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Abstract

Biases are commonly seen in numerical cognition. The operational momentum (OM) effect shows that responses to addition
and subtraction problems are biased in the whole-number direction of the operation. It is not known if this bias exists for
other arithmetic operations. To determine whether OM exists in scalar operations, we measured response bias in adults
performing symbolic (Arabic digits) and non-symbolic (dots) multiplication and division problems. After seeing two
operands, with either a multiplication (6) or division (4) sign, participants chose among five response choices. Both non-
random performance profiles and the significant contribution of both operands in a multiple regression analysis predicting
the chosen values, suggest that adults were able to use numerical information to approximate the outcomes in both
notations, though they were more accurate on symbolic problems. Performance on non-symbolic problems was influenced
by the size of the correct choice relative to alternatives. Reminiscent of the bias in addition and subtraction, we found a
significant response bias for non-symbolic problems. Non-symbolic multiplication problems were overestimated and
division problems were underestimated. These results indicate that operational momentum is present in non-symbolic
multiplication and division. Given the influence of the size of the correct choice relative to alternatives, an interaction
between heuristic bias and approximate calculation is possible.
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Introduction

Humans, as well as other animals, have an innate approximate

number sense that they use to interact with the environment [1–3].

Disease, injury [4], and environmental variables (e.g. ineffective

education) can impact this system at a high cost to individuals and

society. Even in healthy populations, lower numeracy predicts

poor decision making and susceptibility to bias [5]. Given the

importance of numerical abilities, research has focused on

understanding the underlying cognitive processes.

According to the triple-code model, numbers can be represented

in three codes [6]. In the Arabic code, associated with bilateral

occipito-temporal regions, numbers are represented as Arabic

numerals and can be used to perform symbolic arithmetic. In the

verbal code, associated with left perisylvian language areas,

numbers are represented as words and memorized arithmetic

facts. In the magnitude code, associated with bilateral parietal

areas, numbers are represented as abstract magnitudes and

perhaps points on a spatially oriented mental number line

(MNL). Consistent with the idea of a mental number line, parietal

neural populations tuned to small quantities exhibit a topographic

organization [7]. This innate approximate number system (ANS)

supports quantity knowledge (e.g. 3 is smaller than 7), as well as

estimation and calculation on non-symbolic quantities [8].

Perhaps due to the spatial features of quantity representation,

spatial and directional biases are frequently seen in numerical

tasks. The Spatial-Numerical Association of Response Codes
(SNARC) effect shows that smaller numbers are left-side associated

and larger numbers are right-side associated [9,10]. Further

evidence for the spatial nature of number representation comes

from magnitude-dependent covert shifts of attention during

number viewing [11,12]. Directional bias is seen in addition and

subtraction, when participants overestimate for addition and

underestimate for subtraction [13]. This operational momentum

(OM) effect occurs in adults performing non-symbolic and, to a

lesser extent, approximate symbolic arithmetic [14]. Infants

exhibit OM as well, demonstrated by looking longer at arithmetic

animations violating the momentum of the operation [15].

Interestingly, school-age children may overestimate non-symbolic

subtraction, although this could be due to individual differences in

attention [16]. OM occurs in exact symbolic arithmetic, as long as

an approximate response method is used [17,18].

Although OM research has focused on whole numbers, adults

and children answering symbolic arithmetic questions also show a

tendency to believe addition/multiplication always makes more

than the initial quantity and subtraction/division always makes

less, even though this is not necessarily true with operations

including non-whole rational numbers (e.g. 86.5 = 4) or zero (e.g.
860 = 0) [19,20]. The origin of this whole-number bias is still a

matter of debate [21]. In all four arithmetic operations, the

‘addition/multiplication makes bigger, subtraction/division makes

smaller’ intuition [22] could lead to the correct choice, over/

under-estimation in the direction of the operation (an OM effect),

or even over/under-estimation counter to the direction of the

operation (a reverse OM effect), as long as the estimation was

larger than the initial quantity. OM research demonstrating

systematic over and under estimation on approximate symbolic

addition and subtraction problems shows that, at least for these

operations, whole numbers themselves are subject to directional

biases. It is not yet known if whole-number multiplication and

division are subject to directional biases.
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Different explanations for OM have been proposed based on

response bias in addition and subtraction. Addition and subtrac-

tion have been described as spatial movements on a mental

number line [23], and the OM effect attributed to movements or

shifts of attention too far along this line [14,24]. Alternatively, if

the mental number line is logarithmically compressed [8,25], OM

may result from flawed decompression [13], though not all OM

research has supported this [16,17]. A simple rule of accepting

more than the original operand for addition and less for

subtraction may also explain the observed bias [15,19–21].

Whether these explanations for OM can be reconciled remains

unclear. Since the term operational momentum could imply a

spatial origin of the observed bias, it is important to separate

proposed cognitive underpinnings (e.g. spatial, attentional shifts,

etc.) from the observed bias. When we use the term OM, we refer

to the observed empirical response pattern without any assump-

tions about the underlying mechanism [26,27].

Although a fair amount of research has focused on OM in

addition and subtraction, scalar operations such as multiplication

and division have never been tested. In this article, ‘‘scalar

operations’’ refer to problems where a quantity element is

modified by a scalar element [45]. Studies of other operational

biases have only used symbolic formats [19,20]. This may be due

to the small number of studies addressing non-symbolic scalar

operations, most of which have focused on children prior to

instruction [28,29]. Children in kindergarten and 1st grade can

double and halve discrete (dot arrays) and continuous (lines)

stimuli [28]. Children in this age group are also able to quadruple

and even multiply by a fraction (e.g. 2.5) [29]. The limited existing

research supports non-symbolic multiplication and division ability

and therefore the possibility of studying OM in these operations.

