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Abstract

Water distribution networks are a fundamental part of any modern city and their daily

operations constitute a significant expenditure in terms of energy and maintenance costs.

Careful scheduling of pump operations may lead to significant energy savings and prevent

wear and tear. By means of computer simulation, an optimal schedule of pumps can

be found by an optimisation algorithm. The subject of this thesis is the study of pump

scheduling as an optimisation problem.

New representations of pump schedules are investigated for restricting the number of

potential schedules. Recombination and mutation operators are proposed, in order to use

the new representations in evolutionary algorithms. These new representations are em-

pirically compared to traditional representations using different network instances, one of

them being a large and complex network from UK. By means of the new representations,

the evolutionary algorithm developed during this thesis finds new best-known solutions

for both networks.

Pump scheduling as the multi-objective problem of minimising energy and mainte-

nance costs in terms of Pareto optimality is also investigated in this thesis. Two alter-

native surrogate measures of maintenance cost are considered: the minimisation of the

number of pump switches and the maximisation of the shortest idle time. A single run of

the multi-objective evolutionary algorithm obtains pump schedules with lower electrical

cost and lower number of pump switches than those found in the literature. Alternatively,

schedules with very long idle times may be found with slightly higher electrical cost.

Finally, ant colony optimisation is also adapted to the pump scheduling problem. Both

Ant System and Max-Min Ant System are tested. Max-Min Ant System, in particular,

outperforms all other algorithms in the large real-world network instance and obtains

competitive results in the smallest test network. Computation time is further reduced by

parallel simulation of pump schedules.
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Chapter 1
Introduction

A consequence of rising energy prices is to ration the available energy for various tasks.

In water distribution systems, water often needs to be pumped to a higher elevation with

adequate pressure. For example, hydraulic pumps transport water from a treatment plant

into an elevated storage tank. From an elevated tank, water falls by gravity to reach with

adequate pressure nodes in the water network where water is consumed. Hydraulic pumps

consume most of the energy required to operate a water distribution system. Therefore,

optimising pump operations may lead to significant reductions in energy expenditure.

During the last decade many studies have proposed various automatic systems for the op-

timal scheduling of pump operations with the aim of saving energy and reducing operating

and maintenance costs. The present day energy requirements are higher: larger and more

complex water networks need to be handled. Moreover, the problem formulation involves

various constraints to maintain service levels besides minimisation of operational and

maintenance costs. Due to high variability and uncertainty involved with the prediction

of demands, better results are expected to be obtained by using real-time optimisation.

For real-time optimisation, the formulated model (including simulation model) and the

chosen optimiser must be able to produce results in real-time. Therefore, despite the ad-

vances in computing and hydraulics, the problem seems as challenging today as it was a

decade ago.

As an optimisation problem, pump scheduling is difficult to solve because of its large

search space, high computing requirements and the nonlinear and discontinuous nature

of real-world networks. As an engineering problem, automatic pump scheduling is an

arduous task due to the diversity and complexity of real-world water distribution systems.

An engineer developing a system to automatically optimise pump operations in a real-

world network would need to address a multitude of problems: collect data about the

physical network; build and calibrate according to this data a hydraulic model of the

network and a demand forecast model; and define appropriate performance criteria and
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constraints in order to offer an adequate, reliable and competent service to customers. All

these tasks are prerequisites to develop the optimisation system itself and they may well

determine the design of the optimisation system. As a research topic, automatic pump

scheduling is challenging. Because of its strongly practical nature, it is difficult to provide

a general and consistent formulation of the problem. Moreover, each instance of the pump

scheduling problem is motivated by a different application with unique peculiarities and

requirements. Therefore, it is not surprising that each instance is often solved by a mostly

specific approach that may not be suitable for a different instance of the problem. The end

result is that most research on pump scheduling is never contrasted on multiple network

instances, or compared against alternative techniques.

The goal of this thesis is to address the problem from a more general perspective in

order to develop techniques that may be applied to diverse instances of the problem. Our

goal is, as well, to assess the robustness of these techniques when applied to different

instances of the problem. Finally, another further goal is to determine the actual effec-

tiveness of a particular technique in comparison to alternative techniques by means of

sound and thorough experimental analysis. The aforementioned complexity of the pump

scheduling problem can be overcome by dividing it into subproblems that may be inde-

pendently addressed. Therefore, in this thesis we will focus primarily on the optimisation

algorithm and on the characteristics of the problem that affect it.

An optimisation algorithm generates potential solutions that are, hopefully, optimal (or

a good approximation to the optimal) with respect to the objectives of the problem and

feasible with respect to its constraints. Hence, we will discuss the formulation of the

objectives and constraints of the pump scheduling problem at length. Another relevant

aspect is the representation of the solutions for the problem, i.e., the precise definition,

meaning and domain of the decision variables for which the algorithm tries to find appro-

priate values. In the pump scheduling problem, a solution is a schedule of the pumps and

there exist several alternatives for defining a pump schedule. Each of them has its own

advantages and disadvantages. A particular representation strongly determines how an

optimisation algorithm handles a problem. Therefore, new representations may provide

new and innovative methods to address the problem. Finally, the optimisation algorithm

itself is the main subject of this thesis. Although inventing a radically new approach

might be tempting, there exist already several well-known, widely tested and successful

optimisation techniques. Evolutionary Algorithms and Ant Colony Optimisation are two

general-purpose optimisation techniques that have been applied to numerous problems.

We aim to provide a comprehensive experimental analysis of both techniques in compar-

ison with results provided in the literature. We hope to produce state-of-the-art results for

the network instances considered in our study.
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1.1 Aims of the Thesis

The main aims of this thesis are to:

1. Study the pump scheduling problem formulation in order to develop a general defi-

nition of its objectives and constraints.

2. Review the most important representations of pump schedules and develop alterna-

tives that may enhance the optimisation algorithm and provide additional benefits.

3. Investigate the application of various optimisation techniques.

4. Provide a sound and exhaustive experimental analysis of the above techniques ap-

plied to different network instances in order to identify best settings, best represen-

tations and best techniques.

5. Based on the previous findings, to produce state-of-the-art results for publicly avail-

able network instances.

1.2 Outline of the Thesis

This thesis is comprised of 7 chapters:

Chapter 1 corresponds to this introduction.

Chapter 2 describes the pump scheduling problem in very general terms. Objectives

and the most popular constraints are discussed. In addition, the recent literature on the

problem is reviewed. We present a general schema of the systems proposed in this thesis.

The hydraulic simulator utilised in this work, EPANET, is described and we enumerate

the improvements incorporated to it. Finally, this chapter introduces the two test networks

that will be used in the experiments throughout this thesis.

Chapter 3 discusses the representation of pump schedules. First, the two traditional

representations, namely, the binary representation and level-controlled triggers, are re-

viewed. Then, two new representations based on the concept of time-controlled triggers

are proposed. The advantages of the new representations are explored in detail.
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Chapter 4 explores the application of Evolutionary Algorithms to the pump scheduling

problem. First, a simple evolutionary algorithm (SEA) is defined. Second, evolution-

ary operators (recombination and mutation) are reviewed for the traditional representa-

tions. New recombination and mutation operators are proposed for the new representa-

tions based on time-controlled triggers. Next, a thorough experimental analysis by means

of statistical tools investigates the effect of the parameters of SEA and their interactions.

The experimental analysis identifies the best configurations of SEA for each represen-

tation and each test network. Then, these configurations are compared with each other

and with results available in the literature. Further experiments analyse the effect of the

constraint on the number of pump switches and the effect of the length of time intervals.

Chapter 5 investigates the formulation of pump scheduling as a multi-objective prob-

lem in terms of Pareto optimality. Two different multi-objective variants are proposed in

this chapter. First, the minimisation of energy cost and number of pump switches is con-

sidered. Here, the number of pump switches is a measure for maintenance costs. Second,

we introduce the shortest idle time in a pump schedule as an alternative surrogate measure

of maintenance costs. Hence, we propose a multi-objective formulation that minimises

energy cost and maximises the shortest idle time. Experiments are carried out by means

of a multi-objective evolutionary algorithm (SPEA2) and analysed using state-of-the-art

methods. The results are compared with the single-objective SEA proposed in the previ-

ous chapter and with the results from the literature.

Chapter 6 proposes the application of Ant Colony Optimisation (ACO) to the pump

scheduling problem. The pump scheduling problem is adapted to the ACO framework by

means of the time-controlled triggers representation. First, the approach is empirically

tested by using the Ant System algorithm. Next, a more advanced ACO algorithm, Max-

Min Ant System, is utilised to solve the pump scheduling problem. Finally, ACO is em-

pirically compared with both SEA and the results available in the literature. In addition,

the computation effort required by ACO in the pump scheduling problem is investigated.

As a result of our findings, we propose a parallel evaluation of pump schedules by using

a thread-safe variant of EPANET in order to significantly reduce the computation time.

Chapter 7 summarises the main conclusions and contributions of this work, enumerates

publications arising from this thesis and offers ideas to further extend our investigation.

In addition to the main body, several appendixes provide expanded information that is

of interest for future reference:



1.3. Contributions of this Thesis 5

Appendix A lists the results of SEA obtained in the experiments of Chapter 4.

Appendix B lists, in a similar way, the results of ACO obtained in the experiments of

Chapter 6.

Appendix C describes the format of the experimental data, which is publicly available

for further analysis and comparison. All our algorithms utilise a common output format

that is both easy to understand by humans and easy to parse by computer programs. We

encourage researchers to utilise a similar output format to facilitate the comparison of

future optimisation algorithms for the pump scheduling problem.

Appendix D enumerates in detail our modifications to the EPANET Toolkit library. Our

improvements include new functions and features, computation time optimisations and

bug fixes. The source code of our implementation is publicly available.

Appendix E introduces a new thread-safe variant of EPANET Toolkit to be used by

parallel applications. First, the limitations of the original EPANET for parallel computing

are discussed. Next, the implementation of a thread-safe variant is described. Finally,

a random search algorithm that evaluates pump schedules in parallel is linked with the

thread-safe library for the purpose of testing the benefits of multiple CPUs. In Chapter 6,

this thread-safe version of EPANET is combined with a parallel ACO algorithm in order

to reduce the computation time of ACO.

Appendix F reproduces a complete EPANET input file corresponding to the Vanzyl net-

work as an example of instance of the pump scheduling problem. Although some versions

of this input file are available in the literature, the reproduced input file is more complete.

1.3 Contributions of this Thesis

The contributions from this thesis (see Section 7.2 for a detailed list) are based on a gen-

eral view of pump scheduling as an optimisation problem. Hence, a formal definition of

the pump scheduling problem is proposed, which may be easily adapted to many particu-

lar network instances. To this end, different alternatives for the most utilised constraints,

e.g., constraint on volume deficit and number of pump switches, are examined.

The main contributions of this thesis are new proposals on how to approach the prob-

lem using existing techniques. These techniques are evolutionary algorithms (EA), ant
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colony optimisation (ACO) and multi-objective evolutionary algorithms (MOEA). In par-

ticular, ACO has never been applied before to the pump scheduling problem. The results

presented in this thesis suggest that ACO is a competitive approach. Two multi-objective

formulations of pump scheduling are tested in this thesis. The first one is the minimisation

of pump switches in addition to the minimisation of electrical cost. This formulation has

been considered before in the literature. However, in this thesis, an experimental anal-

ysis with various representations and evolutionary operators is carried out by means of

up-to-date analysis methods. The second multi-objective formulation is proposed for the

first time by this thesis. In this formulation, the second objective is maximisation of the

shortest idle time as surrogate measure of maintenance costs.

Another significant contribution is two new representations of pump schedules and

their corresponding evolutionary operators. These representations are based on the con-

cept of time-controlled triggers, and they allow to limit the search to those solutions that

satisfy the pump switches constraint. To the best of our knowledge, this thesis provides

the most comprehensive experimental analysis of different representations and their asso-

ciated evolutionary operators available in the literature. The conclusions of the analysis

suggest that time-controlled triggers achieve superior results in comparison to traditional

representations such as the binary representation or level-controlled triggers.

The experimental analysis performed in this thesis also explores other characteristics

of the pump scheduling problem. For example, a higher limit on the number of pump

switches provides more flexibility when scheduling pump operations, and intuitively, this

flexibility should lead to reduced electrical cost. However, the experimental results pre-

sented in this thesis indicate that schedules with low electrical cost often have a moder-

ate number of pump switches. In fact, restricting the search to those schedules with a

low number of pump switches often leads to lower electrical cost. Another conclusion

from the experimental analysis is that reducing the minimum time interval between pump

switches allows to find lower cost schedules. However, the search space is also increased,

and the algorithm requires more computation time to find those lower cost schedules.

On the other hand, a setting of the minimum time interval larger than one hour produces

noticeable worse results.

A further contribution is a new thread-safe variant of EPANET. This new version of

EPANET enables the parallel evaluation of different pump schedules for the same network

instance. By means of this thread-safe EPANET, ant colony optimisation may take advan-

tage of parallel processors to significantly reduce the total computation time required by

a single run, without altering the final solution found by the algorithm.



Chapter 2
The Pump Scheduling Problem

In any modern city, when we turn on a tap at home we expect potable water to come out.

Moreover, we also expect an adequate flow of water at sufficient pressure. In order to

satisfy our expectations, sufficient volume of water must be transported from a source of

potable water, e.g., a treatment plant, to demand points (consumers) through a network

of pipes. Although water can be transported by gravity, more often it must be pumped in

order to reach higher elevations with sufficient pressure. However, pumps cannot be acti-

vated whenever we turn on a tap and people do not consume water uniformly throughout

the day: within a single day there are periods of high and low consumption. Therefore,

water must be stored in tanks at a higher elevation, so that it can be supplied whenever

there is a higher demand. These elements define a life-cycle of the water within the net-

works of our city: water is pumped from the source of potable water, filling storage tanks,

and water is consumed at some nodes of the network, emptying the tanks.

Reducing the energy consumption of water distribution networks has never had more

significance than in the present day. The greatest energy savings can be obtained by care-

ful scheduling of the operation of pumps. Moreover, the cost of operating pumps in a

water distribution network represents a significant fraction of the total expenditure in-

curred in the operational management of water distribution networks worldwide. Pumps

consume large amounts of electrical energy for pumping water from source to storage

tanks and/or demand nodes. In addition, they eventually need to be repaired and replaced,

resulting in maintenance costs. Therefore, the goal of the pump scheduling problem is

to minimise the total operational cost, which includes pumping cost and pump mainte-

nance cost, while guaranteeing a competent network service. In most cases, a competent

network service is equivalent to supplying water to consumers at adequate pressures and

achieving full recovery of tank levels by the end of operating period.

7
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2.1 The Cost of Pumping Water

The main goal in the pump scheduling problem is to minimise the cost of supplying water,

while keeping within physical and operational constraints (Ormsbee & Lansey, 1994), by

means of scheduling daily pump operations. There are two types of costs associated

with the operation of pumps: energy costs and maintenance costs. The energy cost may

be composed of an energy consumption charge (£/kWh), i.e., the cost of electric energy

consumed during a time interval, and a demand charge (£/kW), i.e., the cost associated

with the maximum amount of power consumed within a billing period (Walski et al.,

2003). Maintenance costs are mainly associated with the wear and tear of pumps, which

will result in future repair or even replacement of damaged pumps.

Let the operations of N p pumps be scheduled over a time period, e.g., 24 hours. This

scheduling period is divided into a number of time intervals (NT). A certain pump sched-

ule S represents which pumps operate during which time interval. The total cost of energy

is calculated as:

CE(S) =
Np
∑

n=1

(demand charge + consumption charge)

=
Np
∑

n=1



Pd Ed(n) +
NT
∑

t=0

Pc(t)Ec(n, t)S(n, t)





(2.1)

where N p = number of pumps

NT = number of time intervals in a pump scheduling period

S(n, t) = duration for which pump n is operating during time interval t (hour)

Pc(t) = energy consumption tariff during time interval t (£/kWh)

Ec(n, t) = energy consumption rate of pump n during time interval t (kWh/h)

Pd = demand charge (£/kW)

Ed(n) = maximum electric power consumption of pump n (kW)

The energy consumption rate of a pump depends on the flow through the pump, head

supplied by the pump, and the efficiency at which it operates, during a particular time

interval (Walski et al., 2003):

Ec(n, t) =
10−3 · γ ·Q(n, t) · h(n, t)

e(n, t)
(kWh/h) (2.2)
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where γ = specific weight of water (N/m3)

Q(n, t) = flow rate through pump n during time interval t (m3/s)

h(n, t) = total dynamic head supplied by pump n during time interval t (m)

e(n, t) = wire-to-water efficiency of pump n during time interval t (%)

The electrical power required to drive the pump is calculated as:

Ed(n) =
10−3 · γ ·Qmax(n) · h(n)

e(n)
(kW) (2.3)

where γ = specific weight of water (N/m3)

Qmax(n) = peak flow rate through pump n (m3/s)

h(n) = total dynamic head supplied by pump n (m)

e(n) = wire-to-water efficiency of pump n (%)

The demand charge is normally applied to the maximum power demand (kW) over a

billing period (typically a month) longer than the scheduling period (typically one day).

Nonetheless, maximum demand policies can be modelled within a scheduling period by

calculating the corresponding penalty cost to the maximum power use over the scheduling

period (McCormick & Powell, 2003a).

On the other hand, maintenance costs are difficult to quantify. Instead, they are esti-

mated using a surrogate measure, such as the number of pump switches. A pump switch is

defined as the action of turning on a pump that was not operating during the previous time

interval (Lansey & Awumah, 1994). Frequent switching causes wear and tear of pumps,

which, in turn, increases maintenance costs. Thus, the general practice is to minimise the

number of pump switches resulting in lower maintenance costs. Most of the approaches

in the literature consider energy costs as the most important objective and the number of

pump switches is added as a constraint of the problem.

2.2 Constraints of the Pump Scheduling Problem

In order to be useful in practice, feasible schedules must satisfy certain constraints. These

constraints include hydraulic constraints, also called implicit system constraints, which

define the hydraulic equilibrium state of the system, e.g., Conservation of Mass at each

node and Conservation of Energy around each loop in the network. On the other hand, im-

plicit bound constraints represent system performance criteria. They include constraints

on junction pressures, pipe flow rates or velocities, and tank water levels. Implicit bound

constraints may also include constraints on pump operation switches. Frequent switching
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a pump on and off results in maintenance costs due to increasing wear on the pump, thus

constraining the number of pump switches limits future maintenance costs.

Constraints on tanks water levels typically include minimum and maximum limits on

tank levels, and balance between supply and demand from tanks. Minimum and maxi-

mum tank limits may be explicit constraints of the problem or can be implicitly enforced

by a hydraulic simulator. Balance between water supplied and consumed from tanks

is achieved by ensuring that tanks recover their levels by the end of scheduling period.

Balancing supply and demand also allows to apply a similar pump schedule to the next

scheduling period, since consumer demands and network conditions are very similar in

consecutive periods.

For a perfect periodicity of the operations, the volume of water in each tank at the end

of the scheduling period must be equal to its initial volume (Cohen, 1982). However, this

is a very strict constraint. A relaxed formulation allows the final volume of water at each

tank to be different from its initial volume and simply requires that the total volume of

water pumped into the network is the same as the amount consumed (Goldman & Mays,

2000). Even though this condition suffices to ensure the balance between water supply

and demand, it permits that at the end of the scheduling period water may be stored at

a lower elevation than at the start. This difference in elevation implies a loss of energy

in the system and prevents periodicity. Although the situation may correct itself with

time and become periodic, this is not guaranteed and subsequent scheduling periods will

require more pumping, increasing costs. An alternative formulation that does not produce

such loss of energy imposes a constraint stipulating that the final volume in a tank should

not be lower than its initial volume (Mäckle, Savic & Walters, 1995; van Zyl, Savic &

Walters, 2004).

Following this latter definition, we formulate the constraint on the balance between

supply and demand as follows. Tank volume deficit (∆Vk) is defined as the difference in

percentage between the initial volume (Vk,S) and the final volume (Vk,E) of water in a tank

k (2.4a). A negative volume deficit represents a surplus of water in the tank. However,

it is not assumed that this surplus compensates the loss of water in a different tank. The

volume deficit tolerance (∆V tol) is a parameter of the problem formulation that defines

the volume deficit that is allowed (2.4b). Only values that are higher than ∆V tol are

accumulated to calculate the total volume deficit (∆V ) of a particular schedule, which

must be zero in a feasible solution (2.4c).

∆Vk = 100 ·
Vk,S − Vk,E

Vk,S

(2.4a)
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∆V ′
k =







∆Vk if ∆Vk > ∆V tol,

0 otherwise.
(2.4b)

∆V =
N t
∑

k=1

∆V ′
k = 0 (2.4c)

where N t is the number of tanks in the network.

The parameter ∆V tol allows to model different problem instances. In certain situations,

operators may decide to permit a certain amount of deficit to be able to obtain lower

costs. A positive value of ∆V tol would mean that feasible schedules may generate a vol-

ume deficit of up to ∆V tol percentage of the total volume of each storage tank. It is not

difficult to imagine a situation where the requirement is that final tanks levels must be

higher than initial levels by at least a specified volume. This formulation can be modelled

by defining a negative volume deficit tolerance (∆V tol < 0). A straightforward extension

may contemplate a different volume tolerance for each storage tank ∆V tol
k , allowing max-

imum flexibility. Moreover, a multi-objective formulation may consider ∆V tol not as a

constraint, but as an objective value that must be minimised. Normally ∆V tol = 0, that is,

initial tank levels must be completely recovered at the end of the scheduling period. This

is the setting used throughout this thesis.

In addition to balancing supply and demand, a reliable network service must supply

water to consumers at adequate pressures. Therefore, the optimisation model must satisfy

minimum pressure constraints at demand nodes:

Hk,t ≥ Hmin
k (2.5)

where Hk,t is the head supplied at node k during time period t and Hmin
k is the mini-

mum head required at node k. In particular, we accumulate the violations of the above

constraints into a single pressure deficit constraint:

∆Hk,t =











Hmin
k −Hk,t

Hmin
k

if Hk,t < Hmin
k ,

0 otherwise.

∆H =
NT
∑

t=1

Nd
∑

k=1

wk∆Hk,t = 0

(2.6)

where NT is the number of time periods, N d is the number of demand nodes, and wk is a

weight of the relative importance of pressure violations in node k. This weight allows to
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model problem instances where some customer nodes (hospitals, critical industries) have

a higher importance than others. In this thesis we do not further explore this possibility,

and, hence, we set wk = 1, ∀k = 1, . . . , N d.

Finally, an additional constraint on the number of pump switches of a schedule is often

incorporated to the problem formulation in order to reduce maintenance costs. As men-

tioned earlier, frequently switching a pump on and off causes wear and tear (Lansey &

Awumah, 1994). However, our goal is not limiting the total number of pump switches

(N sw), but actually limiting the number of switches of each pump (N sw
p ), where:

N sw =
Np
∑

p=1

N sw
p

The difference is that by limiting N sw, a schedule may still contain a pump with an

excessive number of switches, whereas this cannot occur if the constraint is applied to

N sw
p . Thus, to strictly limit the number of switches per pump to a specified value, the

following constraint is considered:

N sw
p = SW ∀p ∈ {1, . . . , N p} (2.7)

where SW is a constant to be specified and it is the number of switches allowed per

pump during the scheduling period. Schedules with a lower number of pump switches are

normally also acceptable, and thus, the previous constraint may be relaxed as follows:

N sw
p ≤ SW ∀p ∈ {1, . . . , N p} (2.8)

The above constraints are the most frequently used constraints. Additional constraints,

such as limits on source flows or velocity constraints, may be incorporated to the prob-

lem formulation depending on particular requisites of a network and the optimisation

approach. For example, when a hydraulic simulator is used to evaluate pump schedules,

the simulator may issue warnings for specific undesirable situations. Such warnings indi-

cate that the schedule is problematic and should not be considered a feasible solution to

the problem.1 Therefore, an additional constraint is added that requires feasible solutions

to generate no simulation warnings.

1 These warnings are discussed in Section 2.4.1 for the particular hydraulic simulator

used in this study.
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2.3 Review of Previous Approaches

The optimal control policy is defined as the schedule of pump operations that will result

in the lowest total operating cost for a given set of hydraulic and implicit bound con-

straints (Ormsbee & Reddy, 1995). In very general terms, a system that automatically

controls the operation of pumps in order to obtain an optimal control policy is made up

of three main components: a hydraulic network model, a demand forecast model, and

an optimal control model. A calibrated hydraulic network model is used to calculate the

response of the water distribution system to different operational policies. A demand fore-

cast model is used to predict water demand during scheduling period from historical data.

These demands are incorporated into the hydraulic network model. The optimal control

model, which we will refer as the optimisation algorithm thereafter, generates optimal

control policies by minimising an objective, usually electricity cost, subject to a number

of operational constraints.

The automatic scheduling of pump operations in water distribution systems to minimise

the costs of supplying water is not a new problem. Ormsbee & Lansey (1994) carried out

a review of the state of the art of algorithms for this problem. Following a similar review

method, we summarise more recent works in Table 2.1.

We first classify the various approaches according to the type of system addressed by

the model: the number of storage tanks (column 2) and pumping locations (column 3),

either individual pumps or pump stations. Additionally, we identify the three main com-

ponents in an operation control system: the hydraulic network model (column 4), the

demand forecast model, and the optimisation algorithm (column 5). Modern approaches

typically use distributed demand model or do not depend on a particular model, so we do

not take the demand model into account in our review. Finally, another relevant aspect is

whether the approach uses explicit or implicit representation of pump schedules (column

6). All these elements are discussed in more detail in the following sections.

