accurate model, it is possible to take advantage of the information about the

PMRs to drive the refinement process towards a solution characterized by maxi-

mum accuracy in terms of prediction capability of the structural response to an

input ground motion.

Whenever the experimentally identified modes are not enough in number to

fulfill code provisions, the experimental results represent a constraint in the model

refinement. In the present case the values of the PMRs (Table 5.2) have pointed out
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that, in almost all cases, six modes are not sufficient to get a total PMR larger than

85 %; however, higher modes after the fifth were generally characterized by PMRs

lower than 5 %. This confirmed that the response of the Tower to input ground

motions mostly depends on the first five or six modes. Thus, the experimentally

identified modes were sufficient for the objectives of the analysis.

For each class of models the solution provided by the minimization of the above

mentioned objective functions was locally unique but, in almost all cases, the

maximum error affected the fundamental mode of the structure (Table 5.3). This

was also characterized by a high PMR and, therefore, contributed significantly to

the structural response to an input ground motion. In order to maximize the overall

correlation with the experimental estimates of the modal parameters and minimize

the error on the fundamental modes, characterized by the largest PMRs, an alterna-

tive objective function has been formulated. The information about the PMRs has

Table 5.3 Frequency scatter after parameter tuning according to (5.2) and (5.5), (# Elsevier Ltd.

2013), reprinted with permission

J Solution Δf1 Δf2 Δf3 Δf4 Δf5 Δf6

Total

scatter

Equation (5.2) Floor¼Diaphragm�Without

basement

(Ec¼ 22,500 MPa;

Gt¼ 310 MPa)

3.08 0.01 2.45 11.56 0.08 1.99 19.17

Floor¼ Shell�Without

basement

(Ec¼ 19,500 MPa;

Gt¼ 390 MPa)

10.66 0.68 1.50 0.91 2.98 0.59 17.31

Floor¼Diaphragm�With

basement

(Ec¼ 24,250 MPa;

Gt¼ 300 MPa)

6.05 0.03 2.25 4.07 3.43 0.008 15.83

Floor¼ Shell�With basement

(Ec¼ 24,000 MPa;

Gt¼ 360 MPa)

8.03 2.11 0.008 0.65 4.86 0.12 15.78

Equation (5.5) Floor¼Diaphragm�Without

basement

(Ec¼ 24,000 MPa;

Gt¼ 300 MPa)

0.04 1.08 1.40 14.96 0.61 2.75 20.84

Floor¼ Shell�Without

basement

(Ec¼ 24,750 MPa;

Gt¼ 300 MPa)

0.24 0.75 1.35 12.04 3.41 0.46 18.27

Floor¼Diaphragm�With

basement

(Ec¼ 27,500 MPa;

Gt¼ 300 MPa)

0.13 3.64 1.33 10.51 0.25 3.29 19.15

Floor¼ Shell�With basement

(Ec¼ 28,500 MPa;

Gt¼ 300 MPa)

0.30 2.90 0.79 8.77 4.33 0.40 17.49
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been directly included into the objective function as a weighting factor for the

frequency scatters, thus obtaining the following expression:

Jf ,PMR ¼
X

Nm

i¼1

Δf ij j � PMRið Þ ð5:5Þ

where:

PMRi ¼
ϕa
i

� �T
M½ � If g

� 	2

ϕa
i

� �T
M½ � ϕa

i

� �

� 	 ð5:6Þ

is the PMR of the i-th mode and {I} the influence vector (Chopra 2000). By this

choice of the objective function, a larger error on the less contributing modes does

not bias the overall calibration. The model parameters minimizing the objective

function in (5.5) for the four model classes are reported in Table 5.3, together with

the frequency scatters.

The objective function of (5.5) implicitly takes into account the information

about the mode shapes through the PMRs. It provides a solution that is not simply

the one minimizing the cumulative scatter with the experimental results. In fact, at

the same time it gives the best results in terms of response spectrum and seismic

time-history analyses, maximizing the correlation for the modes characterized by

large PMRs and allowing larger errors in the case of modes providing minor

contributions to the overall seismic response of the structure.

The best correlation with the experimental data has been obtained by modeling

the floors by shell elements, taking into account the full interaction with the

basement, and considering the following values of the updating parameters:

Ec¼ 28,500 MPa, Gt¼ 300 MPa. Taking into account the state of conservation of

the structure, realistic values of the elastic properties of materials have been

obtained. On the other hand, further checks of the solutions provided by (5.5)

in terms of mode shape correlation have shown that the mode shapes obtained

when the basement is explicitly modeled are also better correlated to the experi-

mental data than those obtained when the effect of the basement is taken into

account in a simplified way. The differences are highlighted by the NMD values

shown in Table 5.4.

Table 5.4 Mode shape correlation (NMD) of models characterized by different assumptions for

the basement and model parameters tuned by minimization of the function in (5.5), (# Elsevier

Ltd. 2013), reprinted with permission

Solution Mode I Mode II Mode III Mode IV Mode V Mode VI

Floor¼ Shell�Without basement

(Ec¼ 24,750 MPa; Gt¼ 300 MPa)

0.242 0.076 0.319 0.306 0.140 0.352

Floor¼ Shell�With basement

(Ec¼ 28,500 MPa; Gt¼ 300 MPa)

0.207 0.060 0.309 0.285 0.126 0.347
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In summary, the present example provides an overview about the opportunities

of OMA for the enhancement of the knowledge about the dynamic behavior

of structures. The results put in evidence the relevant contribution of OMA to

the minimization of the impact of structural assessment on architectural heritage

structures.

The present application has also remarked the importance of proper consideration

of the physics of the problem and of the objectives of the analysis for an effective

tuning of the model parameters. In this perspective, the present application has

pointed out, first of all, the importance of curtain walls on the dynamic response of

the structure, at least for low levels of excitation.

The sensitivity analyses have also shown that the two different assumptions for

modeling of floors were nearly equivalent, but the actual response of the structure

was better reproduced by the use of shell elements, keeping the other modeling

assumptions constant. Finally, in spite of its dimensions and the particular link with

the body of the Tower, the basement has a not negligible influence on the global

dynamic behavior of the structure, in particular when also the higher modes are

considered.

5.4 Mass Normalized Mode Shapes

A major limitation of OMA pertains to the estimation of mode shapes. Since the

input is unmeasured, the mode shapes cannot be mass normalized. Only unscaled

mode shapes can be estimated because the scaling factors depend on the unknown

excitation (Parloo et al. 2005). The missing information about the scaling factors

can restrict the use of the modal parameter estimates in those application domains

requiring mass normalized mode shapes, such as structural response simulation,

load estimation (Parloo et al. 2003), some damage detection techniques (Pandey

and Biswas 1994, Parloo et al. 2004). From a general point of view, the knowl-

edge of the scaling factors of the mode shapes is critical whenever an FRF matrix

has to be assembled from the estimated modal parameters (see also Chap. 4).

For this reason, methods for the experimental estimation of mass normalized

mode shapes by OMA procedures have recently been developed. They are based

on the modification of the dynamic behavior of the structure under test by

changing its mass or stiffness. The results of output-only modal identification

of both the original and the modified structure are finally used to estimate the

scaling factors.

The most popular methods for the estimation of scaling factors and mass

normalized mode shapes belong to the class of the mass-change methods. These

methods have been extensively validated by tests in the laboratory and on real

structures (see, for instance, Parloo et al. 2005, Lopez-Aenlle et al. 2010). They

consist in attaching masses to the points of the structure where the mode shapes of

the unmodified structure have been estimated in a previous stage.

The number, magnitude and location of the masses is defined by the modal

analyst and, as discussed below, this choice, together with the accuracy of modal

parameter estimates, is responsible for the accuracy of the estimated scaling factors.

5.4 Mass Normalized Mode Shapes 237

http://dx.doi.org/10.1007/978-1-4939-0767-0_4


Moreover, since the mass-change methods use the modal parameters of both the

original and the modified structure, they require extensive tests and a careful design

of the experimental program. Lumped masses are typically used, so that the mass-

change matrix [ΔM] is diagonal.

Stiffness-change methods are a possible alternative to mass-change methods.

As the mass-change methods, they use the modal parameters of both the original

and the modified structure, but in this case the dynamic response of the structure is

modified by changing its stiffness. Stiffness changes are obtained by connecting

devices, such as cables or bars, at points of the structure where the mode shapes of

the unmodified structure have been estimated in a previous stage. Combined mass-

stiffness-change methods have also been developed (Khatibi et al. 2009), obtaining

promising results. However, changing the stiffness of real civil structures is gener-

ally expensive and often impractical. This is the reason why attention is herein

focused on the mass-change methods and, in particular, on best practice criteria to

obtain accurate estimates of the scaling factors.

Equation (5.7) shows the relation between scaled and unscaled mode shape

vectors:

ψ j

� �

¼ αj ϕj

� �

ð5:7Þ

where αj is the scaling factor for the j-th mode shape. Equation (5.7) highlights that

the value of the scaling factor depends on the normalization used for the unscaled

mode shape. Mode shapes normalized in a way that the largest element in each

vector is equal to 1 are herein considered.

Omitting the theory behind each formulation (references are provided for the

interested reader), well-established expressions for the estimation of the scaling

factors by the mass-change approach are reported below.

Those fulfilling the structural-dynamic-modification theory are usually referred

to as exact equations, to remark the difference with the so-called approximated

equations, which do not properly take into account the change of the mode shapes

when the structure is modified (Lopez-Aenlle et al. 2012). All the proposed

formulations to estimate the scaling factor of a certain mode depend only on the

modal parameters of that mode. Thus, it is eventually possible to optimize the

estimation of the scaling factor of individual modes at the expenses of an increase in

number and time of testing.

The original idea of the mass-change method can be traced back to Parloo

et al. (2002). Using a first-order approximation for the sensitivity of the natural

frequencies of lightly damped structures to mass changes, they derived a closed-

form expression for the estimation of the scaling factors:

αj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ωj,0 � ωj,m

� �

ωj,0 ϕj,0

� �T
ΔM½ � ϕj,0

� �

v

u

u

t ð5:8Þ

where ωj,0 and ωj,m represent the natural frequency of the j-th mode of the original

and the modified structure, respectively, and {ϕj,0} is the j-th (unscaled) mode
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shape of the original structure. The validity of this formulation is restricted to small

changes of the modal properties as a result of the mass change.

Alternative formulations able to take into account the changes in mode shapes

and permitting relatively large modifications have been proposed by Bernal (2004)

and Lopez-Aenlle et al. (2010). If mode shape estimates of both the original and the

modified structure are available, the following matrix can be computed:

B̂
� �

¼ Φ̂ 0

� �þ
Φ̂ m

� �

ð5:9Þ

where Φ̂ 0

� �

and Φ̂ m

� �

are the matrices collecting (in columns) the estimates of the

mode shapes of the original and the modified structure, respectively. The terms on

the main diagonal of B̂
� �

are close to one while the off-diagonal terms are close to

zero, except for closely spaced modes (Lopez-Aenlle et al. 2012). The terms on the

main diagonal are usually fairly accurate even in the presence of modal truncation

effects, while poor accuracy characterizes the off-diagonal terms (Lopez-Aenlle

et al. 2012). If only the diagonal terms B̂ jj of B̂
� �

are considered, the scaling factor

of the j-th mode can be computed as:

αj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
j,0 � ω2

j,m

� 	

Bjj

ω2
j,m ϕj,0

� �T
ΔM½ � ϕj,m

� �

v

u

u

u

t ð5:10Þ

where {ϕj,m} is the j-th (unscaled) mode shape of the modified structure. This

expression was originally obtained by Bernal (2004) as a result of the projection of

the mode shapes of the modified system on the basis of the original structure. The

expression proposed by Lopez-Aenlle et al. (2010) is a special case of the formula-

tion given by (5.10) where B̂ jj is assumed to be equal to one:

αj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
j,0 � ω2

j,m

� 	

ω2
j,m ϕj,0

� �T
ΔM½ � ϕj,m

� �

v

u

u

u

t : ð5:11Þ

Equations (5.8), (5.10) and (5.11) point out the primary role of output-only

modal parameter identification in the accurate estimation of scaling factors. The

uncertainties associated to natural frequency and mode shape estimates must be as

low as possible (best practices to carry out a good modal identification have been

discussed throughout this book).

However, the uncertainties in the estimation of scaling factors depend not only on

the accuracy of modal parameter estimates but also on the adopted mass-change

strategy. Different choices for the number, magnitude and location of the masses lead

to different changes in the dynamic behavior of the structure. Thus, the mass-change

strategy has to be carefully designed and analyzed before applying the mass-change

method for the estimation of the scaling factors. Previous experiences reported in

the literature provide the following guidelines for a successful estimation of scaling
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factors by mass-change methods (Lopez-Aenlle et al. 2010, Lopez-Aenlle et al. 2012,

Parloo et al. 2005):

• The mass change should not be too large: a mass change of about 5 % of the total

mass of the structure is recommended; however, depending on the specific

structure under investigation and the number and location of masses, the adopted

mass change can be slightly higher or lower than the above mentioned

recommended value; as a general rule, the applied mass change has to produce

frequency shifts of about 1.5–2 %; a larger frequency shift can be recommended

for the fundamental modes of very flexible structures; on the other hand, it is

worth pointing out that the mass change has to be applied in a way able to

minimize the modification of mode shapes: thus, for a given total mass change,

small mass changes, proportional to the mass matrix of the original structure,

are recommended for the DOFs considered in the tests; taking into account that

the added masses are usually represented by large concrete blocks when the

mass-change methods are applied to civil structures, maintaining the masses as

small as possible reduces also the possibility of local changes in stiffness caused

by the blocks and, therefore, the estimation errors;

• The importance of attaching as many masses as possible also depends on the

possibility to simultaneously estimate the scaling factors for several modes; even

if the expressions for the scaling factors depend on the modal parameters of the

mode of interest only, the availability of a large number of small masses allows

the optimization of the mass location for the simultaneous estimation of the

scaling factors of a number of modes, thus reducing the time of testing; however,

it is worth pointing out that a certain location of the masses can be optimum for

certain modes but it can yield inaccurate estimates of the scaling factors for the

remaining modes; thus, multiple modal tests are recommended because a differ-

ent mass layout can significantly improve the accuracy of the estimates of the

scaling factors of selected modes;

• The masses have to be placed in points characterized by large modal

displacements, since very small frequency shifts are obtained when the masses

are located near nodal points of the mode shapes considered in the normaliza-

tion; as a consequence, the number and location of masses have to take into

account the distributions of modal displacements, eventually changing the

measured DOFs and the location of masses to enhance the accuracy of the

scaling factor estimates of selected modes.

The importance of mass location for the accurate identification of scaling factors

can be understood through a simple example. Consider a one-bay ten-story

r.c. shear-type frame, with square columns characterized by a 30 cm� 30 cm

cross section. Columns and beams are 3 m long. Assume lumped masses of

7,500 kg associated to the ten DOFs of the structure and constant damping (1 %)

for all modes. The numerical model of this simple structure (Fig. 5.14) can be used

for a simulated application of the mass-change method. The responses of the

original and the modified structure to a Gaussian white noise can be simulated

and analyzed by OMAmethods to estimate the scaling factors. The obtained results

can be compared to the reference values provided by the model.
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Assume that only five masses are available. The objective of this example is the

analysis of the variations of the scaling factor estimates for two different

configurations of the attached masses, one of which has been optimized for the

estimation of the scaling factors of the three fundamental modes of the structure.

For this explanatory application, assume that all modes of the structure have

been identified and the modal displacements have been initially measured at all the

ten DOFs. The optimum location of the masses can be defined from the analysis of

modal displacements. The contribution of a unit mass located at the j-th DOF to

shift the natural frequency of the k-th mode is expressed by the square of the related

component of the unscaled mode shape vector of the k-th mode of the original

structure (Lopez-Aenlle et al. 2010). The squared modal displacements are reported

in Table 5.5 for all the DOFs and modes of the original structure. They have also

been normalized making the largest element equal to 100 for each mode. DOFs are

numbered from 1 to 10 from bottom up.

The analysis of the squared modal displacements in Table 5.5 shows that the

largest frequency shifts for the three fundamental modes of the structure can be

obtained by placing the masses at DOFs #10, #9, #7, #3, #2. The results obtained by

this configuration of the added masses are compared with those obtained by placing

the masses at DOFs #10, #8, #5, #2, #1.

Denote the optimum configuration of the masses as CONFIG#1 and the other as

CONFIG#2. In both cases, the added mass is equal to 3 % of the total mass of the

structure. In other words, masses of 450 kg are attached to the five DOFs considered

in the respective analysis cases.

Fig. 5.14 The r.c. frame for

the application of the mass-

change method
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A third case is also considered, where the masses are attached at the DOFs of

CONFIG#1 but the magnitude of the mass change is lower than 3 %. This configu-

ration of the masses is denoted as CONFIG#3 and the added masses, characterized

by the same magnitude (367 kg) for the various DOFs, produce the same frequency

shift obtained by the mass change considered in CONFIG#2.

The analysis of the simulated response to a Gaussian white noise of the original

structure and of the modified structures has given the results shown in Table 5.6 in

terms of natural frequency estimates. Cov-SSI has been used to analyze the data.

CONFIG#1 yields frequency shifts in the range 1.7–1.9 %, while the frequency

shifts corresponding to CONFIG#2 and CONFIG#3 are in the range 1.4–1.5 %.

Please, note that the simulated response of the original structure has been analyzed

twice in order to obtain the mode shape estimates at the different sets of DOFs

considered in CONFIG#1 and CONFIG#3 on one hand, and CONFIG#2 on the

other hand. The scaling factors estimated according to (5.8), (5.10) and (5.11) for

the three configurations of added masses are reported in Tables 5.7, 5.8 and 5.9.