Demonstration of OM in scalar operations would add to our

understanding of OM in particular and numerical decision making

in general.

In this context, we designed a study to test whether OM exists in

whole-number multiplication and division by presenting symbolic

and non-symbolic problems and measuring response bias. Our

first goal was to see whether OM exists in whole-number

multiplication and division. Finding OM in multiplication and

division could suggest that the ANS influences scalar operations.

Our second goal was to see whether participants could use the

ANS to solve non-symbolic multiplication and division problems

using larger quantities (operands and results) than previous studies.

We found that participants based their responses on a combination

of both operands, implying reliance on numerical information

rather than mere guessing or plausibility checks. Most importantly,

they demonstrated OM in non-symbolic problems.

Materials and Methods

Ethics Statement
The study was approved by the Humboldt University Depart-

ment of Psychology Ethics committee (Nr.: 2010–12) on October,

8, 2010. Written informed consent was obtained. Participants were

reimbursed 8J/hour for participation in the study.

Participants
Sixteen native German-speaking right-handed participants (12

female; 20–65 years old, mean = 33.88, SD = 13.12) were recruit-

ed in Berlin, Germany, using a Humboldt University department

database. Participants who reported a history of psychiatric illness

were excluded.

Stimuli
Twenty-four multiplication and 24 division problems were

created (table 1). To control for correct value size, the same

response choices, including dot arrays for non-symbolic problems,

were used for multiplication and division. The task design was

based on a previously reported adult OM assessment method

[14,16]. The correct result (C) and 6 incorrect results were created

in a geometric series (symbolic: C x 1.5 i/3 & non-symbolic: C x 2 i/

3; i from 23 to 3). Previous research has shown that subjects tend

to avoid extreme results in symbolic calculation [14]. To increase

the likelihood of finding an OM effect in symbolic problems, 1.5

rather than 2 was used. To control for parity, symbolic response

alternatives were rounded to the closest value with the same parity

as the correct result. To avoid the strategy of choosing the middle

value, only 5 of the 7 possible results were presented. In 50% of

trials the low range was presented and the 4th result was correct. In

the other 50% of trials the high range was presented and the 2nd

result was correct (Fig. 1).

Non-symbolic stimuli were created using MATLAB (The

MathWorks, Inc., 2012) and the Psychophysics Toolbox extension

[30,31], using the method described by Gebuis and Reynvoet [32].

Previous research has varied intensive (e.g. dot size) and extensive

(e.g. envelope size, area, density) parameters separately. In this

case, although participants cannot rely on one feature for all trials

they could, for example, use area in half the trials to accurately

predict quantity and dot size in the other trials, choosing the best

strategy for each trial. We overcame this by first generating 2 dot

arrays for each of the five response choice values (comp_dots_-

version180112.m, http://titiagebuis.eu). We then selected an

optimal combination of 5 dot arrays by testing the correlation of

visual parameters and quantity for all possible combinations. We

chose combinations with individual correlations less than.4 to

create groups of uncorrelated dot arrays. The mean correlations

between quantity and extensive and intensive visual parameters

were 0.05 and 0.02, respectively (area subtended: mean r = 0.05,

SD = 0.21; mean dot size: mean r = 0.02, SD = 0.19).

Procedure
The task was created and presented using OpenSesame [33]. A

total of 384 trials were presented in 16 blocks with 24 calculation

trials (12 high range & 12 low range) per block. Breaks were given

between blocks. Operands were presented simultaneously to

reduce working memory confounds. The problem was shown

horizontally for 3s with either a multiplication (6) or division (4)

sign between the operands, followed by a screen with the 5

response choices arranged in a circle (Fig. 1). Responses were

made using a mouse. The task advanced after a response was

made or after a maximum of 4 seconds. The participants were told

to answer quickly, even if they were not certain of the exact

answer, and not to count the dots in non-symbolic problems.

Analysis
Data were visualized and analyzed using SPSS 20. To confirm

that response choices were not random and check for a significant

response bias, repeated measures ANOVA was used. Since

interpretation of main effects in the presence of a significant

interaction is not recommended [34], simple effects analysis was

used when a significant interaction was present. The Bonferroni

method was used to correct for multiple comparisons. When

Mauchley’s test of sphericity indicated that the assumption of

sphericity had been violated, the Greenhouse-Geisser correction

was used. Consistent with the notion of a logarithmically

compressed mental magnitude representation and previous
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research [14], correct and response values were log-transformed

prior to ANOVA [35].