2.3.1 Hydraulic Network Models

Each candidate schedule of the pumps must be evaluated in order to calculate its associ-

ated costs and assess its feasibility with respect to the problem constraints. Since testing

potential pump schedules on the real system would be impractical, some type of mathe-

matical model of the water distribution system is required. Mass-balance models, regres-

sion models, simplified hydraulics and full hydraulic simulation are potential techniques

for modelling network hydraulics.

A mass-balance model simplifies a single tank system based on some assumptions.

First, the volume of flow into the system must be equal to the daily demand plus the
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difference in water level in the tank. Mass-balance models assume, as well, that some

combination of pumps exists that will be able to generate the desired variation of water

level in the tank. Finally, some constraints, such as the pressure-head required to achieve

flow into the tank and minimum pressure constraints at demand nodes, are either neglected

or considered to be satisfied if water level in tanks is above certain elevation.

Regression models are defined by a set of nonlinear equations that is constructed from

the response of a given network over a particular range of demands. This approach re-

sults in more accuracy than mass-balance models while still being very fast to evaluate.

However, regression models are very sensitive to the data used to construct the model.

Significant changes in either the network or the demand distribution may lead to erro-

neous results. In such case, the model must be built again from newly collected data.

In simplified hydraulics, network hydraulics are approximated using a highly skele-

tonised network model, where the effect of several components are related in a single

equation. In few particular cases, a simple model of linear hydraulic equations suffices

to represent the system hydraulics. Nonetheless, even when this is possible, extensive

system analysis is necessary to accurately represent the real system.

Finally, a full hydraulic simulation solves hydraulic equations (conservation of mass

and conservation of energy) to model the nonlinear dynamics of a water distribution sys-

tem. Simulation models generally require more data to formulate, and require a signifi-

cant amount of work to calibrate. On the other hand, simulation models are robust both in

terms of system changes and demand variations. While mass-balance or regression mod-

els would require significant modifications to account for changes in the system response,

a well-calibrated simulation model would be able to provide the hydraulic response of the

modified system.

The computational effort to evaluate a single pump schedule is much higher in the case

of simulation models than for mass-balance and regression models. Nevertheless, compu-

tation power has increased so dramatically that full hydraulic simulations are much faster

than 10 years ago. This is reflected in the fact that while up to 1994 most optimisation

models made use of mass-balance or regression models and a few considered simplified

hydraulics (Ormsbee & Lansey, 1994), hydraulic simulation has become the usual prac-

tice in newer works, as can be seen in column 4 of Table 2.1. A clear contribution to this

trend is the number of hydraulic simulators that have been made publicly available in the

recent years, with the notable example of EPANET (Rossman, 1994, 1999), which is the

simulator used in this work.2

2 Section 2.4.1 discusses the characteristics of EPANET, how it has been applied to the

present work, and enhancements implemented during the course of our research.
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2.3.2 Demand Forecast Models

Not only an accurate hydraulic model of the real system is required in order to develop an

optimal pump schedule. We must also know the system demands in advance. Nowadays,

most distribution systems have the potential to gather data on system demands. This data

is used to statistically estimate typical system demands in order to construct a forecast

model. Depending on the accuracy of both the spatial and temporal data available and

on the particular hydraulic model, either a lumped, proportional or distributed demand

forecast model may be used.

Mass-balance hydraulic models typically use a lumped model, which aggregates sys-

tem demands into a single value. Regression-based hydraulic models normally consider

proportional demand models, which varies a single demand pattern proportionally to the

total demand. Finally, in a full network simulation model, the total system demand is

distributed both temporally and spatially among several network demand nodes. This

distributed demand model is the most accurate.

Although a forecast model is an essential part of the system, the choice of a particular

model does not depend directly on the optimisation algorithm but on the data available

and the hydraulic model. Most modern approaches use network simulation, which implies

a distributed demand model. Therefore, we do not take into account demand forecast in

our review and we do not further discuss demand forecast in this work.

2.3.3 Representation of Pump Schedules

Another relevant aspect is the representation of pump schedules within the optimisation

algorithm (column 6 of Table 2.1). This representation can be either explicit, by directly

specifying the status of each pump (Boulos et al., 2001; Goldman & Mays, 2000; Mäckle,

Savic & Walters, 1995; McCormick & Powell, 2003b, 2004; Pezeshk & Helweg, 1996;

Sakarya & Mays, 2000; Savic, Walters & Schwab, 1997; Wegley, Eusuff & Lansey, 2000);

or implicit, by defining the operations of pumps in terms of properties of other elements

of the network (Atkinson et al., 2000; Dandy & Gibbs, 2003; Kazantzis et al., 2002; van

Zyl, Savic & Walters, 2004).

The two most widely used representations are explicit binary representation (Boulos

et al., 2001; Goldman & Mays, 2000; Mäckle, Savic & Walters, 1995; Savic, Walters

& Schwab, 1997; Sotelo, von Lücken & Barán, 2002), and implicit representation based

on tank-level triggers (Atkinson et al., 2000; Dandy & Gibbs, 2003; van Zyl, Savic &

Walters, 2004). The binary representation divides the scheduling period in smaller time

intervals and encodes a pump schedule in a string of bits, each bit representing the status

(on/off) of a pump during a time interval. On the other hand, tank-level triggers change the
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status of pumps when water on a tank reaches a certain elevation. They are typically used

in pairs: the pump is turned off when water level goes above an upper trigger level and it

is turned on when water level falls below a lower trigger level. A more detailed discussion

about these representations will be carried out in Chapter 3, where new representations

are also proposed.

In addition to these two widely used representations, other alternative representations

have been proposed. McCormick & Powell (2003b, 2004) suggested a representation that,

instead of encoding the status of individual pumps, encodes combinations of (groups of)

pumps. In their proposal, these combinations were generated by grouping pumps with a

significant hydraulic interaction between them. Decision variables were the proportions

of each combination to be used at each time interval.

Sakarya & Mays (2000) tested a representation where for each pump p and each time

interval ti, the decision variable was the length of time Dp,i that pump p operates during

time interval ti, where 0 ≤ Dp,i ≤ ti. As admitted by the authors, this approach may gen-

erate very short operating time during a single time interval and may cause an excessive

number of pump switches.

Kazantzis et al. (2002) proposed two representations that combined implicit and ex-

plicit aspects. The first one, in addition to a single pair of level-controlled triggers for

both peak and off-peak tariff periods, incorporated a pump stop time and a pump start

time. The pump stop time turns off the pump independently of the actual water level of

the tank, so the water in the tank is at minimum level at the end of the peak tariff period.

The pump start time turns on the pump ignoring any level-controlled triggers, in order to

fill the tank just before the start of the peak tariff period. In the second representation,

the pump stop time was replaced by a switch time to revert the upper trigger level to the

maximum water level of the tank, enabling the tank to be filled. The pump start time was

still used to turn on the pump independently of that actual water level of the tank.

Finally, few other representations were proposed to deal with variable-speed pumps.

For example, Wegley, Eusuff & Lansey (2000) extended the binary representation by

replacing the binary alphabet {0, 1} with the set of speeds of variable frequency drive

pumps.

2.3.4 Optimisation Algorithms

As for the optimisation (or control) model, Ormsbee & Lansey (1994) reviewed earlier

techniques, such as linear, non-linear, integer, dynamic and mixed programming. Al-

though these techniques are still used, their usefulness is inherently limited when applied

to complex water distribution networks. This limitation has led researchers to consider

other optimisation techniques, such as Simulated Annealing (Goldman & Mays, 2000),
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Particle Swarm Optimisation (Wegley, Eusuff & Lansey, 2000) and Evolutionary Algo-

rithms (Atkinson et al., 2000; Boulos et al., 2001; Dandy & Gibbs, 2003; Kazantzis et al.,

2002; Mäckle, Savic & Walters, 1995; Simpson et al., 1999).

Mäckle, Savic & Walters (1995) developed an evolutionary algorithm to optimise the

daily scheduling of four pumps within a network with a single tank. Schedules were

represented by binary strings of 4 × 24 bits. The cost of each schedule was the sum of

the electricity cost and penalties for constraint violations on minimum, maximum, and

final tank levels. The fitness of each schedule was calculated as the inverse of the overall

cost. Since only the outcome of a single run of the evolutionary algorithm is shown, it is

difficult to assess the average performance of the algorithm.

Simpson et al. (1999) developed an evolutionary algorithm where the two decision

variables are the tank level triggers (represented by a binary string) for all the pumps in a

single tank network. Their goal was to minimise the total cost which is calculated from

the unit cost per m3 of water pumped plus penalty costs for violations of constraints: the

upper trigger level should be higher than the lower trigger level; tank levels should be

within specified ranges; and there must not be more than an average of 6 pump starts per

hour. They did not provide any strong reason why the evolutionary algorithm performs

better than full enumeration of the 1024 possible solutions.

Goldman & Mays (2000) used Simulated Annealing to optimise operation of pumps

using a binary representation for 24 time periods of 1 hour. Their objective was to min-

imise the total energy cost. Penalties were added to the total cost in case of violation of

constraints on nodal pressure head bounds, minimum and maximum free chlorine concen-

tration, minimum tank levels, and if tank levels did not return at the end of the simulation

to their starting elevation. They performed an extended period simulation using EPANET

for each daily schedule of the pumps. Their test network consisted of three tanks and two

pumps. They concluded that the main advantage of Simulated Annealing over nonlin-

ear programming is its flexibility with respect to the problem formulation. A nonlinear

programming approach may require modification if there are changes in the network de-

scription or water demand, whereas Simulated Annealing is able to handle many different

network instances without requiring any modification. This conclusion applies, as well,

to other metaheuristics, such as evolutionary algorithms and ant colony optimisation.

Wegley, Eusuff & Lansey (2000) studied Particle Swarm Optimisation for optimising

the operation of pumps that can operate at various speeds (variable frequency drive, VFD).

Their goal was to minimise the energy cost of pumping while keeping nodal pressure

head, demand, and tank water levels within bounds. Violation of these constraints resulted

in penalties that were added to the objective function. The decision variables were the

VFD speeds at discrete periods. Hydraulic simulation was performed by EPANET. The
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paper only describes the model and does not perform any experimental study.

Atkinson et al. (2000) used an evolutionary algorithm for finding peak and off-peak

tank level triggers of level-controlled pumps in a complex water network, obtaining sav-

ings in electrical cost of 30% with respect to schedules manually produced by system

operators. Since they only considered constraints on minimum, maximum, and final tank

levels, these were implemented directly as bounds of the trigger values. However, this

does not guarantee that final water level of the tanks will be equal to their initial eleva-

tion. In addition, their approach requires manual post-processing of resulting schedules

in order to avoid excessive pump switches.

Boulos et al. (2001) linked an evolutionary algorithm with a hydraulic network sim-

ulator (H2ONET) to optimise the operation of three parallel pumps in a network with a

single tank with respect to electricity cost. Penalties were added to the electricity cost in

case of violation of constraints on junction node pressure, pipe velocity, tank water level

and pump switches. They used a binary representation of 24 periods of one hour for each

pump. The quality of their results cannot be established since only one single result is

described and no comparison is performed with any other algorithm.

Kazantzis et al. (2002) followed a mixed approach combining trigger levels (implicit

controllers) and trigger times (explicit controllers). Their GA optimised four decision

variables: (1) reduced upper trigger level which keeps a low water level in the tank in

order to reduce pumping head; (2) pump start time to fill the tank at the end of the off-peak

tariff period; (3) time of the day when the reduced trigger level is set to the maximum level

of the tank so it can be filled; and (4) the initial level in reservoir. EPANET was used for

running hydraulic simulations to evaluate electrical cost. Constraint violations resulted in

a penalty cost added to the electrical cost. However, no procedure was defined to prevent

excessive pump switches so the reduced upper trigger level may activate a pump several

times per hour. Their test network comprised only one group of pumps and one tank.

Local Search

Because small modifications may turn an infeasible schedule into a feasible one and even

improve its objective function value, searching the local neighbourhood of a solution can

be beneficial. Therefore, some researchers have studied hybrid methods that improve the

efficiency of Evolutionary Algorithms by incorporating local search strategies.

Savic, Walters & Schwab (1997) followed an approach similar to Mäckle, Savic &

Walters (1995), as described above. In addition, they incorporated two different local

search procedures based on different neighbourhoods: (1) schedules differing from the

given schedule in exactly the state of a single pump in a single time interval, and (2)

schedules in which the same pump has a different state in two time periods and the rest
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of the schedule is identical. Both local searches improved the results obtained by the

evolutionary algorithm.

Van Zyl, Savic & Walters (2004) optimised peak and off-peak trigger levels using a

hybrid method which combines an evolutionary algorithm and hill climber search strate-

gies. Therefore, each independently controlled group of pumps adds four real decision

variables. The objective function was the total energy cost after a 24-hour simulation.

Penalty costs were added for the number of pump switches and tank volume deficit. The

tank volume penalty cost was calculated as the sum of volume deficit of all tanks at the

end of the simulation with respect to the initial tank volume. The pump switches penalty

cost was based on the total number of pump switches in a simulation. These penalties

were multiplied by penalty unit costs found by trial-and-error. In addition, they consid-

ered that reducing the volume deficit was more important than reducing the number of

pump switches and, to this end, a third penalty term was added to the objective function.

They concluded that the hybrid approach obtained better results than the pure evolutionary

algorithm in fewer function evaluations. However, this approach requires to find suitable

penalty costs. Moreover, it produces short idle intervals between operating periods, what

may damage the network due to sudden pressure fluctuations.

Multiple Objectives

All the above approaches considered a single objective (typically energy cost) and other

desirable objectives (such as maintenance cost) were considered constraints and, in most

cases, incorporated to the problem as penalties to the objective function. However, the use

of penalties poses an important difficulty which is the definition of appropriate penalty

costs. High penalty costs will direct the search away from the boundary of the feasible

region, where the best solutions may be located. On the contrary, low penalty costs will

produce infeasible solutions. Despite these difficulties, little research has been carried out

in the application of multi-objective algorithms to the pump scheduling problem (Savic,

Walters & Schwab, 1997; Sotelo, von Lücken & Barán, 2002).

Savic, Walters & Schwab (1997) extended the formulation of Mäckle, Savic & Walters

(1995) described above to a bi-objective approach: minimisation of energy costs and

minimisation of number of pump switches. They used a multi-objective evolutionary

algorithm, Pareto optimal ranking from Goldberg (1989), combined with a local search.

Constraint violations on tank water levels were incorporated into the electricity cost as

penalties and, in addition, infeasible solutions were considered always worse than feasible

ones. Their approach was not compared with any other previous approaches and they

tested it on a simple network with one tank.
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Sotelo, von Lücken & Barán (2002) defined the pump scheduling problem as the min-

imisation of four objectives: (1) electricity consumption cost, (2) maximum demand

charge, (3) number of pump switches, and (4) difference between the initial and final

levels of the tank. The state of the pumps (on/off) for 24 time periods of one hour was

represented using a binary string. They tested several multi-objective evolutionary al-

gorithms (SPEA, NSGA, NSGA2, CNSGA, NPGA and MOGA) incorporating a repair

heuristic to them. This heuristic repairs solutions which violate restrictions on the maxi-

mum and minimum tank levels. Their network instance consisted on five parallel pumps

connected to one tank by a single pipe. They concluded that SPEA showed the best

overall performance. However, the metrics used in this work to assess performance have

been identified as unreliable by Zitzler et al. (2003) and, thus, they may lead to wrong

conclusions.

Water Quality

With regard to improving water quality by means of pump scheduling, Dandy & Gibbs

(2003); Goldman & Mays (2000); Sakarya & Mays (2000) have studied imposing con-

straints on chlorine concentration that penalise the objective function if they are violated.

Dandy & Gibbs (2003) used an evolutionary algorithm to find the optimal chlorine dos-

ing rate (mg/L) while optimising peak and off-peak trigger levels. The goal of Sakarya &

Mays (2000) was to minimise the deviations of the actual concentrations of disinfectant

from the desired concentrations. Lastly, Prasad & Walters (2003) studied the minimisa-

tion of residence times (the age of water) by means of reconfiguring the water distribution

network.
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Table 2.1: Summary of optimisation approaches for pump scheduling.

Reference Tanks Pumps
Hydraulic

model

Optimisation

algorithm

Represen-

tation
Comments

Mäckle, Savic & Wal-

ters (1995)
1 4

Regression

model

Evolutionary

Algorithm
Explicit

Binary representation. Minimisation of electricity cost

plus penalties for constraint violations on minimum,

maximum and final tank levels.

Ormsbee & Reddy

(1995)
2 2

Hydraulic

simulation

Nonlinear

Heuristic
Explicit

Custom representation based on rank ordering of pump

combinations and percentage of each time interval that

each combination is used.

Nitivattananon, Sad-

owski & Quimpo (1996)
8 10

Mass-

balance

Dynamic

Programming
Explicit

The system is decomposed in space and time. Heuristic

methods are used to discretise and arrange pump dis-

charges.

Pezeshk & Helweg

(1996)
none 32

Hydraulic

simulation

Adaptive Search

Optimisation
Explicit

Pumps are switched on or off depending on a combina-

tion of influence coefficients and pipe pressure readings.

Savic, Walters &

Schwab (1997)
1 4

Regression

model

Hybrid GA

/ MOEA
Explicit

Binary representation. Same problem instance as

Mäckle, Savic & Walters (1995). Multiple objectives:

minimisation of both energy cost and number of pump

switches.

Andersen & Powell

(1999)
15 20

Hydraulic

simulation

Nonlinear

programming
Explicit

Decision variable is number of active pumps at each

pump station. A continuous solution obtained by pro-

jected gradient method is translated to a discrete pump

schedule.

(continues . . . )
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Table 2.1: Summary of optimisation approaches for pump scheduling (continued).

Reference Tanks Pumps
Hydraulic

model

Optimisation

algorithm

Represen-

tation
Comments

Simpson et al. (1999) 1 1 EPANET
Evolutionary

Algorithm
Implicit

Binary string encodes trigger tank levels. Total cost is

calculated from the unit cost per kL of water pumped

plus penalty costs for constraint violations.

Atkinson et al. (2000) 6 7
Hydraulic

simulation

Evolutionary

Algorithm
Implicit

Applied to the Richmond network. Decision variables

are trigger tank levels. Manual post-processing is re-

quired to avoid excessive pump switches.

Goldman & Mays

(2000)
3 2 EPANET

Simulated

Annealing
Explicit

Binary representation. Water quality is considered by

incorporating penalties for violation of chlorine concen-

tration constraints.

Sakarya & Mays (2000) 1 1 EPANET

Nonlinear

optimisation

(GRG2)

Explicit

Decision variable is the length of time that each pump

operates during each period. Water quality is taken into

account.

Wegley, Eusuff &

Lansey (2000)
none none EPANET

Particle Swarm

Optimisation
Explicit

Decision variables are the variable frequency drive

(VFD) pumps speeds at discrete periods.

Boulos et al. (2001) 1 3

Hydraulic

simulator

(H2ONET)

Evolutionary

Algorithm
Explicit

Binary representation. Penalties are added for violation

of constraints on junction node pressures, pipe velocity,

tank water level and number of pump switches.

Ertin et al. (2001) 1 3
Mass-

balance

Dynamic

Programming
Explicit

The optimisation problem is modelled as a Markov deci-

sion problem.

(continues . . . )
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Table 2.1: Summary of optimisation approaches for pump scheduling (continued).

Reference Tanks Pumps
Hydraulic

model

Optimisation

algorithm

Represen-

tation
Comments

Kazantzis et al. (2002) 1 1 EPANET
Evolutionary

Algorithm
Mixed

4 decision variables including pump start time and up-

per trigger level. The reduced upper trigger level may

activate a pump several times per hour.

Sotelo, von Lücken &

Barán (2002)
1 5

Mass-

balance

MOEAs: SPEA,

NSGA, NSGA2,

and MOGA

Explicit

Binary representation. 4 objectives: electricity consump-

tion cost, maximum demand charge, number of pump

switches, and difference between the initial and final lev-

els of the tank.

Dandy & Gibbs (2003) 1 1 EPANET
Evolutionary

Algorithm
Implicit

Decision variables are upper and lower trigger levels for

peak and off-peak tariff periods. Also, chlorine dosing

rate is optimised (water quality).

McCormick & Powell

(2003b)
10 35

Mass-

balance

Progressive

Mixed Integer

programming

Explicit
Decision variables are proportion of each pump combi-

nation to be used in each time slice.

McCormick & Powell

(2004)
10 35 EPANET

Simulated

Annealing
Explicit

A linearised hydraulic model is iteratively recalibrated

using the full model.

van Zyl, Savic & Wal-

ters (2004)
2–6 3–7 EPANET Hybrid GA Implicit

The same algorithm is applied to two networks: a custom

network and the Richmond system.
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2.4 Approach Followed in this Thesis

The optimisation approach developed in this thesis follows modern applications that com-

bine an optimisation algorithm with a network simulation model. Most of them use full

hydraulic simulation and distributed demand forecast model. Figure 2.1 illustrates this

architecture of an optimisation algorithm for the pump scheduling problem. The input to

the system is a network instance that includes both a complete description of the water

distribution network and demand forecast for at least the scheduling period considered

by the optimisation algorithm. An optimisation algorithm generates candidate solutions

(pump schedules) which are evaluated by hydraulic simulation to calculate their objective

values (e.g., electrical cost) and constraint violations. The optimisation algorithm utilises

the evaluated solutions in some manner to generate new candidate solutions.

Problem Instance

Network
Description

Demand
Forecast

Solution

Representation Objectives/Constraints

Hydraulic Simulator
(EPANET)

Optimisation
Algorithm

Simulate
Calculate

Feedback
Generate

Figure 2.1: Schematic diagram of pump scheduling optimisation system.

In this architecture, the optimisation algorithm is fairly independent from the hydraulic

simulator: modifications to either of them do not imply changes to the other. In fact, the

same version of a hydraulic simulator is used by all the optimisation algorithms examined

in this work. In the next section, we explain in more detail this hydraulic simulator and

the improvements we have incorporated to it.
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2.4.1 Evaluation of Schedules through Hydraulic Simulation

The hydraulic simulator used throughout this work is EPANET (Rossman, 1994, 1999)

version 2.00.10. EPANET reads an input file (see Appendix F for an example) that con-

tains the description of a network including water demand information. The operation of

pumps may be triggered by using controls that depend on the time of the day, water levels

in tanks or other elements. Alternatively, utilisation patterns may be assigned to pumps

to specify their operation schedule. During a simulation, EPANET automatically handles

hydraulic constraints and enforces maximum and minimum limits on tank water levels by

closing the water flow from/into the tank. However, when water cannot flow out of a tank,

pressure is reduced in demand nodes supplied by this tank, what may result in violations

of pressure constraints.

The simulator may not be able to evaluate all potential schedules correctly. For exam-

ple, when a pump cannot deliver sufficient head or flow, it will be forced to shut down or

operate beyond the maximum rated flow. From an efficiency point of view, operating a

pump at extreme points of the pump curve is undesirable. Shutting down the pump will

introduce an extra pump switch that was not present in the original schedule. EPANET

will issue a warning for these and other situations.3 These warnings are not specific

to EPANET but they rather indicate an inefficient operation of the pumps or a difficulty

to evaluate a schedule. A schedule that cannot be evaluated correctly by the hydraulic

simulator cannot be considered feasible, since it is very likely that the simulation has

not produced a correct result with respect to objective values and constraint violations.

Therefore, in our approach all such warnings were counted and taken into account in the

3 EPANET issues warnings in six special situations (Rossman, 2000):

– A solution to the hydraulic equations was not found (System hydraulically unbal-

anced).

– A solution to the hydraulic equations was found after the status of all links was held

fixed (System may be hydraulically unstable).

– One or more nodes with positive demands were disconnected from all supply

sources (System disconnected).

– One or more pumps could not supply sufficient head or flow and they were forced

to either shut down or operate beyond the maximum rated flow.

– One or more flow control valves could not deliver the required flow even when fully

open.

– Water was not supplied to one or more junctions with positive demand (System had

negative pressures).
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constraint handling method.

We modified the original version of EPANET in order to fit our purposes better.4 We

added files to simplify building the library in the GNU/Linux operative system. In ad-

dition, in our version, the time of the day in seconds when a pump changes its status is

saved in a vector, called the pump schedule vector, associated with each pump. The same

function that updates the pump schedule vector also records the number of switches per

pump. We also added new parameter codes to obtain the number of junctions, pumps

and reservoirs in the network; the initial volume, current volume, maximum level and

minimum level of a tank; the schedule vector of a pump; the time of the day at which

the simulation period starts; and to assign an utilisation pattern to a pump. New func-

tions were added to the toolkit to calculate the total volume of water leaked by emitters,

the number of switches performed by a pump, total energy cost (including demand cost)

of a simulation, spatial coordinates of a node, the shortest time interval during which a

pump was not active during a simulation, and the number of warnings generated by a

simulation. Other new functions allow to perform certain operations within the running

program without constructing a new input file. In particular, we added functionality to it-

erate over tanks and pumps without knowing their corresponding name (identifier), node

or link index, add a new pattern, add a new control, add a pair of level-controlled triggers

and delete all rules.

In addition, we tried to reduce the computation time required by the hydraulic simula-

tor by improving the code and using special compilation flags. We measured an average

reduction of 13.7% on an Intel Pentium 4 CPU 2.66GHz. Further modifications and fine-

tuning of compilation flags showed a potential reduction in execution time of approx-

imately 35%. However, these latter modifications affect the rounding of floating-point

operations, producing slightly different results. In order to obtain reproducible results, we

decided not to use these improvements in our experiments.

Finally, we also fixed a few problems in the code of EPANET that resulted in warnings

from the compiler or even segmentation faults during execution. A detailed list of our

modifications is reported in Appendix D on page 193.