The obtained results point out that, for a given mass change (3 % of the total

mass of the structure), the scaling factors estimated by CONFIG#1 are by far more

accurate than those provided by CONFIG#2. Moreover, comparing the results

provided by CONFIG#2 and CONFIG#3 shows that the estimates obtained by

CONFIG#3 are characterized by similar (or sometimes better) accuracy with

those provided by CONFIG#2, despite of the lower mass change (2.4 % instead

of 3 %) and the equal frequency shifts for the considered modes.

Table 5.5 Contribution of unit mass at DOF j to the frequency shift of mode k

Mode

DOF

#10

DOF

#9

DOF

#8

DOF

#7

DOF

#6

DOF

#5

DOF

#4

DOF

#3

DOF

#2

DOF

#1

I 100.0 95.6 87.1 75.4 61.5 46.5 31.9 18.9 8.7 2.2

II 100.0 64.3 19.8 0.0 19.8 64.3 100.0 100.0 64.3 19.8

III 87.1 18.9 8.7 75.4 95.6 31.9 2.2 61.5 100.0 46.5

IV 100.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0

V 64.3 19.8 100.0 0.0 100.0 19.8 64.3 64.3 19.8 100.0

VI 46.5 61.5 31.9 75.4 18.9 87.1 8.7 95.6 2.2 100.0

VII 31.9 95.6 2.2 75.4 61.5 8.7 100.0 18.9 46.5 87.1

VIII 19.8 100.0 64.3 0.0 64.3 100.0 19.8 19.8 100.0 64.3

IX 8.7 61.5 100.0 75.4 18.9 2.2 46.5 95.6 87.1 31.9

X 2.2 18.9 46.5 75.4 95.6 100.0 87.1 61.5 31.9 8.7

Table 5.6 Natural frequency estimates for the original and the modified structures

Mode # Original structure (Hz) CONFIG#1 (Hz) CONFIG#2 (Hz) CONFIG#3 (Hz)

I 0.363 0.357 0.358 0.358

II 1.082 1.063 1.066 1.066

III 1.777 1.743 1.750 1.750
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The above discussed example points out the importance of carefully choosing

the location of the added masses. Whenever the optimization of the mass location

for the simultaneous estimation of the scaling factors of multiple modes is not

feasible, repeated tests focused on subset of modes or individual modes are

recommended to obtain accurate scaling factor estimates.

5.5 The Excitation System: Identification of Spurious
Frequencies

Response spectra sometimes show dominant frequency components that do not

represent natural frequencies of the structure under test. On the contrary, they are

frequency components of the excitation system and, as such, they are due to

physical reasons. Specific strategies and techniques are, therefore, needed to sort

out the natural frequencies of the structure under test from spurious frequencies

associated to the excitation.

Civil engineering structures are usually excited by broadband input associated to

environmental and operational loads (wind, traffic, micro-tremors, etc.). However,

the presence of spurious frequency components due to the excitation cannot a-priori

be excluded. A careful analysis of response spectra and checks of the nature of the

identified peak frequencies are always required for validation of results.

Table 5.7 Scaling factors obtained according to (5.10)

Mode # Model CONFIG#1 CONFIG#2 CONFIG#3

Scatter

(%) #1

Scatter

(%) #2

Scatter

(%) #3

I 0.005025 0.005020 0.005053 0.005064 �0.11 0.56 0.77

II 0.004913 0.005021 0.005068 0.005090 2.21 3.16 3.60

III 0.005025 0.005123 0.005129 0.005034 1.95 2.07 0.18

Table 5.8 Scaling factors obtained according to (5.11)

Mode # Model CONFIG#1 CONFIG#2 CONFIG#3

Scatter

(%) #1

Scatter

(%) #2

Scatter

(%) #3

I 0.005025 0.005025 0.005056 0.005068 0.00 0.63 0.86

II 0.004913 0.004862 0.005053 0.004934 �1.04 2.86 0.43

III 0.005025 0.005081 0.005132 0.005003 1.12 2.13 �0.43

Table 5.9 Scaling factors obtained according to (5.8)

Mode # Model CONFIG#1 CONFIG#2 CONFIG#3

Scatter

(%) #1

Scatter

(%) #2

Scatter

(%) #3

I 0.005025 0.004959 0.005002 0.005013 �1.31 �0.46 �0.24

II 0.004913 0.004918 0.005008 0.004998 0.10 1.94 1.72

III 0.005025 0.005031 0.005062 0.004964 0.11 0.74 �1.21
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Spurious peaks are sometimes due to the combination of the stochastic

broadband input with harmonic components, deterministic in nature. This phenom-

enon is more frequent in the case of mechanical systems such as in-flight

helicopters, running engines (Peeters et al. 2007) and ships in operation (Rosenow

et al. 2007). In the case of civil engineering structures, spurious harmonic

components superimposed to the stochastic response can be encountered because

of the presence of turbines, generators, ventilation equipment and other mechanical

components and systems installed on or nearby the structure. The presence of

deterministic signals superimposed to the stochastic response makes the output-

only identification of the modal parameters more difficult. In fact, the spurious

dominant frequencies of the excitation system can wrongly be identified as physical

modes. A high dynamic range is also needed to extract weakly excited modes in

the presence of such harmonics. Moreover, when these spurious dominant fre-

quency components are very close to the frequencies of structural modes, they

negatively affect the accuracy of modal parameter estimates (Jacobsen et al. 2007,

Agneni et al. 2012).

A number of criteria and methods are available to identify the presence of

spurious harmonics. If auto-spectral densities with high frequency resolution are

estimated, spurious harmonics appear as sharp peaks. Their bandwidth and their

spectral density depend on the frequency resolution. In fact, a further reduction of

the frequency spacing yields a reduction of the bandwidth and a proportional

increase in the spectral density, while the bandwidth of actual structural resonances

is not affected by the adopted frequency resolution (Bendat and Piersol 2000).

This is a very basic method of detection, which is effective only if the frequency

spacing of the estimated spectral densities is smaller than the actual bandwidth of

structural modes.

The analysis of the Short Time Fourier Transform (Qian and Chen 1996) of the

responses, shown in a contour plot, represents a more refined alternative for harmonic

detection. In fact, thin straight lines parallel to the time axis usually denote harmonic

components at fixed frequency, while thick straight lines parallel to the time axis

characterize structural modes (Jacobsen et al. 2007, Herlufsen et al. 2005).

Spurious harmonics due to rotating equipment can also be identified directly

in the modal parameter estimation stage. For instance, SSI methods are able

to estimate both the harmonic components and the structural modes, even when

they are characterized by close frequencies (Jacobsen et al. 2007). Since the

spurious harmonics can be seen as virtual modes with zero damping (Modak

et al. 2010), an appropriate setting of the valid range of damping ratios can filter

out the poles characterized by very low damping, so that they do not appear in

the stabilization diagram (Jacobsen et al. 2007). However, this method can be

ineffective in the presence of structural modes characterized by very low damping

(Modak et al. 2010).

When the FDD method is adopted, the singular values of the PSD matrix at

discrete frequencies can act as an indicator of the presence of a spurious harmonic

at a given frequency. In fact, when a spurious harmonic is present, a high rank

characterizes the PSD matrix because all modes are excited.
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The analysis of the probability density function of the measured response in a

narrow frequency range around the peak represents an effective way to sort out

harmonic and structural modes when EFDD is used for modal identification.

Comparing the probability density function of the potential mode, isolated by

band-pass filtering, with those of the sine wave and the sine wave in Gaussian

noise on one hand and the Gaussian probability density function on the other hand

(Chap. 2) can support the discrimination between spurious harmonics and structural

resonances (Brincker et al. 2000).

The visual inspection of mode shapes can also support the discrimination

between harmonic and structural modes. In fact, whenever the harmonic component

is well separated from structural resonances, it yields an ODS that is the combina-

tion of several excited modes and the input. This is not the case of spurious

harmonics close to structural modes, since the ODS of the harmonic resembles

the actual mode shape leading to potential identification mistakes.

Some authors have proposed the use of statistical indexes, such as kurtosis and

entropy, as harmonic indicators (Jacobsen et al. 2007, Agneni et al. 2012). The

kurtosis index is defined as the fourth central moment of the generic random

variable x normalized with respect to the fourth power of the standard deviation:

κ ¼
E xk � μxð Þ4
h i

σ4x
: ð5:12Þ

For Gaussian distributions the kurtosis is equal to 3, while the kurtosis of a sine

wave is 1.5. If the excess kurtosis:

κ ¼ κ � 3 ð5:13Þ

is used instead of the kurtosis defined by (5.12), harmonic signals are identified by

values of κ equal to �1.5, while null values characterize Gaussian distributions.

As an alternative, if the probability density function of the random process has been

estimated (Chap. 2), harmonic signals in a stochastic process can be identified from

local minima of the entropy (sometimes referred to as Shannon entropy) in the

frequency range under investigation:

S ¼ �
X

K

k¼1

p̂ klog p̂ kð Þ: ð5:14Þ

Harmonic detection is based on the calculation of either entropy or kurtosis as a

function of frequency through the application of a running band-pass filter centered

at each discrete frequency considered in the analysis. The major drawback with

these methods is the relevant influence of filter parameters (frequency range and

roll-off rate of the filter) on the detection ability.

When EFDD is used for modal identification, harmonics close to the natural

frequency of the structure can be removed by a linear interpolation in order to
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reduce their influence on the estimated natural frequencies and damping ratios

(Jacobsen et al. 2007). Whenever the harmonic frequencies close to the eigenfre-

quencies are known, modified NExT-type methods can also be adopted to explic-

itly take into account the harmonic excitation components in the identification

process and enhance the accuracy of modal parameter estimates. If the presence of

the harmonic component is not known in advance, accurate modal parameter

estimates can be obtained from the transmissibility-based method under the

assumption of fully correlated inputs (such as those coming from a dominant

discrete source); no filtering or interpolation is needed, but the assumptions of the

method require changing loading conditions. They imply more involved test

procedures to ensure changes in the location, number or amplitude of the forces.

These methods are beyond the scope of the present book because spurious

harmonics rarely lead to major problems in output-only modal identification of

civil engineering structures; the interested reader can refer to the literature for

more details (Mohanty and Rixen 2004, Mohanty and Rixen 2006, Devriendt

et al. 2009). Nevertheless, a complete structural and functional assessment of the

structure under test is recommended in order to identify possible sources of

harmonic excitation and take into account their possible effects on dynamic

measurements and test results.

Few studies are reported in the literature about the output-only identification of

structural modes in the presence of spurious dominating frequencies due to

dynamic interaction with adjacent structures. Oliveira and Navarro (2009) reported

this issue, pointing out the critical role of a careful examination of the peaks in the

spectra to successfully sort structural and spurious modes.

An integrated approach to the identification of spurious dominating frequencies

due to dynamic interaction with adjacent structures has recently been proposed

(Rainieri et al. 2012). It is herein described in its main aspects, because it provides

an interesting example of how the integrated use of output-only modal analysis

techniques can rationally support the identification of spurious frequencies due to

interaction with adjacent buildings. These frequencies do not appear as sharp peaks

in response spectra. This makes the discrimination between structural resonances

and spurious dominant frequencies even more difficult.

The case study analyzed in this section is particularly interesting in this perspec-

tive, because it deals with close and interacting structures characterized by similar

natural frequencies. Narrowband excitation due to rotating components is also

present. The effect of interactions on response spectra is represented by the pres-

ence of several peaks in a narrow frequency range; however, only a few of them are

actually related to structural modes.

The herein discussed case study refers to an experimental campaign carried out

on four buildings belonging to the B1 Block in the area of the Guardia di Finanza

Non-Commissioned Officers’ School in Coppito (L’Aquila, Italy) under the coor-

dination of the Italian Department of Civil Protection right after the L’Aquila

earthquake on April 6-th, 2009. In particular, the results of dynamic tests are

presented.
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The B1 block of buildings covers a rectangular area of 165 m by 66 m and

it consists of nine similar r.c. moment frame buildings distributed on three lines.

Connection among the different buildings and vertical distribution are ensured by a

number of separated r.c. stairs. Indoor stairs are located in the intermediate

courtyards; outdoor stairs are located at each building alignment head. Each

building and stair structure appeared to be independent of the adjacent ones

because of the presence of seismic joints. Attention is herein focused on buildings.

Figure 5.15 shows some views of the analyzed block.

Regularity in elevation from a dynamic standpoint was affected by a different

arrangement of partitioning walls at the ground level with respect to the upper

levels. Notwithstanding an exterior simple structural configuration, very similar

among the different buildings in the block, some differences in their dynamic

responses were expected.

Since the dynamic tests were carried out a few days after the L’Aquila earth-

quake mainshock, the different levels of nonstructural damage that affected each

building also influenced the dynamic responses. Identification of their modal

properties was made even more difficult by the circumstance that the fundamental

modes of the different buildings were characterized by quite similar natural

Fig. 5.15 The B1 Building Block: East side (a), courtyard (b), South side (c), outdoor stairs (d)
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frequencies and, as shown in Fig. 5.16, such frequencies were located in a narrow

frequency range between 2 and 4 Hz.

Interaction effects, represented by dominant frequency components in the

response spectrum of a building associated to structural resonances of the

surrounding structures, were probably related to the solutions adopted for

the foundations, which were common to all buildings and stairs in the block.

In addition, as a consequence of ground shaking and of the technological

solutions adopted for seismic joints, pounding phenomena between buildings and

stairs were not inhibited. The result was a certain degree of interaction among the

different buildings and among buildings and stairs (both interior and exterior) so

that the natural frequencies of a certain building or stair appeared in the dynamic

response in operational conditions of other close buildings in the block. A plane

view of the block is reported in Fig. 5.17. In the same picture, numbers 2, 3, 5 and

6 identify the investigated buildings. Their relevant dimensions are 48.7 m

by 15.40 m.

Measurements of the dynamic responses of the buildings were carried out to

monitor the evolution of the dynamic parameters during aftershocks, as a support

to visual inspections for structural damage detection, to refine numerical analyses

for capacity assessment, and in view of the installation of a vibration-based

SHM system. Thus, the adopted sensor layout was aimed at monitoring the largest

number of buildings at the same time with a limited number of available sensors.
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Fig. 5.16 Sample singular value plots: filled circles denote structural modes, empty circles denote

dominant frequencies due to interactions, the empty square denotes a harmonic due to rotating

parts, (# Elsevier Ltd. 2012), reprinted with permission
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The sensor layout had to consider also some operational constraints (limited room

accessibility). The final configuration ensured the identification of at least the

fundamental bending and torsional modes of the tested buildings. The sensor layout

is reported in Fig. 5.18. A tern of sensors in three orthogonal directions has also

been installed on the basement in order to measure eventual input at the base of the

structure due to ground motion. Even if the whole measurement setup is herein

described, only records of the dynamic response of the structures in operational

conditions have been considered in the following analyses. Buildings #2 and #3

have been monitored at the upper level and at the intermediate level. Four sensors

have been installed in two opposite corners at each level and along two orthogonal

directions in order to ensure observability of both translational and tensional modes.

Testing of buildings #5 and #6, instead, involved only two couples of sensors placed

at the upper level and measuring in two orthogonal directions parallel to the main

axes of each building. In the data processing phase it has also been recognized that

sensor #3 in the x direction on building #5 was out of order. It has not been used in

the analyses. Thus, only three sensors were available for the characterization of the

dynamic behavior of building #5. This circumstance increased the complexity of

modal identification.

The dynamic responses of buildings #2 and #3 have been measured by means of

uniaxial force balance accelerometers, while piezoelectric accelerometers have

been installed on buildings #5 and #6. The characteristics of the installed sensors

are summarized in Table 5.10. The selected sensors ensured the possibility to

properly resolve the dynamic response of the buildings to both the operational

loads and eventual input ground motions.

Vibration data have been acquired through a customized 16-bit data acquisition

recorder, able to acquire dynamic data from a number of different sensors including

force balance and piezoelectric accelerometers. Sensors were installed on steel

Fig. 5.17 Plan view of the B1 Block: nine buildings jointed among them and with stairs,

(# Elsevier Ltd. 2012), reprinted with permission
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Fig. 5.18 Sensor layouts for

building #2 (a), #3 (b), #5 (c),

#6 (d), (# Elsevier Ltd.

2012), reprinted with

permission
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plates screwed on the floor. Cables were clamped to the structure along the whole

path to the data acquisition recorder in order to avoid introduction of measurement

noise by triboelectric effects due to cable motion.

Data have simultaneously been acquired from the 27 accelerometers installed

over the block of buildings; a sampling frequency equal to 100 Hz was adopted. The

dynamic response of the buildings has continuously been monitored for more than

two consecutive days. Each stored record was 3,600 s long.

Before processing, the records have been accurately inspected in order to assess

data quality. Offsets and spurious trends have been removed. Data have been

filtered and decimated to obtain a final sampling rate of 20 Hz. Hanning window

and 66 % overlap have been adopted for spectrum computation in view of fre-

quency domain modal parameter estimation. OMA has been carried out according

to the following methods: Cov-SSI, EFDD and SOBI. An automated output-only

modal identification procedure, named LEONIDA (Rainieri and Fabbrocino 2010),

has also been applied. It is a frequency domain algorithm for automated OMA

that takes advantage of the information obtained from the SVD of the PSD

matrices computed from multiple records to identify the bandwidth of the structural

modes before automatically extracting the modal parameters. More details are

given in Chap. 6.

The dynamic responses of the buildings have been analyzed from the local and

global point of view. The global analysis has put in evidence the similarities. Then,

local analyses and consistency checks have made the discrimination between

structural resonances and spurious dominating frequencies possible. The selection

of candidate modes was based on the analyst’s experience following best practice

criteria for the various OMA methods. The only exception was represented by the

results provided by LEONIDA, which is a fully automated OMA procedure and, as

such, it does not require any user intervention. Ranking of the candidate modes

resulted from the inspection of a number of features; scores have been assigned

according to the list reported in Table 5.11.