Results

Nonrandom distribution of responses
To investigate the effects of notation, operation, rank (1–5) and

range (4th or 2nd choice correct) on response percentage, a series of

repeated measures ANOVAs were used. The correct choice can

only be inferred using both range and rank variables. Thus, since

response percentage results are only meaningful when both

variables are considered, interactions including only one of these

variables were not included. There was a significant interaction

between notation, operation, rank and range (F(4, 60) = 7.802, p,

.001, partial g2 = .342), qualifying other main and lower-order

interaction effects (notation 6 range 6 rank: F(4, 60) = 259.672,

p,.001, partial g2 = .945; operation 6 range 6 rank: F(4,

60) = 5.488, p = .001, partial g2 = .268; range 6 rank: F(4,

60) = 251.132, p,.001, partial g2 = .944; notation: F(1,

15) = 6.808, p = .020, partial g2 = .312; operation: F(1,

15) = 1.676, p = .215, partial g2 = .100; range: F(1, 15) = 1.436,

p = .249, partial g2 = .087; rank: F(4, 60) = 84.525, p,.001, partial

g2 = .849). Following up on the significant four-way interaction,

we submitted response percentages to 26562 repeated measures

ANOVAs, separately for symbolic and non-symbolic notations,

with the factors operation (multiplication vs. division), rank (1–5),

and range (4th or 2nd choice correct). In symbolic problems, there

was a significant interaction between operation, range and rank

(F(4, 60) = 17.054, p,.001, partial g2 = .532), qualifying other

main and lower-order interaction effects (range 6 rank: F(4,

60) = 333.555, p,.001, partial g2 = .957; operation: F(1,

15) = 4.776, p = .045, partial g2 = .242; range: F(1, 15) = 2.020,

p = .176, partial g2 = .119; rank: F(4, 60) = 218.421, p,.001,

partial g2 = .936). In non-symbolic problems, there was no

significant interaction between operation, range, and rank (F(4,

60) = .978, p = .427, partial g2 = .061). The interaction between

range and rank for all non-symbolic problems was significant (F(4,

60) = 31.626, p,.001, partial g2 = .678), qualifying the main

effects (operation: F(1, 15) = 4.655, p,.048, partial g2 = .237;

range: F(1, 15) = .075, p,.787, partial g2 = .005; rank: F(4,

60) = .334, p = .854, partial g2 = .022). Therefore, we analyzed

the impact of rank and range using 2-way repeated measures

ANOVAs, separately for each combination of notation and

operation.

Influence of rank and range on response percentage
We first checked whether responses were non-randomly

distributed, to confirm that participants were not guessing. Since

five possible answer choices were used, with the rank of the correct

choice depending on the range presented, random responding

would be a flat line for both low and high ranges, with 20% of

responses in each of the five choices. Based on visual inspection,

responses appeared non-random in all conditions (Fig. 2). In

symbolic problems, participants chose the correct answer 87% of

the time for multiplication (4th choice correct: 1st = 1%, 2nd = 3%,

3rd = 3%, 4th = 87%, 5th = 5%; 2nd choice correct: 1st = 7%,

2nd = 87%, 3rd = 3%, 4th = 2%, 5th = 1%) and around 74% for

division (4th choice correct: 1st = 4%, 2nd = 3%, 3rd = 7%,

4th = 75%, 5th = 11%; 2nd choice correct: 1st = 10%, 2nd = 73%,

3rd = 7%, 4th = 4%, 5th = 7%). In non-symbolic multiplication,

participants chose close to the correct answer, with a trend towards

overestimation, when the 4th choice was correct (1st = 9%,

2nd = 12%, 3rd = 22%, 4th = 26%, 5th = 31%), but chose randomly

when the 2nd choice was correct (1st = 21%, 2nd = 18%, 3rd = 22%,

4th = 21%, 5th = 18%). In non-symbolic division, the opposite

Figure 1. Task design. The correct result (C) and 6 incorrect results were created in a geometric series (symbolic: C x 1.5 i/3 & non-symbolic: C x 2 i/3;
i from 23 to 3). To avoid the correct result corresponding to the ‘middle one’ among presented answer choices, only 5 of the 7 results were
presented in a given trial. (A) A low range (blue) with the 4th choice correct and a high range (red) with the 2nd choice correct were created. (B)
Illustration of the procedure using 463 low (4th choice correct), in symbolic (left) and non-symbolic (right) format. The problem was presented
horizontally for 3s, followed by the answer choices for a maximum of 4s. Responses were made with a mouse.
doi:10.1371/journal.pone.0104777.g001

Operational Momentum in Multiplication & Division

PLOS ONE | www.plosone.org 3 August 2014 | Volume 9 | Issue 8 | e104777



T
a

b
le

1
.

M
u

lt
ip

lic
at

io
n

an
d

d
iv

is
io

n
p

ro
b

le
m

s
an

d
re

sp
o

n
se

ch
o

ic
e

va
lu

e
s.