2.5 Water Distribution Networks

In the rest of this work, optimisation algorithms will be tested on two water distribution

networks: Vanzyl test network and Richmond network. The former is a network instance

4 This modified version is available at http://sbe.napier.ac.uk/˜manuel/

epanetlinux

http://sbe.napier.ac.uk/~manuel/epanetlinux
http://sbe.napier.ac.uk/~manuel/epanetlinux
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Figure 2.2: Vanzyl test network.

designed solely for benchmarking purposes, while Richmond is a medium-sized real-

world network instance. The criteria to choose these two networks were the existence of

earlier research, hence our results can be compared to previous optimisation algorithms,

and the availability of the complete network descriptions, which allows researchers to

replicate and extend our experiments. In the original formulation of these network in-

stances, pump operations are triggered at certain water levels of the tanks, which is the

common practice in UK. In this thesis, we modify the network instances in order to test

representations of pump schedules that do not rely on level-controlled triggers.

2.5.1 Vanzyl test network

Van Zyl, Savic & Walters (2004) proposed this test network as a small yet complex bench-

mark network to fine-tune the parameters of a hybrid evolutionary algorithm. The layout

of the network is shown in Fig. 2.2. It contains all the main elements of a typical water

distribution network: a source of potable water (reservoir), three pumps, two tanks, and

a check valve, which prevents water flowing backwards. Pumps 1A and 2B are identical

pumps in parallel and, when neither of them is active, pump 3B transfers water from tank

A to tank B. In case one or both pumps (1A and 2B) are running, pump 3B boosts the flow

to tank B. Tank B has a higher elevation than tank A, and thus, water may flow by gravity

from tank B to tank A through the pipes connected to the demand node.

In this instance the demand charge is taken to be zero and the water available at the

reservoir is assumed to be infinite. The electricity cost is divided into two periods with

a peak electricity tariff period from 7:00 to 24:00 and a off-peak tariff from 0:00 to 7:00.

The demand pattern contains two peaks at 7:00 and 18:00. More details about the test

instance are provided by van Zyl, Savic & Walters (2004). For convenience, a complete
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Figure 2.3: Simplified schematic representation of the Richmond network.

EPANET input file describing the network is given in Appendix F on page 205.

2.5.2 Richmond test network

Richmond water distribution system is a real system located in the United Kingdom. The

network has 7 pumps, 6 tanks and one reservoir. Figure 2.3 shows a simplified schematic

layout that gives an approximate idea of the connections between network elements. The

actual network instance used in this work consists of 948 links and 836 nodes. Similarly

to the Vanzyl network above, electricity consumption charge is divided into two periods

with a peak electricity tariff period from 7:00 to 24:00 and there is no electrical demand

charge. A complete description of the Richmond network is available online at http://

www.centres.ex.ac.uk/cws/. This network was first studied by Atkinson et al.

(2000), who applied an evolutionary algorithm to reduce the annual operation cost with

respect to the original operational policies based on operator experience. Later, van Zyl,

Savic & Walters (2004) modified the network definition so that all tanks were 95% full

at the start of the peak electricity period (7:00 am). This latter formulation is the one we

will use throughout this work.

2.6 Summary

This chapter has introduced the pump scheduling problem, its objectives and its con-

straints, through a general and formal definition, not tied to any specific application. The

constraints most frequently considered in the literature have been discussed in detail. An

extensive review of the literature on the pump scheduling problem has been carried out,

classifying previous approaches according to several characteristics, such as the represen-

http://www.centres.ex.ac.uk/cws/
http://www.centres.ex.ac.uk/cws/
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tation of schedules and optimisation technique considered by each of them. Our review

has pointed out that, despite the wide range of approaches that have been proposed, the

literature is lacking of comparative analysis of these approaches. In later chapters we will

provide a comparative analysis of several techniques. Before that, in the next chapter,

we will discuss in more detail the representation of schedules: we will examine existing

representations and propose new alternative representations. Finally, this chapter has pre-

sented the hydraulic model, the test network instances and the common structure of the

pump scheduling optimisation systems implemented in the following chapters.



Chapter 3
Representation of Pump Schedules

Pump control policies are usually defined in terms of their operations within a specified

time horizon, typically 24 hours. Thus, a solution to the pump scheduling problem is

any possible schedule of pumps for a predefined time period. A particular representation

describes how a sequence of decision variables maps to a pump schedule. For the sake

of clarity, we assume that the representation of a schedule is made up by the schedule of

each single pump. Thus, the sequence of decision variables representing a solution to the

pump scheduling problem has the following general form:

S = {s1, s2, . . . , sN
p

} (3.1)

where each sp corresponds to the sequence of decision variables representing the schedule

of pump p. This formulation has the advantage that we can assume a single pump when

discussing different representations, while extending the discussion to several pumps is

straightforward.

A schedule can be represented either explicitly or implicitly. Explicit representations

define schedules by directly specifying the status of each pump (Boulos et al., 2001;

Goldman & Mays, 2000; Mäckle, Savic & Walters, 1995; McCormick & Powell, 2003b,

2004; Pezeshk & Helweg, 1996; Sakarya & Mays, 2000; Savic, Walters & Schwab, 1997;

Wegley, Eusuff & Lansey, 2000). Typically, explicit representations divide the operation

period into several time intervals. For each time interval, a decision variable either in-

dicates the status of the pump (active, idle or speed for variable frequency drive pumps)

or the fraction of time a pump is operating during that time interval. On the other hand,

implicit representations define the operations of pumps in terms of properties of other

elements of the network (Atkinson et al., 2000; Dandy & Gibbs, 2003; Kazantzis et al.,

2002; van Zyl, Savic & Walters, 2004). For example, water levels in tanks are often used

to trigger operation of pumps. Hence, when using an implicit representation, the goal

30
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becomes one of determining optimal values of those surrogate variables.

In the following sections, the representations used during the rest of this thesis are

explained in detail. First, two well-known and widely used representations are explained.

One is the binary representation, an explicit representation in which the on/off status of

a pump during a number of time intervals is encoded by a sequence of binary values.

The other is an implicit representation, level-controlled triggers, where the on/off status

of a pump depends on the water level of a tank. Next, we introduce two new explicit

representations based on the concept of time-controlled triggers. Section 3.3 discusses

how this concept is used to represent schedules in such a way that the constraint on the

number of pump switches is implicitly satisfied.

Even though other representations have been suggested in the literature, as discussed

earlier in our review of previous works (Section 2.3 on page 13), none of them has been

shown to give a clear advantage over both the binary representation and level-controlled

triggers in the general scheduling problem. In fact, they were typically developed to deal

with specific requirements or limitations of the formulation of the problem, the optimisa-

tion algorithm or the simulation model. Moreover, some representations are extensions of

either the binary representation or level-controlled triggers. Therefore, we focus on these

two as a basis for comparison with the new proposed time-controlled triggers representa-

tion.

3.1 Binary Representation

The binary representation is the most commonly used explicit representation of pump

schedules (Boulos et al., 2001; Goldman & Mays, 2000; Mäckle, Savic & Walters, 1995;

Savic, Walters & Schwab, 1997; Sotelo, von Lücken & Barán, 2002). In the binary rep-

resentation, the scheduling period (T ) is divided into a fixed number (NT) of smaller

intervals and a single bit is used to represent the status of a pump during each interval.

The bit’s value would be one if the pump is active during the time interval, or zero if the

pump is idle.

t0 t1 t2 t3 tj tNT

sp = 0/1 0/1 0/1 0/1 · · · 0/1

Figure 3.1: Binary representation for a single pump p and NT time intervals.

Given a particular solution, the number of pump switches is the number of 0 1 se-

quences plus one if the schedule starts with 1 and ends with 0 . Thus, the maximum

number of switches per pump is N sw
p ≤ ⌊N

T/2⌋. The size of the search space depends
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Figure 3.2: A pump schedule and the corresponding binary representation.

on both the number of time intervals and the number of pumps, being the total number

of possible solutions 2(N
T·Np). That is, in the binary representation of the schedule of a

single pump containing 24 one-hour intervals, there are at most 12 pump switches and the

search space contains 224 = 16 777 216 candidate solutions.

Schedules represented by the binary representation are limited to switching pumps

on/off at times that are multiple of ratio T/NT. This limits the flexibility of the schedules.

In the above example of 24 one-hour intervals, the status of a pump cannot change in the

middle of a one-hour period, thus an operating interval may last two or three hours but

not 2.5 hours. Of course, the flexibility can be increased just by using a larger NT. On the

other hand, this limitation prevents sudden consecutive changes on the status of pumps,

since the minimum idle period between two operating intervals is T/NT.

3.2 Level-controlled Triggers

The operation of a pump can be triggered at certain water levels of a storage tank. Typi-

cally, a pair of trigger levels, lower and upper, are set up in a tank such that when water

falls below or goes above the respective level, the pump activates or stops (see Fig. 3.4).

Level-controlled triggers are used to keep the water level in a tank within an operating

range that is a reduced interval of a contractual range. If the level falls below or goes over

the levels of this contractual range, then a penalty cost may exist. We must point out that

this penalty cost does not exist in our approach, since the EPANET simulator, even when

level-controlled triggers are not used, prevents the water level to fall outside the contrac-

tual range by closing the tank riser. When a tank cannot supply water, pressure at some

of the demand nodes decreases, which may result in violations of pressure constraints.

Since electricity tariff is typically divided into peak and off-peak periods, different

pairs of level-controlled triggers are used for each period (Dandy & Gibbs, 2003; van Zyl,

Savic & Walters, 2004). Thus, a solution in level-controlled triggers representation has
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the following formulation:

peak off-peak

sp = llo lup l′lo l′up

lower upper lower upper

Figure 3.3: Level-controlled triggers.

Each trigger level is constrained to values within the contractual range of the tank.

Additionally, for each pair of lower/upper trigger levels, the lower level is constrained to

be always lower than the corresponding upper level (llo ≤ lup and l′lo ≤ l′up).

Contractual

range
Operating

range

Pump On

Pump Off

Lower Trigger Level

Upper Trigger Level

Figure 3.4: Trigger levels on a tank.

As for pump switches, there is no limit in the number of pump switches that the level-

controlled triggers representation may generate. Apart from the fact that narrow operating

ranges will, in general, result in more pump switches than wider ranges, there is no rule

of thumb that can be applied to estimate the number of pump switches generated by a

particular setting of level-controlled triggers. In fact, excessive number of pump switches

is often a problem in applications using level-controlled triggers. This is sometimes ac-

knowledged as a potential problem by the authors, but no strategies are considered to

prevent it (Kazantzis et al., 2002). In other cases, the schedules obtained by the opti-

misation algorithm are manually fine-tuned a posteriori to reduce the number of pump

switches (Atkinson et al., 2000). A better approach incorporates an explicit constraint

on the number of pump switches into the optimisation algorithm and constraint handling

techniques are applied, e.g., penalising the objective function (electrical cost) proportion-

ally to the number of pump switches (van Zyl, Savic & Walters, 2004).
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3.3 A New Representation for Pump Scheduling:

Time-controlled Triggers

We propose a new explicit representation based on the concept of time-controlled triggers.

This new representation has the advantage of satisfying the constraint on the number of

pump switches implicitly.

In contrast to the binary representation, which encodes the status of a pump during

each time interval, the time-controlled triggers representation encodes the time when a

pump changes its status. The concept of encoding time has already been proposed in

the literature. Sakarya & Mays (2000) and McCormick & Powell (2004) used continuous

variables to encode the proportion of time that a pump (or combination of pumps) is active

during a time interval. However, our proposal allows us to directly encode pump switches

in the representation. A pump switch is defined as turning on a pump that was previously

off (Lansey & Awumah, 1994), however in a periodic schedule each pump switch actually

implies two changes in the status of a pump: off to on for the pump switch and on to off to

achieve the situation previous to the pump switch. For example, a schedule where a pump

is initially on and is never turned off during the whole scheduling period does not contain

any pump switch or status change. On the other hand, a schedule where a pump is initially

on and it is eventually turned off contains one pump switch and two status changes.

Therefore, a pair of decision variables is required to define a pump switch in time-

controlled triggers representation. We can thus limit the maximum number of switches per

pump simply by limiting the number of decision variables of each solution. For example,

a schedule of a single pump in a time-controlled triggers representation of length six will

allow a maximum of three pump switches. In general, for a maximum of SW switches

per pump, there will be 2 · SW decision variables for each pump.

sp = t1 t′1 t2 t′2 . . . . . . tSW t′SW

Figure 3.5: Time-controlled triggers for pump p with SW pump switches.

This new representation enables the optimisation algorithm to conduct the search in

a reduced search space. For example, let us consider the schedule of a single pump

for 24 intervals of one hour. In the binary representation, each interval can have either

of the two states (on/off) and, thus, there are 12 possible pump switches. The search

space contains 224 = 16 777 216 candidate solutions. However, if the number of pump

switches is restricted to three (N sw
p ≤ 3), the feasible search space with respect to this

constraint is reduced to 290 998 solutions, which is less than 1.74% of the total search

space. Table 3.1 gives the number of potential solutions with respect to the number of
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pump switches. These values were obtained by explicitly enumerating all 224 possible

schedules of a single pump.

Table 3.1: Search space size for the scheduling of a single pump in 24 hours with respect

to various limits on the number of pump switches (SW ).

SW N sw
p = SW N sw

p ≤ SW

Feasible space % of total Feasible space % of total

1 552 0.0033 554 0.0033
2 21252 0.1267 21806 0.13
3 269192 1.6045 290998 1.7345
4 1470942 8.7675 1761940 10.502
5 3922512 23.38 5684452 33.882
6 5408312 32.2361 11092764 66.118

12 2 0.00001 16777216 100

The following equation can be used to compute the number of solutions with exactly

SW switches:

No. of solutions = 2 ·

(

NT

2SW

)

=
2 ·NT!

(NT − 2SW )! · (2SW )!
(3.2)

where NT is the number of time intervals.

The size of the search space grows with NT. For example, when considering NT = 48,

that is, 30 minutes intervals in a daily scheduling period, there are 24 934 442 possible

schedules of a single pump with three or less pump switches. This is more than 85 times

the number of solutions for NT = 24. On the other hand, it is only 8.86 × 10−6 percent

of the total number of possible schedules for a single pump with NT = 48. That is, on

the one hand, the size of the reduced search space grows with NT, but on the other hand,

it grows far slower than the total search space.

The above discussion focuses on a single pump. With additional pumps, the search

space grows exponentially. For just two pumps there are 224 · 224 = 248 potential sched-

ules in total. The number of solutions with exactly SW switches is similarly squared:

4 ·
(

NT

2SW

)2
. That is, for N sw

p ≤ 3 there are 84 679 836 004 potential solutions, which is

actually 0.03% of the total number. Again we see that, although the number of potential

solutions increases dramatically for higher number of pumps, the reduced search space

becomes a smaller fraction of the total search space.

The range of decision variables (ti and t′i in Fig. 3.5) depends on the precision with

which we want to measure time and on the time horizon. If continuous values are used,

then the precision is arbitrary. On the other hand, discrete values may be preferred in
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order to limit search space and because arbitrary time precision is impractical. Therefore,

assuming a time horizon of 24 hours, the range of decision variables may be an integer

within [0, 86400] for a precision of seconds, [0, 1440] for a precision of minutes, [0, 144]

for a precision of ten minutes, and [0, 24] for a precision of hours. For simplicity and

following the typical binary representation, we will assume intervals of one hour during

our exposition.

The time-controlled triggers representation may be implemented in several ways de-

pending on whether the time encoded by the representation is absolute time since the start

of the scheduling period, or relative to a previous change of pump status:

1. Absolute: the decision variables are absolute time since the start of the scheduling

period. For each pair 〈ti, t
′
i〉 of decision variables, one value gives the time when

the pump is turned on and the other value is the time when the pump is turned off.

2. Relative: the decision variables are time intervals relative to the previous change

of pump status. Each pair 〈ti, t
′
i〉 of decision variables represent the time for which

a pump is inactive and active, respectively, during a pump switch.

Each of these implementations may lead to different results. Moreover, we do not want

to impose an exact number of pump switches but a maximum limit. Therefore, there

should be some mechanism to represent schedules with fewer switches than the number

of pairs of decision variables. Finally, our main goal is to be able to represent any possible

schedule within a maximum limit of pump switches. In the following sections, we will

examine how to achieve this for each possible implementation of time-controlled triggers.

3.3.1 Absolute Time-controlled Triggers

When decision variables are absolute time, each decision variable represents the time

from the start of scheduling period at which the status of a pump changes. Let us assume

for now that pumps are off at the start of the scheduling period. We consider that ti

corresponds to a transition from off to on, and t′i corresponds to a transition from on to

off. Therefore, a pair of decision variables 〈ti, t
′
i〉 represents an operating interval during

which the pump is active. An example of absolute time-controlled triggers representation

is shown in Fig 3.6, where each value is a number of hours since the start of the scheduling

period (7 am).

A possible formulation of the above description would be:

sp = {〈t1, t
′
1〉, 〈t2, t

′
2〉, . . . , 〈tSW , t′SW 〉} (3.3)
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Figure 3.6: Example of absolute time-controlled triggers representation.

∀i ∈ {1, . . . , SW} ti, t
′
i ∈ [0, T ]

∀i, j, k ∈ {1, . . . , SW} i < j < k ⇒ ti < t′i < tj < t′j < tk < t′k

The inclusion of the value 0 in the range of values makes unnecessary the previous

assumption that pumps are off at the start of the scheduling period, since a pair 〈0, t′1〉

represents an operating interval where the pump is active at the start of the scheduling pe-

riod. However, this formulation is too strict in the sense that it cannot represent schedules

with less than SW pump switches (N sw
p ≤ SW ). In order to represent such schedules we

need to introduce empty operating intervals, that is, an operating interval that has no ef-

fect whatsoever on the schedule apart from reducing the number of switches in a solution.

Since all empty operating intervals have the same meaning independent of the particular

values of ti and t′i, it is better to denote all empty operating intervals with a special symbol

such as 〈−,−〉. Thus, we extend the formulation above in the following way:

sp = {〈t1, t
′
1〉, 〈t2, t

′
2〉, . . . , 〈tSW , t′SW 〉} (3.4)

∀i ∈ {1, . . . , SW} 〈ti, t
′
i〉 ∈ 〈[0, T ], [0, T ]〉 ∪ 〈−,−〉

∀i, j, k ∈ {1, . . . , SW} i < j < k ⇒ ti < t′i < tj < t′j < tk < t′k

3.3.2 Relative Time-controlled Triggers

If decision variables are relative time intervals, each pair of decision variables represents

the time during which a pump is inactive and active, respectively. According to this, a pair

of decision variables 〈ti, t
′
i〉 represents a single pump switch, since it implies a transition

from an inactive status (during ti) to an active one (during t′i).

It immediately follows from this definition that the sum of all time intervals for each

pump must be less than or equal to the scheduling period T . By allowing the sum to be

less than T , we can represent schedules where the pump is not active at the end of the
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Figure 3.7: Example of relative time-controlled triggers representation.

scheduling period:
SW
∑

i=1

(ti + t′i) ≤ T (3.5)

When relative times are used in the time-controlled triggers representation, the most

important implementation issue is the range of decision variables. First, let us assume

that zero-length intervals are allowed for any decision variable, and thus the range of

valid values is [0, T ]. This formulation enables the representation of schedules with less

than or equal to SW pump switches (N sw
p ≤ SW ):

sp = {〈t1, t
′
1〉, 〈t2, t

′
2〉, . . . , 〈tSW , t′SW 〉} (3.6)

∀i ∈ {1, . . . , SW} ti, t
′
i ∈ [0, T ]

SW
∑

i=1

(ti + t′i) ≤ T

On the other hand, we could restrict the minimum value to be 1. For a solution where

(2 ·SW −1) decision variables (all decision variables except one) have a value of 1, then,

following constraint (3.5), the remaining decision variables must be lower than or equal

to (T − 2 ·SW +1). Therefore, the range of values is within [1, (T − 2 ·SW +1)]. Such

formulation ensures the resulting schedule generates exactly SW switches (N sw
p = SW ):

sp = {〈t1, t
′
1〉, 〈t2, t

′
2〉, . . . , 〈tSW , t′SW 〉} (3.7)

∀i ∈ {1, . . . , SW} ti, t
′
i ∈ [1, (T − 2 · SW + 1)]

SW
∑

i=1

(ti + t′i) ≤ T

An example of relative time-controlled triggers representation is shown in Fig. 3.7.
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Each value is the number of hours that the pump is either inactive or active.

3.4 Summary

This chapter reviewed the two most important representations used for the pump schedul-

ing problem: binary representation and level-controlled triggers. In addition, a new rep-

resentation based on explicit time-controlled triggers was proposed. We described two

variants of the new representation, using either absolute or relative time. In the case of

absolute time-controlled triggers, decision variables are the time at which a change in

pump status occurs. On the other hand, in relative time-controlled triggers, decision vari-

ables are time intervals during which a pump is on or off. The main advantage of this new

representation is implicitly enforcing the constraint on pump switches. This, in turn, leads

to a notable reduction in the search space that needs to be explored by the optimisation

algorithm. We expect that this reduced search space will further help the optimisation

algorithm to quickly achieve a satisfactory pump schedule.

In the next chapter, experiments will be performed in order to compare these four repre-

sentations. As far as we know, such a comparative analysis of different representations on

the same network instances has not been performed in the literature.1 In addition, differ-

ent settings of the time-controlled triggers representation will be empirically investigated

in order to fine-tune this new representation.

1 Not even studies proposing specialised representations have performed such analysis.

Instead, a new algorithm using the new representation is often compared with unopti-

mised settings or a previous algorithm with a different representation (Kazantzis et al.,

2002). In some cases, no comparison is done at all (Wegley, Eusuff & Lansey, 2000).



Chapter 4
Evolutionary Algorithms

In this chapter a very simple evolutionary algorithm, hence the name Simple Evolu-

tionary Algorithm (SEA), is used to study the representations described in the previous

chapter (binary representation, level-controlled triggers and two variants of the new time-

controlled triggers representation). It is expected that parameters of an evolutionary al-

gorithm will interact in different ways with each representation. This is particularly true

in the case of recombination and mutation operators, since they inherently depend on

the representation of solutions. Therefore, experiments will be carried out to fine-tune

the parameters for all four representations. Moreover, new recombination and mutation

operators will be developed for the proposed time-controlled triggers representations. A

statistical analysis of the experiments will be conducted, taking into account possible

interactions between different parameters, in order to fine tune SEA for each representa-

tion. The best results of each representation will be compared to determine their relative

performance. Finally, the effect of different settings of the time-controlled triggers repre-

sentation will be investigated by means of SEA. In particular, we will empirically study

the effect of the limits on the number of pump switches and the number of time intervals

on the performance of SEA. Larger values of either limit will provide more flexibility

while constructing potential schedules, allowing, in principle, to generate finely tuned

schedules with lower electrical costs. On the other hand, such larger values increase the

search space, and it is reasonable to expect that a larger search space would increase the

difficulty of finding lower cost schedules.

40
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4.1 A Simple Evolutionary Algorithm

Evolutionary algorithms are inspired by the concept of natural evolution of genes. The

algorithm introduced in this chapter for empirically studying various representations is a

very basic evolutionary algorithm. It is henceforth called the Simple Evolutionary Algo-

rithm (SEA). A description of the algorithm is shown in Fig. 4.1. The algorithm starts

with the initialisation of the main population Pall with α random solutions. Then, µ so-

lutions from the main population are selected as parents using a binary tournament. A

recombination operator is applied to pairs of parents in order to generate µ offspring solu-

tions. Each of these offspring solutions may be further modified by a mutation operator.

Mutation is applied to each decision variable of each offspring with a certain probabil-

ity. The µ new solutions generated are evaluated to calculate the objective function value

and constraints. These new solutions replace the µ worst solutions in the main popula-

tion. As long as α > µ, the best solution found will always be present in the population,

implementing elitism. Larger the difference between α and µ, stronger the elitism.

Apart from α and µ, the other parameters of SEA are the recombination and muta-

tion operators, which are strongly influenced by the representation of solutions. In Sec-

tion 4.1.2, evolutionary operators suitable for each representation will be discussed. For

the binary and level-controlled triggers representations we use operators well-known in

the evolutionary optimisation literature. For the time-controlled triggers we propose op-

erators strongly inspired by those.

In addition to the evolutionary operators, a method to handle feasibility constraints

(balance between supply and demand, pressure deficits and warnings from the simulator)

must be defined.

4.1.1 Constraint Handling Methodology

In the pump scheduling problem there are a number of constraints that determine the

feasibility of a solution (Section 2.2 on page 9). In particular, constraints on total volume

deficit (Eq. 2.4) and minimum pressure requirements at demand nodes (Eq. 2.6) must be

explicitly handled by the optimisation algorithm. In the proposed approach, warnings

from the simulator (Section 2.4.1), which occur for example when a pump cannot deliver

sufficient head, are also considered constraint violations.

Previous studies have dealt with constraints by penalising the objective function (Bou-

los et al., 2001; Goldman & Mays, 2000; Mäckle, Savic & Walters, 1995; van Zyl,

Savic & Walters, 2004). This requires the definition of a penalty function and appro-

priate penalty values. The penalty function method imposes a fixed trade-off between

the amount of constraint violation and the value of the objective function. Low penalty
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Require: α (population size), µ (number of parents and offspring),

recombination operator, and mutation operator.