A score equal to 1 (�1) has been adopted for values of the parameters usually

associated to the presence (absence) of a structural mode; a score equal to 0.5 was,

instead, adopted for values of the parameters associated to more uncertain

conditions. The maximum achievable total score was 7. A candidate mode has

been labeled as structural if the total score was at least equal to 5/7. The minimum

value of the total score defining a structural mode and the adopted scores for SOBI

take into account that the responses of building #5 and building #6 have been

measured by few sensors (only three working sensors for building #5). As already

mentioned in Chap. 4, this has consequences on the number of identifiable modes

by SOBI. Moreover, this circumstance has limited the possibility to analyze the

aspect of mode shapes.

Scoring of candidate modes is detailed in Tables 5.12, 5.13, 5.14, and 5.15.

Ranking and identified structural modes (dark bars above threshold) are shown in

Fig. 5.19. Realistic damping values were associated to nearly all candidate modes

with few exceptions, so their inspection has not been useful to sort the structural

modes. For this reason damping has not been selected as a feature for classification.

Nevertheless, damping values are reported for the sake of completeness.
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Table 5.11 Scores for

mode classification,

(# Elsevier Ltd. 2012),

reprinted with permission

Feature Options Score

EFDD Presence of peak 1.0

Absence of peak �1.0

Cov-SSI Fully stable poles 1.0

Partially stable poles 0.5

Unstable poles �1.0

SOBI Well-separated source 1.0

Not well-separated source 0.5

Unidentified source 0.0

LEONIDA Identified mode 1.0

Unidentified mode �1.0

Coherence Higher than 0.98 1.0

Between 0.8 and 0.98 0.5

Lower than 0.8 �1.0

Mode complexity Real valued 1.0

Slightly complex 0.5

Complex �1.0

Mode shape aspect Physically admissible 1.0

Not physically admissible �1.0

Table 5.12 Building #2: candidate modes and score report, (# Elsevier Ltd. 2012), reprinted

with permission

f (Hz) EFDD Cov-SSI SOBI LEONIDA Coherence

Mode

shape

complexity

Mode

shape

aspect ξ (%)

Total

score

2.18 1.0 �1.0 0 �1.0 0.5 1.0 1.0 5.9 1.5

2.58 1.0 1.0 0.5 1.0 1.0 1.0 1.0 2.2 6.5

2.64 �1.0 1.0 0 �1.0 1.0 �1.0 �1.0 0.2 �2.0

2.88 1.0 1.0 1.0 1.0 0.5 1.0 1.0 2.4 6.5

2.98 �1.0 1.0 0 �1.0 �1.0 �1.0 �1.0 1.3 �4.0

3.52 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 7.0

5.31 1.0 1.0 0.5 1.0 1.0 1.0 1.0 0.9 6.5

7.09 1.0 1.0 0 1.0 1.0 1.0 1.0 0.7 6.0

Table 5.13 Building #3: candidate modes and score report, (# Elsevier Ltd. 2012), reprinted

with permission

f (Hz) EFDD Cov-SSI SOBI LEONIDA Coherence

Mode

complexity

Mode

shape

aspect ξ (%)

Total

score

2.18 1.0 �1.0 0 �1.0 �1.0 �1.0 �1.0 2.8 �4.0

2.58 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5 7.0

2.88 1.0 0.5 0.5 1.0 1.0 1.0 1.0 1.1 6.0

2.99 1.0 1.0 0 �1.0 0.5 1.0 1.0 2.6 3.5

3.19 1.0 �1.0 0 �1.0 �1.0 �1.0 �1.0 3.7 �4.0

3.52 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.2 7.0

5.26 1.0 �1.0 1.0 �1.0 �1.0 1.0 �1.0 1.1 �1.0
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Table 5.14 Building #5: candidate modes and score report, (# Elsevier Ltd. 2012), reprinted

with permission

f (Hz) EFDD Cov-SSI SOBI LEONIDA Coherence

Mode

complexity

Mode

shape

aspect ξ (%)

Total

score

2.20 1.0 1.0 0.5 �1.0 �1.0 �1.0 �1.0 2.7 �1.5

2.41 1.0 1.0 0 �1.0 �1.0 1.0 �1.0 3.2 0.0

2.67 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.2 7.0

3.15 1.0 1.0 0 1.0 1.0 0.5 1.0 2.5 5.5

3.96 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 7.0

Table 5.15 Building #6: candidate modes and score report, (# Elsevier Ltd. 2012), reprinted

with permission

f (Hz) EFDD Cov-SSI SOBI LEONIDA Coherence

Mode

complexity

Mode

shape

aspect ξ (%)

Total

score

2.24 1.0 1.0 0.5 1.0 1.0 1.0 1.0 2.9 6.5

2.41 1.0 1.0 0 �1.0 1.0 1.0 1.0 3.3 4.0

2.67 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.8 6.5

2.81 1.0 1.0 0.5 1.0 �1.0 0.5 �1.0 1.4 2.0

3.20 1.0 1.0 0 �1.0 �1.0 �1.0 �1.0 3.5 �2.0

3.47 1.0 1.0 0 �1.0 �1.0 �1.0 �1.0 5.3 �2.0

3.96 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 7.0

5.80 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.5 6.5

7.54 1.0 1.0 0 1.0 1.0 1.0 1.0 0.7 6.0

a b

c d

Fig. 5.19 Score reports and selection of structural modes: building #2 (a), #3 (b), #5 (c), #6 (d),

(# Elsevier Ltd. 2012), reprinted with permission
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Mode shape complexity and coherence sometimes have also given inconsistent

indications. In fact, modes labeled as structural can show slight imaginary

components in their shapes as a result of noise effects; on the contrary, real shapes

could be associated to spurious frequencies. In a similar way, dominant frequencies

not related to structural modes can exhibit large values of coherence between

couples of channels. Thus, the use of different OMA procedures and the integrated

analysis of different features play a critical role to successfully discriminate struc-

tural modes from dominating frequencies associated to dynamic interaction effects.

Complete modal identification results are reported in Table 5.16. Their inspection

shows that the sequence of modes is slightly different for building #5 with respect to

the others. In fact, translational modes in the x direction are missing, while there is

an additional bending mode along y. This is probably the result of the very limited

number of installed sensors on this building and of the presence of only one

working sensor in the x direction. Even if a peak has been identified at 2.20 Hz

(Table 5.14), there was a lack of sufficiently coherent information to label it as a

structural mode. Another possible reason for the observed differences could be

related to the pounding phenomena and damage of partition walls caused by the

earthquake that affected that building at a major extent.

Apart from some uncertainties still affecting the results for building #5, the

proposed approach has rationally supported the identification of the fundamental

modes of the structures under test, successfully discriminating them from

frequencies related to dynamic interaction effects. The importance of the integrated

approach adopted for output-only modal identification is confirmed by the fact that a

single OMA method can lead to wrong results as a result of the possibility of limited

Table 5.16 Output-only modal identification results, (# Elsevier Ltd. 2012), reprinted with

permission

Building # Mode #

Natural

frequency (Hz) ξ (%) Type

2 I 2.58 2.2 Translation x

II 2.88 2.4 Translation y

III 3.52 1.1 Torsion

IV 5.31 0.9 Translation x

V 7.09 0.7 Torsion

3 I 2.58 2.5 Translation x

II 2.88 1.1 Translation y

III 3.52 1.2 Torsion

5 I 2.67 1.2 Translation y

II 3.15 2.5 Mainly translation y

(slightly complex)

III 3.96 1.1 Torsion

6 I 2.24 2.9 Translation x

II 2.67 1.8 Translation y

III 3.96 1.0 Torsion

IV 5.80 1.5 Translation x

V 7.54 0.7 Torsion
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checks. In fact, those based on coherence values and mode shape complexity have

been proved to be insufficient in similar conditions. On the contrary, a detailed

investigation of the recorded responses through several complementary tools is

definitely more effective in the presence of dominant frequencies induced by dynamic

interaction effects. Such peak frequencies, similar in the aspect to the actual structural

resonances, make the modal identification by a single method particularly complex.

It is also interesting to note the presence of a spurious harmonic at 6.2 Hz in the

response spectra (Fig. 5.16). It was due to rotating equipment (the engine of a

plumbing) located in the basement of the building. Such harmonic can be clearly

identified in Fig. 5.16 as a sharp-pointed resonance. It is far enough from relevant

structural modes, so their identification has not been influenced by its presence.

Its character of spurious harmonic is remarked by the very low damping ratio

(ξ¼ 0.005 %) and by the aspect of the identified source correlation provided by

SOBI (Fig. 5.20).
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Fig. 5.20 Spurious harmonic at 6.2 Hz due to rotating parts: source autocorrelation (a) and

spectrum (b) obtained from application of the SOBI algorithm, (# Elsevier Ltd. 2012), reprinted

with permission
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5.6 Development of Predictive Correlations

OMA is definitely a valuable and effective tool to enhance the knowledge about

the dynamic behavior of structures. Even if model updating is intuitively a natural

(and probably the most popular) approach to nondestructive structural investigation

and assessment of the dynamic behavior of structures, modal data can also be used

to develop empirical models and correlations for the prediction of the dynamic

properties of selected classes of homogeneous structures.

An example of such models has already been introduced in Sect. 5.2 to describe

the dependence of damping on the amplitude of vibrations (Jeary 1986). This

section illustrates how modal parameter estimates obtained from response measure-

ments in operational conditions for homogeneous structures can be processed to

develop empirical correlations for the prediction of natural periods as a function of

relevant geometric parameters.

The fundamental period of vibration plays a primary role in determining the

seismic demand. Recent destructive earthquakes have shown a correlation between

the level of seismic damage experienced by a given structure and the closeness

between its fundamental vibration period and the predominant period of the soil

motion. Thus, seismic risk management in urban areas and the development of

damage scenarios can benefit of accurate evaluations of the dynamic characteristics

of structures.

A reliable evaluation of the dynamic properties of a structure is relevant for both

structural design and seismic performance assessment. The latter is of particular

interest in the case of historical structures, where interventions have to be carefully

calibrated and very accurate structural models and analyses are necessary.

The estimation of the modal properties and the prediction of the seismic

response of a structure usually take advantage of numerical modeling. However,

when prescribed regularity conditions are fulfilled so that linear static analyses can

be carried out, a complete modal analysis can be avoided. In fact, only the value of

the fundamental period is required.

It can be estimated as a function of geometric parameters (usually, the height) by

appropriate experimental correlations. In fact, for a given structural typology, the

dependence of the fundamental period on mass and stiffness can ultimately be

referred to geometric parameters, such as the height and the plan dimensions.

In this section attention is focused on the development of empirical correlations

for the prediction of the fundamental periods of masonry towers belonging to the

Italian architectural heritage. The development of the predictive correlations is

based on the results of OMA tests carried out on several historical masonry towers

in Italy.

The effects of recent earthquakes (Umbria-Marche 1997, Molise 2002, L’Aquila

2009, Emilia 2012) on this type of structures have raised the attention on their

seismic performance. The large research efforts are also witnessed by the increasing

number of dynamic tests carried out on historical masonry towers in Italy and by the

development of specific guidelines for their seismic performance assessment

(Ministero dei Beni e delle Attività Culturali 2010). Such guidelines recognize
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the role of OMA in enhancing the knowledge about the dynamic behavior of

historical structures.

The actual seismic response of a structure depends on the evolution of its

dynamic properties along the transient base excitation. However, their accurate

evaluation at low levels of vibration is also of interest, because the structural

behavior in the linear regime and the initial seismic response depend on this set

of dynamic properties. The lengthening of the natural period is only a consequence

of the input ground motion and its intensity. Thus, an accurate linear model of the

structure, representative of its actual behavior, is the fundamental requirement also

for nonlinear analyses. Seismic vulnerability assessment (Sepe et al. 2008) and

damage detection can also take advantage of accurate estimates of the modal

properties in operational conditions. In particular, these are relevant in the context

of seismic vulnerability assessment at the large scale, when the knowledge of the

dynamic parameters of structures and the underlying soil allows the identification

of resonance phenomena (such an approach has been recently adopted for

microzonation studies in large cities; see, for instance, Navarro et al. 2004, Panou

et al. 2005, Mucciarelli et al. 2008).

All the mentioned applications of modal data explain the large research efforts

for the development of empirical correlations for the prediction of the fundamental

periods of structures.

In the case of historical towers and similar high-rise structures, their seismic

behavior depends on factors such as slenderness, degree of connection between the

walls, presence of lower nearby structures acting as horizontal restraints. Since

masonry towers are usually characterized by a lower geometric and structural

complexity with respect, for instance, to churches, they can be analyzed according

to classical structural schemes through accurate and detailed models. Even linear

models can provide useful and reliable information about the seismic performance

of towers, because they are basically isostatic structures and, therefore, the stress

redistribution is very low. The lack of significant energy dissipation is also one

of the main reasons why masonry towers are very sensitive to seismic actions. As a

consequence, linear dynamic analyses play a primary role in the investigation of

the amplification of motion along the structure. This is a critical aspect

above all when there are bells in the upper part of the tower. The bell cell, in

fact, causes a loss of regularity in elevation. The wide openings for the bells turn

the walls into slender and poorly compressed columns. These are usually very

vulnerable also in consideration of the amplification of motion from the base to

the top of the structure.

A simplified model of masonry towers under seismic loading usually

represents the structure as a cantilever beam subjected to the horizontal forces

associated to the earthquake. When a linear static analysis is adopted, the total

horizontal force depends on the value of the elastic response spectrum. This is

evaluated at a period equal to the fundamental natural period of the structure in

the considered direction.

The dependence of the seismic action on the fundamental period of the tower

requires effective tools for its prediction. The Italian guidelines for intervention
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on historical structures (Ministero dei Beni e delle Attività Culturali 2010)

recommend the use of fundamental periods of vibration obtained from ambient

vibration tests, because the dynamic properties they provide can be referred to as

representative of the linear elastic behavior of the structure. The effect of high

amplitude vibrations is taken into account through a simplified approach based on

the amplification of the period estimated in operational conditions by a factor

in the range 1.4–1.75. The amplification factor is introduced for analyses at

the ultimate limit state. It accounts for the lengthening of the period induced

by increasing levels of damage, cracking and other nonlinear phenomena at high

amplitude vibrations.

A large experimental campaign, eventually complemented by an extensive

literature review, is the necessary preliminary step for the collection of a suffi-

ciently large database of modal properties and relevant geometric information

about historical masonry towers in view of the development of empirical

correlations. The herein discussed application started from the experimental cam-

paign, based on ambient vibration tests, aimed at the identification of the funda-

mental dynamic properties of several historical bell towers in the Molise region

(Southern Italy). The results of this experimental campaign are herein summarized

for the sake of completeness.

OMA has been used to estimate the fundamental modal parameters of a

number of bell towers (Fig. 5.21) belonging to the architectural heritage of the

Molise region. The dynamic response of the structures has been measured at

different levels by installing a variable number of accelerometers, ranging from

6 to 20, in couples at opposite corners of the towers, so that both translational

and torsional modes could be observed. The accelerometers were of the force

balance type, with bandwidth (�3 dB) of about 200 Hz (starting from DC) and

high dynamic range (more than 140 dB). The full-scale range was 0.5 g and the

sensitivity was 20 V/g. The records were 3,600 s long and sampled at 100 Hz.

After data validation, filtering and decimation, the ambient vibration response

of the bell towers has been analyzed by well-established techniques such as

FDD, SSI and SOBI. Data processing in the frequency domain has been carried

out adopting Hanning window and 66 % overlap in spectrum computation.

Results of modal identification of Molise’s bell towers are summarized in

Table 5.17.

The identified modal properties have been collected into a database, including

also information about geometry, materials, type and number of sensors and so

on. The database has been complemented by data collected through an extensive

literature review about masonry bell towers located in Italy. As a final result,

geometric data and the experimental estimates of the modal properties in opera-

tional conditions of a population of 30 Italian masonry bell towers have been stored

in the database.

The empirical correlation for the prediction of the fundamental period as a

function of geometric data has been obtained by fitting the collected data by an

assumed mathematical law. Its parameters have been estimated by a least squares

approach (Chap. 2). Following similar studies available in the literature
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(Lagomarsino 1993), a linear relationship between the fundamental period T1 and

the height H of the towers has been assumed:

T1 ¼ C � H ð5:15Þ

obtaining the following value for the constant:

C ¼ 0:02 ð5:16Þ

Fig. 5.21 The investigated bell towers in the Molise region: Santa Maria delle Rose bell tower in

Bonefro (a), S. Pardo bell tower in Larino (b), Santa Maria della Pietà bell tower in Larino (c),

Santa Maria Maggiore bell tower in Morrone del Sannio (d), Sant’Alfonso dei Liguori bell tower

in Colletorto (e), San Giacomo bell tower in Santa Croce di Magliano (f), Santa Maria delle Rose

bell tower in Montorio nei Frentani (g), Santa Maria Assunta bell tower in Provvidenti (h), Santa

Maria Assunta bell tower in Ripabottoni (i)
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that implies:

T1 ¼ 0:02 � H: ð5:17Þ

In Fig. 5.22 the values of the fundamental period predicted according to (5.17)

are reported as a function of the corresponding experimental estimates. The analysis

of the distribution of the points with respect to the bisector (represented by the black

line) points out the good agreement between predicted and experimentally

estimated values of the period.

If other formulations for the prediction of the same parameters are available, the

L2 norm of the error between predicted and measured values (Chap. 2) can be

evaluated to compare the relative predictive performance.