6
4

R
e

sp
o

n
se

C
h

o
ic

e
V

a
lu

e
s

S
ym

b
o

li
c

N
o

n
-s

ym
b

o
li

c

C
o

rr
e

ct
x

1
.5

i/
3

C
o

rr
e

ct
x

2
i/

3

i
2

3
2

2
2

1
0

1
2

3
2

3
2

2
2

1
0

1
2

3

46
3

4
8

/4
6

8
1

0
1

2
1

4
1

6
1

8
6

8
1

0
1

2
1

6
2

0
2

4

66
3

3
6

/2
1

2
1

4
1

6
1

8
2

2
2

4
2

6
9

1
2

1
4

1
8

2
2

2
8

3
6

76
3

6
3

/3
1

3
1

7
1

9
2

1
2

3
2

7
3

1
1

1
1

3
1

7
2

1
2

7
3

3
4

1

86
3

7
8

/2
1

6
1

8
2

2
2

4
2

8
3

2
3

6
1

2
1

6
2

0
2

4
3

0
3

8
4

8

96
3

5
4

/2
1

9
2

1
2

3
2

7
3

1
3

7
4

1
1

3
1

7
2

1
2

7
3

5
4

3
5

3

66
4

9
6

/4
1

6
1

8
2

2
2

4
2

8
3

2
3

6
1

2
1

6
2

0
2

4
3

0
3

8
4

8

76
4

1
1

2
/4

1
8

2
2

2
4

2
8

3
2

3
6

4
2

1
4

1
8

2
2

2
8

3
6

4
4

5
6

86
4

1
2

8
/4

1
8

2
4

2
8

3
2

3
6

4
2

4
8

1
6

2
0

2
6

3
2

4
0

5
0

6
4

96
4

1
4

4
/4

2
4

2
8

3
2

3
6

4
2

4
8

5
4

1
8

2
2

2
8

3
6

4
6

5
8

7
2

76
6

1
2

6
/3

2
8

3
2

3
6

4
2

4
8

5
6

6
2

2
2

2
6

3
4

4
2

5
2

6
6

8
4

86
6

1
9

2
/4

3
2

3
6

4
2

4
8

5
4

6
2

7
2

2
4

3
0

3
8

4
8

6
0

7
6

9
6

96
6

1
6

2
/3

3
6

4
2

4
8

5
4

6
2

7
2

8
2

2
6

3
4

4
2

5
4

6
8

8
6

1
0

8

1
26

3
1

0
8

/3
2

4
2

8
3

2
3

6
4

2
4

8
5

4
1

8
2

2
2

8
3

6
4

6
5

8
7

2

1
46

3
1

6
8

/4
2

8
3

2
3

6
4

2
4

8
5

6
6

2
2

2
2

6
3

4
4

2
5

2
6

6
8

4

1
66

3
1

4
4

/3
3

2
3

6
4

2
4

8
5

4
6

2
7

2
2

4
3

0
3

8
4

8
6

0
7

6
9

6

1
76

3
1

5
3

/3
3

1
3

9
4

7
5

1
5

9
6

7
7

9
2

5
3

3
4

1
5

1
6

5
8

1
1

0
1

1
96

3
1

7
1

/3
3

7
4

3
4

9
5

7
6

3
7

3
8

7
2

9
3

5
4

5
5

7
7

1
9

1
1

1
3

1
26

4
9

6
/2

3
2

3
6

4
2

4
8

5
4

6
2

7
2

2
4

3
0

3
8

4
8

6
0

7
6

9
6

1
36

4
1

5
6

/3
3

4
3

8
4

6
5

2
5

8
6

8
7

8
2

6
3

2
4

2
5

2
6

6
8

2
1

0
4

1
66

4
1

2
8

/2
4

2
4

8
5

6
6

4
7

4
8

4
9

6
3

2
4

0
5

0
6

4
8

0
1

0
2

1
2

8

1
76

4
1

3
6

/2
4

6
5

2
5

4
6

8
7

8
9

2
1

0
2

3
4

4
2

5
4

6
8

8
6

1
0

8
1

3
6

1
96

4
1

5
2

/2
5

2
5

8
6

8
7

6
8

6
9

8
1

1
4

3
8

4
8

6
0

7
6

9
6

1
2

0
1

5
2

1
36

6
1

5
6

/2
5

2
5

8
6

8
7

8
9

2
1

0
2

1
1

8
3

8
5

0
6

2
7

8
9

8
1

2
4

1
5

6

1
46

6
1

6
8

/2
5

6
6

4
7

4
8

4
9

6
1

1
2

1
2

6
4

2
5

2
6

6
8

4
1

0
6

1
3

4
1

6
8

R
e

sp
o

n
se

ch
o

ic
e

va
lu

e
s

w
e

re
ro

u
n

d
e

d
to

m
at

ch
p

ar
it

y
o

f
th

e
co

rr
e

ct
ch

o
ic

e
va

lu
e

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
1

0
4

7
7

7
.t

0
0

1

Operational Momentum in Multiplication & Division

PLOS ONE | www.plosone.org 4 August 2014 | Volume 9 | Issue 8 | e104777



trend was seen. Participants chose randomly when the 4th choice

was correct (1st = 18%, 2nd = 23%, 3rd = 22%, 4th = 19%,

5th = 18%), but chose close to the correct answer, with a tendency

towards underestimation, when the 2nd choice was correct

(1st = 35%, 2nd = 27%, 3rd = 17%, 4th = 14%, 5th = 6%).

This was confirmed using two-way repeated measures ANO-

VAs, separately for each condition, with response percentage as

the dependent variable and rank of the response choice (1–5) and

range (high: 2nd or low: 4th choice correct) as factors. When a

significant interaction was present, simple effects analysis was

performed to see whether rank had an effect on response

percentage, separately for low and high ranges.

Symbolic multiplication. Responses were non-random re-

gardless of range of response choices presented. The assumption of

sphericity was violated according to Mauchley’s Test of sphericity,

x2(9) = 65.378, p,.001; therefore degrees of freedom were

corrected using Greenhouse-Geisser estimates of sphericity. The

interaction between rank and range on response percentage was

significant (F(4, 60) = 421.783, p,.001, partial g2 = .966,

e= .312), qualifying significant main effects (range: F(1,

15) = 2.246, p = .155, partial g2 = .130; rank: F(4, 60) = 332.318,

p,.001, partial g2 = .957). Therefore, a simple effects analysis was

performed. There was a statistically significant difference in

response percentage between the five response choices for both 2nd

(partial g2 = .963) and 4th (partial g2 = .968) choice correct trials

(table 2).