1: Pall ← generate α random solutions

2: evaluate solutions in Pall

3: Sbf ← best solution from Pall

4: while termination criteria not met do

5: Pparents ← select by binary tournament µ solutions from Pall

6: Poffspring← apply recombination operator to Pparents to create µ solutions

7: apply mutation operator to each solution in Poffspring

8: evaluate solutions in Poffspring

9: replace µ worst solutions from Pall with solutions from Poffspring

10: Sbf ← best solution from Pall ∪ {S
bf}

11: end while

12: return Sbf

Figure 4.1: Algorithmic schema of the Simple Evolutionary Algorithm (SEA).

values would allow constraint violations in return for small reductions in the objective

value, while higher penalty values would require a larger decrease of the objective value

to compensate the same amount of constraint violation. Moreover, different penalty val-

ues are required for different types of constraints and the degree of violation of some of

these constraints cannot be easily quantified. Penalty values, in general, are obtained ei-

ther using rudimentary techniques or by trial-and-error, requiring additional fine-tuning

and experimental runs of the particular algorithm. Furthermore, penalty values that are

optimal for one network instance are unlikely to be appropriate for a different network.

Interactions between the optimal penalty values and other parameters are not clear, and

it may be possible that different penalty values are optimal for different configurations of

an optimisation algorithm.

For these reasons, the use of penalty function is avoided and a simpler and more general

method based on ranking solutions with respect to their constraint violations and objective

function values is adopted (Deb, 2000). In this ranking method, given two candidate

solutions, the criteria to choose the best solution are:

1. select the solution with the lowest pressure violation (∆H in Eq. 2.6);

2. if pressure violations are equal, select the solution with the lower number of warn-

ings from the simulator;

3. for equal number of warnings, select the solution with the lower total volume deficit

(∆V in Eq. 2.4);
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4. if total volume deficits are equal, select the solution with the lowest objective func-

tion value, that is, lowest electricity cost (CE in Eq. 2.1).

These criteria effectively rank a feasible solution (zero total volume deficit, no warn-

ings and no pressure violations) better than any infeasible one. Feasible solutions are

compared with respect to their objective function values only, and infeasible solutions are

compared according to their degree of infeasibility. The order chosen for the compari-

son of constraint violations establishes some preferences. A solution with a tank volume

deficit, where enough water is supplied to meet the demand but a balance is not achieved

at the end of the simulation, is preferred over a solution having pressure violations, where

the adequate demand cannot be supplied. Warnings from the simulator are considered to

be worse than a tank volume deficit, since warnings indicate some problem preventing the

correct evaluation of the solution by the simulator (e.g., a pump was forcefully shut down

because it could not deliver enough head). However, a solution that generates warnings

and no pressure violations is preferred over a solution that has pressure violations. It was

observed that a small modification to such a solution removes the warnings. On the other

hand, a solution with pressure violations requires more fine-tuning, that is, pumps are

required to be active for more hours to supply the demand at required pressures.

4.1.2 Evolutionary Operators

Evolutionary algorithms implement transformations of solutions that are equivalent to the

mechanism of recombination and mutation of genetic material. These transformations are

called recombination (or crossover) and mutation operators. Recombination is the oper-

ation by which at least two solutions are combined in order to generate a new offspring

solution that inherits some of the characteristics of its parents. Mutation is the transfor-

mation of a single solution. It tends to be less disruptive than recombination, since the

goal is to generate a fairly similar solution with small variation. The degree of variation is

controlled by a probability of mutating each decision variable. A common setting in evo-

lutionary computation is to perform one mutation per individual. In terms of probability,

this corresponds to a mutation probability of one divided by the number of decision vari-

ables. There are many evolutionary operators described in the Evolutionary Computation

literature. Michalewicz (1996) and Herrera, Lozano & Sánchez (2003) provide an exten-

sive survey that together covers all the operators discussed henceforth. Since operators

work directly on the representation of solutions, there are some differences between the

operators used for each particular representation.



4.1. A Simple Evolutionary Algorithm 44

Binary Representation

For the binary representation, we focus on three well-known types of recombination: one-

point, two-point and uniform crossover. In the case of one- and two-point recombination,

the schedules are recombined per pump by using the same crossover point for each pump.

That is, given a crossover point k ∈ [1, NT − 1], the offspring schedule is formed by

combining, for each pump p, the schedule of pump p from one parent up to time interval

k and the schedule of the same pump from the other parent from time interval k + 1 up

to NT. This approach does not seem to have been explicitly used in previous algorithms

using the binary representation, which simply divided the whole binary string containing

the schedule of all pumps (Boulos et al., 2001; Mäckle, Savic & Walters, 1995; Savic,

Walters & Schwab, 1997). This latter approach disregards the interactions between the

pumps and the fact that all pumps have an effect at the same time over the network.

By comparison, our approach defines building blocks in terms of the status of all pumps

during a time interval because the result of a simulation step is influenced by the combined

status of all pumps at once. In a sense, the schedules of the pumps are applied “in parallel”

to the network. Our intuition is that the proposed crossover captures better the “parallel”

nature of the problem. Strictly speaking, our approach should be called one-point-per-

pump and two-point-per-pump. However, for brevity we will refer to them simply as

one-point and two-point crossover, since we only use this variant of point crossover in

this thesis.

Mutation is performed using flip mutation operator, which reverses the status of a pump

at a particular time interval. For each offspring solution, the mutation operator is applied

to each time interval of each pump with a certain mutation probability. In the binary rep-

resentation, there are N p ·NT decision variables per solution, and hence, a probability of

mutation of 1/(N p · NT) would mutate one time interval per solution. In earlier experi-

ments, we found out that this mutation rate was too low, and better results were obtained

with a mutation rate of two time intervals modified per solution, that is, with a mutation

probability equal to 2/(N p ·NT).

Level-controlled Triggers

In the case of level-controlled triggers representation, the variables are real numbers rep-

resenting water level of a particular tank. Therefore, we use three well-known recombi-

nation operators for real-valued variables:

Rand-arithmetical, where each decision variable i in the offspring schedule c is

calculated from the parent schedules a and b as ci = λai + (1 − λ)bi, where λ is a

random value between 0 and 1. It is also known as line recombination (Mühlenbein
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& Schlierkamp-Voosen, 1993) or arithmetical recombination (Michalewicz, 1996,

p. 128).

Average recombination is equivalent to arithmetical recombination with λ = 0.5,

that is, ci = (ai + bi)/2.

Extended intermediate recombination is also known as BLX-α with α = 0.25 (Es-

helman & Schaffer, 1992). Each offspring level ci is a value randomly chosen

from the interval [cmin − I · 0.25, cmax + I · 0.25], where cmax = max{ai, bi},

cmin = min{ai, bi} and I = cmax − cmin.

The following three mutation operators are tested in this study:

Uniform mutation, called random mutation by Michalewicz (1996), replaces a value

by a new randomly uniform value from the allowed domain. In our case, if the value

is an upper trigger, it is replaced by a random value between the lower trigger and

the maximum level of the corresponding tank. For a lower trigger, the interval is

from the minimum level to the upper trigger.

Replace mutation is a less restricted version of uniform mutation, where a trigger

can take any value within the limits of the corresponding tank.

Gaussian mutation (Fogel, 1995) modifies a value by adding some amount of gaus-

sian noise. In our case, we replace a trigger level ci with a new value obtained

from the normal (Gaussian) distribution N(ci, H
range

k /12). That is, the random dis-

tribution has mean equal to the original value and standard deviation equal to the

difference (divided by 12) between the maximum and minimum water levels of the

tank k (H range

k = Hmax
k − Hmin

k ) associated with the level-controlled trigger i. For

the normal distribution about 99.7% of values are within three standard deviations.

Hence, by choosing a standard deviation of H range

k /12, we ensure that the mutation

of a trigger value such Hmin
k +0.25 ·H range

k ≤ ci ≤ Hmax
k −0.25 ·H range

k will produce

a result within the limits of the tank.

The above mutation operators are applied with a probability equal to one divided by

the length of the solution, that is, 1/(4 · N p), since for each pump there are four trigger

levels. Hence, the expected number of trigger levels modified per solution is one.

After recombination and mutation, we ensure that the values do not exceed a tank’s

operational levels by setting values over the maximum to the maximum level and values

below the minimum to the minimum level. Moreover, if the value of the lower trigger is

higher than the value of the corresponding upper trigger, the values are exchanged.
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Absolute Time-controlled Triggers

Custom recombination and mutation operators are required for the time-controlled trig-

gers representation in order to maintain the implicit constraint on the number of pump

switches and other representation constraints (see Section 3.3.1). We developed variants

of one-point, two-point, uniform and rand-arithmetical recombination, and of uniform

and replace mutation. These operators are applied for each pump’s schedule in a solution.

For absolute time-controlled triggers, the recombination operators are adapted as follows:

One-point recombination. Given a crossover point k ∈ [1, 2 ·SW −1], the schedule

of each pump p in the offspring solution is obtained by joining the values from 1 to

k of the first parent and the values from k + 1 to 2 · SW of the second parent. For

example, schedule of pump p in offspring c is obtained from two parents a and b

with (SW = 4, k = 3) as shown in Fig. 4.2.

ap 2 4 16 22 23 24 − −

bp 1 12 17 19 21 23 − −

cp 2 4 16 19 21 23 − −

Figure 4.2: Example of one-point recombination for absolute time-controlled triggers

representation.

This recombination may eventually generate solutions with invalid representations,

since it may break the increasing order of the values. To keep the order, the values

are sorted after recombination. This may result in two equal successive values. If

the constraint on number of pump switches is of the form N sw
p ≤ SW , then those

successive values are replaced by empty switches, such as 〈−,−〉, and moved to the

end of the schedule. In case N sw
p = SW is used, then repeated values are iteratively

modified by increasing the values by one until there are no more repeated values in

the schedule. This one-point recombination can be straightforwardly extended to n-

point recombination. Later, we experimentally study both one-point and two-point

variants.

Uniform recombination. The idea of uniform crossover is modified to suit the ab-

solute time-controlled triggers representation in the following way. First, combine

the triggers for both parents and keep track of the status (on/off) of each parent at
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ap 1 2 3 4 5 6 7 24 (N sw
p = 4)

bp 3 8 9 10 11 12 13 24 (N sw
p = 4)

(a)

ap on off on off on off on on on on on on on

bp off off on on on on on off on off on off on

1 2 3 4 5 6 7 8 9 10 11 12 13 24

(b)

cp on off on on on off on off on on on off on

1 2 3 4 5 6 7 8 9 10 11 12 13 24

(c)

cp 1 2 3 6 7 8 9 12 13 24 (N sw
p = 5)

(d)

cp 1 2 3 6 9 12 13 24 (N sw
p = 4)

(e)

Figure 4.3: Example of uniform recombination for absolute time-controlled triggers rep-

resentation.

each time interval. Next, randomly select one status, following the traditional uni-

form recombination. Finally, merge contiguous time intervals with the same status

into larger time intervals by removing the intermediate trigger values. The resulting

trigger values are used to construct the offspring solution. The following example

illustrates the procedure.

Let us assume the schedules of pump p in two parents a and b shown in Fig 4.3a. In

absolute time-controlled triggers, each trigger value represents the time of the day

at which a pump is turned on/off. Pumps initial status is assumed to be inactive (a

pump initially active has 0 as its first trigger value). First, the trigger values of both

parents are combined into one single time line (Fig 4.3b). The horizontal axis of

this time line contains as many time intervals as different trigger values there are

in the parents. Trigger values that do not appear in either parent are not taken into

account. The time line describes the status (on/off) during each time interval of each

parent given in the vertical axis. In the next step, for each time interval, one single
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status is randomly selected with equal probability among the status of the parents.

Let us assume that the values marked in bold were the ones randomly selected,

producing the combined time line shown in Fig 4.3c. Finally, contiguous intervals

with the same on/off state are merged into larger time intervals, and the boundaries

of the intervals are used to construct the time-controlled triggers representation of

the offspring solution (Fig 4.3d).

The resulting schedule may have any number of pump switches, hence breaking

the implicit constraint on pump switches. A lower number of pump switches is

problematic only if constraint N sw
p = SW . In such case, a pair of additional time-

controlled triggers differing by just one time unit is repeatedly generated until the

solution has the required number of switches. On the other hand, a number of

switches higher than SW is always problematic. This is what occurs in Fig 4.3d. In

this case, the trigger values corresponding to the shortest time interval are succes-

sively eliminated from the solution until it contains SW pump switches (Fig 4.3e).

Rand-arithmetical recombination. This is similar to the rand-arithmetical recombi-

nation described for level-controlled triggers. For each pump p, the offspring sched-

ule cp is calculated from the parent schedules ap and bp as cpi = λapi + (1 − λ)bpi ,

where λ is a random value between 0 and 1 and i ∈ {1, . . . , 2 · SW}. As a special

case, if either api or bpi is part of an empty switch 〈−,−〉, then the other value is

directly chosen (if both api and bpi are empty switches, the result is also an empty

switch). As in the n-point recombination described above, offspring schedules may

be invalid with respect to representation constraints. We use the same procedure as

described above after recombination to satisfy these representation constraints.

The mutation operators used for this representation are uniform mutation and replace

mutation:

Uniform mutation. The uniform mutation applied to level-controlled triggers is

adapted to the absolute time-triggers representation as follows. The domain of a

time-controlled trigger cpi is restricted to [cpi−1 + 1, cpi+1 − 1], with special cases of

[0, cp2 − 1] for i = 1, and [cp2·SW−1 + 1, 24] for i = 2 · SW . If cpi is part of an empty

switch, then we replace it with a new, randomly generated, pair of trigger values.

Replace mutation. This is a more aggressive mutation than uniform mutation. It

replaces one trigger value with a uniform random integer in the range [0, T ]. In the

special case that the replaced value was part of an empty switch, the whole empty

switch (two trigger values) is replaced by generating an additional random integer.
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After mutation, representation constraints are enforced by repairing solutions using the

same method as for recombination operators. Mutation is applied with a probability such

that the expected number of time-triggers modified per solution is two, that is two divided

by the number of decision variables. Since the number of decision variables is 2 · SW

trigger values per pump, we use a mutation probability of 2/(2 · SW · N p). This value

is larger than the typical one mutation per solution because, after repairing a mutated

solution to satisfy representation constraints, the mutated solution may be equal to the

original.

Relative Time-controlled Triggers

The same recombination and mutation operators used for absolute time-controlled triggers

are also used for the variant based on relative time. Since the representation constraints

are slightly different (see Section 3.3.2), the particular implementation of the operators is

different as well. The recombination operators used for relative time-controlled triggers

are:

N-point recombination. This operator follows basically the same procedure as in the

absolute time-controlled triggers representation, except the repair mechanism used

if representation constraints are broken. In the experiments, we focus on one-point

and two-point recombination.

Uniform recombination. In this case we have implemented a simpler alternative

than for the absolute time-controlled triggers. Here, the schedule of pump p in the

offspring solution is obtained by randomly selecting, for each trigger, the value of

either parent with equal probability, as shown in Fig. 4.4.

ap 0 2 12 1 1 7

bp 1 5 6 0 10 1

cp 1 5 12 0 1 1

Figure 4.4: Example of uniform recombination for relative time-controlled triggers

representation.

Rand-arithmetical recombination. It is similar to the variant for absolute time-

controlled triggers, with the difference that, in this case, we do not handle empty

switches in any special way, since they are represented by the value 0.

We propose the following implementation of the mutation operators of relative time-

controlled triggers:
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Uniform mutation. For each mutated trigger, another trigger of the same pump is

randomly chosen and their total time is redistributed randomly among them. For

example, let us assume that mutation is applied to trigger k of a schedule of pump

p denoted by cpk. First, a different random position j is selected. Next, the value

of cpk after mutation (c′pk ) is a random integer generated in the interval [0, cpk + cpj ]

(or [1, cpk + cpj ] in case N sw
p = SW and k 6= 0). The new value for trigger j is

c′pj = (cpk + cpj)− c′pk . Figure 4.5 gives an example with k = 4 and j = 5.

cp 1 5 6 0 10 1

c′p 1 5 6 6 4 1

Figure 4.5: Example of uniform mutation for relative time-controlled triggers represen-

tation.

Replace mutation. Similar to the previous implementations, replace mutation is

meant to be a more aggressive variant of uniform mutation. A trigger value is

replaced by an integer randomly generated from the interval [0, T − (2 · SW )] (or

[1, T − (2 · SW )] if N sw
p = SW and k 6= 0).

The solution resulting after recombination or mutation may have a total amount of time

greater than the scheduling period T , hence violating representation constraints. To repair

such solutions, we iteratively reduce the value of the time intervals by one time unit until

the total sum is equal to T .

Similar to the case of absolute time-controlled triggers, mutation is applied with a

probability of 2/(2 · SW · N p), that is, two divided by the number of decision variables,

such that the expected number of time-triggers modified per solution is around two.

4.2 Experiments on Different Representations

The simplicity of SEA allows us to focus on the differences between the representations

rather than in other algorithmic details. However, it is reasonable to expect performance

differences depending on the values of the population size (α), parent/offspring population

size (µ), and the particular recombination and mutation operators used. Therefore, we will

first study the effect of different parameters for each representation However, it is not our

goal to “over-tune” the algorithm for each representation and network instance. Hence,

only a few reasonable values of α and µ will be tested in order to identify general trends

rather than particular optimal settings.

In order to obtain a running time comparable to that considered by van Zyl, Savic &

Walters (2004), we use the same termination criteria, that is, 6000 function evaluations
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per run for the Vanzyl network, and 8000 function evaluations per run for the Richmond

network. Experiments with longer runs (50 000 evaluations) are reported when testing

the effect of the limit of pump switches (Section 4.4) and the number of time intervals

(Section 4.5). Since the algorithms are stochastic, in order to assess the typical behaviour,

each combination of parameters is repeated a number of times with different random

seeds. For the Vanzyl network, after some initial testing, 25 repetitions for each parameter

combination were considered to provide a sufficiently accurate median value. For the

Richmond network the results showed less variability and each run is computationally

more expensive (the network is much larger and complex). Therefore, 15 runs for each

parameter combination were found to be sufficient for assessing the average behaviour.

The experimental results are analysed by techniques from the field of Experimental De-

sign. Dean & Voss (1999), and Sheskin (2000) cover in detail the techniques discussed in

the following paragraphs, but these are standard techniques that may be found in various

textbooks on the subject. In particular, experiments are analysed by means of Analysis of

Variance (ANOVA). ANOVA identifies which factors (or combination thereof) produce

a statistically significant effect on the response variable. In our case, the factors are the

parameters of SEA and the response variable is the electrical cost. A factor is significant

if the probability of the factor not having an effect on the response variable is less than

a given significance level. The p-value of ANOVA (or any other statistical test) is the

smallest significance level that would identify the factor as significant. Therefore, low

p-values are preferred. It is standard practice to consider a factor (or combination thereof)

significant if the corresponding p-value is lower than 0.05 (5%).

ANOVA also indicates whether the effect of one parameter is conditioned by the set-

tings of another parameter. For example, a large population size might compensate for

lack of mutation. This is called an interaction and the model analysed includes all pos-

sible pairwise interactions among parameters. ANOVA does not measure how much the

different settings of a significant parameter (or an combination thereof in the case of inter-

actions) influence the response variable. Differences in mean electrical cost between pa-

rameter settings are measured by means of Tukey’s Honest Significant Difference (HSD)

95% confidence intervals (Dean & Voss, 1999). These confidence intervals are incorpo-

rated to the interaction plots as error bars around the mean electrical value. An illustration

example would be Fig. 4.6a. The error bars of α = 50 and α = 100 (both using flip mu-

tation) overlap, and hence, we conclude that they do not have a (statistically significant)

different effect on the electrical cost. On the other hand, there is no overlap among the

other error bars, and hence, we conclude that the corresponding settings have a distinct

effect on the resulting electrical cost.

The correctness of ANOVA depends on three assumptions about the data and the model
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being analysed. These requirements of ANOVA are denoted as independence, normality

and homoscedasticity (equal-variance) assumptions. Precise details about their nature

and the procedures for checking them are beyond the scope of this thesis. Suffice to

say that we always check these assumptions before applying ANOVA. If any of them

is not met, we apply standard procedures for correcting the problem. The correction

procedures employed in this thesis involve removing one or more parameter settings from

the experimental analysis (e.g., parameters that result in a strong effect on the electrical

cost or large variability). Alternatively, standard transformations of the data may also be

employed.

In some cases no transformation or correction would allow to meet ANOVA’s assump-

tions, and ANOVA cannot be performed. Instead, we use boxplots to compare the param-

eter settings, and the (possible) interaction between two parameters. Typical boxplots are

used to summarise a sample of data values. The line in the middle of the box corresponds

to the median value. The “box” is delimited by the first and third quartiles, where the first

quartile delimits the lowest 25 percent of the data and the third quartile delimits the lowest

75 percent of the data. Hence, the box contains at least 50 percent of the data. The height

of the box corresponds to the inter-quartile range (IQR), which measures the variability

of the sample. The extra lines above and below the box are called “whiskers” and they

extend to the smallest value (respectively largest value) that is no more than 1.5 · IQR

times lower than the first quartile (respectively, higher than the third quartile). Any value

beyond the two whiskers is called an outlier and is displayed as a point. In boxplots of

interactions (see Fig. 4.15 for an example), points correspond to the median electrical

value and only the “box”, which contains 50% of the values, of each boxplot is shown.

Whiskers and outliers are omitted for clarity. The “boxes” have different widths to appre-

ciate overlapping boxes. Boxplots do not provide confidence levels (it cannot be said that

one parameter setting is better than another with a confidence of 95%), however, they are

useful to examine the distribution of the data and identify trends. In general, wide boxes

(and whiskers) indicate high variability of the results, and the larger overlap between two

boxes, the smaller is the difference between two parameter settings.

4.2.1 Binary Representation

The experimental setup of SEA using the binary representation considers all possible

combinations of α = {50, 100, 200}, µ = {5, 20}, recombination and mutation operators.

Recombination can be either one-point, two-point, or uniform, while both flip mutation

and no mutation are tested.

The constraint on the number of pump switches (N sw
p ≤ 3, Eq. 2.8 with SW = 3) is

explicitly incorporated to our constraint handling method, in addition to the other con-
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straints discussed in Section 4.1.1. Out of two solutions that violate this constraint, the

one containing the pump with the highest number of switches is considered worse. More-

over, this constraint is given a lower priority than the constraint on volume deficit, and

thus it is considered after all the other constraints. Solutions satisfying this constraint are

compared according to electrical cost.

The Vanzyl Network

The results of SEA with the binary representation for this network are summarised in

Table A.1 on page 168. The Analysis of Variance (ANOVA) indicates that strong inter-

actions exist between mutation and recombination, and between mutation and population

size (α). The number of offspring solutions µ does not have a significant influence on the

electrical cost. The relevant interactions are shown in Fig. 4.6.
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Figure 4.6: Interaction plots for SEA using the binary representation and a constraint of

N sw
p ≤ 3 (the Vanzyl network).

Mutation and population size (α). Figure 4.6a indicates that, without mutation, a higher

value of α is preferable and the best results were obtained with flip mutation and lower

values of α. The higher variability provided by a larger population slightly compensates

for lack of mutation. However, using mutation and a smaller population is a better ap-

proach.

Recombination and mutation operators. In Fig. 4.6b we have almost opposite be-

haviours with and without mutation. Without mutation, uniform recombination is much

better than other recombination operators, whereas when using mutation the differences

between various recombination operators are rather small.

In summary, the best combination of parameters of SEA using the binary representation

is α = 50, one-point recombination, and flip mutation, which is essential in order to
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achieve satisfactory results. In contrast, the offspring population size (µ = {5, 20}) does

not have a significant effect on the results.

The Richmond Network

We apply the same parameter setup of SEA to the Richmond network and the results are

summarised in Table A.2 on page 169. The use of mutation is even more important for

this network. In fact, some runs without mutation are not able to find a pump schedule

that satisfies the volume deficit constraint. Therefore, we focus the analysis on those runs

that use flip mutation.

The results do not satisfy ANOVA assumptions initially. By transforming the data us-

ing the reciprocal function (x′ = −1/x), ANOVA requirements are satisfied. We perform

ANOVA on the transformed results and it identifies the interaction between the popula-

tion size (α) and the recombination operator as having a significant effect on the results.

The interaction plot in Fig. 4.7 shows that the combination of α = 200 and uniform

recombination performs particularly worse than other combinations of parameters. Sim-

ilar behaviour was also observed in the case of the Vanzyl network. The interaction plot

shows that the best value for α is 50. Moreover, with α = 50, performance of various

recombination operators is not significantly different. For the purpose of choosing a better

configuration of parameters, we plot all combinations with α = 50 and flip mutation in

Fig. 4.8. The combination of µ = 5 and one-point recombination (plus α = 50 and flip

mutation) is selected as the best combination of parameters, since it obtains the lowest

median value and a small variability.
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Figure 4.7: Interaction plot of SEA using the binary representation and a constraint of

N sw
p ≤ 3 (the Richmond network).
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Figure 4.8: Results of SEA with α = 50 and flip mutation using the binary representa-

tion and a constraint of N sw
p ≤ 3 (the Richmond network).

4.2.2 Level-controlled Triggers

For the representation based on level-controlled triggers we perform experiments using

average, rand-arithmetical and extended-intermediate recombination operators, and uni-

form, gaussian, replace and none mutation operators. Population sizes of α = {50, 100,

200}, and offspring population sizes of µ = {5, 20} were used in these experiments. An

explicit constraint on the number of pump switches is added so that solutions with more

than three switches per pump are penalised (N sw
p ≤ 3). This constraint is implemented in

the same way as for the binary representation, that is, by adding a new condition to our

constraint handling method that applies to solutions with equal volume deficit.