Table 5.17 Molise’s bell towers: output-only modal identification results

Bell tower f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz) f5 (Hz) f6 (Hz)

Santa Maria delle Rose (Bonefro) 2.96 3.52 6.04 6.96 8.44 –

Santa Maria delle Rose

(Montorio nei Frentani)

2.74 3.43 3.80 6.02 7.39 7.70

Santa Maria Maggiore (Morrone del Sannio) 1.96 2.24 4.76 – – –

Santa Maria Assunta (Ripabottoni) 2.27 2.68 3.37 3.88 – –

Santa Maria della Pietà (Larino) 3.61 3.86 4.34 4.75 7.77 8.43

San Giacomo (Santa Croce di Magliano) 3.06 3.44 4.08 – – –

San Pardo (Larino) 2.81 3.34 7.00 – – –

Sant’Alfonso dei Liguori (Colletorto) 4.44 5.16 6.96 7.68 8.80 –

Santa Maria Assunta (Provvidenti) 2.82 3.40 4.00 – – –

Fig. 5.22 Comparison between experimental and predicted values of the fundamental period of

vibration of Italian masonry towers (the black line represents the bisector of the plane)
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In the present case the collected data have also made possible the development

of correlations for the prediction of the natural period of higher modes as a function

of the period of the fundamental mode. In fact, the natural period T2 of the second

mode of Italian masonry towers was found to be related to the natural period T1 of

the first mode as follows:

T2 ¼ 0:86 � T1: ð5:18Þ

In fact, as shown in Fig. 5.23, the collected data show a linear correlation

between the two values of the natural period.

Finally, the period of the third (torsional) mode can be estimated from the

fundamental period as follows:

T3 ¼ 0:4 � T1 ð5:19Þ

while the periods of the higher bending modes can be estimated from the periods of

the corresponding fundamental modes as follows:

T4 ¼ 0:3 � T1 ð5:20Þ

T5 ¼ 0:3 � T2: ð5:21Þ

The correlations expressed by (5.19), (5.20) and (5.21) are based on a more

limited number of experimental values (about ten) and they have to be validated

against a larger population of samples. Nevertheless, they are in good agreement

with similar correlations available in the literature for masonry buildings

(Ministerio de Fomento 2002).

Fig. 5.23 Correlation between the natural periods of the first two modes for the Italian masonry

towers
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In summary, the present and the previous sections in the chapter have presented

a number of possible applications of the techniques discussed in this book. Most

of the analyzed case studies refer to real experimental tests. They are aimed at

giving the reader an overview of the potentialities and limitations of OMA for real

life applications. From the analysis of these and eventually other experiences

reported in the literature about OMA the reader can get useful hints for design of

experiments and data processing.
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Automated OMA 6

6.1 Statement of the Problem

A number of applications, ranging from modal-based damage detection to

vibration-based monitoring of tensile loads in cables and rods, require automated

procedures for the output-only identification of dynamic parameters. The develop-

ment of automated OMA procedures is not a trivial task since traditional modal

identification requires extensive interaction by a skilled analyst, as discussed in the

previous chapters. When automated OMA is integrated within continuously

operating structural monitoring systems, computational efforts have also to be

carefully assessed.

Most of the automated OMA procedures represent an evolution of traditional

(manual) methods, since they rely on the same theoretical concepts. Moreover, the

previously discussed requirements of OMA testing related to measurement chain

and sensor layout apply also to automated OMA. Thus, in the following sections

attention is focused only on the automated extraction of the modal parameters,

moving from the theoretical background of OMA methods illustrated in Chap. 4.

The first attempts to automate the modal identification process can be traced

back to the end of the last Century and the beginning of the current one (see, for

instance, Vanlanduit et al. 2003, Peeters and De Roeck 2001a, Pappa et al. 1997).

However, the automation of OMA methods has become a relevant and very active

research field after 2005, as confirmed by the large number of papers appeared in

the literature in the subsequent years.

The first systematic analyses and classifications of automated OMA procedures are

very recent (Rainieri and Fabbrocino 2010, Rainieri et al. 2011a). They have made a

clear distinction between automated modal parameter identification methods and

automated modal tracking methods. The former estimate the modal parameters from

a single dataset without any prior information about the dynamic properties of the

structure under investigation; the latter monitor (track) the evolution of the modal

parameters of a structure over time taking advantage of a set of reference modal

parameters. This set can come from either an automated ormanualmodal identification.

C. Rainieri and G. Fabbrocino, Operational Modal Analysis of Civil Engineering

Structures: An Introduction and Guide for Applications, DOI 10.1007/978-1-4939-0767-0_6,
# Springer Science+Business Media New York 2014
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In spite of their minor autonomy with respect to fully automated modal parameter

identification methods, modal tracking procedures are advantageous for applications

requiring short response time and low computational efforts.

In the following sections, after a brief literature review about automated OMA

methods, two different automated modal parameter identification methods and an

automated modal tracking method are described and applied to a number of case

studies. The reported applications show that a reliable and accurate automated

identification of the modal parameters is possible. They point out the potential of

automated OMA in solving a number of monitoring applications, but also the

drawbacks related to the influence of environmental and operational factors on

the modal parameter estimates. It is worth noting that the herein described

automated OMA methods are the authors’ research outcome in the field. Thus,

this chapter basically reports a specific viewpoint about the matter; the reason is that

a wide consensus in the definition of the “best methods” for automated output-only

modal identification has not been reached, yet. Nevertheless, relevant references are

reported at the end of the chapter for the reader interested in more details about

automated OMA methods proposed by different research groups.

6.2 Automated OMA in Frequency Domain: LEONIDA

6.2.1 Objectives

LEONIDA is a fully automated frequency domain modal parameter identification

method based on the SVD of the output PSD matrices, on the analogy with the FDD

method. The method has been developed to overcome the limits of many automated

OMA algorithms concerning the static definition of thresholds and analysis

parameters. In fact, if the values of the analysis parameters are static, they have

to be calibrated. Calibration is often time consuming and it must always be carried

out at the beginning of a new monitoring application; moreover, a recalibration

could be required in the case of monitored structures experiencing some changes in

their dynamic properties, so that the previous set of analysis parameters is no more

adequate. The development of LEONIDA has also been aimed at simplifying and

making as physically intuitive as possible the automated identification of the

structural modes. In order to clarify these aspects, a brief review of the available

automated OMA procedures before the development of LEONIDA is herein

reported.

The available algorithms for automated OMA were based on either control

theory or conventional signal processing.

As illustrated in Chap. 4, in classical modal analysis the model order is usually

overspecified to get all physical modes in the frequency range of interest. However,

the discrimination between physical and mathematical modes requires a lot of

interaction with an expert user. It takes advantage of tools, such as the stabilization

diagram, to select the physical poles. This selection is not a trivial task. It may be

difficult and time consuming depending on the quality of data, the performance of
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the estimator and the experience of the user. Since the extensive interaction

between tools and user is inappropriate for monitoring purposes, the first attempts

to automate OMA introduced selection criteria and clustering tools to separate the

physical poles from the others without user interactions. For instance, one of the

early approaches to automated modal identification, based on the LSCF method

(Vanlanduit et al. 2003), performed the selection of physical poles from a high-

order model by means of a number of deterministic and stochastic criteria and a

fuzzy clustering approach. However, the algorithm for pole selection was quite

complex and demanding from a computational point of view.

A very simple criterion for automated modal parameter identification via SSI

was proposed in the same period (Peeters and De Roeck 2001a) and applied to

monitor the environmental and damage effects on the dynamic behavior of the Z24

Bridge in Switzerland. It was based on the selection, in the stabilization diagram,

of the poles that were at least five times stable. This basic criterion has also been

applied to track the effects of changing environmental conditions on the modal

parameters of Tamar bridge (Brownjohn and Carden 2007). However, it cannot

ensure that the identified poles are physical (Chap. 5).

A more refined automated OMA procedure based on the SSI technique was

proposed some years later (Deraemaeker et al. 2008). It was basically a tracking

method because an initial set of modal parameters, using stochastic subspace

identification and stabilization diagram, had to be identified before launching the

procedure.

A fully automated method for extraction of modal parameters by SSI was

proposed in the same period (Andersen et al. 2007). It was based on the clear

stabilization diagram obtained according to a multipatch subspace approach. Pole

extraction was carried out by the graph theory. This algorithm was very fast, so that

it could be used as a monitoring routine, but further improvements were needed to

increase its reliability and robustness.

A refinement of automated Cov-SSI was achieved some years later (Magalhaes

et al. 2009). It was able to ensure an effective identification of closely spaced

modes, but it showed poor performance in the identification of weakly excited

modes. It was based on the application of an advanced clustering algorithm

allowing a reliable identification of structural modes. However, a number of

parameters had to be set at startup by time-consuming calibrations. Among the

parameters to be set there was the number of block rows of the Toeplitz matrix of

correlations, whose value has an influence on the quality of the stabilization

diagram and is somehow dependent on the signal-to-noise ratio (Chap. 5). Thus,

the quality of signals had to be evaluated in advance and the number of block rows

chosen accordingly in order to obtain high-quality stabilization. Other parameters

requiring calibration were related to the clustering algorithm (the interested reader

can refer to Tan et al. 2006 for a detailed analysis of clustering techniques). The

rules to build the hierarchical tree and, in particular, the tree cut level had to be set

according to the noise level of signals. A preliminary phase of analysis and manual

initialization of the system was, therefore, necessary before each application. As

previously mentioned, this approach yields static acceptance criteria that cannot

6.2 Automated OMA in Frequency Domain: LEONIDA 269

http://dx.doi.org/10.1007/978-1-4939-0767-0_5
http://dx.doi.org/10.1007/978-1-4939-0767-0_5


always ensure an effective tracking of dynamic parameters over time. The need of

avoiding tuned and statically set parameters was not fully understood, yet.

Among the methods based on conventional signal processing, the so-called time

domain filtering method (Guan et al. 2005) was a tracking procedure based on the

application of a band-pass filter to the system response in order to separate the

individual modes in the spectrum. The frequency limits of the filter were static and

user specified according to the PSD plots of response signals. However, when the

excitation is unknown, it might be difficult to identify the regions where certain

modes are located according only to power spectrum plots. Moreover, in the case of

close modes, it is very difficult, or even impossible, to correctly define such limits

so that natural changes in modal frequencies can be tracked. Thus, this method only

ensured a rough modal tracking.

The automation of the FDDmethod (Brincker et al. 2007) marked a fundamental

step towards the elimination of any user interaction and the use of automated OMA

as modal information engine in SHM systems. It was based on the identification of

the modal domain around each identified peak in the singular value plots according

to predefined limits for the so-called modal coherence function and modal domain

function. The recommended limit value was 0.8 for both the indicators. However, if

the limit value for the modal coherence indicator was somehow justified (Brincker

et al. 2007) on the basis of the standard deviation of correlation between random

vectors and on the number of measurement channels, few comments were reported

about the modal domain indicator. Moreover, threshold setting for peak detection

still affected the results.

A slightly modified version of this approach was applied to the permanent

monitoring of the “Infante D. Henrique” bridge (Magalhaes et al. 2008). A reduced

effectiveness of the procedure was observed whenever noise level in spectra

increased. Among the parameters to be set there was also the MAC rejection

level (Chap. 4). It was set by means of a number of sensitivity tests and time-

consuming tuning for the monitored structure. The selection of a very small value

(0.4) was recommended. However, it was recognized that this value could be

ineffective in the case of small number of sensors and close natural frequencies

associated to similar mode shape estimates. Moreover, the need for a time-

consuming initialization phase and the related static settings of analysis parameters

did not guarantee that they were adequate over the whole monitoring period, in

particular in the case of remarkable changes in the structure such as those induced

by extreme events.

Automated versions of SOBI and of transmissibility-based OMA were also

available. About SOBI, the identification of structural modes was based on the

rejection of all modes out of the frequency range of interest and of sources

characterized by a fitting error higher than 10 %; the selection of the structural

modes from the remaining sources was based on the computation of a confidence

factor (Poncelet et al. 2008). However, the effectiveness of the method in the

analysis of real measurements was not proved.

The automated transmissibility-based OMA method started from the SVD of a

two-column matrix consisting of transmissibility functions evaluated at different
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loading conditions. Since all transmissibility functions converge to the same value

at the natural frequency of the system, rank-one matrices marked the presence of

structural modes. They were identified by analyzing the plot of the inverse of the

second singular value, which was characterized by a peak at the natural frequency

of a mode. However, peak selection was still carried out through the static definition

of a threshold. Moreover, in the presence of measurement noise the approach was

not reliable. The use of a smoothing function was proposed to overcome this

drawback (Devriendt et al. 2008), but it had to be carefully applied to avoid

distortions.

In summary, the available automated OMA methods were affected by some

common drawbacks:

• most of them moved from a threshold-based peak detection; as a consequence, a

first calibration phase was needed for its appropriate definition; only some of

the identified peaks corresponded to actual modes, thus validation criteria were

needed; moreover, performance of peak detection algorithms got worse in the

presence of measurement noise;

• identification of actual modes was based on a number of statically set

parameters; a time-consuming calibration process for each monitored structure

was required; the static identification of thresholds and parameters was often

inadequate to follow natural changes in modal properties of structures due to

damage or environmental effects;

• most of the algorithms were somehow sensitive to noise, and higher or poorly

excited modes were not always identified.

Thus, an alternative strategy was needed. In the case of LEONIDA, it was based

on the definition of some objective criteria for the identification of mode bandwidth

before modal parameter extraction.

It is interesting to note that the distinction between automated modal parameter

identification and automated modal tracking and the importance of avoiding the

tuning of analysis parameters at startup have recently been recognized and accepted

also by other authors (see, for instance, Reynders et al. 2012).

6.2.2 Principles and Implementation

The identification of the bandwidth of modes in LEONIDA is based on simple

considerations about the structure of the output PSD matrix when it is expressed in

pole-residue form (4.13). When multiple roots do not exist, in the proximity of a

pole of the structure the matrix is dominated by the corresponding term. Since the

residues for a given mode are independent of frequency, the information about the

amplitude depends on the denominator, which reaches its maximum. Taking into

account that the residues hold the information about the mode shapes and that these

can be estimated from the singular vectors of the output PSD matrix (Chap. 4), it is

possible to identify the bandwidth of modes by assessing the stability of the singular

vectors associated to a certain frequency over a number of subsequent datasets. In

particular, at a given frequency line in the bandwidth of a mode, the MAC sequence
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computed between the first singular vectors obtained from the analysis of the first

and the n-th block of data, with n¼ 1, . . ., nmax:

MAC ut01 ωð Þ
� �

; ut0þnΔT
1 ωð Þ

� �� �

¼
ut01 ωð Þ
� �H

ut0þnΔT
1 ωð Þ

� �

�

�

�

�

�

�

2

ut01 ωð Þ
� �H

ut01 ωð Þ
� �

� �

ut0þnΔT
1 ωð Þ

� �H
ut0þnΔT
1 ωð Þ

� �

� �

ð6:1Þ

should be constant and equal to 1 for a stationary and ergodic system. This is

approximately true for real datasets due to the unknown input and the presence of

noise; thus, specific selection criteria and tolerances must be set. In (6.1) the

superscripts denote the starting time (t0 and t0+ nΔT ) of the first and the n-th

record, respectively. The records have the same duration ΔT, yielding spectra

characterized by the same number of averages and frequency resolution. Note

that, even if the SVD of the output PSD matrix at resonance gives un-scaled

mode shapes (Chap. 4) and the scaling factor can vary from record to record, the

algorithm is not sensitive to changes in scaling. In fact, it is based on the analysis of

the sequence of MAC values that are not affected by a constant multiplier.

Taking into account the basic principle for the identification of the bandwidth of

modes, the algorithm can easily be implemented as follows. As in the classical FDD

method, the fundamental data processing tool is represented by the SVD of the

output PSD matrix. After the decomposition, the first singular vector at each

frequency line is considered. This step is repeated for a number of subsequent

records. Afterwards, the MAC between the first singular vectors at the same

frequency line (6.1) is computed. Since the MAC index is quite sensitive to

noise, appropriate countermeasures for noise reduction have to be considered, as

discussed below.

The averaged MAC vs. frequency plot (Fig. 6.1) looks like a coherence function.

In the frequency range of a given mode, density of points increases, MAC value is

high (close to 1) and a kind of bell can be observed. The identification of the

bandwidth of the modes is carried out through the evaluation of some statistical

parameters related to the MAC value sequence and its first derivative at each

frequency line. Since the error in mode shape estimation is basically related to

the error in spectrum estimation and, as such, to the number of averages (Chap. 2;

the interested reader can also refer to Bendat and Piersol 2000 for more details), it is

maintained at a given level by defining the record duration for each step. Thus, the

sequences of MAC values indicating the presence of a mode can be identified by the

analysis of their statistical parameters, which are mostly influenced by the presence

of a mode rather than by the error in spectrum estimation. Mean and standard

deviation are the statistical parameters assumed for mode bandwidth identification.

In order to have a good estimation of such parameters, at least ten steps have

generally to be taken into account.

Figure 6.2 shows that the MAC function is nearby horizontal only at the

frequency lines located within a mode bandwidth. It is possible to assume that
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such a function is horizontal if the reference statistical parameters satisfy some

predefined limits; in particular, the MAC value sequence must have an average

value higher than 0.95 and a standard deviation lower than 0.01; moreover, the first

derivative of the MAC sequence must be, on average, lower than 0.01, with a

standard deviation lower than 0.01. These limits are the result of a calibration

process, carried out by varying measurement hardware characteristics, level of noise

in measurements and number of analysis steps. However, for a better definition of

such limits, a given number of steps in the computation of the averaged MAC

vs. frequency plot should be used. In fact, a large number of steps would result in a

strict and more refined definition of such limits and, thus, in the identification of the

bandwidth of modes less sensitive to noise effects.

In the current implementation of the algorithm, frequency resolution and record

length are held constant and equal to 0.01 Hz and 10 min for each step, respectively.