Non-symbolic multiplication. Responses were not random

but, unlike symbolic calculations, this depended on the range of

response choices presented. Responses where non-random when

the 4th choice was correct but random when the 2nd choice was

correct. The interaction between rank and range on response

percentage was significant (F(4,60) = 13.667, p,.001, partial

g2 = .477), qualifying the significant main effects (range: F(1,

15) = .024, p = .879, partial g2 = .002; rank: F(4, 60) = 4.648,

p = .002, partial g2 = .237). Therefore, a simple effects analysis was

performed. There was a statistically significant difference in

response percentage between the five response choices when the

4th (partial g2 = .433) rather than the 2nd choice was correct

(partial g2 = .049) (table 2).

Symbolic division. Like symbolic multiplication, responses

were not random regardless of the range of response choices

presented. The assumption of sphericity was violated according to

Mauchley’s Test of sphericity, x2(9) = 66.359, p,.001; therefore

degrees of freedom were corrected using Greenhouse-Geisser

estimates of sphericity. The interaction between rank and range on

response percentage was significant (f(4,60) = 188.257, p,.001,

partial g2 = .926, e= .317), qualifying significant main effects

(range: F(1, 15) = .135, p = .718, partial g2 = .009; rank: F(4,

60) = 101.163, p,.001, partial g2 = .871). Therefore, a simple

effects analysis was performed. There was a statistically significant

difference in response percentage between the five response

choices for both 2nd (partial g2 = .911) and 4th (partial g2 = .905)

choice correct trials (table 2).

Non-symbolic division. Responses were not random but,

similar to non-symbolic multiplication, this depended on the

response range presented. In contrast to non-symbolic multiplica-

tion, responses were non-random when the 2nd rather than the 4th

choice was correct. The interaction between rank and range on

response percentage was significant (F(4,60) = 18.765, p,.001,

partial g2 = .556), qualifying significant main effects (range: F(1,

15) = .135, p = .718, partial g2 = .009; rank: F(4, 60) = 6.827, p,

.001, partial g2 = .313). Therefore, a simple effects analysis was

performed. There was a statistically significant difference in

response percentage between the five response choices for 2nd

choice correct trials (g2 = .531), but not 4th choice correct trials

(partial g2 = .053) (table 2).

Linear increase of response value with correct value
Before analyzing response bias, we wanted to determine

whether the logarithm of response and correct values should be

used as in past research [14,16], and in-line with statistical

recommendations [35]. Weber’s law predicts that the variability of

response values will increase with numerical magnitude. On the

linear scale, mean response value and variability increased as a

function of the correct value, whereas on the log scale, variability

was constant (Fig. 3 B, C). To confirm this, we plotted the original

linear and log-transformed response value as a function of the

linear and log-transformed correct value (Fig. 3A) and tested the

slope against a null value of zero using multi-level modeling, with

participants as a random effect (table 3). There was significant

linear dependence of the mean chosen value on the correct value

for all conditions, for both the linear and log-transformed data.

For all conditions, the rate of change of the conditional mean of

the response value with respect to the correct value was greater

than zero, for both the linear (symbolic multiplication: B = 0.9763,

95% C.I. [0.9656, 0.9871]; non-symbolic multiplication:

B = 1.2427, 95% C.I. [1.1975, 1.2880]; symbolic division:

B = 0.9868, 95% C.I. [0.9724, 1.0013]; non-symbolic division:

B = 0.9306, 95% C.I. [0.8937, 0.9675]) and log-transformed data

(symbolic multiplication: B = 0.9890, 95% C.I. [0.9810, 0.9970];

non-symbolic multiplication: B = 1.0731, 95% C.I. [1.0421,

1.0423]; symbolic division: B = 0.9809, 95% C.I. [0.9677–

Figure 2. Non-random distribution of responses. Symbolic
response percentages were non-random and peaked at the correct
result. Rank (1–5) had a significant effect on response percentage for
both low (blue, 4nd correct) and high (red, 2nd correct) ranges. Non-
symbolic responses were non-random, depending on the response
range presented. Rank had a significant effect on response percentage
for multiplication when the low (blue) range was presented and for
division when high (red) range was presented. This indicates that
subjects were not guessing, but rather using a calculation based
strategy.
doi:10.1371/journal.pone.0104777.g002
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0.9941]; non-symbolic division: B = 0.9542, 95% C.I. [0.9238,

0.9845]). The log-transformed response and correct values

appeared to better prepare the data for ANOVA since constant

variation is assumed. Therefore, the logarithm of the response and

correct value was used in all OM analyses.

Contribution of both operands to response value
To determine whether participants considered both operands

when choosing a response value, we performed multi-level

multiple regression, separately for symbolic multiplication, non-

symbolic multiplication, symbolic division, and non-symbolic

division, using log-transformed values and participants as a

random effect. For all conditions, there was a significant (p,

.001) contribution of both operands to the mean response value

and a significant rate of change of the conditional mean of the

response value with respect to the first (op1) and second (op2)

operands (symbolic multiplication: op1 t = 208.252, B = 0.9951,

95% C.I. [0.9857, 1.0045]; op2 t = 127.287, B = 0.9731, 95% C.I.