Experimental results are shown in Tables A.3 and A.4 on page 170, for the Vanzyl

and Richmond networks, respectively. Only the results corresponding to extended-in-

termediate recombination are presented because all experiments using either average or

rand-arithmetical recombination generated solutions with volume deficit for at least one

run. On the other hand, runs using extended-intermediate recombination were always

able to obtain solutions with zero volume deficit. Therefore, from now on, we restrict

our analysis to the results obtained by using extended-intermediate recombination. We

analyse separately the results for the Vanzyl and Richmond networks to identify which

parameters produce a significant effect on the output of SEA.

The Vanzyl Network

We apply ANOVA to the results summarised in Table A.3. The only significant factor

identified by ANOVA is the interaction between mutation operator and α. The interaction

plot (Fig. 4.9) shows that for α = 50, replace mutation produces a statistically distinct

effect on the electrical cost. On the other hand, without mutation, α = 50 performs

significantly worse than α = 200, which is somehow expected since the latter provides

more diversity.
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Figure 4.9: Interaction plot of SEA using level-controlled triggers

and a constraint of N sw
p ≤ 3 (the Vanzyl network).

The Richmond Network

In the case of the Richmond network, the results suggest that the effect of mutation is even

stronger (Table A.4 on page 170). Both gaussian mutation and no mutation (none) obtain

very high electrical costs in the worst case. The strong differences between gaussian and

none on one side, and replace and uniform mutation on the other, would actually hide

the effect of other parameters. This strong effect can clearly be observed in the boxplot

in Fig. 4.10. Therefore, the following analysis will focus on the results obtained using

uniform and replace mutation.
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Figure 4.10: Boxplot of SEA using level-controlled triggers

and a constraint of N sw
p ≤ 3 (the Richmond network).

We do not apply ANOVA here because the data does not strictly conform to the normal-

ity assumption. Even if we accepted the deviation from normality as small and performed

ANOVA, it would not indicate a strong influence of any parameter or interaction thereof.

Instead, we study the results for each combination of parameters (Fig. 4.11). We ob-

serve that some combinations are better than the others, e.g., µ = 20, α = 50, and replace

mutation, obtains better results than using α = 200 in most runs. However, there is no

discernible pattern among the parameters. Hence, the configuration with the lowest me-

dian (µ = 20, α = 50, replace mutation and extended-intermediate recombination) was
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chosen for comparison among representations.
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Figure 4.11: Boxplot of SEA results using level-controlled triggers

and a constraint of N sw
p ≤ 3 (the Richmond network).

4.2.3 Absolute Time-controlled Triggers

The experimental setup in the case of absolute time-controlled triggers representation is

α = {50, 100, 200}, µ = {5, 20}, uniform, one-point, two-point and rand-arithmetical

recombinations, and uniform, replace or none mutations. As it was done for the previous

representations, the number of switches per pump (N sw
p ) is constrained to be less than or

equal to three. However, this constraint does not need to be handled explicitly because

the time-controlled triggers representation implicitly enforces this constraint.

Results of the experiments for the Vanzyl and Richmond networks are presented, re-

spectively, in Tables A.5 on page 171 and A.6 on page 173. Before performing any

statistical analysis, we notice that mutation seems to have a strong influence on the results

of both networks. By plotting the distribution of the results for each mutation operator,

as in Fig 4.12, we can conclude that not using mutation is clearly detrimental, irrespec-

tive of the other parameters. Therefore, we perform ANOVA only on the results that use

mutation, to appreciate the interactions between the other parameters.

The Vanzyl Network

ANOVA of the SEA results obtained for the Vanzyl network identifies three interactions

that have a significant effect on the electricity cost of the resulting schedule. In particular,

the interactions between: recombination operator and population size (α); mutation op-

erator and α; and recombination operator and mutation operator. These interactions are

examined in detail in the following paragraphs.
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Figure 4.12: Boxplot showing the effect of mutation on SEA when using absolute time-

controlled triggers and a constraint of N sw
p ≤ 3 for (a) the Vanzyl network and (b) the

Richmond network.

Recombination operator and population size (α). As shown in Fig. 4.13a, the most

notable result is that uniform recombination generates worse electrical cost than other

recombination operators, independently of the value of α. In the case of rand-arithmetical

and two-point recombinations, α = 200 is statistically worse than the other possible

settings of α. On the other hand, the results of α = {50, 100} and one-point, two-point,

and rand-arithmetical are not statistically different.

Mutation operator and population size (α). Figure 4.13b also shows that α = 200

gives poor quality results. As for mutation, it does not seem to have any effect except for

α = 50, where replace mutation is better than uniform mutation.

Mutation operator and recombination operator. It can be observed from Figure 4.13c

that uniform recombination is clearly worse than other recombination operators. Further-

more, the combinations of one-point recombination plus replace mutation, and two-point

recombination plus uniform mutation are both significantly better than any combination

of parameters using rand-arithmetical, because their corresponding confidence intervals

do not overlap.

From the above analysis, the best parameters would be α = 50, replace mutation,

and one-point or two-point recombination. The offspring population size (µ) does not

play a significant role in the performance of SEA when using absolute time-controlled

triggers. For further comparison, we choose the configuration with α = 50, µ = 20, two-

point recombination and replace mutation. This combination obtains both a low median

electrical cost (although not the lowest) and a low variability, as shown in Fig. 4.14.
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Figure 4.13: Interaction plots for SEA using absolute time-controlled triggers and a

constraint of N sw
p ≤ 3 (the Vanzyl network).
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constraint of N sw
p ≤ 3 for the Richmond network (excluding none mutation).

The Richmond Network

In the case of the Richmond network, the results of SEA do not satisfy the requirements

of ANOVA, even after removing the results corresponding to not using mutation and

applying various transformations.

We explore the data by plotting the distribution of electricity cost for various combina-

tions of parameters. Fig. 4.15 indicates that, given a value of α, uniform recombination

always produces worse results than the other recombination operators. Excluding those

runs using uniform recombination from our analysis and checking the ANOVA assump-

tions again, we conclude that the data sufficiently meets the requirements and proceed

with ANOVA.

ANOVA identifies the interactions between α and recombination, mutation and α, and

mutation and recombination, as having a significant effect on the results. We examine

these interactions in more detail in the following paragraphs.

Population size (α) and recombination operator. As illustrated by Fig. 4.16a, a small

population size (α = 50) seems preferable compared to larger values (α = 200). More-

over, one-point and two-point recombination are superior to rand-arithmetical recombi-

nation when α = 50.

Population size (α) and mutation operator. Figure 4.16b indicates that a small popula-

tion size generates better results than a setting of α = 200. Although there are significant

differences between the two mutation operators for large values of α (in favour of uniform

mutation) this is not true any more for α = 50.

Mutation and recombination operators. Figure 4.16c shows that when using replace

mutation, the best results are obtained with one-point recombination, which is not affected

by the mutation operator. On the other hand, when using uniform mutation, there is no

clear winner among the recombination operators.
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Figure 4.16: Interaction plots for SEA using absolute time-controlled triggers and a

constraint of N sw
p ≤ 3 (the Richmond network).

According to the above analysis, the best combination of parameters for SEA when

using absolute time-controlled triggers is α = 50, one-point or two-point recombination,

and uniform or replace mutation. Among these possible configurations of SEA, there is

no clear winner. In order to make a decision, we examine some combinations of param-

eters with α = 50 (Fig. 4.17). As expected, the results are very similar. We choose the

combination (f3 in the plot) µ = 5, one-point recombination and replace mutation, given

its low median value, small worst case (ignoring the single outlier) and excellent best

case.

4.2.4 Relative Time-controlled Triggers

The same experiments performed using absolute time-controlled triggers are also per-

formed for relative time-controlled triggers. That is, α = {50, 100, 200}; µ = {5, 20};

uniform, one-point, two-point and rand-arithmetical recombination; and uniform, replace

and no mutation (none). The number of switches per pump is limited to three (N sw
p ≤ 3).

This constraint is implicitly handled by the time-controlled triggers representation.

Experimental results are summarised in Tables A.7 on page 175 and A.8 on page 177
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Figure 4.17: Boxplot of the best combinations of SEA using absolute time-controlled

triggers and a constraint of N sw
p ≤ 3 (the Richmond network).

for the Vanzyl and Richmond networks, respectively. The first observation is that mutation

is essential to achieve satisfactory results for both networks. As shown in Fig. 4.18, the

runs using mutation are clearly better than those without mutation, independent of the

other parameters. Therefore, the following analysis includes only those results obtained

using either uniform or replace mutation.
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Figure 4.18: Boxplot showing the effect of mutation on SEA when using relative

time-controlled triggers and a constraint of N sw
p ≤ 3 for (a) the Vanzyl network and

(b) the Richmond network.

The Vanzyl Network

For the Vanzyl network, before applying ANOVA, we notice that the results of SEA with

rand-arithmetical recombination are better than those obtained using other recombination

operators, independent of the other parameters of SEA (see Fig. 4.19). In order to confirm

this observation, we perform a non-parametric statistical multiple-samples test, Kruskal-

Wallis one-way analysis of variance by ranks (Sheskin, 2000), on the hypothesis that the

median electrical cost is the same for the four recombination operators. This hypothesis is
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rejected by the test with a p-value close to zero. Then, we perform pairwise nonparametric

two-sample tests (Wilcoxon rank-sum test) on the hypothesis that the median electrical

cost is the same for two recombination operators. These tests give a p-value less than

0.05 only when comparing with rand-arithmetical recombination. We conclude that the

median electrical cost obtained by SEA using rand-arithmetical recombination is lower

than the median obtained with any other recombination operator. Therefore, we focus on

the results obtained using rand-arithmetical recombination.
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Figure 4.19: Boxplot of the results of SEA using relative time-

controlled triggers and a constraint of N sw
p ≤ 3 (the Vanzyl network).

We cannot apply ANOVA because the requirements are not satisfied, even after trying

several transformations of the data. In order to assess the best parameters, we examine

in more detail the results in Fig. 4.20. The only discernible pattern is that α = 200

typically produces worse results than using 50 or 100. Apart from those, the apparent

differences are very small or are restricted to a particular configuration. We identify a

best configuration of parameters for further comparison based on a preference for a low

median electrical cost and a small variability, in order to obtain a good value most of the

time and a reasonable worst case. Therefore, following the boxplot in Fig. 4.20, the best

choices would be either α = 50, µ = 20 and replace mutation or α = 100, µ = 20 and

uniform mutation. Although the latter configuration obtained a slightly smaller median,

we choose the former because of its small variability, which denotes more consistent

results.

The Richmond Network

For the results of SEA for the Richmond network, before applying ANOVA, we also ob-

serve that some parameters have a strong influence. In particular, we observe that α has a

strong influence on the performance of SEA. The rand-arithmetical recombination seems

to produce better results than other recombination operators. We examine the combined

effect of these two parameters in Fig. 4.21. There is a substantial degradation of the
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Figure 4.20: Boxplot of SEA with rand-arithmetical recombination using relative

time-controlled triggers and a constraint of N sw
p ≤ 3 (the Vanzyl network).

results as α increases for any recombination operator, although it is less marked for rand-

arithmetical recombination. Furthermore, given a particular value of α, rand-arithmetical

is always the best recombination operator.
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Figure 4.21: Boxplot of SEA using relative time-controlled

triggers and a constraint of N sw
p ≤ 3 (the Richmond network).

We therefore focus our analysis on the results obtained using rand-arithmetical recom-

bination and α = {50, 100}. This subset of data does not satisfy ANOVA assumptions.

Instead, we analyse the results for each configuration of the parameters in Fig. 4.22. We

observe that the results using replace mutation and α = 100 are worse than other con-

figurations of parameters. On the other hand, the results using uniform mutation are only

slightly affected by the settings of α and µ. Among these combinations, we choose the

combination α = 50, µ = 5 and uniform mutation as the best configuration of SEA for

this representation.

4.3 Comparison among Representations

In the previous sections we have examined different combinations of the parameters of

SEA for each representation and each network instance. The best combinations of pa-
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rameters are shown in Table 4.1 for the Vanzyl network and Table 4.2 for the Richmond

network. Figures 4.23 and 4.24 compare graphically the different representations with

the results obtained by the Hybrid GA proposed by van Zyl (2001). The results of Hybrid

GA shown here are those published by van Zyl, Savic & Walters (2004). The Hybrid GA

was designed for optimising level-controlled triggers, and hence, we are not comparing

algorithms directly but rather alternative representations. The Hybrid GA uses one-point

crossover and a mutation operator similar to replace mutation. For comparison purposes,

the results shown here were obtained after the same number of evaluations, that is, 6000

evaluations for the Vanzyl network and 8000 for the Richmond network.

From these results, it can be concluded that the binary and time-controlled represen-

tations outperform both SEA and HybridGA with level-controlled triggers. In addition,

SEA with time-controlled triggers using relative time values obtains a lower median elec-

trical cost and a lower variability than using absolute time values. Although the binary

representation obtains results similar to relative time-controlled triggers, the latter ensures

that the constraint on pump switches is always satisfied. The binary representation has to

search for feasible schedules satisfying this constraint. Table 4.2 indicates that SEA with

the binary representation did not find a feasible schedule satisfying N sw
p ≤ 3 in at least

half of the runs in the Richmond network because the median N sw is larger than three

times the number of pumps (N p = 7). Both Tables 4.1 and 4.2 show that the number of

pump switches obtained when using the binary representation is higher than when using

relative time-controlled triggers.

Our conclusion is that the proposed relative time-controlled trigger representation is

better than level-controlled triggers and the binary representation, with the added benefit

that time-controlled triggers always enforce a maximum number of pump switches. More-

over, the comparison with HybridGA shows that a carefully chosen representation, with

the appropriate recombination and mutation operators, may make a simplistic algorithm,
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Table 4.1: Comparison of different representations for SEA in the Vanzyl network.

Representation

binary level-triggers time-triggers

absolute relative

SEA

α 50 50 50 50

µ 5 5 20 20

Recomb. one-point ext.-interm. two-point rand-arithm.

Mutation flip replace replace replace

CE

median 333.0 346.9 338.7 334.1

sd 11.2 5.3 5.6 6.1

min 324.7 337.2 325.3 315.9

max 359.6 357.1 351.2 341.4

N sw

median 7.0 3.0 6.0 5.0

sd 1.2 0.9 1.3 1.2

min 5.0 2.0 4.0 3.0

max 9.0 6.0 8.0 7.0
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Figure 4.23: Boxplot of the results of SEA in the Vanzyl network

for different representations.
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Table 4.2: Comparison of different representations for SEA for the Richmond network.

Representation

binary level-triggers time-triggers

absolute relative

SEA

α 50 50 50 50

µ 5 20 5 5

Recomb. one-point ext.-interm. one-point rand-arithm.

Mutation flip replace replace uniform

CE

median 93.8 100.0 95.5 92.3

sd 2.6 2.5 3.4 1.6

min 91.4 99.1 90.4 90.3

max 100.2 107.0 104.2 95.4

N sw

median 26.0 10.0 13.0 16.0

sd 3.1 1.5 1.1 1.7

min 19.0 8.0 12.0 14.0

max 32.0 13.0 15.0 20.0
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Figure 4.24: Boxplot of the results of SEA for the Richmond network

for different representations.
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such as SEA, outperform a more advanced and complex algorithm, such as HybridGA.

4.4 Effect of the Constraint on the Number of Pump

Switches

In the following sections, we investigate in more detail the effect that the constraint on

the number of pump switches has on the performance of the evolutionary algorithm SEA.

First, we compare the results obtained by SEA using the binary representation with and

without constraint on the pump switches to identify: (i) whether the optimal parameters

are different depending on the use of the constraint; (ii) whether the electrical cost is

further reduced; and (iii) how much the number of pump switches increases when no

limit is enforced. Later, using the time-controlled triggers representation, we investigate

the effect of maximum number of pump switches.

4.4.1 Binary Representation

Experiments using the binary representation without restrictions on the number of switches

will be conducted to understand the benefits of allowing large number of pump switches.

First, we perform experiments with the same parameter setup used in Section 4.2.1. We

use the same three types of recombination (one-point, two-point and uniform) and flip

mutation.

The Vanzyl Network

For the Vanzyl network, we tested population sizes of α = {50, 100, 200} and offspring

size of µ = {20}. The complete results are provided in Table A.9 on page 178. ANOVA

cannot be performed on the results because the homoscedasticity assumption is not met.

Figure. 4.25 shows boxplots of the results of SEA for the different values of mutation

against the other parameter settings. In all cases, the variability of the results is much

higher when no mutation is used.

Population size (α) and mutation operator. The use of mutation completely changes the

effect of α, as shown in Fig. 4.25a. When using mutation, smaller population sizes work

best. On the other hand, without mutation, α = 200 obtains the best results. However, the

results obtained with α = 200 and no mutation have a large variability. The “box”, which

contains 50% of the values, ranges from 330 to 360. In contrast, when using α = 50 and

flip mutation, 50% of the results are contained within 342 and 348. The latter is preferable,

since a low variability ensures more predictable results.
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Figure 4.25: Boxplots of SEA using the binary representation and no constraint on

the number of pump switches (the Vanzyl network).

Recombination and mutation operators. Figure 4.25b shows that when using mutation,

the particular recombination operator is of little importance. However, without mutation,

uniform recombination seems to be better. The median value obtained by SEA when

using uniform recombination and no mutation is much lower than when using any other

recombination, with or without mutation.

The above analysis indicates that the configuration with α = 200, uniform recombi-

nation and no mutation is particularly good. However, it is not clear whether it is better

than combinations with α = 50 and flip mutation, due to the high variability of results

when not using mutation. Figure 4.26 shows the electrical cost (CE) and total number of

pump switches (N sw) obtained by configurations of SEA using uniform recombination.

The median electrical cost and variability of α = 200 and no mutation are much lower

than for any other combination of parameters. This is in contrast with the optimal param-

eter settings when using a constraint on the pump switches (Section 4.2.1), which were

α = 50, one-point recombination and flip mutation. Another interesting observation from

Fig. 4.26 is that the number of pump switches tends to decrease along with the electrical

cost. This strongly suggests that the schedules with the lowest electrical cost do not have

a high number of pump switches.

The Richmond Network

In the case of the Richmond network, we arrived at similar conclusions as those reached

for the Vanzyl network. The summary of the experimental results of SEA are given in

Table A.10 on page 179. Important differences in median value and variance depending

on the combination of parameters can be observed in the table.

ANOVA cannot be performed because its statistical assumptions are not satisfied. How-
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Figure 4.26: Boxplot of SEA using the binary representation and no constraint on the

number of pump switches with uniform recombination (the Vanzyl network).
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Figure 4.27: Boxplots of SEA using the binary representation and no constraint on the

number of pump switches (the Richmond network) (a) without mutation and (b) with

flip mutation.

ever, there are interactions between the parameters, as illustrated by Fig. 4.27, which

shows simplified boxplots for different combinations of recombination, α, and with and

without mutation.

When no mutation was used. Figure 4.27a shows that higher values of α produced lower

electrical cost. The best combination is α = 200 and uniform recombination.

When flip mutation was used. Figure 4.27b, indicates that α = 200 generated much

worse results than α = {50, 100}. The particular recombination operator does not have a

clear influence.

The above analysis suggests that α = 200 has opposite effects depending on whether

mutation is used. This interaction between α and mutation is similar to the one observed

in the case of the Vanzyl network. At the first glance, one may conclude that for both

networks the use of flip mutation would seem counter-productive. However, as shown in



4.4. Effect of the Constraint on the Number of Pump Switches 71

30

35

40

45

T
o
ta

l 
s
w

it
c
h
e
s

C
E

C
E

90

100

110

120

130

C
E

50 100 200 50 100 200α :
flip noneMutation :

97 95.9

124.3

102.3

Figure 4.28: Boxplot of SEA using the binary representation and no constraint on the

number of pump switches with uniform recombination (the Richmond network).

Fig. 4.28, the use of flip mutation generates the best results for the Richmond network,

but it must be combined with a lower value of α.

Finally, similar to the Vanzyl network, schedules with less pump switches are also

those with lower electrical cost, which contradicts the notion that a higher flexibility on

the switching of pumps would allow lower cost schedules. In fact, this suggests that there

is an optimal number of pump switches and schedules with more pump switches break

additional constraints or increase electrical costs.

Number of Pump Switches Without a Constraint

Despite not using an explicit constraint on the number of pump switches, the median total

number of switches (N sw) of the results shown in Tables A.9 and A.10 are surprisingly

low. Taking into account that the Vanzyl network has three pumps and the Richmond

network has seven pumps, the average number of switches per pump (N sw
p ) is between

four and five. These are very low numbers if we take into account that the binary repre-

sentation allows up to a maximum of 12 switches per pump. This indicates that higher

number of switches do not necessarily mean lower electrical cost. On the contrary, the

worst results typically have a higher number of pump switches than the best results.

The average number of switches per pump above was calculated simply by dividing

the total number of switches by the number of pumps. In the actual schedules generated

by the SEA algorithm, the lack of a constraint on the number of switches may produce

higher number of switches for some pumps while other pumps are switched fewer times.

This is observed in the schedule shown in Fig. 4.29 corresponding to the median solu-

tion obtained by SEA (α = 50, µ = 5, uniform recombination and flip mutation) in

the Richmond network. Although in this example the average number of switches per

pump is below five, most pumps contain five switches. Moreover, pump 2A contains six
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Figure 4.29: Schedule obtained by SEA for the Richmond network using the binary

representation and no constraint on the number of pump switches.

switches, while pump 1A only contains three. Therefore, it is important to restrict the

number of switches of each pump by including a constraint such as Eq. 2.8, as discussed

in Section 2.2.

Effect of a Explicit Constraint on the Number of Pump Switches

By comparing the results of the best configurations of SEA using the binary representation

without and with the constraint on pump switches, we observe an interesting difference

between the two network instances. In Fig. 4.30a, corresponding to the Vanzyl network,

the best results are obtained when using the constraint. The opposite occurs in the Rich-

mond network, as shown in Fig. 4.30b, where the results obtained without constraint are

slightly better than those obtained when using the constraint.

The result for the Vanzyl network suggests that the increased flexibility obtained by

allowing a higher number of pump switches does not lead to better schedules. On the

other hand, in the case of the Richmond network, there are schedules with lower electrical

cost that require more switches per pump than those allowed by the constraint.

So far, we have examined the explicit constraint on the number of pump switches added

to the binary representation. In the next section, we will analyse the effect of the implicit

constraint enforced by the use of time-controlled triggers representation.
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Figure 4.30: Results of best configurations of SEA using the binary representation

with and without constraint on pump switches in (a) the Vanzyl network and (b) the

Richmond network.

4.4.2 Time-controlled Triggers

One of the features of the time-controlled trigger representation, as discussed in Sec-

tion 3.3, is that the constraint on the number of pump switches is implicitly enforced. The

maximum number of pump switches becomes a parameter SW that defines the represen-

tation of schedules. In this section, we study the effect of this parameter.

First, we want to find out whether there are differences in the optimal value that can be

obtained given a fixed number of switches per pump. Therefore, we perform very long

runs of SEA with a strict constraint in the number of pump switches (N sw
p = SW ) varying

from SW = 1 to SW = 5 switches per pump. The configuration used is α = 50, µ =

5, one-point recombination and replace mutation, with absolute time-controlled triggers

representation. The results after 50 000 evaluations are shown in Figures 4.31 and 4.32

for the Vanzyl and Richmond networks respectively. With just one switch per pump

the results are clearly worse than with higher number of switches, since the algorithm

does not have much flexibility as to when operate the pumps. However, for two or three

switches per pump, the results improve dramatically. As the number of switches per pump

further increases, the results become slightly worse. This fact suggest that the lowest cost

schedules with two or three switches are easier to find than the lowest cost schedules

with higher number of switches. In summary, the growth of the search space caused

by increasing the number of pump switches over a particular limit negatively affects the

performance of the algorithm, and it is not compensated for by a greater number of low

cost schedules.

We next looked at whether the particular setting of the maximum number of pump

switches negatively affects the performance of the algorithm, even when using a constraint
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Figure 4.31: Effect of different values of SW in constraint N sw
p = SW in the Vanzyl

network. (SEA with absolute time-triggers representation, 50 000 evaluations).
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Figure 4.32: Effect of different values of SW on constraint N sw
p = SW for the Rich-

mond network. (SEA with absolute time-triggers representation, 50 000 evaluations).
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that allows for less pump switches than the limit (N sw
p ≤ SW ). On the one hand, as

we just discussed above, high number of pump switches do not necessarily mean less

electrical cost and, actually, the opposite may be true, since a high limit increases the

search space, making harder for the algorithm to find the optimal schedules. On the

other hand, if schedules with few pump switches tend to be better, then the algorithm may

converge to those, even if the original maximum limit allowed higher number of switches.

This is precisely what occurs for the Vanzyl network as shown in Fig. 4.33 (similar results

were obtained for the Richmond network). The results are indistinguishable with respect

to the electrical cost, even when comparing a limit of two switches per pump with a limit

of six switches per pump. Moreover, the total number of pump switches grows slower

than the limit. For a limit of two switches per pump, the median number of switches

is five, that is, ≈ 1.7 switches per pump, while for a limit of six switches per pump,

the median number of switches is eight, that is, ≈ 2.7 switches per pump. We must

remember that the algorithm does not have any incentive to reduce the number of pump

switches, as its only goal is to minimise the objective function while satisfying the explicit

constraints. The constraint on the number of pump switches is always implicitly satisfied

by the representation. It can be concluded from these results that the algorithm using a

time-triggers representation with a constraint allowing for less switches than the limit is

able to adapt the number of pump switches in order to generate lower cost schedules.