This duration seems to be the minimum one providing a sufficiently averaged

spectrum, thus resulting in a good compromise between accuracy and computational

time. However, longer records can result in improved definition of spectra, where

most of the noise is averaged out, and, therefore, in more accurate mode shape

estimates, thus reducing noise effects on MAC. A large number of averages are

also required to reduce the effects of transients, if they are expected; in fact, they can

affect mode shape estimation, resulting in a lower value of MAC. Even if the MAC

slightly changes due to weakly nonstationary signal effects, it may happen that, due

to its variation, the previously defined limits are no more satisfied. As a consequence,

in particular in the presence of closely spaced modes, it is possible that a mode is not

identified.
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From the analysis of MAC sequences, the bandwidth of a number of modes can

be identified. Within each bandwidth, the use of peak detection algorithms over the

corresponding portion of the first singular value plot leads to the identification of

the natural frequency for that mode. The corresponding singular vector at that

frequency line is a good estimate of the mode shape of the structure.

A flowchart of the algorithm is shown in Fig. 6.3. It can be easily implemented

in LabVIEW environment by adopting the state machine architecture: in fact,

a

b
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well-defined stages can be identified (Fig. 6.4). The data source can be selected at

start-up. For instance, data can be retrieved from file, but also from a remote

MySQL database or directly from measurement hardware, thus allowing integration

of the software within fully automated SHM systems. If data are retrieved from file,

the number of steps cannot be controlled but it depends on the record length.

As shown in Section 6.2.4, only 1-h long (or longer) records can assure a sufficiently

large number of steps and, therefore, results characterized by high reliability.

In the first stage, the MAC sequences at all discrete frequency lines are computed.

Computational time can be optimized adopting parallel recording and data processing

procedures. Moreover, a partial overlap between subsequent records can be consid-

ered in order to increase the number of steps in the case of data retrieved from file, or

to keep the global estimation time low when another data source is adopted.

In the second stage, mode bandwidths are identified according to the previously

mentioned limits. At the end of this state, a number of bandwidths are identified by

their limit values of frequency.

In the third stage, modal parameters are extracted in a fully automated way by

analyzing only the portion of the singular value plots in the given mode bandwidth.

6.2.3 Comparison with Other Frequency Domain Algorithms

The original aspects of LEONIDA can be better appreciated if it is compared with

other automated OMA procedures based on FDD and proposed by other research

groups.

Data acquisition

SVD of output PSD matrix

MAC vs. frequency plot

computation 

Mode bandwidth

definition 

Modal parameter

extraction 

Fig. 6.4 LEONIDA: State

sequence for software

implementation
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FDD is an efficient and easy to manage OMA technique, but it requires user

interaction in its classical implementation (Chap. 4). Its simplicity has made it

particularly attractive for the implementation of automated OMA procedures. The

first approach to automated output-only modal parameter identification via FDD

reported in the literature (Brincker et al. 2007) starts from the identification

(through an automated peak picking algorithm) of all peaks in the first singular

value plot provided by the SVD of the output PSD matrix. After this preliminary

phase, it is necessary to assess the nature of the peaks and associate them to

structural modes, noise, or spurious harmonics. The last case can be tackled

according to the methods described in Chap. 5.

In order to distinguish structural modes from noise peaks, and different close

physical modes, two indicators are defined. First of all, the modal coherence

(basically, the MAC index), calculated between the first singular vector at the

peak and the first singular vector at adjacent points, is used to distinguish physical

modes from noise peaks. If the modal coherence is close to unity, then the first

singular value at the neighboring point belongs to the same dominating mode

(Brincker et al. 2007). An adjacent point is assumed to hold physical information

if the modal coherence exceeds a threshold level. The suggested threshold value for

the modal coherence indicator is 0.8.

Once the selection of peaks holding modal information is completed, different

closely spaced modes are separated through the so-called modal domain indicator.

It consists in the MAC computed between the first singular vectors corresponding to

neighboring points in a certain frequency range around a given peak. If its value is high

over the whole considered frequency range, only one mode is dominating. All points

characterized by a modal domain indicator higher than a user-defined threshold

(the recommended value is 0.8) identify themodal domain around the considered peak.

The main steps of this automated FDD method can be, therefore, summarized as

follows:

• peak identification;

• check if peak is physical (modal coherence and harmonic indicator);

• if peak is physical, then the corresponding modal domain is defined around it;

otherwise, the noise domain is set;

• the identified modal and noise domains are excluded from the search set (initial

search set goes from DC to the Nyquist frequency);

• search is stopped when the search set is empty, the peak is below a predefined

excitation level or a specified number of modes has been estimated.

Another automated FDD method has been developed afterwards (Magalhaes

et al. 2008). It is characterized by a similar approach but it is oriented to simplify

some aspects of the previous process. In fact, it is demonstrated that a reliable

modal identification can be obtained adopting a suitably low limit value for the

modal coherence. However, this threshold must be defined for each monitored

structure by means of time-consuming sensitivity tests. Moreover, it has been

recognized that the recommended value (0.4) can be ineffective if the number of
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sensors is small and similar mode shape vectors for close natural frequencies are

obtained from the identification process.

These circumstances clearly show that those methods are characterized by

some relevant drawbacks. First of all, the threshold-based peak detection is very

sensitive to noise and spurious harmonics, as remarked also by Brincker et al. (2007).

If the automated FDD is used as a monitoring routine, the threshold for peak detection

has to be defined by means of a time-consuming calibration process based on a

number of sensitivity tests carried out on the monitored structure, as suggested by

Magalhaes et al. (2008). No specific suggestions exist for a-priori threshold definition

in the case of single tests.

It is worth noting that an initialization phase can eventually be accepted for SHM

applications, when the time spent to carry out sensitivity analyses for threshold and

parameter definition is negligible with respect to the whole observation period.

In the case of single tests, instead, there is no other way than a-priori threshold and

parameter definition. Criteria for objective identification of physical modes are,

therefore, of primary importance to avoid any preliminary initialization and to ensure

the versatility of the algorithm for different applications (single modal identification

tests, continuous SHM) independently of the structural typology. An attempt to tackle

this issue is present in the first method (Brincker et al. 2007). However, if the limit

value for the modal coherence indicator is somehow justified on the basis of the

standard deviation of the correlation between random vectors and of the number of

measurement channels, few comments are reported about the modal domain

indicator.

It is also worth noting that the number and position of sensors can influence the

correlation between singular vectors in a certain frequency range, where more than

one mode could be present. In the presence of a few not optimally located sensors,

criteria based on correlation between singular vectors in a certain frequency range

may fail. Finally, parameters and thresholds that have been set for a given structure

through an initialization phase are not guaranteed to be always adequate even for

the structure itself; this is the case, for example, of structures that experience

remarkable changes (damages) due to extreme events.

LEONIDA overcomes most of these drawbacks since there is no preliminary

threshold-based peak detection. In LEONIDA the logical process is reversed,

exploiting the preliminary identification of the bandwidth of the modes. Within

each bandwidth, modal parameters are then estimated. In addition, since it is based

only on the correlation between singular vectors at the same frequency line, it is

virtually insensitive to number and position of sensors. Some tests, in fact, have

shown that it is effective provided that the observability of a given mode is ensured

by at least two sensors (see, for instance, Rainieri et al. 2012). The definition of

criteria for mode separation and the calibration of limits on a number of different

datasets, case studies, and measurement chains allow avoiding any initialization

phase and ensure the applicability of LEONIDA in different conditions (single

tests, continuous monitoring).
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The innovative features of LEONIDA in comparison with the automated FDD

method proposed by Brincker et al. (2007) are schematically reported in Fig. 6.5.

It is worth noting that some steps (identified by the dashed line) are omitted or

implicitly carried out in LEONIDA. In addition, the same figure shows that

LEONIDA follows a reverse logical process, where the estimation of the natural

frequency comes after the identification of the bandwidth of modes.

The next section deals with the identification performance of LEONIDA when it

is applied to case studies characterized by different degrees of complexity (well-

separated modes, closely spaced modes, low SNR). The main issues related to the

identification of higher modes and poorly excited modes are also discussed.

6.2.4 Explanatory Applications

The identification performance of LEONIDA has been assessed through its appli-

cation to case studies characterized by different degrees of complexity. Different

record lengths andmeasurement hardware have been considered. Structure under test,

Fig. 6.5 Innovative features of LEONIDA with respect to previous automated FDD procedures

(the dashed boxes denote analysis steps that are avoided or implicitly carried out in LEONIDA)
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hardware characteristics, and record lengths are summarized for completeness in

Table 6.1. Attention has been focused first on the identification of fundamental

modes, which are of primary interest for civil engineering structures in seismically

prone areas due to the related (typically) large amount of participating mass.

Performance in the identification of higher modes and poorly excited modes has

also been investigated in view of a more general use.

Results are shown in Table 6.2 and compared with those provided by classical

(manual) output-only modal identification. They point out that a reliable and fully

automated identification of the fundamental modes by LEONIDA is possible.

Furthermore, the algorithm makes possible also the estimation of the bandwidth

where the considered mode is dominating (Fig. 6.6). In this sense LEONIDA acts

like a source separation technique. Scatters of natural frequencies can be addressed

to the finite frequency resolution. About mode bandwidth estimation, the availabil-

ity of a large amount of data in the case of the School of Engineering Main Building

(Rainieri et al. 2011b) has given the opportunity to test the algorithm for different

numbers of steps and to investigate the effect of record length on the stability of

results. Four records have been considered, with different characteristics and

duration. RC0 and RC1 are stationary signals. The first has been recorded during

the night, the second in the morning of an ordinary weekday. RC2 and RC3, on the

contrary, are weakly nonstationary signals recorded during two important (and

crowded) football matches at the nearby stadium (Rainieri et al. 2011b). As

shown in Table 6.2, the algorithm has been able to identify the fundamental

modes of the structure in all test cases.

Table 6.1 Summary of records and measurement hardware, (# Elsevier Ltd. 2010), reprinted

with permission

Structure Sensors

Data acquisition

hardware Record Duration (s)

Tower of the Nations

(Naples)—r.c.

Epi-sensor FBA

ES-U2 (Kinemetrics

Inc.)

K2 (Kinemetrics

Inc.)—24 bit ADC

TdN1 1,500

TdN2 2,400

Bell tower

(Montorio)—masonry

Epi-sensor FBA

ES-U2 (Kinemetrics

Inc.)

TrioGuard 32—16

bit ADC

Single

record

3,600

Bell tower (Montelongo)—r.c. Epi-sensor FBA

ES-U2 (Kinemetrics

Inc.)

TrioGuard 32—16

bit

Single

record

3,600

S. Maria del Carmine Bell

Tower (Naples)—masonry

Epi-sensor FBA

ES-U2 (Kinemetrics

Inc.)

PXI-4472 (NI)—

24 bit ADC

Single

record

1,800

School of Engineering Main

Building (Naples)—r.c.

Epi-sensor FBA

ES-U2 (Kinemetrics

Inc.)

K2 (Kinemetrics

Inc.)—24 bit ADC

RC0 1,200

RC1 1,200

RC2 3,300

RC3 3,800
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Also the extension of mode bandwidths is quite stable in all cases independently

of the record length (Table 6.3). However, record length has an effect on the

identification performance at higher modes. In fact, some tests have shown that

short record lengths yield, as a result of noise, a less clear identification of the

bandwidth of higher, poorly excited modes. Thus, tools for rejection of false

positives are needed in this case. If higher modes are of interest, longer record

durations must be considered. In fact, when the number of steps increases, a number

of wrongly identified frequency ranges disappear, while regions where modes are

actually located remain stable.

Some specific investigations about the performance of the algorithm in the

identification of higher modes and poorly excited modes have been performed.

Selected records have been decimated until a final sampling frequency of 20 Hz and

the modal identification performance has been assessed in the range 0-10 Hz.

Table 6.2 Comparative assessment of the performance of LEONIDA in the identification of

fundamental modes (note that the records of the dynamic response of the Tower of the Nations are

different from that considered in Chap. 5: they have been collected several months after the first

measurement carried out for model refinement), (# Elsevier Ltd. 2010), reprinted with permission

Structure Record Mode fLEONIDA (Hz) fFDD (Hz) fCov-SSI (Hz) fSOBI (Hz)

Tower of the Nations

(Naples)

TdN1 I 0.81 0.81 0.81 0.81

II 1.38 1.38 1.38 1.38

III 1.66 1.66 1.66 1.66

TdN2 I 0.81 0.81 0.81 0.81

II 1.36 1.36 1.36 1.36

III 1.62 1.63 1.63 1.63

Bell tower

(Montelongo)

Single

record

I 3.41 3.40 3.41 3.43

II 4.13 4.13 4.11 4.13

III 5.06 5.06 5.06 5.06

Bell tower (Montorio) Single

record

I 2.75 2.75 2.75 2.75

II 3.43 3.43 3.44 3.44

III 3.84 3.83 3.82 3.82

S. Maria del Carmine

Bell Tower (Naples)

Single

record

I 0.70 0.70 0.70 0.70

II 0.76 0.76 0.76 0.76

School of Engineering

Main Building

(Naples)

RC0 I 0.92 0.92 0.92 0.92

II 0.98 0.98 0.98 0.98

III 1.30 1.30 1.30 1.30

RC1 I 0.92 0.92 0.92 0.92

II 0.98 0.99 0.99 0.98

III 1.29 1.30 1.30 1.30

RC2 I 0.93 0.93 0.93 0.93

II 1.00 0.99 0.99 1.00

III 1.31 1.31 1.31 1.31

RC3 I 0.92 0.93 0.93 0.92

II 0.99 0.99 0.99 1.00

III 1.31 1.30 1.30 1.30
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This frequency range includes the higher modes of the considered test cases.

Results are summarized in Table 6.4. They point out that LEONIDA can identify

also the higher modes. The only exception is represented by the fifth mode of the

Tower of the Nations. It shows that LEONIDA may fail in the presence of poorly

excited modes. However, the identification of poorly excited modes is difficult even

when an expert user carries out a classical output-only modal analysis.

LEONIDA has also been tested against heavily nonstationary signals, such as

those collected by the SHM system of the School of Engineering Main Building on

April 6-th, 2009, and related to L’Aquila earthquake. As expected, LEONIDA has

not been able to identify any structural mode in this case. However, in view of its

peak plot

1.1

1

0.9

0.8

N
o

rm
a
li
z
e
d

 F
ir

s
t 

S
in

g
u

la
r 

V
a
lu

e

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.9 1 1.1 1.2 1.3 1.4

Frequency [Hz]

1.5 1.6 1.7 1.8 1.9

Fig. 6.6 LEONIDA: Example of identified bandwidth of a mode, (# Elsevier Ltd. 2010),

reprinted with permission

Table 6.3 LEONIDA:

identified mode

bandwidths for the School

of Engineering Main

Building, (# Elsevier Ltd.

2010), reprinted with

permission

Record Mode Bandwidth (Hz)

RC0 I 0.87–0.94

II 0.96–1.07

III 1.22–1.36

RC1 I 0.87–0.94

II 0.97–1.05

III 1.21–1.51

RC2 I 0.88–0.96

II 0.98–1.02

III 1.27–1.34

RC3 I 0.87–0.95

II 0.97–1.02

III 1.26–1.37
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integration within vibration-based SHM system, it is interesting to analyze how an

input ground motion affects the sequence of MAC values. In Fig. 6.7 the MAC

vs. frequency plots provided by a weakly nonstationary signal (RC2) and a heavily

nonstationary signal (due to the weak ground motion resulting from the propagation

of L’Aquila earthquake) are compared. While in the first case it is possible to

identify some “bells” around the peaks corresponding to the first three modes of the

structure, in the second case the MAC values are lower and no bells around the

peaks of the first singular value plot can be identified.

The sequence of MAC values at the frequency of a structural mode (Fig. 6.8)

better clarifies the effect of a transient signal. The transient signal associated to the

earthquake causes a drop in the MAC vs. step number plot. Thus, the sequence of

MAC values does not respect the preset limits and, therefore, the algorithm cannot

identify the mode.

In summary, LEONIDA marks a fundamental step in the development of

automated OMA procedures, because of the efforts to overcome the typical

drawbacks of previous automated modal identification algorithms. In fact, there

are no parameters to be calibrated at each new application, and no initialization

phase; there is no initial threshold-based peak detection; finally, the algorithm

shows good performance also in the case of closely spaced modes and a few, not

optimally located sensors. However, long records are needed for an effective

identification of higher, weakly excited modes. The problem of model order

selection is avoided because LEONIDA is based on a nonparametric frequency

domain OMA procedure. The computational load is also fairly low (SVD and

computation of the output PSD matrix are the most demanding operations) and

the adoption of appropriate implementation strategies can optimize it.

Table 6.4 LEONIDA: performance in the identification of higher modes, (# Elsevier Ltd.

2010), reprinted with permission

Structure Mode fLEONIDA (Hz) fFDD (Hz) fCov-SSI (Hz) fSOBI (Hz)

Tower of the Nations

(Naples)—record TdN2

I 0.81 0.81 0.81 0.81

II 1.36 1.36 1.36 1.38

III 1.62 1.63 1.63 1.63

IV 3.02 3.02 3.02 3.02

V Failure 4.36 4.32 4.36 (not well

separated)

VI 5.17 5.16 5.10 5.22

Bell tower (Montelongo)—

single record

I 3.41 3.40 3.41 3.43

II 4.13 4.13 4.11 4.13

III 5.06 5.06 5.06 5.06

IV 5.62 5.62 5.63 5.60

V 6.35 6.35 6.35 6.33 (not well

separated)

VI 7.42 7.42 7.40 7.40
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The integration of LEONIDA into a fully automated vibration-based SHM

system has also been investigated, obtaining stable and reliable results. More details

can be found elsewhere (Rainieri and Fabbrocino 2010).
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6.3 Automated OMA by Hybrid Method: ARES

6.3.1 Algorithm

Another more refined automated modal parameter identification method has been

recently developed. Even if its performance assessment is still in progress, the

description of the algorithm in its most relevant parts can be of interest because of

the innovative characteristics of the method. As in the case of LEONIDA, the new

algorithm, called ARES (Automated modal paRameter Extraction System), aims at

overcoming the typical drawbacks of automated OMA procedures:

• threshold-based peak and physical pole detection;

• need for a preliminary calibration phase at each new application;

• static settings of thresholds and parameters which may be unsuitable to track the

natural changes in modal properties of structures due to damage or environmental

effects;

• sensitivity to noise, problems of false or missed identification.