[0.9581, 0.9881]; non-symbolic multiplication: op1 t = 51.852,

B = 1.0990, 95% C.I. [1.0574, 1.1406]; op2 t = 29.389,

B = 0.9962, 95% C.I. [0.9297, 1.0627]; symbolic division: op1

t = 131.116, B = 1.0105, 95% C.I. [0.9953, 1.0256]; op2 t = 2

81.827, B = 20.9733, 95% C.I. [20.9966, 20.9500]; non-

symbolic division: op1 t = 48.655, B = 0.9873, 95% C.I. [0.9475,

1.0271]; op2 t = 229.691, B = 20.9266, 95% C.I. [20.9878, 2

0.8653]). The positive slopes for op2 in multiplication problems

and negative slopes in division problems are consistent with the

operations since a larger 2nd operand in division would result in a

smaller result value. Based on the conservative test of non-

overlapping confidence intervals [36,37], magnitudes of the slopes

(absolute value of B) where not significantly different between op1

and op2. These findings suggest that participants based their

response on a combination of both operands and provide evidence

against pure guessing.

Taken together, these results imply that participants did not

consistently use a random guessing strategy. Rather, they relied on

both operands, although perhaps not to an equal degree, to

formulate a response. This supports the use of approximate

calculation versus consideration of one operand. For symbolic

problems, choices clearly peaked at the correct response. For non-

symbolic problems, the pattern of results was more complex.

However, the interaction between rank, range, and operation in

non-symbolic problems implies that participants’ choices depend-

ed on the range of presented response alternatives in a given trial.

Since the two ranges were presented in random order and

participants were unaware of the low/high range design, the

results are unlikely to be due to a completely non-numeric

strategy. The increase of the mean chosen value as a function of

the correct value, in all conditions, further supports this

interpretation.

Operational momentum effect
To investigate operational momentum, we looked at the

response bias, defined as the difference between the log chosen

and the log correct values. To test the influence of operation and

notation on response bias, a 2-way repeated measures ANOVA

was used. The interaction of operation and notation had a

significant effect on response bias (F(1,15) = 16.023, p = .001,

partial g2 = .516), qualifying significant main effects (operation:

F(1,15) = 14.077, p = .002, partial g2 = .484; notation:

F(1,15) = .297, p = .594, partial g2 = .019). Therefore, simple

effects analysis was performed to see whether operation had an

effect on mean response bias, separately for non-symbolic and

symbolic notations.

Non-symbolic notation. For non-symbolic problems, oper-

ation had a significant effect on response bias at the Bonferroni

corrected p,.025 level (F(1,15) = 15.315, p = .001, partial

g2 = .505). There was a significant difference in the mean log

response bias between non-symbolic multiplication and division

(M = 0.069, Bonferroni 95% C.I. [0.031, 0.106, p = .001]). To see

if participants overestimated multiplication (mean log response

bias.0) and underestimated division (mean log response bias,0),

we performed one-sample t-tests against a null value of zero. We

found that participants significantly overestimated multiplication

problems (t(15) = 2.449, M = 0.02987, 95% C.I. [0.0039, 0.0559],

p = .027) and underestimated division problems (t(15) = 23.136,

M = 20.03879, 95% C.I. [20.0652, 20.0124], p = .007). These

results indicate that non-symbolic response bias is significantly

Table 2. Effect of response choice rank on response percentage for low and high range.

Sphericity

Range df F P Partial 2 x2 e

Symbolic multiplication

Low, 4th correct* 4,60 452.392 ,.001 .968 69.344* .333

High, 2nd correct* 4,60 391.147 ,.001 .963 92.150* .292

Non-symbolic multiplication

Low, 4th correct* 4,60 11.460 ,.001 .433 27.291* .453

High, 2nd correct 4,60 0.777 .460 .049 29.160* .463

Symbolic division

Low, 4th correct* 4,60 142.784 ,.001 .905 75.556* .305

High, 2nd correct* 4,60 153.190 ,.001 .911 69.293* .313

Non-symbolic division

Low, 4th correct 4,60 0.839 .447 .053 28.050* .527

High, 2nd correct* 4,60 16.979 ,.001 .531 35.074* .475

Bonferroni corrected for multiple comparisons and Greenhouse-Geisser corrected for violations of sphericity as measured by Mauchley’s Test of Sphericity.
*p,.001.
doi:10.1371/journal.pone.0104777.t002
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influenced by operation. Consistent with our hypothesis, non-

symbolic multiplication problems were overestimated while

division problems were underestimated (Fig. 4).

Symbolic notation. For symbolic problems, operation did

not have a significant effect on response bias (F(1,15) = 4.049,

p = .063, partial g2 = .213). There was not a significant difference

in the mean log response bias between symbolic multiplication and

division (M = 2.005, Bonferroni 95% C.I. [20.01, 0.00],

p = .063). The mean log response bias was not significantly

different from zero in multiplication (t(15) = 21.365, M = 20.002,

95% C.I. [20.005, 0.001], p = .192) or division (t(15) = 1.538,

M = 0.003, 95% C.I. [20.001, 0.006], p = .145) (Fig. 4).