4.5 Effect of the Length of Time Intervals

In this section, the effect of using different time intervals is investigated. As described in

Chapter 3, explicit representations, such as binary and time-controlled triggers, divide the

scheduling period T into several time intervals NT. Normally, the number of time inter-

vals is constant, and, hence, a change in the status of pumps may only occur at fixed times

with a minimum interval of T/NT. Up to now, we have considered a scheduling period

of 24 hours divided into 24 intervals of one hour. However, in both the time-controlled

triggers and binary representation, any length of time intervals could be considered. Finer

time intervals would allow more precise scheduling of the pumps and, ideally, may re-

duce electrical costs. In practice, however, very short time intervals are undesirable, since

sudden changes in pump status may cause water hammer and damage the system.

Despite these potential maintenance costs, most studies did not take into account these

issues at all. For example, optimisation algorithms using level-controlled triggers as-

sume that the time intervals are only limited by the simulation time step (one second in

EPANET) and did not consider any constraints on the minimum time interval between two

consecutive pump switches (Atkinson et al., 2000; van Zyl, Savic & Walters, 2004). This
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often produces small time intervals between consecutive switches and such a schedule

may not be practicable.

Therefore, we study the behaviour of SEA with time-controlled triggers representation

for different time intervals. In order to obtain a complete picture we consider intervals of

10 minutes, 30 minutes, one hour and two hours.
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Figure 4.34: Comparison of different time length in the Vanzyl network. SEA with ab-

solute time-triggers representation, 200 000 evaluations (left), 6 000 evaluations (right).

First, we study the schedules obtained from a long optimisation (200 000 evaluations

per run). The results in Fig. 4.34a show a clear degradation of performance when two

hour intervals were used, and increase in the variability of results when intervals smaller

than one hour were used. In the case of two hour intervals, the near-optimal schedules

are simply worse than for shorter time-intervals. For 10 and 30 minutes, the increase of

flexibility sometimes does not compensate the increased search space. In other words,

there are schedules with lower cost, since the best case is improved, but they are more

difficult to find, and hence, the median value is almost identical.

When the number of evaluations is restricted to 6 000, the differences are much smaller,

as shown in Fig. 4.34b. In such case, the increased search space introduced by using

shorter time intervals does not lead to lower electrical cost and the median electrical cost

is very similar, and even worse for 10 minutes time intervals. Our conclusion is that,

although shorter time intervals may allow more scheduling flexibility in order to further

reduce electrical cost, the growth of the search space is not counterbalanced by a propor-

tional increment in the number of low cost schedules. Hence, the effort required to find

near-optimal schedules is greater when using shorter time intervals.

The above results show that both 30 minutes and one hour intervals are best suited for

this network. Depending on the real-time variation of demands, 30 minutes intervals may

be more appropriate.
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4.6 Summary

In this chapter we have empirically studied the new representation, time-controlled trig-

gers, proposed in this study. For this purpose, a Simple Evolutionary Algorithm (SEA)

was used, and custom recombination and mutation operators were developed for the pro-

posed time-controlled triggers representations. We tested different settings of SEA, to

find adequate combinations of parameters for each representation. A statistical analysis

of the experimental results pointed out the parameters and particular settings thereof that

had a significant effect on the resulting electrical cost. The analysis indicated that inter-

actions between parameters exist. For example, in absolute time-triggers representation

with α = 200 and uniform mutation produced slightly better results than using replace

mutation. At the same time, α = 50 always improved the results over using α = 200.

However, for α = 50, the best mutation operator was clearly replace mutation. Such

interactions were not taken into account when fine-tuning similar algorithms in the liter-

ature, and it is frequently the case that one parameter is fine-tuned at a time, effectively

disregarding the interactions between parameters, what may lead to incorrect conclusions

about the effect of each parameter on a particular algorithm.

An improved fine-tuning of the parameters may explain, in part, how the proposed

SEA obtains, despite its simplicity, results as good as the best available in the literature

when level-controlled trigger representation was used, and clearly better when the binary

or time-controlled triggers representation was used. In particular, the new representation

based on time-controlled triggers using relative time stands out among the other represen-

tations, obtaining the schedules with lowest electrical cost and with a number of pump

switches often much lower than the specified limit.

In addition, we studied the effect of the constraint on the number of pump switches.

We repeated the experiments of SEA using the binary representation with and without

constraint on the number of pump switches. Interestingly, the algorithm without this

constraint generated schedules that have relatively low number of pump switches. Our

conclusion is that allowing a high number of pump switches with the binary representation

does not necessarily lead to lower cost schedules, because the best schedules have lower

number of schedules.

Next we investigated the behaviour of the new time-controlled triggers representation

with different limits on the number of pump switches and various lengths of the time in-

tervals. The experiments indicated that a strict constraint on the number of pump switches

may degrade the quality of the schedules if the limit on the pump switches is too low or

too high. It is clear from our experiments that, unless there is a strong reason to prefer an

exact number of pump switches per pump, it is always better to use a maximum limit and
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a relaxed constraint that allows less switches than the limit.

Lastly, we experimentally tested that, although lower cost schedules may be found by

using time intervals smaller than one hour, finding these good solutions becomes increas-

ingly difficult because of the growth of the search space. On the other hand, intervals

larger than one hour provide poor results. This is consistent with the fact that in both

network instances a time step of one hour in the extended period simulation is accurate

enough to model the hydraulic behaviour of the network (Atkinson et al., 2000; van Zyl,

Savic & Walters, 2004). Therefore, one hour intervals for pump scheduling is a logical

choice in this case. However, depending upon the real-time demand variation, a minimum

time interval of 30 minutes may also be a possibility.



Chapter 5
Multi-Objective Evolutionary Optimisation

for the Pump Scheduling Problem

Most formulations of the pump scheduling problem implicitly define multiple objectives

to satisfy. In general, these objectives are minimisation of electrical and maintenance

costs. Almost all optimisation models published for the pump scheduling problem ag-

gregate these two objectives into a single objective through the use of penalty functions.

Defining appropriate penalty costs is difficult and it requires multiple test runs to find

values tailored to a particular network instance. More importantly, a single objective

approach prevents system operators from trading maintenance costs for electrical costs

according to their expertise and knowledge about the system. By comparison, a multi-

objective approach in terms of Pareto-optimality allows system operators to examine a set

of candidate pump schedules that models the trade-off between electrical and maintenance

costs.

Few multi-objective approaches have been proposed in the literature for the pump

scheduling problem. Savic, Walters & Schwab (1997) studied a multi-objective evolu-

tionary algorithm that uses Pareto optimal ranking (Goldberg, 1989), for the minimisation

of energy costs and the minimisation of number of pump switches. Constraint violations

on tank water levels were incorporated into the electricity cost as penalties and infeasible

solutions were considered always dominated by feasible ones. This work did not consider

experimental analysis of parameters. Sotelo, von Lücken & Barán (2002) tested vari-

ous multi-objective evolutionary algorithms (MOEA), namely, SPEA, NSGA, NSGA2,

CNSGA, NPGA, and MOGA, to minimise four objectives: (1) electricity consumption

cost, (2) maximum demand charge, (3) number of pump switches, and (4) difference be-

tween the initial and final levels of the tank. Experiments were performed on a network

instance with five parallel pumps connected to a tank by a single pipe. The simplicity

of the network allowed the use of a mass-balance model instead of hydraulic simulation.

79
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They identified SPEA as the best algorithm overall. The metrics used in this work to

assess performance of MOEAs have been later identified as unreliable by Zitzler et al.

(2003).

Since the above works were published, there have been notable advances in multi-

objective algorithms and performance assessment methodology. In the next sections we

briefly describe SPEA2 (Zitzler, Laumanns & Thiele, 2002), the multi-objective optimiser

used in this chapter, which is an improved version of SPEA. SPEA2 was a state-of-the-art

multi-objective algorithm at the time in which this research was conducted. However, at

the time of this writing, new state-of-the-art multi-objective algorithms have been pro-

posed (Zhang & Li, 2007; Zhang & Suganthan, 2009). Nonetheless, since we have fo-

cused on the general formulation of pump scheduling as a multi-objective problem and

its empirical evaluation, the extension of our results to newer multi-objective algorithms

should be straightforward. We also give a brief introduction to the performance assess-

ment methods followed in our experimental analysis. These methods are based on state-

of-the-art techniques and suggested practices. In fact, some of the tools and techniques

have been developed in parallel with the main work of this thesis (Fonseca, Paquete &

López-Ibáñez, 2006; López-Ibáñez, Paquete & Stützle, 2009a,b). Next, we perform an

experimental analysis of two different alternatives. Firstly, we study the minimisation

of both electrical cost and number of pump switches (Section 5.4). In contrast to pre-

vious studies, the experimental analysis used in this work compares the results obtained

with previous approaches on two different network instances. Secondly, we propose in

Section 5.5 an alternative secondary objective, maximisation of shortest idle interval, to

replace the minimisation of number of pump switches as a surrogate measure of mainte-

nance costs.

5.1 Multi-objective Optimisation

In multi-objective optimisation (Deb, 2001; Ehrgott, 2000) there is no single objective but

a vector of objectives, that is, an objective vector. Given two different objective vectors

u and v, we say that u dominates v if u is not worse than v for each objective value and

better for at least one objective. When neither u dominates v nor vice versa, we say that

the two objective vectors are incomparable. Since each solution represents an objective

vector, we use the same terminology among solutions for simplicity. Therefore, given

a set of solutions, we can use the dominance relation among their objective vectors to

define a subset of solutions which are not dominated by any other solution of that set.

This is the Pareto-optimality principle and the subset of solutions that are Pareto-optimal

are, by definition, mutually not dominated. In this thesis, we denote the subset of Pareto-
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optimal solutions as the Pareto set. The elements of such a Pareto set define implicitly

a partition in the objective space between the region dominated by them and the region

not dominated by them. Thus, it is often called Pareto frontier or Pareto surface in the

literature. In the context of a multi-objective problem in terms of Pareto-optimality, the

goal is to find, or at least approximate to, the optimal Pareto set, that is, the set of feasible

solutions such that none of its elements is dominated by any other feasible solution.

The dominance relation among solutions of a multi-objective problem can be extended

to Pareto sets. Given two different Pareto sets A and B, A is said to be better in terms

of Pareto-optimality than B iff every solution in B is dominated by or equal to at least

one solution in A. If neither A is better than B nor B is better than A, then A and B

are incomparable. For a formal description of the relations between objective vectors and

Pareto sets see Zitzler et al. (2003).

5.2 Performance Assessment of Multi-objective

Optimisers

The comparison of two optimisation algorithms in terms of quality of their results implies

the comparison of their outcomes, either directly or by means of measures that summarise

multiple executions of the optimisers. In single-objective problems, the outcome of an al-

gorithm is typically one solution that has single objective value. Single objective values

can be totally ordered and summarised by statistical measures such as the mean, the me-

dian, the variance, etc. In contrast, in multi-objective problems, the outcome of the algo-

rithm is a Pareto set. Pareto sets can be partially ordered according to Pareto-optimality by

means of the relations described in the previous section. Consequently, some Pareto sets

can be said to be better than others. On the other hand, Pareto sets are often incompara-

ble in terms of Pareto-optimality. Hence, the analysis of multi-objective algorithms often

requires more advanced techniques. In this thesis, we utilise the hypervolume indicator

and the empirical attainment function for this purpose.

5.2.1 The Hypervolume Indicator

Given two incomparable Pareto sets, none of the two is preferable to the other according

to Pareto-optimality. Nonetheless, there exist other, more subjective, characteristics of

Pareto sets that are generally agreed to be desirable: closeness to the optimal Pareto set in

the objective space, and a diverse distribution of objective vectors that exhaustively cover

the range of optimal solutions in the objective space. Numerous quality indicators have

been proposed in the literature to measure these characteristics. Unary quality indicators
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assign a real value to each Pareto set, whereas binary indicators assign a real value to pairs

of Pareto sets.

Recent research has identified many of these indicators as Pareto non-compliant, in

the sense that they contradict the Pareto-optimality principle (Knowles, Thiele & Zit-

zler, 2006). Even among those quality indicators that are Pareto compliant, the research

has shown they are inherently limited on their descriptive power (Zitzler et al., 2003).

One of the least limited unary quality indicators is the hypervolume indicator (HV), in-

troduced by Zitzler & Thiele (1999). The hypervolume indicator calculates the volume

of the multi-dimensional region of the objective space enclosed by the polytope defined

by the points in a Pareto set P and a reference point that is dominated by all points

in P . The largest hypervolume is obtained by the optimal Pareto set and, intuitively, a

larger hypervolume would mean a closer approximation to the optimal Pareto set and a

wide coverage of the objective space. The hypervolume is the only known unary indi-

cator that correctly identifies that one Pareto set A is not worse than another set B, i.e.,

HV(A) ≥ HV(B), for all cases where A is actually better than B in terms of Pareto-

optimality (Zitzler et al., 2003). On the other hand, the hypervolume indicator may be

HV(A) > HV(B) for two sets A and B which are actually incomparable in terms of

Pareto-optimality. In this sense, the hypervolume indicator chooses among incompara-

ble sets the one that has the largest volume. Since the volume is defined according to a

reference point, this decision is very sensitive to the particular reference point, and, con-

sequently, different reference points may yield different orderings among incomparable

Pareto sets. Despite these drawbacks, the hypervolume indicator allows the application

of classical statistical measures and techniques to compare and summarise the outcomes

of several runs of a multi-objective optimisers. Moreover, recent algorithmic advances

have notably reduced its computation time (Beume & Rudolph, 2006; Fonseca, Paquete

& López-Ibáñez, 2006). In particular, the algorithm developed in collaboration with Car-

los M. Fonseca and Luis Paquete (Fonseca, Paquete & López-Ibáñez, 2006) is used in this

chapter to calculate the hypervolume.

5.2.2 Empirical Attainment Function

An alternative to quality indicators is the empirical attainment function (EAF) proposed

by Grunert da Fonseca, Fonseca & Hall (2001). The attainment function represents the

probability of weakly-dominating (dominate or equal) an arbitrary objective vector in the

objective space during a single run of an algorithm. The outcome of a stochastic optimiser

can be described by its corresponding attainment function. This attainment function is

generally unknown but it can be estimated by its empirical attainment function (EAF).

The EAF is calculated by means of data collected from several runs of the particular al-
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gorithm. Given its relation to other statistical concepts, the EAF can summarise diverse

quality aspects of the outcome of an algorithm. The EAF does not address the dependence

structure within each outcome, and thus, it does not show the frequency of two objective

vectors being attained in the same run (Fonseca, Grunert da Fonseca & Paquete, 2005).

Nonetheless, in this work we are not interested on the dependency structure of the out-

comes. Hence, the location information is typically sufficient to assess the quality of the

expected outcome of the algorithms in our case.

The attainment function is a generalisation of the multivariate cumulative distribution

function (CDF). The inverse of the CDF is the quantile function of a probability distribu-

tion, which for a particular probability returns the minimum value that is higher with a

given probability than random values of the distribution. For example, given a probability

of 50% the quantile function returns the median of a distribution. Given probabilities of

25% and 75%, the quantile function would return the first and third quartiles respectively,

which are both used in the calculation of boxplots and the inter-quartile range (IQR). Sim-

ilarly, by calculating the inverse of the EAF for a given probability k%, we can describe

the likely location of the outcome of an algorithm by its k%-attainment surface. For ex-

ample, 50%-attainment surface contains objective vectors that are weakly-dominated by

50% of the runs of the algorithm. Hence, it is called the median attainment surface. The

25%- and 75% attainment surfaces are, in a similar way, equivalent to the first-quartile

and third-quartile. Moreover, we can define the best attainment surface as those objective

vectors that are weakly-dominated by only one of the runs carried out, whereas objective

vectors in the worst attainment surface were weakly-dominated by all runs carried out.

Finally, two algorithms can be compared by calculating the difference in the value of

the EAFs at each point in the objective space. The difference can only be calculated for

those points where a value of the EAF is available, though. By plotting the differences in

favour of each of the two algorithms, we can quickly identify the regions of the objective

space where each algorithm outperforms the other. This technique was first proposed by

López-Ibáñez, Paquete & Stützle (2006) to analyse the quality of several multi-objective

algorithms for the bi-objective quadratic assignment problem. Recently, López-Ibáñez,

Paquete & Stützle (2009a,b) have made publicly available tools for generating such plots.

5.3 SPEA2

The optimiser used is the second version of the Strength Pareto Evolutionary Algorithm

(SPEA2) (Zitzler, Laumanns & Thiele, 2002). The main features of SPEA2 are: (i) the

fitness of a solution depends on the strength of the solutions by which it is dominated,

where the strength of a solution is defined as the number of other solutions in the current
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population that it dominates; (ii) the ties of solutions with the same fitness are broken by

a nearest neighbour density estimation technique; (iii) the size of the archive of nondom-

inated solutions is a fixed value α. When the actual number of nondominated solutions

is lower than α, the archive is filled with dominated solutions. When the actual num-

ber of nondominated solutions exceeds α, some of them are discarded by a truncation

operator which preserves boundary solutions. Because the values of different objectives

are not comparable, the distances between solutions with respect to a given objective are

normalised. More details on SPEA2 can be found in the original publication (Zitzler,

Laumanns & Thiele, 2002).

Our implementation of SPEA2 is based on original C source code1 from the PISA

project (Bleuler et al., 2003) but with significant modifications to serve our purposes. The

algorithm schema of SPEA2 as implemented here can be summarised as follows. The

archive is initialised with α randomly generated solutions. At each iteration, µ number

of solutions are selected from the archive as parents using a binary tournament selection.

Recombination is applied to parents in order to generate µ offspring solutions. Then, the

mutation operator is applied to the offspring solutions with a certain probability. These

new solutions are evaluated to calculate their fitness and all nondominated solutions are

added to the archive. If the size of the archive becomes larger than α, the solution which

has the minimum distance to another solution (according to the truncation operator) is

discarded until archive size is exactly α. In case of the number of nondominated solutions

is less than α, the dominated solution with the minimum fitness value is added to the

archive until there are α solutions in the archive. A new iteration would start by selecting

again µ solutions from the archive.

The above implementation of SPEA2 is deliberately similar to the algorithm schema of

SEA described in Section 4.1. In fact, the only difference is the way new solutions are

merged into the population (archive) and the fitness calculation. Furthermore, exactly the

same recombination and mutation operators proposed for SEA (Section 4.1.2) are used in

SPEA2. Therefore, differences in the quality of results obtained by SEA and SPEA2 can

only be attributed to the multi-objective nature of the latter.

5.3.1 Constraint Handling

We use for SPEA2 a method for handling constraints similar to the one used in SEA

(Section 4.1.1) by extending the dominance criteria with the following rules:

1. Any solution is dominated by another solution with a lower pressure deficit (∆H in

Eq. 2.6).

1 Source code available at http://www.tik.ee.ethz.ch/sop/pisa/

http://www.tik.ee.ethz.ch/sop/pisa/
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2. If pressure violations are equal, the solution with the lower number of warnings

from the simulator dominates the other.

3. For equal number of warnings and pressure deficit, the solution with the lower total

volume deficit (∆V in Eq. 2.4) dominates the other.

4. Given two solutions with equal pressure deficit, number of warnings and total vol-

ume deficit, the normal dominance criteria between their objective values is applied.

The rationale for these rules and their relative order is discussed in detail in Sec-

tion 4.1.1 on page 41.

5.4 Minimisation of Number of Pump Switches

The number of pump switches is frequently used as a surrogate measure of maintenance

costs. Therefore, minimising the number of pump switches will result in minimisation

of maintenance costs. So far we have limited the number of switches per pump, either

using an explicit constraint for the binary and level-controlled triggers representations, or

implicitly through the proposed time-controlled triggers representation. In Section 4.4 we

studied the effect of this constraint on SEA.

Limiting maintenance costs may not be enough in all scenarios. System operators may

be interested in pump schedules with minimum maintenance cost. The usual technique

to achieve this goal is to assign a penalty cost to each additional pump switch. However,

finding appropriate penalty costs may be complex: after all, estimation of maintenance

costs is difficult. Moreover, a single pump switch penalty cost cannot account for ex-

cessive switching of a particular pump (versus the same number of switches performed

by several pumps), or the influence of other constraints. Once penalty values are fixed,

the optimisation algorithm offers the system operator one pump schedule that is optimal

(or an approximation of the optimal) with respect to those penalty costs. If the system

operator wishes to obtain a slightly cheaper solution, perhaps allowing a few more pump

switches, a new run of the optimisation algorithm must be performed using a different set

of penalty values. Even for a medium-sized real-world network a single optimisation run

may require several hours of computation time, and thus, such a trial-and-error procedure

would be prohibitively long.

A multi-objective approach that minimises both the electrical cost (CE) and the number

of pump switches (N sw) would generate a Pareto set of feasible pump schedules. This

Pareto set models the trade-off between electrical and maintenance costs and it can be

examined by system operators in order to choose one particular schedule from the set. In

the following sections we empirically investigate this approach by means of SPEA2.
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5.4.1 Experimental Setup

The same recombination and mutation operators tested on the single-objective SEA in

Chapter 4 are used in SPEA2. The multi-objective approach is tested on the four rep-

resentations described in Chapter 3: binary, level-controlled triggers, and absolute and

relative time-controlled triggers. One may argue that one of the characteristics of the time-

controlled triggers representations, namely, the implicit constraint on pump switches, is

not useful in the multi-objective approach proposed in this section. On the contrary, the

implicit constraint is still useful to define a maximum number of switches per pump (N sw
p )

and to limit the size of the search space. Whether limiting the search space helps SPEA2

to find better schedules would be investigated by comparing the results obtained using the

best settings for each representation.

Experiments were performed on both Vanzyl and Richmond network. For each combi-

nation of parameters, runs of SPEA2 were repeated with different random seeds: 25 rep-

etitions in the case of the Vanzyl network and 15 repetitions for the Richmond network.

After some initial experiments, these number of repetitions were deemed sufficiently large

to achieve a stable variability. In fact, the variability of the results was higher in the case

of Vanzyl network. Each run was stopped after a number of invocations of the hydraulic

simulator EPANET to evaluate the objectives and constraints of a candidate solution. The

maximum number of evaluations was set to 6000 for the Vanzyl network and 8000 for the

Richmond network following the setup proposed by van Zyl, Savic & Walters (2004) and

already used for SEA (Section 4.3). This setup allows to compare the results of SPEA2

with SEA and Hybrid GA (van Zyl, Savic & Walters, 2004), with the caveat that Hybrid

GA was designed specifically for level-controlled triggers, whereas the other algorithms

are fined-tuned for each of the four representations studied in this thesis.

The results were analysed by means of the hypervolume indicator (HV) and the empir-

ical attainment function (EAF). First, we bounded the results to CE ≤ 490 and N sw ≤ 18

for the Vanzyl network, and CE ≤ 290 and N sw ≤ 49 for the Richmond network. This is

done to prevent the results being distorted by very extreme values. Second, for the calcu-

lation of the hypervolume, all objective values were normalised to [1, 2] and the reference

point was set to (2, 4). We choose the interval [1, 2] instead of the more common [0, 1] to

avoid potential problems with division by zero or logarithmic transformations. The choice

of this reference point assigns a higher hypervolume to Pareto sets that further minimise

the electrical cost. We perform a statistical analysis of the hypervolume values similar to

the one used to analyse the results of SEA. In addition, plots of the attainment surfaces

and the differences between EAFs are used to obtain further insights into the results.
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5.4.2 Binary Representation

The experimental setup of SPEA2 using the binary representation is similar to the one

used for SEA in Section 4.2.1. We test all possible combinations of α = {50, 100, 200},

µ = {5, 20}, recombination and mutation operators, where recombination can be either

one-point, two-point, or uniform, and mutation is either flip or no mutation.

The Vanzyl Network

ANOVA identifies all parameters as having a significant effect on the resulting hypervol-

ume (HV) with varying degrees of significance. We focus on the two interactions with the

highest significance level, namely the interactions between mutation and population size

(α), and between mutation and recombination.

Mutation and population size (α). The most significant interaction (Fig. 5.1a) shows

that, in general, flip mutation obtains better results than no mutation at all. With mutation,

α = 200 produces worse hypervolume values than other values of α. In contrast, without

mutation, increasing the value of α improves considerably the quality of the results.

Mutation and recombination operators. The particular recombination operator is very

important when not using mutation, being uniform recombination superior to the others,

as shown in Fig. 5.1b. On the other hand, with flip mutation, the different recombination

operators do not produce a significantly distinct effect on the resulting hypervolume.

Taking into account the above analysis, the best combinations would be flip mutation

and α = {50, 100}. Given these settings, the particular recombination operator and off-

spring population size (µ) do not make a clear difference. Among this group of similar
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Figure 5.1: Interaction plots of hypervolume value obtained by SPEA2 using binary

representation (the Vanzyl network).
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configurations of parameters, we choose α = 50, two-point recombination and µ = 5,

which obtained the highest median hypervolume.

We further compare the recombination operators by plotting the best, median, and worst

attainment surfaces for the configurations with α = 50, µ = 5, flip mutation and recombi-

nation: one-point (Fig. 5.2a), two-point (Fig. 5.2b) and uniform (Fig. 5.2c). Although the

plots are very similar, two-point recombination obtained slightly better best and median

attainment surfaces than the rest. In the median case in particular, two-point recombina-

tion obtains schedules with electrical cost close to 330.
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Figure 5.2: Attainment surfaces of SPEA2 using the binary representation and (a)

one-point, (b) two-point and (c) uniform recombination (the Vanzyl network).