Moreover, it aims at providing accurate and reliable estimates of modal damping

ratios. Automated OMA algorithms often underestimate this aspect. In fact, they do

not provide damping estimates or, whenever they are able to estimate modal

damping, they usually yield very scattered results. The fairly large scatter

associated to damping estimates, in comparison with that of natural frequency

and mode shape estimates, is well documented in the literature. Even if the scatter
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Fig. 6.8 Effect of input ground motion on the MAC sequence in the bandwidth of a mode,

(# Elsevier Ltd. 2010), reprinted with permission
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can be partially addressed to inherent limitations of the estimators and to the

equivalent viscous damping model (Chap. 5; the interested reader can also refer

to Rainieri et al. 2010 for more details), adoption of appropriate data processing

procedures can minimize the estimation error and enhance robustness and accuracy

of modal damping estimates provided by automated OMA procedures.

The core of ARES is the SSI method, but it also includes processing steps from

other OMA methods, such as SOBI and FDD; in this sense, it can be considered a

hybrid method for automated OMA.

Evaluation and control of the accuracy of modal parameter estimates are critical

for a number of applications and, in particular, modal-based damage detection. A

number of simulation studies have demonstrated that the modal parameter estimates

provided by parametric methods, such as the SSI methods, are by far more accurate

than those provided by nonparametric procedures (Peeters and De Roeck 2001b,

Reynders et al. 2012). However, the automated interpretation of stabilization

diagrams is a very complex activity. In fact, the identification of alignments of

stable poles and, therefore, of physical modes is often difficult, since the quality of

the stabilization diagram depends on a number of parameters (number of block

rows, maximum model order) and thresholds (allowable scatter between the modal

properties evaluated at consecutive model orders) whose settings vary from dataset

to dataset. This circumstance remarks the relevant role of the analyst’s judgment

and the difficulty of automation. Thus, a lot of research efforts have been spent on

the task of the automated interpretation of stabilization diagrams. Since the poles in

a stabilization diagram are labeled as physical if they show similar properties, the

use of analysis strategies based on clustering techniques for the identification of

physical poles seems the most natural choice. In fact, clustering techniques (Tan

et al. 2006) aim at grouping data points based on the characteristics they have.

Several studies are reported in the literature about the automatic interpretation of

stabilization diagrams by clustering techniques. A (partial) list of references is

reported at the end of this chapter for the interested reader (see, for instance,

Allemang et al. 2010, Carden and Brownjohn 2008, Chauhan and Tcherniak

2009, Goethals et al. 2004, Magalhaes et al. 2009, Pappa et al. 1997, Reynders

et al. 2012, Vanlanduit et al. 2003).

Most of these approaches are based on parameters and threshold that have to be

specified by the user. Such parameters are often application-dependent: for

instance, the approach proposed by Magalhaes et al. (2009) requires the appropriate

setting of the number of block rows, recognizing that it influences the quality of

stabilization. Thus, they recommend to spend time for tuning the number of block

rows as well as other parameters of the adopted clustering approach that are also

dependent on the level of noise in the signals. Other authors, instead, do not

consider the problem of setting the value of the number of block rows but they

focus the attention on the methods to obtain the maximum of information from the

analysis of a given stabilization diagram. However, the resulting approach is often

cumbersome because it requires the evaluation of a large number of additional

parameters and (hard and soft) validation criteria (see, for instance, Reynders

et al. 2012).
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In ARES, SSI is not directly applied to the multivariate time series of the

structural response but, after a preprocessing step, it processes the individual source

correlations obtained from the JAD of a number of time shifted correlation matri-

ces. The problem of avoiding user interaction in setting the analysis parameters is

solved taking into account that ARES is basically insensitive to the settings of p and t

in JAD (Sect. 4.5.4) and that, for a given maximum model order, the quality of

stabilization first improves and then gets worse for increasing values of the number

of block rows. Thus, a sensitivity analysis for different values of the number of

block rows makes its automated setting possible. In fact, based on the results of the

sensitivity analysis, the number of block rows is set in a way able to minimize the

variance of the modal parameter estimates at different model orders (see also

Chap. 5).

As in the case of other automated OMA methods based on SSI available in the

literature, clustering techniques make possible the automatic selection of physical

poles in the stabilization diagram. However, the preliminary JAD makes the

automatic analysis of the stabilization diagram and extraction of the physical

poles easier. In fact, as a result of the JAD, the raw data associated to the measured

structural response are transformed into source correlations (Sect. 4.5.4). They can

be well-separated (showing the contribution of a single mode to the structural

response), not well-separated (showing noise or minor contributions from other

modes that are superimposed to the contribution of the main mode) or just noise.

Thus, the automated interpretation of the stabilization diagram is simplified because

the modal parameters are extracted by applying the SSI method to the individual

source correlations instead of the multivariate time series of data. Once the source

correlations have been individually analyzed by the SSI method, the physical poles

are separated from the spurious ones by means of clustering techniques and mode

validation criteria. Their effectiveness is enhanced by the fact that the analyzed

stabilization diagrams report information about one mode only at the time. The

flowchart of the algorithm is shown in Fig. 6.9.

A state-machine architecture has been adopted for the implementation of ARES,

since the following well-established data processing steps can be identified:

• Correlation matrices are computed from the raw data;

• The JAD of p time-shifted covariance matrices provides the correlations of the

sources (both modal and noise sources); a number of analyses involving both

real and simulated datasets have shown that the setting of p has no influence on

the estimates, unless it is set much too low (p< 100); in this case slight decreases

in accuracy can be observed;

• The source correlations are individually analyzed by SSI for the estimation of

natural frequencies and damping ratios;

• The obtained poles are grouped into clusters. For each source, the corresponding

poles are grouped into clusters according to the hierarchical clustering method.

The cluster characterized by the largest number of elements is selected as

representative of the mode. This step is repeated for different values of the

number of block rows i ranging in the interval [20, 80] with step Δi equal to

2 (these parameters are theoretically user-selectable but the above mentioned
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values are recommended, since they have provided the best results in the

majority of applications);

• The obtained natural frequency and damping ratio estimates are subjected to a

selection and validation phase. Clusters that do not fulfil the validation checks

are removed from the dataset. In particular, the average damping ratio in each

cluster has to be in the range 0–5 % and the corresponding coefficient of

variation not larger than 10 %. The first limitation is based on an empirical

observation about the behavior of civil structures in operational conditions:

in fact, they are usually weakly damped. The second limitation recognizes that

physical poles are characterized by small standard deviations, while spurious

poles show much larger values of this parameter (Reynders et al. 2012). Checks

about the physical significance of the estimates are also carried out (for instance,

checks of the sign of damping). It is worth pointing out that the validation criteria

have to be applied after the hierarchical clustering stage, since they might

remove most of the spurious poles and a number of physical poles could be

separated and lost as a result of the clustering stage.

• The natural frequency and damping ratio estimates in each cluster are

normalized in the range [0, 1] and a k-means clustering algorithm is applied
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JOINT APPROXIMATE
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TRACKING AND REPORT
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Fig. 6.9 ARES: Algorithm

for automated modal

parameter identification
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with k¼ 2 clusters, allowing the presence of empty clusters. This last step

removes eventual spurious poles that are still present, thus further refining the

precision and accuracy of estimates;

• The final values of natural frequency and damping ratio of the identified modes

are selected according to the results of the sensitivity analyses with respect to the

number of block rows, for a fixed value of the maximum model order (equal to

16) in the stabilization diagram. The cluster characterized by the minimum

variance of the estimates is selected as the one providing the best estimate of

the modal parameters for the considered mode;

• Mode shape estimates are finally obtained from SVD of the output PSD matrix at

the previously estimated frequency of the mode.

The previous discussion about the sequence of analysis steps in ARES highlights

how the source separation makes the discrimination of physical and noise modes

easier and more reliable. The sensitivity analysis with respect to the number of

block rows and the grouping of the poles in clusters leads to a robust identification

of the modal parameters and to a quantification of the precision of the estimates.

6.3.2 Validation and Application

The performance of ARES in terms of accuracy and reliability of estimates has been

investigated through a statistical analysis of the results obtained from data continuously

generated by a simulated 4-DOF system excited by Gaussian white noise.

The mass and stiffness properties of the system are reported in Fig. 6.10.

Rayleigh damping is adopted. The modal properties of the system are reported in

Table 6.5. The four case studies differ for the assumed values of damping or the

SNR.

The system matrices and, therefore, the associated modal parameters have been

kept constant in all runs in order to focus the attention only on the uncertainties

associated to inherent limitations of the estimator.

The system response to Gaussian white noise has been simulated 10,000 times.

The input has been applied at DOF #1. Each simulated dataset consisted of four

measurement channels; the total record length was 3,600 s and the sampling

frequency was 10 Hz. Gaussian white noise has been added to the system response

200
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5 kg
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Fig. 6.10 ARES: The benchmark 4-DOF system
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in order to simulate the effect of measurement noise. The SNRs are reported in

Table 6.5. Each dataset has been then processed using the described algorithm in

order to automatically extract the modal parameters of the system.

The analysis of the obtained results has highlighted the reliability of ARES.

In fact, a success rate larger than 99 % has been obtained for all modes (Table 6.6).

Missed identification of the dynamic properties of one of the modes occurred only

in a few runs. This was probably due to a combined effect of weak excitation and

low SNR, which affected the quality of separation and stabilization.

The results in terms of natural frequency and damping estimates are summarized

in Tables 6.7 and 6.8. Very accurate natural frequency estimates, characterized by

low standard deviation σ, have been obtained. The error in natural frequency

estimates is much lower than 1 % in the 95 % of the runs for all case studies.

The accuracy of estimates slightly improves when the SNR increases. The

estimates are also very precise. In fact, the coefficient of variation γf,cluster of the

natural frequency estimates in a cluster is much lower than 0.1 % in the 95 % of

the runs when the cluster selected by the sensitivity analysis with respect to the

number of block rows is considered.

Damping estimates are fairly accurate and characterized by moderate uncer-

tainty (σ lower than 0.2 %). In particular, the variability of estimates slightly

increases when the nominal damping values increase. Larger errors are associated

to damping estimates with respect to natural frequencies. However, the scatter

with respect to the nominal values is lower than 10 and 20 % in the 50 and 95 % of

the runs, respectively. The errors slightly decrease when the SNR increases.

Damping estimates are also fairly precise (the coefficient of variation γξ,cluster of

the damping ratio estimates in a cluster is much lower than 10 % in the 95 % of the

runs when the cluster selected by the sensitivity analysis with respect to the

Table 6.5 Modal properties of the simulated 4-DOF system

Mode fr (Hz)

Case study #1

(SNR¼ 5 dB)—ξr
(%)

Case study #2

(SNR¼ 15 dB)—ξr
(%)

Case study #3

(SNR¼ 5 dB)—ξr
(%)

Case study #4

(SNR¼ 5 dB)—ξr
(%)

I 0.668 1.00 1.00 2.00 2.00

II 1.137 0.88 0.88 1.31 1.76

III 1.526 0.92 0.92 1.09 1.84

IV 1.879 1.00 1.00 1.00 2.00

Table 6.6 ARES: success rate of automated modal identification in 10,000 runs

Mode

Case study

#1—success rate (%)

Case study

#2—success rate (%)

Case study

#3—success rate (%)

Case study

#4—success

rate (%)

I 99.79 100.0 99.71 99.87

II 99.96 100.0 99.97 100.0

III 99.95 100.0 99.98 100.0

IV 100.0 100.0 100.0 100.0
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number of block rows is considered). Sample distributions of the identified

damping ratios after 10,000 runs for the four modes are depicted in Fig. 6.11.

The mean, mode, and median of the identified damping ratios after 10,000 runs

are very close each other and to the nominal values of modal damping ratios

(Table 6.8). Taking into account the uncertainty associated to damping

estimates, the mode of damping values is given with one decimal place only.

Table 6.7 ARES: automated modal identification results—natural frequencies

Case

study Mode fnominal (Hz) fav (Hz) σf (Hz)

Δf (%)

50th centile

Δf (%)

95th centile

γf,cluster (%)

95th centile

#1 I 0.668 0.668 0.000730 0.072 0.216 0.0254

II 1.137 1.137 0.000911 0.052 0.156 0.0285

III 1.526 1.526 0.001157 0.047 0.143 0.0269

IV 1.879 1.879 0.001568 0.048 0.151 0.0363

#2 I 0.668 0.668 0.000665 0.067 0.196 0.0319

II 1.137 1.137 0.000879 0.050 0.152 0.0234

III 1.526 1.526 0.001090 0.047 0.140 0.0232

IV 1.879 1.879 0.001425 0.047 0.149 0.0296

#3 I 0.668 0.668 0.001275 0.121 0.359 0.0598

II 1.137 1.137 0.001324 0.070 0.219 0.0509

III 1.526 1.526 0.001309 0.054 0.166 0.0345

IV 1.879 1.879 0.001469 0.048 0.148 0.0346

#4 I 0.668 0.668 0.001368 0.117 0.358 0.0729

II 1.137 1.137 0.001636 0.086 0.278 0.0814

III 1.526 1.526 0.002054 0.083 0.260 0.0798

IV 1.879 1.879 0.002825 0.085 0.277 0.0991

Table 6.8 ARES: automated modal identification results—damping ratios

Case

study Mode ξnominal (%)

ξav and (mode,

median) (%) σξ (%)

Δξ (%)

50th centile

Δξ (%)

95th centile

γξ,cluster (%)

95th centile

#1 I 1.00 1.02 (1.0, 1.02) 0.108 7.2 21.6 7.0

II 0.88 0.89 (0.9, 0.89) 0.080 6.0 18.0 4.4

III 0.92 0.93 (0.9, 0.93) 0.072 5.1 15.3 2.5

IV 1.00 1.01 (1.0, 1.01) 0.075 4.9 14.9 3.1

#2 I 1.00 1.01 (1.0, 1.01) 0.099 6.7 19.4 2.2

II 0.88 0.88 (0.9, 0.88) 0.075 5.7 16.6 1.6

III 0.92 0.92 (0.9, 0.92) 0.073 5.3 15.5 1.7

IV 1.00 1.00 (1.0, 1.00) 0.074 4.7 14.6 2.1

#3 I 2.00 2.03 (2.0, 2.03) 0.179 5.9 17.9 7.7

II 1.31 1.32 (1.3, 1.32) 0.109 5.4 16.7 5.1

III 1.09 1.10 (1.1, 1.10) 0.081 4.9 14.7 2.4

IV 1.00 1.01 (1.0, 1.00) 0.075 4.9 14.9 2.8

#4 I 2.00 2.03 (2.0, 2.02) 0.183 6.0 18.3 6.7

II 1.76 1.78 (1.8, 1.78) 0.138 5.2 15.6 4.6

III 1.84 1.85 (1.8, 1.85) 0.129 4.5 13.9 3.0

IV 2.00 2.02 (2.0, 2.02) 0.143 4.3 14.0 3.6
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Marginal refinements can be obtained by outlier removal, confirming the robust-

ness and accuracy of the algorithm.

The performance of ARES at higher modes has been assessed by the analysis of

the RC1 record (Sect. 6.2.4) of the response to ambient vibrations of the School of

Engineering Main Building in Naples (Rainieri et al. 2011b).

The 1,200 s long record, consisting of 12 time series originally sampled at

100 Hz, has been decimated ten times before processing, obtaining a final sampling

frequency of 10 Hz. The obtained modal identification results are reported in

Table 6.9, together with a description of the sources. The results provided by

ARES are compared to those provided by LEONIDA. ARES has shown good

performance even at higher modes. It has been able to properly identify the content

of the sources, separating physical modes and noise. Overall, ARES seems to

perform much better than LEONIDA.

Further investigations are in progress to assess the performance of ARES in the

case of its integration into continuous vibration-based SHM systems.
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Fig. 6.11 ARES: Distribution of the identified damping ratios after 10,000 runs (case study #3)—

mode I (a), mode II (b), mode III (c), mode IV (d)
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6.4 Automated Modal Tracking: AFDD-T

6.4.1 Objectives

The requirements of advanced seismic protection systems for critical structures lead

to focus the attention on the reduction of computational efforts and response time of

modal extraction engines. LEONIDA definitely represents a solution for automated

modal parameter identification. It can also be used as modal information engine in

vibration-based monitoring systems, but length of records, amount of computa-

tional burden, and response time make it not ideal for a specific class of

applications, the continuous monitoring of structures in seismically prone areas.

Thus, the availability of an optimized strategy for automated modal tracking for

rapid structural health assessment in seismically prone areas is crucial. In the case

of structures exposed to seismic risk, the procedures for automated modal tracking

have to be accurate and reliable but they also have to be robust and able to provide

frequent estimates of dynamic properties.

From a general point of view, both automated modal tracking and automated

modal parameter identification algorithms are suitable for modal-based SHM.

However, most of the automated OMA procedures are characterized by high

response time. On the contrary, an automated modal tracking procedure can

be considered effective for vibration-based SHM in seismic areas if it is

characterized by low computational burden and it is robust even in the case of

short records. In fact, these characteristics allow increasing the number of modal

parameter estimates per hour. Moreover, application-dependent data processing

parameters have to be avoided in order to effectively follow the natural changes of

the modal properties of structures due to damage or environmental effects.