Discussion

Our primary goal in the present study was to determine if there

was an OM effect for multiplication and division, like for addition

Figure 3. Response value as a function of correct value on linear and log-scale data. (A) Non-aggregated response value as a function of
correct value, on the linear (left) and log (right) scale. Number of cases is shown by increased density (i.e. darker color). (B) Linear response value and
SD increased as a function of correct value, consistent with Weber’s law. Log-transformed response value, but not SD, increased as a function of log-
transformed correct value (i.e. linear on the log scale). (C) Dispersion of response choices, measured by the coefficient of variation, was constant
across correct values on the log scale, but not on the linear scale. Dispersion was constant when log-transformed values were used.
doi:10.1371/journal.pone.0104777.g003
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and subtraction. Our second goal was to see if participants could

use the ANS to perform non-symbolic multiplication and division,

on larger quantities than previously studied. We hypothesized that

participants could perform non-symbolic multiplication and

division and would overestimate for multiplication, as they do

for addition, and underestimate for division, as they do for

subtraction. We found that participants could perform non-

symbolic multiplication and division and their response patterns

were consistent with use of the ANS. Participants significantly

overestimated non-symbolic multiplication problems and under-

estimated non-symbolic division problems. Unlike symbolic

addition and subtraction, for symbolic problems we observed no

significant modulation of responses by operation. These findings

expand the mathematical operations subject to response bias to

include non-symbolic whole-number multiplication and division.

Non-symbolic multiplication and division ability
To our knowledge, this is the first study to look at non-symbolic

multiplication and division in adults. Previous research has focused

on children and used smaller numbers (e.g. halving/doubling)

[28,29]. Based on the observed response pattern, participants

likely used an approximate calculation based strategy for non-

symbolic multiplication and division. If participants had ignored

all numeric information and responded randomly, we would have

seen a flat distribution across response choices (20% for each

answer choice) both when the 2nd and 4th choices were correct

(Fig. 2). This was obviously not the case, as seen in figure 2 and

the significant interaction between rank and range in both

notations. Alternatively, if participants had used a heuristic of

choosing a relatively large number of dots for multiplication and

small for division, we would have seen a distribution peaked at the

high or low end of response choices, regardless of the response

range presented. Again, this hypothesis was not supported by the

data. Instead, participants overestimated multiplication when the

4th of five answer choices was correct, but seemed to guess when

the 2nd lowest choice was correct. The reverse was found for

division. Participants underestimated when the 2nd choice was

correct, but seemed to guess when the 4th choice was correct.

Since participants were not aware of the experimental design, let

alone when they were answering in the low or high range, the

consistent differences between ranges were most likely driven an

approximate evaluation of the operands. Additionally, the mean

chosen value increased with correct value (Fig. 3) and both the first

and second operands independently contributed to the response

value. Taken together, these findings indicate that participants

were using calculation strategies that were influenced by opera-

tion. The influence of operation is consistent with the presence of

OM in non-symbolic problems. Similar to addition and subtrac-

tion, the ANS might be used to solve whole-number non-symbolic

multiplication and division. However, it should be noted that OM

may be driven by non-calculation based strategies as was seen in

infants [15]. Thus, the likely approximate calculation we have

demonstrated is not a precondition for OM.

Operational momentum effect in non-symbolic
multiplication and division

This is the first study to look at OM in whole-number

multiplication and division. Consistent with past research [13–

15], we found an OM effect in non-symbolic calculations.

Specifically, participants overestimated for multiplication and

underestimated for division. Finding an OM effect is reminiscent

of the whole-number bias [19,20], as well as an extension of the

‘multiplication makes bigger, division makes smaller’ (than the

original quantity) (MMBDMS) belief [22]. All of the response

alternatives fit this belief, yet there was a bias towards over or

underestimating. That is, over and above the predictions of the

Table 3. Linear increase of response value with correct value.

Linear Scale Log scale

t Slope 95% CI t Slope 95% CI

Multiplication

Symbolic 178.3* .9763 .9656–.9871 242.7* .9890 .9810–.9970

Non-symbolic 53.9* 1.2427 1.1975–1.2880 67.7* 1.0731 1.0421–1.0423

Division

Symbolic 133.8* .9868 .9724–1.0013 145.4* .9809 .9677–.9941

Non-symbolic 49.4* .9306 .8937–.9675 61.6* .9542 .9238–.9845

Bonferroni corrected for multiple comparisons.
*p,.013.
doi:10.1371/journal.pone.0104777.t003

Figure 4. Operational momentum (OM) in non-symbolic, but
not symbolic, notation. A significant response bias occurred for non-
symbolic problems, indicating an OM effect. Symbolic response bias
was not significant. Non-symbolic multiplication (light grey) problems
were overestimated and division (dark gray) problems were underes-
timated. Response bias was calculated as the log10 response value –
log10 correct value. Positive response bias indicates overestimation and
negative indicates underestimation. Error bars represent 95% confi-
dence interval (C.I.).
doi:10.1371/journal.pone.0104777.g004
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MMBDMS belief, we observed a modulation of mean chosen

value by operation.

Three hypotheses for OM have been proposed: First, the

compression hypothesis states that flawed decompression from the

log scale results in response bias [13,26]; however our data do not

directly speak to this issue. Second, the attentional shifts hypothesis

states that OM occurs as a result of left/right shifts of attention

along a mental number line and a preference for outcomes in the

whole-number biased [19,20,22] direction of the calculation [14].

Our findings support a preference for outcomes in the whole-

number biased direction of the operation, although we did not test

the role of attention. Finally, the heuristic (MMBDMS, in our

study) hypothesis explains OM as using a rule of accepting more

than the original operand for addition and less for subtraction

[15,19,20,22]. In principle, this could apply to multiplication and

division. However, in our study the response choices were always

numerically larger than both operands for multiplication and

numerically smaller than the first operand for division. Therefore,

any response would fit this rule. We found a bias within the

presented choices even though they were equally likely to be

chosen based on this heuristic. However, the influence of the range

of presented response choices suggests that a similar heuristic

could partially explain our findings. A combination of heuristic

bias, similar to MMBDMS, and approximate calculation might

best explain OM in whole-number multiplication and division.