It is interesting to point out the similarities between the interaction plots shown in

Fig. 5.1 and those corresponding to the single-objective SEA (Fig. 4.6 on page 53). Bear-

ing in mind that the y-axis is inverted because hypervolume is maximised, whereas elec-

trical cost is minimised, the plots mirror each other. This fact suggests that best settings

for parameters are strongly related to the particular representation and may be similar for

both SEA and SPEA2. In particular, we concluded in Chapter 4 that mutation is essential

to obtain good schedules from SEA independent of the representation used. This is also

true in the case of SPEA2. In order to simplify the experimental analysis of SPEA2, in

the remainder of this chapter we will focus on the results obtained using mutation.

The Richmond Network

In the case of the Richmond network, we simplify the experimental setup and we only

consider configurations with flip mutation and µ = 20, α = {50, 100, 200} and one-point,

two-point, and uniform recombination.

ANOVA identifies only α as a significant factor. We calculate 95% confidence intervals

around the difference in means between the values of α in Table 5.1. The intervals show

that there are significant differences among all values. The best setting is α = 50, while

the highest differences are against α = 200.
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Table 5.1: 95% confidence intervals around the difference in mean hypervolume (HV)

obtained by SPEA2 with various values of α (binary representation, Richmond network).

α 95% CI (HV)

50− 100 [0.018, 0.085]
50− 200 [0.126, 0.194]
100− 200 [0.075, 0.142]
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Figure 5.3: Attainment surfaces of SPEA2 using the binary representation and (a)

one-point, (b) two-point and (c) uniform recombination (the Richmond network).

We plot the best, median and worst attainment surfaces corresponding to α = 50,

µ = 20, flip mutation and recombination one-point (Fig. 5.3a), two-point (Fig. 5.3b) and

uniform (Fig. 5.3c). In this case, despite two-point recombination obtains the best best-

case, we choose uniform recombination since it obtains a similar, if not better, median

attainment surface and much better worst-case.

Interestingly, most of the schedules shown in Fig. 5.3 have a number of pump switches

lower than 21, i.e., on average there are less than three switches per pump. Since we are

not using any constraint to enforce such number of pump switches, this is a confirmation

of our observations in Section 4.4, where we noticed that allowing a higher number of

pump switches over a certain limit may not lead to lower cost schedules.

5.4.3 Level-controlled triggers

For the representation based on level-controlled triggers, we test the following setup:

α = {50, 100, 200}, µ = 20, extended-intermediate recombination and either gaussian or

replace mutation.
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The Vanzyl Network

ANOVA indicates that no particular factor, or interaction thereof, has a significant effect

on the hypervolume values obtained by SPEA2. This is confirmed by the boxplot of

hypervolume values obtained by each combination of parameters (Fig. 5.4).

We plot the attainment surfaces of each combination of parameters in Fig. 5.5. The plots

are in principle very similar with the exception that replace mutation obtains a slightly

better median and worst-case than gaussian mutation. The plot of differences between
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Figure 5.4: Boxplot of Hypervolume values obtained by SPEA2 using level-controlled

triggers representation (the Vanzyl network).
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Figure 5.5: Attainment surfaces of SPEA2 using level-controlled triggers represen-

tation. Gaussian mutation with α equal to (a) 50, (b) 100, and (c) 200; and replace

mutation with α equal to (d) 50, (e) 100, and (f) 200 (the Vanzyl network).
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Figure 5.6: Differences of the EAF of SPEA2 using level-controlled triggers representa-

tion and α = 50 between gaussian and replace mutation (the Vanzyl network).
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Figure 5.7: Best schedule found by SPEA2 using level-controlled triggers

representation (the Vanzyl network).

the EAFs of gaussian and replace mutation for α = 50 shows a small difference in favour

of replace mutation (Fig. 5.6). Although there is no best combination of parameters, for

the sake of comparison, we choose α = 50 and replace mutation.

Figure 5.5e shows that SPEA2 has found a pump schedule with CE = 294.03 and

N sw = 13, which is the best feasible schedule we found for the Vanzyl network in the

course of this study. However, the practicality of this schedule, which is shown graphi-

cally in Fig. 5.7, is questionable. The rapid switching on/off of pump 1A is probably not

practicable, though it is technically feasible. None of the constraints or secondary objec-

tives we have discussed so far are able to prevent this issue. The same problem does not

appear with the binary or time-controlled triggers representation, since pump switches are

separated by a minimum time interval. In Section 5.5 we will discuss the maximisation of

idle intervals as a secondary objective in order to prevent such fast switching of pumps.
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The Richmond Network

In the case of the Richmond network, the requirements of ANOVA are not met. Instead

of ANOVA, we examine directly the distribution of hypervolume values obtained by the

different combinations of parameters in Fig. 5.8. The plot clearly indicates that replace

mutation outperforms gaussian mutation in terms of hypervolume indicator. To confirm

this hypothesis, we perform pairwise comparisons by means of Wilcoxon rank-sum tests.

The stronger differences (p-values lower than 0.001) are between the configurations of

SPEA2 using replace mutation and the other configurations, which confirms the initial

hypothesis. On the other hand, no significant differences are found for the different values

of α when using replace mutation. Nevertheless, we prefer α = 100, which according to

Fig. 5.8, produces a lower variability and a higher median hypervolume.
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Figure 5.8: Boxplot of Hypervolume values of SPEA2 using level-controlled

triggers representation (the Richmond network).

We confirm these conclusions by examining the corresponding EAFs. In Fig. 5.9,

the comparison of the EAFs corresponding to gaussian and replace mutation (both with

α = 200) shows differences in favour of the latter but not the former. Differences are par-

ticularly strong in the region with a number of pump switches between 5 and 20, which

is probably the most interesting region for network operators. Focusing on replace muta-

tion, the plots of the attainment surfaces for each value of α = {50, 100, 200} are shown

in Fig. 5.10, where it can be observed in the median and worst attainment surfaces that

using α = 100 has a small advantage over other options. Therefore, we choose α = 100

and replace mutation as the best settings of SPEA2 with level-controlled triggers for the

Richmond network.
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Figure 5.9: Differences of the EAF of SPEA2 using level-controlled triggers representa-

tion with α = 200 between gaussian and replace mutation (the Richmond network).
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Figure 5.10: Attainment surfaces of SPEA2 using level-controlled triggers repre-

sentation and replace mutation with (a) α = 50, (b) α = 100, and (c) α = 200 (the

Richmond network).
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Figure 5.11: Interaction plots of SPEA2 using absolute time-controlled triggers

(the Vanzyl network).

5.4.4 Absolute Time-controlled Triggers

In the case of the representation based on absolute time-controlled triggers, the experi-

mental setup of SPEA2 is α = {50, 100, 200}, one-point, rand-arithmetical or uniform

recombination, and either replace or uniform mutation. The value of µ was set to 20 for

the Vanzyl network and 5 for the Richmond network.

The Vanzyl Network

Interactions between α and recombination and between mutation and recombination are

identified as significant by ANOVA. The interaction plots in Fig. 5.11 show that one-point

recombination obtains the best hypervolume value overall, in particular when combined

with replace mutation. Moreover, the different values of α only have a significant effect

for the other recombination operators.

We study next the best, median and worst attainment surfaces obtained by SPEA2 using

one-point recombination and replace mutation for various values of α (Fig. 5.12). We ob-

serve that the median attainment surface of α = 50 practically dominates the median case

obtained by the other values of α. Moreover, SPEA2 with α = 50 obtains schedules with

an electricity cost close to 340 and a number of pump switches of N sw = 5. Therefore,

we choose this configuration of parameters (one-point recombination, replace mutation

and α = 50) as the best.

The Richmond Network

The same experimental setup is tested for the Richmond network, except that µ = 5. In

this case the requirements of ANOVA are not clearly satisfied. Instead, we investigate the

distribution of hypervolume for each parameter. In the case of recombination, Fig. 5.13

shows that one-point recombination is clearly superior to both rand-arithmetical and uni-
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Figure 5.12: Attainment surfaces of SPEA2 using absolute time-controlled triggers, one-

point recombination and (a) α = 50, (b) α = 100 and (c) α = 200 (the Vanzyl network).

form recombination. Focusing on the results obtained by one-point recombination, we

plot in Fig 5.14 the distribution of hypervolume values for the other parameter settings.

The first observation is that low values of α produce better results when combined with

replace mutation, whereas the effect of α is not evident when combined with uniform

mutation. In terms of hypervolume indicator, one-point recombination, replace mutation

and α = 50 are the best settings.

We confirm these conclusions by examining in more detail the attainment surfaces of

four combinations of parameters, namely, α = 50 and replace mutation (Fig. 5.15a),

α = 100 and replace mutation (Fig. 5.15b), α = 50 and uniform mutation, (Fig. 5.15c),

and α = 100 and uniform mutation, (Fig. 5.15d). The plots show that replace mutation

obtains the lower cost schedules for the median and worst-case scenarios. Moreover, the

combination of replace mutation and α = 50 is able to obtain schedules with an electric-

ity cost lower than the combination of replace mutation and α = 100 for the median case,

while keeping a low number of pump switches. This confirms the results obtained by

analysing the hypervolume value, and thus, we conclude that α = 50, one-point recom-
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Figure 5.13: Boxplot of Hypervolume values of SPEA2 using absolute

time-controlled triggers (the Richmond network).
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Figure 5.14: Boxplot of Hypervolume values of SPEA2 using absolute time-controlled

triggers and one-point recombination (the Richmond network).

bination and replace mutation are the best settings of SPEA2 for the Richmond network

when using absolute time-controlled triggers.

5.4.5 Relative Time-controlled Triggers

In this case, the experimental setup for both Vanzyl and Richmond networks, includes all

combinations of α = {50, 100, 200}, µ = 5, one-point, rand-arithmetical and uniform

recombination, and replace and uniform mutation.

The Vanzyl Network

ANOVA identifies all parameters as having a significant effect on the output of SPEA2.

In particular, the interactions between α and mutation, and between mutation and recom-

bination are statistically significant.

Mutation and population size (α). Figure 5.16a reveals that for replace mutation, the

value of α does not have a significant effect, whereas the opposite is true for uniform

mutation. Only in the case of α = 200, there are significant differences in the results

obtained using different mutation operators.
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Figure 5.15: Attainment surfaces of SPEA2 using absolute time-controlled triggers,

one-point recombination and: (a) α = 50 and (b) α = 100 and replace mutation, and (c)

α = 50 and (d) α = 100 and uniform mutation (the Richmond network).

Recombination and mutation operators. As illustrated by Fig. 5.16b, rand-arithmetical

recombination obtains the highest hypervolume values independent of the mutation opera-

tor. Moreover, the mean values suggest that uniform mutation works better in combination

with rand-arithmetical recombination. The other recombination operators obtain the best

mean hypervolume when combined with replace mutation. When the Tukey HSD inter-

vals overlap the differences between the means cannot be considered significant, which is

the case for rand-arithmetical recombination. Thus, no mutation operator can be said to

maximise the mean hypervolume.

According to the above analysis, the best settings would be rand-arithmetical recombi-

nation, α = {50, 100} and either replace or uniform mutation. We examine in more detail

these configurations by means of the attainment surfaces in Fig. 5.17. Each mutation op-

erator in combination with α = 50 obtains a slightly better median attainment surface

than α = 100. Comparing replace and uniform mutation, the latter produces better results

for high number of pump switches, whereas replace obtains better results for low number
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Figure 5.16: Interaction plots of SPEA2 using relative time-controlled triggers (the

Vanzyl network).
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Figure 5.17: Attainment surfaces of SPEA2 using relative time-controlled triggers,

rand-arithmetical recombination and (a) α = 50 and replace mutation, (b) α = 100
and replace mutation, (c) α = 50 and uniform mutation, and (d) α = 100 and uniform

mutation (the Vanzyl network).
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Figure 5.18: Differences of the EAFs of SPEA2 using relative time-controlled triggers

representation, α = 50 and rand-arithmetical recombination (the Vanzyl network).

of pump switches. This is confirmed by examining the differences between the EAFs

obtained using replace mutation versus uniform mutation (both with α = 50) in Fig. 5.18.

The plot shows that replace mutation obtains a lower cost than uniform mutation only for

schedules with less than three switches. For schedules with a number of switches between

six and eight, uniform mutation obtains slightly lower electrical cost than replace muta-

tion. We prefer in this case the lower electricity cost provided by uniform mutation. In

summary, for the Vanzyl network, the best settings of SPEA2 with relative time-controlled

triggers are α = 50, rand-arithmetical recombination and uniform mutation.

The Richmond Network

In the case of Richmond network, ANOVA indicates that all parameters have a signifi-

cant effect on the hypervolume value obtained by SPEA2. The difference in hypervolume

value obtained by replace versus uniform mutation is small, within a 95% confidence

interval of [0.019, 0.056] in favour of the former. The interaction between recombina-

tion and α is also deemed significant by ANOVA. The corresponding interaction plot

(Fig. 5.19) reveals that the best overall value for α is 50 and the best recombination oper-

ator is rand-arithmetical. The Tukey’s HSD confidence intervals of α = 50 and α = 100

overlap slightly when rand-arithmetical recombination was used. Similarly, the interval

corresponding to α = 100 and rand-arithmetical overlaps with the intervals for the other

recombination operators and α = 50. Therefore, it cannot be concluded that there is a

statistically significant difference between those configurations of parameters.

The examination of the attainment surfaces sheds some light over the best choice of

settings. We plot in Fig. 5.20 the best, median and worst attainment surfaces correspond-

ing to rand-arithmetical with either α = 50 or α = 100, and either replace or uniform
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Figure 5.20: Attainment surfaces of SPEA2 using relative time-controlled triggers,

rand-arithmetical recombination and: (a) α = 50 and (b) α = 100 with replace muta-

tion; (c) α = 50 and (d) α = 100 with uniform mutation (the Richmond network).
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mutation. We observe that α = 50 almost dominates α = 100, particularly in the median

and best case. On the other hand, each mutation operator obtains good results with re-

spect to a different objective. This can be observed clearly in Fig. 5.21, which graphically

illustrates the differences between the EAFs corresponding to replace versus uniform mu-

tation (both with α = 50 and rand-arithmetical recombination). The plot shows that

replace mutation obtains better schedules than uniform mutation for very low number of

pump switches. However, for higher number of pump switches, uniform mutation obtains

the schedules with lowest electricity cost. Since the time-controlled triggers representa-

tion enforces a constraint on pump switches, the number of switches is never excessive.

We would rather trade higher number of pump switches for reduced electricity cost, and

hence, we prefer the results obtained by uniform mutation. In conclusion, the settings

α = 50, rand-arithmetical recombination and uniform mutation give the best results for

the Richmond network when using relative time-controlled triggers
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Figure 5.21: Differences in the EAFs of SPEA2 using relative time-controlled triggers

representation, α = 50 and rand-arithmetical recombination (the Richmond network).

5.4.6 Comparison among Representations

In the above sections we have examined the performance of SPEA2 for various param-

eters settings. We have identified the best settings for each alternative representation of

solutions when applied to each of the two network instances under study. These config-

urations of SPEA2 are summarised in Tables 5.2 and 5.3, for the Vanzyl and Richmond

networks respectively.

We now use these configurations of SPEA2 to compare the different representations

by means of attainment surfaces in Fig. 5.22 for the Vanzyl network and Fig. 5.23 for

the Richmond network. Instead of the best and worst attainment surfaces we plot the

25% and 75% attainment surfaces, which conceptually correspond to the first and third
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quartiles that are used to define the “box” in a boxplot. The first and third quartiles are less

sensitive to outliers than the best and worst attainment surfaces, and hence, are more suited

to assess the typical variability of the results. In addition, the results of Hybrid GA (van

Zyl, Savic & Walters, 2004) in the Vanzyl network are plotted as points in Fig. 5.22. The

original publication (van Zyl, Savic & Walters, 2004) do not provide information about

the number of pump switches obtained by Hybrid GA in the case of Richmond network,

and hence, we plot the results of Hybrid GA as lines according to their electrical cost in

Fig. 5.23.

The Vanzyl Network

The plots in Fig. 5.22 compare the best settings of SPEA2 for each representation in

the Vanzyl network. Binary representation is the one that obtains the lowest electrical

cost with median values close to 330 (Fig. 5.2a). By comparison, absolute and relative

time-controlled triggers obtain median values close to 340 (Fig. 5.2c) and 335 (Fig. 5.2d),

respectively. The median attainment functions of these three representations dominate

completely the results of Hybrid GA. On the other hand, the representation based on

level-controlled triggers obtains much higher electrical cost for the same number of pump

switches (Fig. 5.2b).

The Richmond Network

Figure 5.23 compares the best settings of SPEA2 for each representation for the Richmond

network. The binary representation obtained the lowest electrical cost, with values lower

than 95 (Fig. 5.3a). Relative time-controlled triggers generates as well schedules with

electrical cost close to 95 (Fig. 5.3d). By comparison, absolute time-controlled triggers

representation obtains slightly larger electrical values (Fig. 5.3c), except for very low

number of pump switches (N sw < 7). Lastly, the lowest electrical cost achieved by level-

controlled triggers in the median case is close to 110 (Fig. 5.3b), and hence, far from the

results obtained by the other representations.

Although level-controlled triggers obtained better results than the other representations

for very low number of pump switches (N sw < 7), such number of pump switches is

very conservative (less than one switch per pump) and system operators may be more

interested in schedules with N sw > 7 that further reduce electrical cost. Both binary

and relative time-controlled triggers representations were able to obtain a lower median

electrical cost than all runs of Hybrid GA.
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Table 5.2: Best parameter settings of SPEA2 using different representations

(the Vanzyl network).

Representation

binary level-triggers time-triggers

absolute relative

SPEA2

α 50 50 50 50

µ 5 20 20 5

Recomb. two-point ext.-interm. one-point rand-arithm.

Mutation flip replace replace uniform
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Figure 5.22: Attainment surfaces of SPEA2 using (a) the binary representation, (b)

level-controlled triggers, (c) absolute time-controlled triggers and (d) relative time-

controlled triggers (the Vanzyl network).
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Table 5.3: Best parameter settings of SPEA2 using different representations

(the Richmond network).

Representation

binary level-triggers time-triggers

absolute relative

SPEA2

α 50 100 50 50

µ 20 20 5 5

Recomb. uniform ext.-interm. one-point rand-arithm.

Mutation flip replace replace uniform
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Figure 5.23: Attainment surfaces of SPEA2 using (a) the binary representation, (b)

level-controlled triggers, (c) absolute time-controlled triggers and (d) relative time-

controlled triggers (the Richmond network).
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5.4.7 Summary

We have proposed a bi-objective approach to pump scheduling based on the minimisation

of both electrical cost and number of pump switches. Different settings of SPEA2 and

four representations have been tested on the two network instances. The experiments with

different settings for each representation have shown that the best settings are somewhat

similar to those identified for the single-objective SEA in Chapter 4. When compared

with the Hybrid GA proposed by van Zyl, Savic & Walters (2004) for the optimisation of

level-controlled triggers, SPEA2 using alternative representations is able to obtain lower

cost schedules with the additional benefit of providing a set of schedules that model the

trade-off between electrical and maintenance costs. Nonetheless, when SPEA2 uses the

level-controlled triggers representation, the results of Hybrid GA are superior in terms of

electrical cost.

5.5 Maximisation of Idle Intervals

The number of pump switches is the most popular surrogate measure for estimating main-

tenance costs. However, other factors affect maintenance costs. In particular, if the time

elapsed between two operating intervals is excessively short, the fast switching of pumps

can damage not only the pumps, but the whole network due to water hammer effect.2 In

order to minimise the wear and tear of pumps and protect the network, it is desirable to

increase the time elapsed between two operation intervals of a pump, that is, to maximise

the shortest idle time.

The shortest idle time of a schedule is the shortest time interval during which any pump

in the system is idle. Certainly, system operators may accept small increments of electrical

costs for longer idle time (see Fig. 5.24 for an example), because of operational flexibility

to absorb pressure fluctuations. Short intervals between two active periods also cause

wear and tear of pumps that is hard to estimate. Therefore, it is reasonable to assume that

longer idle times reduce maintenance costs.

Formally speaking the shortest idle time (IT) of a schedule S with N p pumps can be

defined as:

IT(S) =
Np

min
p=1

IT
p where IT

p =















N sw
p

min
i=1

(ti − t′i) if N sw
p > 0,

T otherwise

(5.1)

2 A water hammer is produced when the flow of water is suddenly stopped (or changed

in direction) and a pressure wave propagates throughout the water distribution network.
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Figure 5.24: Scheduling #2 (bottom) has a lower cost than scheduling #1 (top), but #1

has a larger minimum idle time than #2.

where N sw
p is the number of switches of pump p, ti is the time when the i-th pump switch

(off→on) occurred, and t′i is the time when the previous corresponding opposite switch

(on→off ) occurred. Since we are interested in avoiding short idle intervals, we consider

that a pump operating during the whole scheduling period T has an idle time of T .

The above definition of the shortest idle time IT implies an upper bound to the number

of pump switches:














N sw <
N p · T

IT
if IT < T,

N sw = 0 otherwise.

(5.2)

If the representation of pump schedules defines a minimum time interval tmin, as it is

the case in the binary and time-controlled triggers representations, then the bound is even

stricter:














N sw <
N p · T

IT + tmin

if IT < T,

N sw = 0 otherwise.

(5.3)

Although a larger idle time does not directly imply a lower number of pump switches,

as the example in Fig. 5.25 illustrates, the maximisation of the shortest idle time indi-

rectly minimises the number of pump switches by reducing the upper bound described in

Eq. (5.3).

The maximisation of the shortest idle time is particularly relevant in the case of level-

controlled triggers representation. In level-controlled triggers representation, the shortest

idle time between operating periods is only limited by the time step used by the hydraulic

simulator. This may generate schedules similar to the one shown in Fig. 5.7 on page 91.

Such schedule is feasible according to the constraints we have considered so far: zero

volume deficit, no pressure violations, and no warnings from the simulator. On the other

hand, the frequency of pump switches is excessive. Short time intervals allow to fine-

tune the schedule of pumps to reduce costs. Hence, it is not strange that the optimisation
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Figure 5.25: Scheduling #2 (bottom) has a lower number of pump switches than

scheduling #1 (top), but #1 has a larger minimum idle time than #2.

algorithm generated such schedule only taking into account the above constraints. In

reality, however, excessively short intervals are impractical and may damage the pumps

and the rest of the system due to pressure surges. Therefore, maximising the length of the

shortest idle time is a relevant objective in the level-controlled triggers representation.

The binary and time-controlled triggers representations have a minimum length of time

interval (tmin), typically one hour. This minimum time interval is a lower bound of the

idle time (IT ≥ tmin), and, hence, by tuning tmin, the minimum idle time can be made as

large as desired. However, different values of tmin may influence the performance of the

algorithm, as we investigated in Section 4.5. Our experiments showed that values of tmin

longer than one hour do not allow sufficient flexibility to generate a satisfactory schedule

in terms of cost. Experiments showed, as well, that values smaller than one hour, such

as 10 minutes, may lead to better results if the algorithm is allowed to run for enough

time. For this reason, operators may wish to use a value of tmin of one hour or smaller

to obtain a good performance from the optimisation algorithm, while at the same time

expect the shortest idle time to be larger than tmin hour. In addition to this, the shortest

idle time could be a better surrogate measure of maintenance cost than the total number of

pump switches in the case of time-controlled triggers, since the time-controlled triggers

representation already implicitly constraints the number of switches per pump.

The following experiments will test the minimisation of electrical cost (CE) and the

maximisation of shortest idle time (IT) as the two objectives of a multi-objective problem

defined in terms of Pareto optimality. As in the previous section, we use SPEA2 as the

multi-objective optimiser. Only representations based on level-controlled and relative

time-controlled triggers are tested because, for the reasons given above, they are the most

likely to benefit from this approach.
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5.5.1 Experimental Setup

Each combination of parameters is repeated a number of times with different random

seeds, exactly 25 runs for the Vanzyl network and 15 times for the Richmond network.

Each run was stopped after 6000 evaluations in the case of the Vanzyl network, and 8000

evaluations for the Richmond network.

We applied an analysis based on the hypervolume indicator (HV) and the empirical

attainment function (EAF), similar to the one described in the previous Section 5.4, to

identify the best parameters. For brevity, we will discuss the best results only.

5.5.2 Level-controlled Triggers

We performed several experiments with α = {50, 100, 200}, µ = 5 (the Vanzyl net-

work) or µ = 20 (the Richmond network), extended-intermediate recombination and

either gaussian or replace mutation.

The Vanzyl Network. The best results are obtained by extended-intermediate recom-

bination, replace mutation and α = {50, 100}. Figure 5.26 shows the corresponding

attainment surfaces. A semi-log plot is used because there are numerous solutions with a

minimum idle time (IT) between 100 and 500 minutes, while there are far less solutions

with a value higher than 500 and very few higher than 1000 minutes (the maximum be-

ing 1440 minutes). The shape of the attainment surfaces shows a small trade-off between

electrical cost and idle time. In other words, big differences in idle time do not correspond

to big differences in electrical cost. SPEA2 with level-controlled triggers is able to find

schedules with more than 500 minutes of shortest idle time and electrical cost lower than

360.

The Richmond Network. Figure 5.27 shows the attainment surfaces corresponding to

the results obtained by SPEA2 for the Richmond network with extended-intermediate re-

combination, replace mutation and α = {50, 100}. The plots are noticeably different

from the ones corresponding to the Vanzyl network. There is a sudden increase of elec-

trical cost (CE) from 140 to more than 200 for an idle time close to 800 minutes. The

long idle time means that most pumps are either inactive during long periods of time or

active during the whole scheduling period. The active pumps cause an important increase

in electrical cost, however, they do not have idle periods, and, thus, they do not affect

the total idle time of the schedule. A further improvement of the algorithm may discard

such solutions as uninteresting during the optimisation run in order to focus the search on

schedules with lower electrical cost.
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Figure 5.26: Attainment surfaces of SPEA2 using level-controlled triggers, extended-

intermediate recombination, replace mutation, and (a) α = 50 and (b) α = 100 (the

Vanzyl network).
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Figure 5.27: Attainment surfaces of SPEA2 using level-controlled triggers, extended-

intermediate recombination, replace mutation, and (a) α = 50 and (b) α = 100 (the

Richmond network).
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5.5.3 Relative Time-controlled Triggers

We run similar experiments using relative time-controlled triggers with a limit of switches

per pump of N sw
p ≤ 3 and a minimum time interval of tmin = 1 hour and tmin = 1 minute.