Table 6.9 ARES: performance in the identification of higher modes

Source Description ARES [f (Hz), ξ (%)] LEONIDA [f (Hz)]

I Well separated [0.92, 1.25] 0.92

II Well separated [0.98, 1.02] 0.98

III Well separated [1.30, 0.65] 1.30

IV Not well separated (modes at 2.07 Hz

and 4.20 Hz)

[2.07, 3.52] 2.07

V Not well separated (mode + noise) [2.60, 3.12] 2.59

VI Not well separated [2.79, 2.05] Not identified

VII Not well separated (mode + noise) [2.94, 1.55] 2.95

VIII Not well separated (mode + noise) [3.37, 1.92] 3.40

IX Well separated [3.94, 1.64] Not identified

X Not well separated [4.20, 1.65] Not identified

XI Well separated [4.26, 1.17] 4.25

XII Noise Noise –
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Refinement of these aspects is relevant for the fast evaluation of health conditions

of a structure after an earthquake or during a seismic sequence. Statistical treat-

ment of modal parameter estimates and elimination of environmental effects

(Hu et al. 2012, Sohn et al. 2003, Worden et al. 2007) can be effective for accurate

health assessment purposes. Even in the case of structures subjected to seismic

events, a reliable evaluation of the variation of the modal parameters induced by a

ground motion cannot avoid the analysis of a sufficiently large population of

samples collected in the first few hours after the event. The collection of a

sufficient amount of data allows an appropriate consideration of the effect of

random errors and slight nonstationarities on the estimates. However, the need for

near real-time estimation of the modal parameters after seismic events is above all

related to the issues of emergency management. As also demonstrated by recent

seismic events occurred in Italy—see for instance the L’Aquila earthquake 2009

data—a sequence of closely repeated in time earthquakes (much less than 1-h lag

between two consecutive ground motions) is usual, in particular in the first days

after the mainshock. Thus, a near real-time estimation of the modal properties

allows the collection of sufficient amount of information about the structure in

between two events, when the effects of input ground motions that negatively

affect the output-only estimation of the modal parameters are null (Rainieri and

Fabbrocino 2010, Rainieri et al. 2011b). The collection of a fairly large amount of

data in a short time after the seismic is not a trivial task. Most of the automated

OMA procedures are not optimized in this sense. Nevertheless, fast, reliable, and

robust modal tracking procedures able to provide frequent modal parameter

estimates after the event play a fundamental role for effective vibration-based

SHM in seismically prone areas. In this context it is worth mentioning that the

prompt post-earthquake health assessment of strategic structures is also crucial to

support rescue operations.

6.4.2 Principles and Implementation

A strategy for effective automated modal tracking in seismically prone areas is

herein presented in its most relevant aspects. It takes advantage of the knowledge

of the experimental mode shapes and a revised concept of spatial filtering in

order to achieve the previously mentioned objectives and target performance.

As in the case of LEONIDA, the core of the algorithm is the SVD of the output

PSD matrix. The present automated modal tracking strategy, called in the follow-

ing Automated Frequency Domain Decomposition-Tracking (AFDD-T), can be

used in combination with LEONIDA or ARES for fully automated vibration-

based SHM of real structures. The monitoring system of the School of Engineer-

ing Main Building in Naples represents an example of successful integration of

LEONIDA and AFDD-T into continuous vibration-based monitoring systems.

The description of the structure and of the installed SHM system is beyond

the scope of the book and it can be found elsewhere (Rainieri et al. 2011b).
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The main characteristics of the monitoring system are scalability, durability,

redundancy, and integration achieved by the use of a remote MySQL database

for data storage (Rainieri et al. 2011b).

As mentioned in Sect. 6.2, LEONIDA has solved the problem of avoiding

threshold-based peak detection over the whole frequency range under investigation

and static setting of analysis parameters, thus making possible a fully automated

modal parameter identification. However, it requires long records—i.e. 1 h—of the

structural response, so it is partially ineffective for SHM applications in seismically

prone areas.

An automated FDD-based modal tracking can be carried out according to the

flowchart shown in Fig. 6.12, where the information about the mode shapes is used

for a spatial filtering of data. In its development, the algorithm has been optimized

in order to fit the requirements of seismic protection of structures in terms of

balanced performance between accuracy and robustness on one hand, and fre-

quency of estimates on the other. Since AFDD-T takes advantage of prior informa-

tion about mode shapes, it plays a role only in the context of SHM applications. In

spite of its limited autonomy, it can yield reliable modal parameter estimates from

records much shorter than those required by automated modal parameter identifi-

cation methods, such as LEONIDA. This makes possible an automated, reliable,

and near real-time tracking of the modal parameters that can provide relevant

information about the health state of the structure in between consecutive, close

in time ground motions for emergency management purposes.

There is a fundamental difference between the use of mode shape estimates for

spatial filtering in AFDD-T and traditional applications of this kind of filtering. In

fact, instead of considering the product of the mode shapes with the output PSD

matrix, as in the case, for instance, of the FSDD method (Sect. 4.4.2), each mode

shape vector is used to identify the limits of a bandpass filter for the mode of interest

starting from the computation of the MAC with the singular vectors obtained at

each frequency line by SVD of the PSD matrix.

The k-th mode of interest is, therefore, identified by inspecting the MAC

vs. frequency plot (Fig. 6.13). The reference mode shape defines a bandpass filter

(Fig. 6.14) characterized by an adaptive bandwidth. It is obtained by selecting all

points that show a MAC value higher than a user-defined MAC Rejection Level,

i.e. 80–90 % of the maximum MAC in the MAC vs. frequency plot. The analysis of

the filtered data permits a straightforward identification of the natural frequency.

In some cases the dynamic response of the structure to ambient vibrations could

be affected by harmonic components superimposed to the stochastic part (Chap. 5).

The role of harmonic excitations is different depending on the relative distance

between the natural frequencies of interest and the harmonic. Whenever the latter is

far from structural modes, the ODS is a combination of several excited modes and

the forces acting on the structure; thus, it yields low MAC values with the reference

mode shapes. On the contrary, if the harmonic is close to a structural mode, high

MAC values could be observed and the modal parameter estimation could be

biased. A structural and functional assessment of the monitored building is, there-

fore, recommended in order to identify eventual spurious harmonic components.
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In such cases, implementation of methods able to identify and remove harmonic

components (Chap. 5) can solve the problem at the expenses of an increase in

computational efforts and hardware requirements.

MAC vs. frequency plot

1

0.9

0.8

0.7

0.6

0.5

M
A

C

Frequency [Hz]

0.4

0.3

0.2

0.1

0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Fig. 6.13 AFDD-T: MAC vs. frequency plot, (# Elsevier Ltd. 2011), reprinted with permission

0.9

0.8

0.7

0.6

0.5

M
A

C

0.4

0.3

0.2

0.1

0

0.5 1.27 1.35 2
Frequency [Hz]

1

MAC vs. frequency plot

MAC vs. f

Filter

1-st SV plot

Fig. 6.14 AFDD-T: Automatic selection of the bandwidth of the mode, (# Elsevier Ltd. 2011),

reprinted with permission

6.4 Automated Modal Tracking: AFDD-T 297

http://dx.doi.org/10.1007/978-1-4939-0767-0_5


Another relevant issue concerns the definition of the number of sensors that

ensures an effective spatial filtering. Figure 6.15 shows that the effectiveness of

spatial filtering improves as the number of sensors increases. Results of simulations

and real applications have shown that, in the presence of a few sensors, local

maxima appear in the MAC vs. frequency plot; however, the absolute maximum

is reached in the bandwidth of the considered mode defined by the reference mode

shape. Thus, detection of the absolute maximum ensures a reliable automatic setting

of the filter and an effective extraction of modal parameters. Only a poor sensor
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placement, unable to put in evidence the differences in the shapes of the structural

modes, can seriously affect the reliability of the automated modal tracking (Rainieri

et al. 2012). In this case it is possible to observe a decrease in the success rate of

identification of the modes characterized by very similar mode shape estimates. On

the contrary, if the sensor layout is properly set (off-diagonal terms in the AutoMAC

matrix very close to 0), the filtering procedure is effective even in the case of a few

sensors and short records. Note that the short duration of time series yields noisy

spectra as a result of the little number of averages. The adoption of an appropriate

architecture for data processing allows getting a new modal parameter estimate every

3–5 min. This time interval fits the requirements of safety and emergency manage-

ment in seismically prone areas, allowing the observation of the evolution of the

structure in between consecutive events of the seismic sequence.

AFDD-T has been implemented into software running on the local server of the

School of Engineering Main Building SHM system and interfaced with its remote

MySQL database. The software, working on a on-line basis, has been developed in

LabVIEW environment and it is characterized by a graphic interface showing the

location of sensors on the structure, the plot of the first singular value (obtained by

SVD of the output PSD matrix) vs. frequency, the acceleration waveforms and the

results of identification in the form of plots of the natural frequency estimates

vs. time (Fig. 6.16).

The software is characterized by a Producer/Consumer architecture (Fig. 6.17).

The Producer cycle is used to get data from the database while the Consumer cycle

processes these data and shows the output on screen. Parallel cycles extract the

dynamic properties (natural frequency and mode shape) for each monitored mode.

The adopted software architecture and a partial overlap among subsequent time

series allow collecting a new estimate of the fundamental modal parameters every

Fig. 6.16 SHM system of the School of Engineering Main Building: User interface of AFDD-T,

(# Elsevier Ltd. 2011), reprinted with permission
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3 min. Several error checks ensure software robustness against possible hardware bad

functioning conditions. Thus, AFDD-Tmakes possible an effective tracking of modal

parameters and, indirectly, of the health state of the structure (Sohn et al. 2003)

in seismically prone areas.

6.4.3 Validation and Application

AFDD-T has been validated against simulated data before its integration in the moni-

toring system of the School of Engineering Main Building. Simulated data have been

obtained by applying a Gaussian white noise as input on a shear-type 15-stories 1-bay

r.c. frame, characterized by well-separated modes, and a 3D two stories r.c. frame,

characterized by closely spaced modes. The effect of the number of sensors has been

assessed first. The obtained results confirm that a reliable modal tracking is possible

even in the presence of a few sensors, provided that mode observability is assured. The

only effect is the presence of other relative maxima in the MAC vs. frequency plot

together with the absolute maximum, as mentioned in the previous section.

Attention has been then focused on the robustness of the procedure. Local

stiffness changes have been applied to the structural models in order to simulate

damage. The capability of AFDD-T of identifying the modal parameters without

updating the reference mode shapes has been evaluated. The obtained results have

shown that AFDD-T is able to follow the variation of the natural frequencies with

reduced errors (lower than 1 %) even in the case of a few sensors and for quite large

stiffness (and, therefore, natural frequency) variations. The robustness with respect to

Fig. 6.17 AFDD-T: Software architecture, (# Elsevier Ltd. 2011), reprinted with permission
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moderate changes in the structural mode shapes is crucial for applications of modal

tracking for emergency management purposes, when a sequence of closely repeated

in time earthquakes can hit the structure and make the automatic update of the

reference mode shapes through LEONIDA (or ARES) unpredictable. In the case of

closely spaced modes and a few sensors, the use of mode shape estimates obtained by

FDD-based algorithms improves the effectiveness of spatial filtering in the presence

of noise. More details about the results of simulations for validation of AFDD-T can

be found elsewhere (Rainieri et al. 2011a).

AFDD-T has also been tested against real datasets collected by the SHM system

of the School of Engineering Main Building in view of its integration into the

continuous vibration-based monitoring system. They have been analyzed offline,

first. Test results have remarked the superior performance of spatial filtering over

traditional filtering. Application of a bandpass filter may suffer some limitations. In

fact, the identification of the bandwidth of a mode according only to PSD plots or

singular value plots may be difficult. Moreover, static filter limits allow the

observation only of limited variations of the natural frequencies, in particular in

the presence of closely spaced modes. The School of Engineering Main Building,

for instance, is characterized by two closely spaced modes having natural

frequencies equal to 0.92 and 0.99 Hz, respectively. However, such values can

decrease until 0.89–0.9 Hz for the first mode and 0.95–0.97 Hz for the second mode

in summer, while they increase in winter up to 0.94–0.95 and 1.01–1.02 Hz for the

first and second mode, respectively. If a limit value equal to 0.95 (Fig. 6.18) is

adopted to separate the modes, in agreement with the sample singular value plots

obtained from a single output-only modal identification by FDD, the classical
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bandpass filter does not provide satisfactory results in terms of effectiveness and

reliability of modal parameter tracking. In fact, in the presence of closely spaced

modes, damage or environmental effects can easily move the natural frequencies

outside the limits of the filter, causing an error in the estimates. On the contrary,

AFDD-T sets the limits of the filter at each iteration so that changes in modal

parameters can effectively and automatically be tracked.

The performance of AFDD-T in estimating higher modes has been assessed by

offline analysis of a number of records of the dynamic response to ambient

vibrations of the School of Engineering Main Building collected by its monitoring

system. Each record consisted of six measurement channels and was 10-min long.

The first record has been used to carry out a manual identification of the

structural modes by FDD. Then, the other records have been used for the automated

modal tracking, carried out by adopting as reference mode shapes those provided by

the manual modal parameter identification. Some of the higher modes of the

structure were not identifiable from the considered dataset, and they have been

excluded also from the performance assessment of AFDD-T. This is consistent with

the fact that the automated identification of higher, poorly excited modes can fail.

Results have shown that AFDD-T is able to carry out an effective modal tracking

also at higher modes. Only in the case of poorly excited modes and relevant noise

level AFDD-T has provided more scattered data (refer to Rainieri et al. 2011a for

more details). However, also a manual identification of the modal properties may be

difficult or even unfeasible in similar conditions, when the resonance is almost

buried in noise. As the role of the number of sensors is concerned, results of modal

tracking confirm that only six sensors, among those installed on the School of

Engineering Main Building, are enough to provide a robust and reliable identifica-

tion of modes if observability is assured. This is relevant for large scale monitoring

of strategic structures, because the number of sensors and, therefore, the costs of the

monitoring system can be reduced without detrimental influence on the reliability

of results. This circumstance permits an optimization of the economic resources

assigned to the implementation of structural monitoring systems in the case of a

relevant number of structures.

After validation, AFDD-T has been optimized to continuously monitor the

fundamental modes of the School of Engineering Main Building, because they

are the most relevant from the seismic response standpoint.

An effective automated modal parameter identification and tracking has been

obtained by the combination of LEONIDA with AFDD-T (Fig. 6.19) and their

integration within the SHM system installed on the structure. LEONIDA provides

the reference mode shapes to AFDD-T. Periodically or on demand (i.e. after an

extreme event), a new reference can be obtained by LEONIDA and used to confirm

the previous one or to replace it.

The herein reported monitoring results clearly point out the potentialities and

limitations of automated OMA procedures for vibration-based monitoring. The

sequences of natural frequency estimates collected in summer 2008 and in winter
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Fig. 6.19 Integration of LEONIDA and AFDD-T for fully automated vibration-based monitoring
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2009 are shown in Fig. 6.20. Their analysis has put in evidence some environmental

effects on the modal parameter estimates.

The sequence related to winter 2009 also includes the effects of the ground

motion induced by the L’Aquila earthquake mainshock, occurred on April 6-th,

2009. It is represented by the sudden drop at the end of the plots.

Statistics are computed on 7,132 samples in the first case (summer 2008) and on

13,265 samples in the second (winter 2009).

In order to better visualize the variations of the natural frequencies over different

days, natural frequency estimates related to the same day are also grouped together

and plotted over time in Fig. 6.21.

Histograms of data collected in summer 2008 and winter 2009 are shown in

Fig. 6.22. In Table 6.10 a synthesis of the results of automated modal parameter

tracking in operational conditions is reported. Analysis of data and histograms

confirm that the estimates are normally distributed.

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0

0
1000 2000

2000
3000 4000

4000
5000 6000

6000
7000 8000

8000 10000 12000 14000

F
re

q
u

e
n

c
y

 [
H

z
]

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

F
re

q
u

e
n

c
y

 [
H

z
]

Mode I Mode I

Sample
Sample

0 2000 4000 6000 8000 10000 12000 14000

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

F
re

q
u

e
n

c
y
 [

H
z
]

F
re

q
u

e
n

c
y
 [

H
z
]

Mode II

Sample

0 2000 4000 6000 8000 10000 12000 14000

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Mode III

Sample

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 1000 2000 3000 4000 5000 6000 7000 8000

F
re

q
u

e
n

c
y
 [

H
z
]

Mode II

Sample

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 1000 2000 3000 4000 5000 6000 7000 8000

F
re

q
u

e
n

c
y
 [

H
z
]

Mode III

Sample

Fig. 6.20 The School of Engineering Main Building: Monitoring results in summer 2008 (left)

and winter 2009 (right); occurrence of L’Aquila earthquake is marked by the circles, (# Elsevier

Ltd. 2011), reprinted with permission
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The collected data can be useful also for a detailed characterization of the

structure in its health state. In particular, the effect of environmental factors can

be studied and the estimates can be depurated from these effects before the

application of damage detection procedures. This aspect is out of the scope of

the book. The interested reader can refer to the wide literature on this topic for more

details (see, for instance, Deraemaeker et al. 2008, Magalhaes et al. 2012, Hu

et al. 2012). In the context of the present discussion, it is sufficient to observe a

moderate influence of temperature on the dynamic characteristics of the monitored

structure. In fact, during hot summer time, lower values of natural frequency for the

first three modes have been observed (in particular for the first and the third mode)

with respect to those observed in winter.