Based on the current results, we cannot rule out the possibility that

approximate calculation was influenced by attentional shifts.

Further research is needed to clarify the role of attention during

approximate mental arithmetic.

The difference between low (4th choice correct) and high (2nd

choice correct) range response choices suggests a more complex

strategy than hypothesized for addition and subtraction. If

participants had overestimated in multiplication (i.e. 2nd correct:

chosen 3rd, 4th, 5th; 4th correct: chosen 5th) and underestimated in

subtraction (i.e. 2nd correct: chosen 1st; 4th correct: chosen 1st, 2nd,

3rd), then a directionally biased approximate calculation hypoth-

esis would explain our findings. Since participants were naı̈ve to

the study aims and manipulated factors (e.g. range), it remains to

be seen what determines strategy choice in a given trial. If

participants had chosen the largest response choice for multipli-

cation (i.e. chosen 5th in both 2nd and 4th correct) and smallest for

division (i.e. chosen 1st in both 2nd and 4th correct), then a

modified MMBDMS heuristic hypothesis would explain our

findings. Since they overestimated in multiplication only when

the 4th choice was correct and underestimated in division only

when the 2nd choice was correct, a combination of the two

hypotheses might best explain our findings. Another possibility is

that the ratio between the largest (multiplication) or smallest

(division) response alternative and the correct outcome was too

small for participants to exclude extreme results. For the high

response range in multiplication and low in division, even extreme

response alternatives were not considered too large (multiplication,

high range) or small (division, low range), leading to a lack of

tapering. However, this lack of tapering could be due to the

operational momentum effect. That is, the operational momentum

effect might be the reason why extreme values (too large for

multiplication or small for division) did not seem extreme enough

to exclude. More empirical data is needed to disentangle these

possibilities. Thus, although our data cannot be explained by the

traditional MMBDMS bias, a related heuristic strategy incorpo-

rating approximate calculation seems likely. This might be

described as ‘multiplication makes relatively large, division makes

relatively small’ (MRLDRS).

Although past OM research assumes that participants use a

single strategy, they might use multiple strategies, especially for

more difficult tasks. Symbolic arithmetic is thought to use global

processes to evaluate solutions alongside fact retrieval [38,39].

These biased global processes may originate from, or be

exacerbated by, early educational methods [22]. Similarly, both

heuristic evaluation (multiplication = relatively large answer;

division = relatively small answer) (MRLDRS) and approximate

calculation may be used for non-symbolic calculation and their

interaction might explain OM. When a plausible response choice

(dot array) based on the mentally represented approximate

calculation is small relative to alternatives for multiplication (high

range, 2nd correct) or large for division (low range, 4th correct), the

approximate calculation and the MRLDRS heuristic evaluation

lead to different response choices. When this conflicting informa-

tion is present, accuracy is likely to decrease [40]. This is also in-

line with the role of inhibitory control in numerical cognition [41],

including OM [16].

In contrast to some research [14,17,18], we did not find OM in

symbolic problems. The inclusion of the correct answer might

have made performance too accurate to detect response bias.

Studies finding OM in symbolic arithmetic have used approximate

response methods, such as pointing to a line marked only with

endpoint numbers [17], manual dot array generation [18], or

jittering the correct result [14]. Though children may use the ANS

to support symbolic arithmetic [1,42,43], reliance on rote verbal

memory may limit ANS influence in adults [44]. Alternatively,

regrouping performed in multiplication and division problems

may prevent, and even reverse, OM. This explanation has been

proposed for reverse OM in symbolic addition and subtraction

[18]. A final possibility is that adult exposure to multiplication and

division with rational numbers attenuates bias in whole-number

symbolic calculation [22]. However, the demonstration of whole-

number bias in adults suggests that directional bias is not fully

corrected [19,20]. Future research could use an approximate

response method and a regrouping variable to understand whole-

number symbolic OM.

Limitations
This study has some limitations. Only five answer choices were

presented, which might have put a ceiling or floor effect on

response bias. Despite this, we were able to demonstrate OM. We

also chose to keep the correct value identical across operations and

to roughly match the 2nd operands. Therefore, the size of the first

operands was not matched between multiplication and division

problems. However, if participants relied on the first operand we

would expect, if anything, a reverse OM effect since division had

larger first operands than multiplication.

Conclusions
We have demonstrated that OM occurs in whole-number

multiplication and division. This is the first time OM has been

found in scalar operations. Additionally, we have shown that

adults do not randomly guess or use a purely heuristic strategy, but

rather use approximation, based on the operands, to perform non-

symbolic multiplication and division. Non-symbolic multiplication

problems are overestimated and non-symbolic division problems

are underestimated. Interestingly, response patterns depend on the

magnitude of the correct choice relative to the alternatives. These

findings suggest that a combination of approximate calculation

and an operationally dependent bias towards large or small

quantities might explain OM. When multiple choices are given,

response may depend on an interaction between approximate

calculation and a heuristic evaluation. This interaction could
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reconcile these two previously proposed explanations. Future

research should consider the use of multiple strategies, depending

on difficulty and task design. However, regardless of the response

strategy, the demonstration of OM in multiplication and division

advances understanding of this phenomenon and shows that OM

can be found in all whole-number arithmetic operations.
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