The low values of standard deviation of natural frequencies reported in

Table 6.10 confirm that the influence of environmental parameters on this structure

is relatively small (standard deviations lower than 0.01 Hz) and relatively uniform

for all modes.
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Fig. 6.21 The School of Engineering Main Building: Monitoring results in summer 2008 (left)

and winter 2009 (right)—aggregated data, (# Elsevier Ltd. 2011), reprinted with permission
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Environmental effects have provided the opportunity for an extensive check of

reliability and robustness of AFDD-T in the case of closely spaced modes. The

identification of the region where a certain mode is located before the extraction of

the corresponding modal parameters is definitely more effective than threshold-based

peak detection followed by bandwidth definition. In fact, it is less influenced by the

relative strength of modes.
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Fig. 6.22 The School of Engineering Main Building: Distributions of natural frequencies observed

in summer 2008 (left) and winter 2009 (right), (# Elsevier Ltd. 2011), reprinted with permission

Table 6.10 The School of Engineering Main Building: summary of monitoring results,

(# Elsevier Ltd. 2011), reprinted with permission

Monitoring period Mode

fn (Hz)

modal value

fn (Hz)

mean value

fn (Hz) standard

deviation

Summer 2008 (7,130 samples)—

average temperature 25.2 �C

I 0.92 0.92 0.0098

II 0.99 0.99 0.0081

III 1.29 1.29 0.0084

Winter 2009 (13,265 samples)—

average temperature 11.5 �C

I 0.94 0.94 0.0101

II 0.99 0.99 0.0074

III 1.31 1.31 0.0075
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Thus, AFDD-T is a valuable tool for vibration-based SHM in earthquake prone

regions, because it ensures fast analysis of data and robust and effective tracking of

modal parameters in the presence of environmental effects, such as those due to

temperature, or in the presence of damage.

The record of the structural response to the ground motion induced by the

propagation of L’Aquila earthquake has also given the opportunity to analyze the

response of AFDD-T in the presence of an input (weak) ground motion. As

expected, AFDD-T is not able to identify any structural mode when the transient

signal due to an earthquake is present in the analyzed record.

This can be clearly observed in Fig. 6.23, where the dashed circles mark the

occurrence of the ground motion. The little decrease of natural frequencies with

respect to the corresponding estimates before the event was probably due to a

change of the degree of interaction with curtain walls, partitioning walls, and other

nonstructural components (Rainieri et al. 2011a, Rainieri et al. 2011b).

It is interesting to note that the estimates of the modal parameters after the quake

were independent of the reference mode shapes. In fact, either the original reference

mode shapes or the updated mode shapes, identified by LEONIDA from 1-h record

in operational conditions after the ground motion, have provided the same results.

This circumstance confirms the robustness of AFDD-T.

6.5 Automated OMA and Vibration-Based Monitoring

This long (and exciting, we hope!) journey through OMA and its applications ends

with an outlook on the opportunities of (automated) OMA in the field of vibration-

based monitoring. In fact, as mentioned in Chap. 5 and remarked in this chapter, the

identification of the modal parameters is often an intermediate step in view of other

analyses. Model updating is just one of the possible applications. Others concern

damage detection and tensile load estimation. A detailed discussion about these last

two topics strictly related to continuous vibration-based SHM is beyond the scope

of the book. This section is intended to provide only an overview about them to

highlight the wide applicative perspectives of the previously described procedures.

Relevant references are reported at the end of the chapter for the interested reader.

Vibration-based SHM is a very active research field. Extensive surveys and

dedicated books are available in the literature (Doebling et al. 1996, Sohn

et al. 2003, Farrar and Worden 2013). The monitoring process consists in the

observation of the structure over long periods of time. Records of the structural

response are continuously acquired by appropriate sensors and measurement

systems, and damage sensitive feature are extracted from the collected data and

analyzed to assess the health conditions of the structure.

From a general point of view, damage is defined as any change of the structure

that adversely affects its performance (Sohn et al. 2003). This change can be in the

form of stiffness change (for instance, cracking), mass change, connectivity change

(for instance, looseness in a bolted joint) or boundary condition change (for

instance, bridge scour). An effective SHM system should be able to automatically
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Fig. 6.23 The School of Engineering Main Building: Monitoring results before and after

L’Aquila earthquake (occurring at time 3.32) for mode I (a), mode II (b), and Mode III (c),

(# Elsevier Ltd. 2011), reprinted with permission
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detect damage at an early stage (Doebling et al. 1996). Five damage detection levels

have been defined (Sohn et al. 2003):

• Level 1: identification of damage existence;

• Level 2: localization of damage;

• Level 3: identification of the type of damage;

• Level 4: quantification of damage severity;

• Level 5: prediction of the remaining service life of the structure (prognosis).

Modal-based damage detection starts by recognizing that the modal parameters

are functions of the physical parameters (mass, stiffness, and damping). Assuming

that damage yields a change in the physical properties of the structure, this is reflected

by a change in the modal properties. Thus, it is theoretically possible to identify

damage from the analysis of the variations of the modal parameters. A number of

damage sensitive features have been, therefore, defined in terms of modal parameters.

One of the main drawbacks of modal-based damage detection is related to the

sensitivity to environmental and operational conditions that can cause changes in

the modal parameters of the same order of magnitude of those induced by damage. As

a consequence, the modal parameter estimates have to be depurated from the effects

of environmental factors in order to effectively detect damage. Possible approaches to

remove environmental effects are those based on regression analysis (a sample

application can be found in Magalhaes et al. 2012), when measurements of the

environmental parameters are available, and those based on factor analysis (see, for

instance, Deraemaeker et al. 2008) to get rid of the variability due to the environment

without information about the environmental factors.

Damage sensitive features can be defined in terms of natural frequencies and

mode shapes. Natural frequency variations provide the easiest way to detect the

presence of damage, because they can be accurately estimated even in the presence

of a few sensors. However, the information they provide is limited to Level 1

damage detection. Moreover, their sensitivity to damage is relatively low while

they are quite sensitive to environmental effects; thus, early stage damage detection

is often difficult. Other features are defined in terms of mode shapes and mode

shape curvatures. Mode shapes are less sensitive to environmental conditions, and

they provide relevant information for damage location. However, they are typically

estimated with lower accuracy with respect to natural frequencies.

Once the damage sensitive features have been purified from the environmental

effects, a number of tools can be applied for feature discrimination. They can be

broadly classified as supervised and unsupervised learning approaches (Farrar and

Worden 2013). The former are applied when data are available for both the

undamaged and damaged structure, while the latter are applied when reference

data are available only for the structure in healthy state.

This brief review about modal-based damage detection confirms the fundamental

role played by automated OMA procedures in the field of SHM and the importance of

getting very accurate modal parameter estimates in a fully automated way.

Another interesting application of automated OMA procedures concerns the

indirect estimation and monitoring of tensile loads in cables and tie rods. A

vibration-based system for tensile load monitoring can easily be developed based

on the concepts and procedures illustrated throughout this book.
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The tensile load can be obtained from estimates of the dynamic parameters of

bending modes of the cable or tie-rod under investigation through the solution of an

inverse problem. A number of approaches for tensile load estimation are available

in the literature (see, for instance, Tullini and Laudiero 2008, Rebecchi et al. 2013,

Wenzel and Pichler 2005, Maes et al. 2013). Their review is out of the scope of this

section. However, the fundamental concepts behind some of them are herein

reported to show how a tensile load monitoring system can be developed based

on automated OMA procedures. Other, eventually more refined approaches for

tensile load estimation can obviously replace those herein reported with no loss of

generality for the present discussion.

The approach proposed by Rebecchi et al. (2013) can be adopted for the

estimation of the tensile load in tie-rods. In the most general case of uncertain

boundary conditions, the tensile load can be estimated from measurements of one

mode shape of the member in at least five positions. The method starts from the

equation governing the dynamic behavior of a beam with uniform section and

subjected to a constant axial tensile force:

EI
∂4v x; tð Þ

∂x4
þ N

∂2v x; tð Þ

∂x2
þ ρ

∂2v x; tð Þ

∂t2
¼ 0 ð6:2Þ

where EI represents the bending stiffness, ρ is the mass per unit length, v(x, t) is the

transverse displacement at abscissa x and time t, and N the tensile force. The partial

differential equation of (6.2) can be separated into two ordinary differential

equations, providing natural frequencies and mode shapes respectively (Clough

and Penzien 1993). In particular, the shapes of the vibrating beam are given by:

ϕ xð Þ ¼ C1 sin αxð Þ þ C2 cos αxð Þ þ C3 sinh βxð Þ þ C4 cosh βxð Þ ð6:3Þ

where:

α2 ¼
N

2EI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
4ω2

rρEI

N2

s

� 1

 !

, β2 ¼
N

2EI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
4ω2

rρEI

N2

r

þ 1

 !

ð6:4Þ

with ωr the natural frequency of the considered mode. The coefficients C1, C2, C3,

and C4 are determined from the measured modal displacements in four points of

the beam; the last modal displacement is used to compute the tensile load N.

The number of unknowns and, therefore, of measurement points can be reduced

if the boundary conditions are known. More details can be found elsewhere (Tullini

and Laudiero 2008, Rebecchi et al. 2013).

When the influence of bending stiffness and end constraints is negligible with

respect to the tensile load, the problem is reduced to that of the wire. In this case the

natural frequencies are given by the following closed-form expression

(Lagomarsino and Calderini 2005):

f n ¼
n

2L

ffiffiffiffi

N

ρ

s

n ¼ 1, 2, . . . ,Nm ð6:5Þ
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where L is the length of the cable. Thus, the experimental estimation of a single

natural frequency is sufficient to estimate the tensile load. A correction factor can

eventually be applied to take into account the negligible but not null influence of

bending stiffness and support conditions in real cases (Wenzel and Pichler 2005).

When only the rotational stiffness of the supports is negligible with respect to the

bending stiffness, the problem becomes that of the prestressed pinned beam. The

analytical expression for the natural frequency of the n-th mode is:

f n ¼
n

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2π2EI

ρL4
þ

N

ρL2

s

n ¼ 1, 2, . . . ,Nm ð6:6Þ

Two natural frequency estimates are required to solve the inverse problem in this

case, because there are two unknowns (N and EI). These can be obtained from the

following closed form expressions (Lagomarsino and Calderini 2005):

N ¼ 4ρL2
j2f 2i

i2 j2 � i2
� ��

i2f 2j

j2 j2 � i2
� �

 !

ð6:7Þ

EI ¼
4ρL4

π2

f 2j

j2 j2 � i2
� ��

f 2i
i2 j2 � i2
� �

 !

ð6:8Þ

where fi and fj are the natural frequency estimates for the i-th and j-th modes

respectively, with i< j.

Taking advantage of programmable hardware and integrating an automated

OMA procedure and the appropriate method for tensile load estimation, a continu-

ous vibration-based monitoring of tensile loads can be carried out. A monitoring

system for members in traction is herein described. It is based on distributed

wireless modules for acceleration measurements and on a centralized data

processing system. A small number of piezoelectric accelerometers are installed

on each cable. The vibration data related to one or more cables are acquired by the

wireless modules and stored into a MySQL database. Each monitored element has

an individual table of its own. ARES continuously analyzes the dynamic response

of the cables to ambient vibrations, providing the modal parameter estimates for

tensile load estimation. The architecture of the system is illustrated in Fig. 6.24.

When the number of monitored elements is very large, the data acquisition task can

be fragmented among a number of local servers.

The master server acquires time histories of predefined duration from the local

servers and carries out the automated identification of the modal parameters.

Tensile loads are then estimated according to the most appropriate procedure

(depending on the characteristics of the member) among those previously outlined.

A prototype system has been recently installed in Italy (Rainieri and Fabbrocino

2013). It is monitoring the tensile load in one of the cables of a sample steel arch

(Fig. 6.25). Interesting preliminary results have been obtained until now, remarking

the influence of environmental factors on the dynamic response of structural systems.
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Fig. 6.24 Architecture of the axial force monitoring system

Fig. 6.25 Installation of the prototype of monitoring system on one of the cables of a sample

steel arch
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event structure, 18–19

producer/consumer architecture, 18, 20

state machine, 17–18

VI hierarchy, 16–17

spatial filter, 12

SSI, 103

stable system, 7

stationarity, 104

structural health monitoring, 3

testing types, 7

transmissibility function, 174–175

virtual instruments, 13, 15–16

Output-only modal identification, 225–229

P

Parametric OMA methods

mathematical modes, 192

noise modes, 191

stabilization diagrams for, 191–195

Peak picking method, 127–130, 195–199

Poly-reference least squares complex

frequency (p-LSCF) method

closely spaced modes, 142

companion matrix, 145–146

cost function, 143

error formulation, 143

Jacobian matrix, 143–144

single complex-valued matrix, 142–143

Principal component analysis (PCA), 167

Probability density function, 29, 34, 54–55

Probability theory, 29–35

R

Random data analysis

auto-and cross-correlation functions, 55

auto-power spectral density function, 56

complex numbers, 23–27, 53

condition number κ, 51

error norms, 49–52

Euler’s identities, 23–27

Fourier transform, 23–27

DFT, 27, 42, 53

FFT, 27

properties, 27

Gaussian noise, auto-correlation of, 55–56

least squares method, 52

matrix algebra

decomposition method, 46

eigenvector, 48

EVD, 48
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identity matrix, 46

Moore–Penrose pseudoinverse, 49

nonsingular matrix, 47

null space, 48

orthogonal, 47

real-valued/complex valued, 46

singular matrix, 47

square matrix, 46–47

SVD, 49, 51

symmetric, 47

trace, 46

unitary matrix, 47

sampling interval, 26

Shannon’s theorem, 26

SRP (see Stationary random processes

(SRP))

statistics, 54

Random decrement (RD) technique, 175–176

S

Second order blind identification (SOBI)

auto-correlation, 172

blind modal identification, 168

BSS techniques

applicability of, 166

classification, 166–167

sources, 166

static mixtures, 167

use of, 167–168

complexity plot, 205–206

drawback of, 168

JAD technique, 171

natural frequencies and damping ratios, 172

random response, 172–173

sample software, 206

sensor layout, 197, 205

whitening matrix, 169–170

Signal-to-noise ratio (SNR), 4, 290

Single degree of freedom (SDOF) system, 7

Singular value decomposition (SVD),

49, 56–57

Spectral density functions

coherence function, 41

coincident, 40

cross, 39

Fourier transforms, 38

Hanning window, 43

Hermitian matrix, 43

and OMA, 44–46

quadrature, 40

random error, 42–46

rectangular window, 42

two-sided, 39

Welch procedure, 41

Wiener–Khinchin relations, 40

Star vault, 211–213

State-space models

continuous-time, 111

covariance equivalent model, 113

DD-SSI, 117

direct transmission matrix, 111

forward innovation model, 116

Kalman filter, 114–115

measurement noise, 113

non-steady state Kalman gain, 115

observation equation, 109–110

optimal predictor, 114

process noise, 113

realization, 111

Ricatti equation, 115

state equation, 109–110

state prediction error, 114

state vector, 109

Stationary and ergodic random processes

(SERP), 28

Stationary random processes (SRP)

bias error, 44

correlation coefficient, 31

correlation functions

auto-and cross-, 36

DFT, 27

FFT, 27

weakly ergodic, 36

covariance function, 30

damping ratio, 45, 46

Gaussian probability, 32

joint probability, 29

mean square error, 44

mean square value, 30

normalized rms error, 44–45

probability density function, 29, 34

probability distribution function, 29

random/stochastic process, 28

sample function, 28

sample record, 28

SERP, 28

spectral density functions

auto-spectral density functions, 40, 41

Blackman–Tukey procedure, 41

coherence function, 41

coincident spectral density function, 40

cross-spectral density functions, 39, 40

Gaussian probability density function, 32

Hanning window, 43

quadrature spectral density function, 40
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Stationary random processes (SRP) (cont.)

rectangular window, DFT, 42

Welch procedure, 41

Wiener–Khinchin relations, 40

standard deviation, 30–31

statistically independent, 30

weakly stationary random processes, 28

Stochastic subspace identification

(SSI), 103, 269

Cov-SSI method (see Covariance-driven

Stochastic Subspace Identification

(Cov-SSI) method)

DD-SSI method (see Data-driven stochastic

subspace identification (DD-SSI)

method)

Structural damping, 216

Structural dynamics models

ARMA models

ARMAV, 117

companion matrix, 119

linear time-invariant system, 117

minimal realization, 118

observability canonical state-space

realization, 118

fraction polynomial models

circular correlation function, 122

common-denominator model, 120

cross-power spectra, 121

MFD, 120

positive power spectra, 123

frequency response, 105–109

FRF, 106, 107

impulse response, 105–109

IRF, 108

MDOF system, 105

positive power spectra, 108

residue matrix, 107

spatial model, 106

state-space models (see State-space

models)

time domain modal, 108

UMPA, 123–125

un-scaled mode shapes, 108

T

Time domain methods, 127

ARMA model, 151–153

Cov-SSI method

BR variant, 157

canonical angles, 157

CVA variant of, 157

Laplace variable, 158

noise sources, 158

observability/controllability matrix,

154, 155

state-space model, 153

Toeplitz matrix, 154–156

DD-SSI method

CVA, 165–166

Hankel matrix, 160–161

Kalman filter state, 159, 162

modal parameter, 165

orthogonal and oblique projections, 159

principal component algorithm, 165

state-space matrices, 162–164

UPC algorithm, 165

NExT-type procedures

ERA, 147

Hankel matrix, 148–149

ITD, 150

LSCE, 147

Prony’s equation, 147

system matrix, 150

SOBI algorithm (see Second order blind

identification (SOBI))

Transducers

dynamic range, 67

force-balance accelerometers, 65

offset error, 67

Peterson noise curves, 68–69

piezoelectric sensors, 62–63

sensor resolution, 67

sensor self noise, 67

settling time, 67

U

Unified matrix polynomial approach

(UMPA), 123–125

Unweighted principal component (UPC)

algorithm, 165

V

Virtual instruments (VIs ), 13, 15–16
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