SPEA2 parameters were rand-arithmetical, two-point and uniform recombination, µ = 5,

α = {50, 100, 200} and either replace, uniform and no mutation. The best results are

further examined in the following paragraphs.

The Vanzyl Network. Figure 5.28 shows the attainment surfaces corresponding to the

best results using tmin = 1 hour, which are obtained when α = 50 and either replace or

uniform mutation are used. Since the minimum time interval is one hour, the possible

values of IT are multiples of one hour. In the case of replace mutation (Fig. 5.28b),

SPEA2 generates the schedules with the higher IT. In particular, the resulting schedules

have more than 900 minutes of idle time and electrical cost close to 360 in the median

case. However, the lowest electrical cost is obtained using uniform mutation (Fig. 5.28a),

which generates schedules with an electrical cost lower than 340 in the median case.

By setting tmin = 1 minute, we add more flexibility to the potential schedules generated

by SPEA2. Among the recombination operators, rand-arithmetical produces the best

results. For the remainder parameters, the best settings are either the combination of

uniform mutation and α = 100 (Fig. 5.29a), or the combination of replace mutation and

α = 50 (Fig. 5.29b). Similar to the results obtained for tmin = 1 hour, uniform mutation

obtains the lowest electrical cost schedules, whereas replace mutation performs better in

the region with longer idle time. In contrast, SPEA2 using tmin = 1 minute finds many

more schedules than for tmin = 1 hour. The lowest electrical costs are found using tmin = 1

hour. The reason for this was pointed out already in Section 4.5: a smaller time interval

leads to a great increment of the search space, and hence, optimisers may need more

computation time to find good schedules.

The Richmond Network. The best results for the Richmond network are shown in

Fig. 5.30 for tmin = 1 hour, and in Fig. 5.31 for tmin = 1 minute. From these plots,

one can draw conclusions similar to those for the Vanzyl network. First, uniform mu-

tation obtains the lowest electrical cost, whereas replace mutation finds schedules with

the longest idle time. Second, the greater flexibility of tmin = 1 minute allows SPEA2

to generate many more solutions than using tmin = 1 hour. Finally, this greater flexibil-

ity comes with the burden of a larger search space, and hence, despite the flexibility, the

lowest electrical costs are found when tmin = 1 hour is used.
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Figure 5.28: Attainment surfaces of SPEA2 using relative time-controlled triggers

(tmin = 1 hour) with α = 50 and (a) rand-arithmetical recombination and uniform muta-

tion, and (b) two-point recombination and replace mutation (the Vanzyl network).

(a)

330 340 350 360 370 380 390 400

1500
1000

500

100

50

10

5

CE

M
in

im
u

m
 I

d
le

 T
im

e
 (

m
in

u
te

s
) best

med

worst

(b)

330 340 350 360 370 380 390 400

1500
1000

500

100

50

10

5

CE

M
in

im
u

m
 I

d
le

 T
im

e
 (

m
in

u
te

s
) best

med

worst

Figure 5.29: Attainment surfaces of SPEA2 using relative time-controlled triggers

(tmin = 1 minute) with rand-arithmetical recombination and (a) α = 100 and uniform

mutation, and (b) α = 50 and replace mutation (the Vanzyl network).
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Figure 5.30: Attainment surfaces of SPEA2 using relative time-controlled triggers

(tmin = 1 hour), rand-arithmetical recombination, α = 50, and (a) uniform mutation and

(b) replace mutation (the Richmond network).
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Figure 5.31: Attainment surfaces of SPEA2 using relative time-controlled triggers

(tmin = 1 minute) with α = 50 and (a) rand-arithmetical recombination and uniform

mutation, and (b) uniform recombination and replace mutation (the Richmond network).
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5.5.4 Summary

This section has proposed a multi-objective approach that minimises the electrical cost

(CE) and maximises the minimum idle time (IT). Experimental results show that SPEA2

is able to find a wide range of schedules with low electrical cost and very long minimum

idle time. In the case of relative time-controlled triggers, we noticed that the mutation

operator has a strong influence on the shape of the resulting Pareto sets. In particular,

SPEA2 with uniform mutation generated the lowest electrical cost, while SPEA2 with

replace mutation focused on the region of the objective space with the longest idle time.

This effect of mutation was consistently observed in the two test networks.

5.6 Summary

In this chapter we have presented the results of two different multi-objective approaches

with different optimisation objectives in addition to the electrical cost: minimisation of

pump switches and maximisation of shortest idle time. We adapted a modern multi-

objective algorithm, SPEA2 (Zitzler, Laumanns & Thiele, 2002) to the pump scheduling

problem and linked it to EPANET in order to tackle complex water distribution networks.

In order to show the viability of the multi-objective approach, we compared its perfor-

mance with the results obtained by a state-of-the-art single-objective algorithm (van Zyl,

Savic & Walters, 2004) for the optimisation of level-controlled triggers. In our analy-

sis of experimental results, we used up-to-date assessment methods for multi-objective

algorithms. In particular, we avoided unreliable quality indicators in favour of the Pareto-

compliant hypervolume indicator and the more powerful empirical attainment function.

The first objective considered was the minimisation of pump switches. Our empirical

analysis showed that SPEA2 consistently obtains good schedules for the two network in-

stances tested, in particular when using the binary and time-controlled triggers representa-

tion. A single run of SPEA2 using either binary or relative time-controlled triggers repre-

sentations generates schedules with both lower electrical cost and lower number of pump

switches than the singe-objective state-of-the-art algorithm designed for level-controlled

triggers. However, the single-objective algorithm is still superior when compared with

SPEA2 using level-controlled triggers. From a single run, one can obtain a number of

schedules that model the trade-off between electrical cost and number of pump switches.

The second approach investigated in this chapter is the use of the shortest idle time

between operating periods as a surrogate measure of maintenance costs. We proposed a

formal definition of the concept and examined its benefits. The maximisation of the short-

est idle time may solve the inherent problem of pressure surges that frequently occur in
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schedules generated with a level-controlled triggers approach. As for the binary and time-

controlled triggers, the possibility of adding more flexibility to schedules by using smaller

time intervals introduces the risk of very short idle intervals between pump switches, and

hence, sudden pressure fluctuations. Maximising the shortest idle time would permit the

network to accommodate pressure changes caused by pump operations. Our experimental

results showed that schedules with very long idle times may be found with slightly higher

electrical cost than those obtained by SEA in Chapter 4.

In conclusion, we can say that our experimental analysis showed that multi-objective

optimisation is very attractive if we are interested in the trade-off between conflicting

objectives. However, if the goal is to obtain the lowest electricity cost while keeping

constraints within certain limits, then the single-objective SEA is more effective. The

next chapter investigates the optimisation strategy called Ant Colony Optimisation as an

alternative to evolutionary algorithms with the goal of further improving over the results

of SEA.



Chapter 6
Ant Colony Optimisation

In the previous chapter various representations were empirically examined through the

use of an evolutionary algorithm. The time-controlled triggers representation obtained

the best results overall. In this chapter, the time-controlled trigger representation is further

explored as the means to apply a different optimisation technique, Ant Colony Optimisa-

tion, to the pump scheduling problem. Ant Colony Optimisation (Dorigo & Stützle, 2004)

is a biologically-inspired optimisation method that mimics the technique used by real ants

for optimising the path between the nest and a source of food. Certain ant species follow

chemical substances, called pheromones, previously laid by other ants in their trails. The

trail followed by an ant depends strongly on the amount of pheromone present at each

possible direction. Thus, pheromones work as a communication mechanism and also as

a reinforcement learning process. Ant Colony Optimisation (ACO) has been applied to a

different problem, namely the design of water distribution networks (Maier et al., 2003).

Here we propose to apply ACO to the operational optimisation of water distribution net-

works. Hence, in this chapter, the pump scheduling problem along with the proposed

time-controlled triggers representation are adapted to the ACO framework. First, the ap-

proach is tested by means of an algorithm similar to the Ant System (Dorigo, Maniezzo

& Colorni, 1996), which is considered to be the first ACO algorithm. Next, a more ad-

vanced ACO algorithm, specifically the Max-Min Ant System (Stützle & Hoos, 2000),

is also implemented and empirically evaluated. ACO algorithms show notable improve-

ments in comparison to previous algorithms for the pump scheduling problem.

6.1 Ant Colony Optimisation

Ant Colony Optimisation (ACO) is a meta-heuristic, a problem-independent optimisation

technique, that has been successfully applied to several optimisation problems. Dorigo

115
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& Stützle (2004) provide an extensive introduction to this technique and many examples

of its application. The concept of ACO was inspired by the foraging behaviour of some

species of real ants. These ants are able to find an optimal path between nest and food

through a kind of indirect communication known as stigmergy, by means of trails of a

chemical substance called pheromone. Pheromone is laid by ants along their way when

moving. While ants wandering unexplored areas choose their path basically in a random

fashion, they tend to follow those paths marked with pheromone by other ants, stochas-

tically choosing, with a higher probability, those paths marked with a higher amount of

pheromone. The path chosen by an ant is reinforced by its own pheromone trail, increas-

ing the probability of other ants following the same path. Successive reinforcement of the

pheromone trails results in a positive feedback mechanism. Although initially all paths

are equally probable, ants travelling through shorter paths are able to reach the source of

food faster. When retracing their steps, ants find that the shorter path has a higher amount

of pheromone, so more ants tend to follow it. Therefore, pheromone increases faster along

the shorter paths, which in turn attracts more ants to them. Meanwhile, the pheromone of

paths that are not reinforced slowly evaporates.

Ant Colony Optimisation (ACO) is inspired by this biological behaviour. In ACO, very

simple agents, analogous to artificial ants, stochastically build paths in a graph. Such

graph represents an optimisation problem, where nodes are decision points and edges

represent possible choices or solution components. A path over the graph defines a can-

didate solution to the optimisation problem. At each decision point (node), an individual

ant stochastically chooses a solution component (edge) to add to its current path. Solution

components are added iteratively until a candidate solution is completed. Each stochastic

decision is influenced by numerical information, analogous to pheromone trails, associ-

ated with each edge in the graph. The higher the pheromone value of a particular solution

component, the greater its probability of selection by an ant to add it to its current partial

solution. Ants intensify the pheromone information associated with solution components

that belong to good solutions. This increases the probability of choosing the most at-

tractive edges of the graph when constructing new solutions. In addition, all pheromone

values are decreased at every iteration, an operation known as evaporation. Evapora-

tion decreases faster those pheromone values that have not been recently reinforced, that

is, those pheromone values associated with solution components that do not appear fre-

quently in good solutions. As a result, the search is directed towards the most promising

regions of the search space.

Optimisation algorithms that implement this framework are called ACO algorithms.

Most ACO algorithms consist of a main loop where: (1) ants construct solutions taking

into account the pheromone information; (2) solutions are evaluated according to an ob-
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jective function; and (3) pheromone information is updated, increasing the pheromone

value associated with solution components that are part of the best solutions.

6.2 ACO Applied to the Pump Scheduling Problem

In order to apply ACO to the pump scheduling problem, we need to define an ACO al-

gorithm, a representation of the pheromones and a construction mechanism used by ants

to build partial solutions. Despite being a critical aspect, the particular ACO algorithm

can be quite independent of the problem. This is not the case for the representation of the

pheromones and the construction mechanism, which are closely related to the representa-

tion of solutions. In the next section, we describe a variant of the Ant System algorithm

and introduce fundamental notation and concepts of the ACO framework. These concepts

are used to explain later the particular pheromone representation and construction mecha-

nism that we propose in this work for the pump scheduling problem. Finally, we describe

two alternative pheromone update methods and a proposed heuristic information for the

pump scheduling problem.

6.2.1 The Ant System Algorithm

We adapt the original Ant System (AS) (Dorigo, 1992; Dorigo, Maniezzo & Colorni,

1996), which was the first ACO algorithm, with some minor modifications. The schema

of the resulting algorithm is shown in Fig. 6.1. Let τij(t) be a numerical value called

pheromone associated with each solution component (i, j), where the meaning of a so-

lution component is left undefined for now. This pheromone value is updated during the

algorithm run, and it depends on the current iteration t. First, pheromone values are ini-

tialised to a constant value τ0 (Fig. 6.1, line 1). Then, a main loop is repeated until a

termination criteria, such as maximum number of objective function evaluations, is met.

Within this loop, a number of ants (A) construct candidate solutions to the problem. Each

ant a constructs a single solution Sa by iteratively adding solution components (Fig. 6.1,

lines 4–9), which is equivalent to building a path in the graph by choosing edges at each

decision point. Thus, an ant a at each decision point i chooses a single solution compo-

nent (i, j) among a setNi(a) of possible alternatives. This setNi(a) is called the feasible

neighbourhood of ant a and it may vary according to the current partial solution of ant a.

The probability of choosing a solution component (i, j) is given by:

pij(a, t) =
[τij(t)]

α · [ηij]
β

∑

l∈Ni(a)
[τil(t)]

α · [ηil]
β

if j ∈ Ni(a) (6.1)
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1: t← 0, initialise pheromones: τij(0)← τ0

2: while termination criteria not met do

3: for each ant a ∈ {1, . . . , A} do

4: Sa ← ∅ /* empty solution */

5: repeat

6: calculate probability pil(a, t) for each l ∈ Ni(a) following Eq. (6.1)

7: stochastically choose solution component (i, j) such as j ∈ Ni(a)

8: add solution component to partial solution: Sa ← Sa ∪ (i, j)

9: until Sa is a complete solution

10: end for

11: for each ant a ∈ {1, . . . , A} do

12: evaluate solution Sa

13: end for

14: /* identify iteration-best */

15: S ib ← best solution from {S1, . . . , SA}

16: if S ib better than Sbf then

17: Sbf ← S ib /* update best-so-far */

18: end if

19: evaporate and update pheromone following Eq. 6.2

20: t← t+ 1 /* next iteration */

21: end while

22: return Sbf

Figure 6.1: Algorithmic schema of ACO.

where ηij is a heuristic value associated with solution component (i, j), and represents an

estimation of the benefit of choosing j over the other alternatives in Ni(a); and α and β

weigh the relative influence of the pheromone and the heuristic information on the final

probability pij(a, t).

After each ant has constructed a new solution, they are evaluated and ranked to identify

the iteration-best solution (S ib), i.e., the best solution among the ones constructed in the

current iteration t. The best solution found in the current run of the ACO algorithm, called

best-so-far solution (Sbf), is also updated accordingly.

Finally, pheromone information is updated to reflect the experience acquired by the

ants through the evaluation of their solutions. The pheromone update is completed in two

steps. In the first step, pheromones of all solution components are evaporated by decreas-

ing pheromone values by a constant factor. In the second step, pheromones of solution

components that are part of the best solutions are reinforced by increasing their phero-
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mone values. The evaporation mechanism exponentially decreases the pheromone values

of solution components that are not reinforced, reducing the influence of pheromones

over time. A high evaporation rate implies that decisions by ants are mainly influenced by

recently reinforced pheromone values. This results in a faster convergence to the best so-

lution components that were recently constructed. On the other hand, a low evaporation

rate implies a gradual differentiation between early reinforced edges and recently rein-

forced edges, resulting in a higher exploration of solution components not belonging to

the best solutions recently constructed. Both operations, evaporation and reinforcement,

can be formalised as:

τij(t+ 1) = ρ τij(t) + ∆τij (6.2)

where ρ ∈ [0, 1] is a parameter sometimes called persistence factor that determines the

evaporation rate (1 − ρ), and ∆τij is the amount of pheromone deposited in solution

components belonging to a solution selected for update (Sbest) as given by:

∆τij =

{

∆τ if edge (i, j) is part of Sbest,

0 otherwise.
(6.3)

where ∆τ may be a function of the objective value of Sbest or a user-defined constant.

According to Dorigo & Stützle (2004), the only requirement is that ∆τ is non-increasing

with respect to the value of the objective function f(), that is, f(S) < f(S ′)⇒ ∆τ(S) ≥

∆τ(S ′). In the simplest case, ∆τ can be the same constant value for all ants.

Selecting just one ant Sbest for update focuses the search on the best solutions generated,

rather than adding pheromone amount for every ant depending on its objective function

value. This pheromone reinforcement method is different from the update method used in

the original Ant System (Dorigo, Maniezzo & Colorni, 1996), where all ants in the cur-

rent iteration deposited an amount of pheromone relative to its objective function value.

Nevertheless, update methods that use just one solution to reinforce the pheromone val-

ues, either the iteration-best or best-so-far solutions, are widely used in many modern

ACO algorithms (Dorigo & Gambardella, 1997; Dorigo & Stützle, 2004; Stützle & Hoos,

2000).

6.2.2 Pheromone Information

In the description of the Ant System above, we did not define what is a solution component

(i, j), and, thus, it is unclear what a pheromone value τij and the feasible neighbourhood

of an ant Ni(a) actually represent. The purpose of this ambiguity is to show that the al-

gorithm described above does not depend on a particular pheromone representation. Yet,

the pheromone representation is mainly determined by the definition of solution compo-
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nent, and, hence by the representation of candidate solutions. Thus, a representation of

solutions must be chosen at this point.

In Chapter 3, four different representations, two traditional and two new alternatives,

were discussed thoroughly. Later, in Chapter 4, the four representations were com-

pared empirically by means of an evolutionary algorithm. The one called relative time-

controlled triggers produced better results over the other three. Thus, in the following we

are going to focus on this representation and apply the ACO technique. Besides, the time-

controlled triggers representation is more natural for the application of ACO, since it is

a discrete representation, while level-controlled triggers are continuous variables. Unlike

the binary representation, in time-controlled triggers representation there are more than

two choices.

As a brief reminder of Section 3.3.2, in the time-controlled triggers representation, a

candidate solution (S) of the pump scheduling problem has the following form:

S = {s1, . . . , sN
p

} , where each sp = {φ1, φ
′
1, . . . , φSW , φ′

SW} (6.4)

where sp is the schedule of pump p, N p is the number of pumps, SW is the maximum

number of switches per pump, and each pair of decision variables {φi, φ
′
i} define a single

pump switch. When the decision variables represent relative time, then each φi gives

the length of time during which the pump is inactive since the previous status change,

while φ′
i is the length of time during which the pump is active since the previous status

change. The value of φ0 is relative to the start of the scheduling period. The relative

time-controlled triggers representation has the following constraint:

SW
∑

i=1

(φi + φ′
i) = T (6.5)

where T is the scheduling period.

The strictness of the constraint on the number of switches determines the range of

the decision variables. The simplest option is to force an exact number of switches per

pump, N sw
p = SW (Eq. 2.7). In this case, each integer φi (or φ′

i) must be greater than

zero. If there are (2 · SW − 1) integers having a value of one hour each, then, following

constraint Eq. (6.5), the remaining integers must be equal to (T−2·SW+1) hours. Thus,

φi, φ
′
i ∈ [1, (T − 2 · SW + 1)]. On the other hand, if a lower number of pump switches is

allowed, N sw
p ≤ SW (Eq. 2.8), then φi, φ

′
i ∈ [0, T ].

This formulation is completely equivalent to the one given in Section 3.3.2, except

that we use φi instead of ti to avoid any confusion with the parameter t that represents the

current iteration in ACO formulation. In addition, Eq. (6.5) above is stricter than Eq. (3.5).
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A few preliminary empirical tests showed better results with this approach, particularly

if the constraint on the number of pump switches is not strict and decision variables may

take a value of zero.

In order to define the pheromone information and the construction mechanism followed

by ants, the time-controlled triggers representation has to be translated into a graph for-

mulation. For simplicity, let us first restrict to the problem of scheduling a single pump

with a maximum of SW pump switches. Following the relative time-controlled triggers

representation, each pump switch involves a pair of time intervals during which a pump

is, respectively, off and on. Thus, a complete schedule contains 2 · SW intervals and

the total duration of all intervals must be equal to T . A solution component (i, j) may be

defined as the assignment of a duration of j time units (typically, hours) to interval φi. As-

sociating each decision point to a time interval φi and the j th edge to a duration of j time

units, the result is the multidigraph—a directed graph which is permitted to have edges

with the same source and target nodes— shown in Fig. 6.2. The pheromone information

τij is therefore defined as the desirability of assigning a duration of j hours to interval φi.

The next section explains how this assignment takes place.

Figure 6.2: Representation of a solution as a path in a graph.

6.2.3 Constructing Schedules in ACO

Using the graph formulation described in the previous section, an ant constructs candidate

solutions by moving from one decision point φi, representing a time interval, to the next

and choosing at each step one of the possible edges that correspond to different durations.

However, in order to satisfy constraint Eq. (6.5) on the previous page, not all edges will

be available at each decision point. In fact, as the ant progresses through the graph, some

edges become infeasible. The feasible neighbourhood of ant a at decision point i, as used
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in Eq. (6.1), is limited to:

Ni(a) =

{

{1, 2, . . . , (T − 2 · SW + 1− Ta)} if N sw
p = SW ,

{0, 1, 2, . . . , (T − Ta)} if N sw
p ≤ SW ,

(6.6)

where i is the current decision point (time interval), and Ta is the total duration of intervals

already assigned in the partial solution being constructed by ant a. That is, after one

solution component (i, j) has been chosen by ant a to be added to its partial solution, Ta

is updated by adding the number of hours j. Moreover, the last solution component is not

chosen stochastically. On the contrary, at the last decision point, the number of hours is

directly assigned such that the total duration of the schedule is equal to T .

An important point in this schedule construction mechanism is that ants do not always

visit decision points in the same order. Otherwise time intervals assigned earlier would

have more chances of having a longer duration. In other words, if the last decision point

were to always correspond to the same time interval (e.g., the last interval i = SW ), such

interval would have a higher probability of being assigned a shorter duration. To avoid

introducing such bias, time intervals are considered in random order, so the last decision

point does not necessarily correspond to the last interval of the schedule.

The formulation of the pheromone representation and construction mechanism de-

scribed above for a single pump can be extended to more than one pump just associating a

different pheromone matrix to each pump (τ pij). The schedule of each pump is constructed

by using the values of its own pheromone matrix and Eq. (6.1). This is equivalent to as-

sociating one independent graph to each pump, such that each ant constructs one path in

each graph in order to build a complete schedule of all pumps. Similarly, each pheromone

matrix is updated following Eq. (6.3) but only considering those components of solution

Sbest associated with the corresponding pump.

6.2.4 Heuristic Information for Pump Scheduling

The heuristic information ηij in Eq. (6.1) is meant to give some estimation of the goodness

of solution component (i, j). We consider the following approach:

ηij =

{

T−j
T

if pump is on during interval i
j
T

if pump is off during interval i
(6.7)

This introduces a linear influence depending on the length of the interval, that is, shorter

active intervals and longer inactive intervals are preferred. If the value of ηij is zero then,

it is taken as 0.1
T

, to allow pheromones to have some influence in the result.

This rule of thumb is far from a perfect estimator. Shorter active intervals may re-
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duce energy usage but they also result in less water being pumped and thus may generate

a deficit of water at the end of the scheduling period, or even pressure deficits during

the scheduling period. Nonetheless, many ACO algorithms make use of some form of

heuristic information, so it is worth testing whether it may also lead to improved results

for pump scheduling. The results and conclusions of this empirical analysis are given in

Section 6.3.3.

6.2.5 Pheromone Update Methods

After all ants have constructed solutions, the pheromone values are updated (Eq. 6.2). The

pheromone increment ∆τ can take many forms depending on the particular problem. It

is often a function of the objective function itself, which in the pump scheduling problem

is the electrical cost (CE), such as in:

∆τ(S) =
Q

CE(S)
(6.8)

where Q could be a constant or the maximum for objective function (Cmax
E ). A simpler

approach would be to use the same constant value for all ants (e.g., ∆τ = 1). Since

only one ant at each iteration is allowed to update the pheromone values, and evaporation

decreases the influence of previous pheromone updates at every iteration, this approach

may be sufficient to achieve convergence to a good solution (Dorigo & Stützle, 2004).

In the empirical analysis carried out in the following sections, we test and compare both

update methods: ∆τ(S) =
Cmax

E

CE(S)
and ∆τ = 1.

6.2.6 Constraint Handling

The constraint handling used for ACO in the Pump Scheduling problem is identical to the

one used for SEA in Chapter 4. As a brief reminder, hydraulic constraints and limits on

tank levels are enforced implicitly by EPANET. The constraint on the number of pump

switches is implicitly satisfied by the time-controlled triggers representation. The rest

of the constraints (zero total volume deficit, minimum pressure requirements at demand

nodes and no warnings from the simulator) are handled by ranking solutions according to

which constraints are violated and the degree of violation. That is, a solution is considered

better than another if: (i) it generates lower pressure violations; if equal, (ii) it resulted in

less simulation warnings; if still equal (iii), it produces smaller volume deficit. In case all

constraint violations are equal, as would happen when comparing two feasible solutions,

they are compared with respect to their objective function values.
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6.3 Empirical Study of ACO in the Pump Scheduling

Problem

In the following sections we perform an empirical analysis of the performance of the Ant

System (AS) algorithm on the Pump Scheduling problem. The experimental setup tests

different parameters of AS for both Vanzyl and Richmond networks. In order to assess

the average performance of the AS algorithm, 15 runs, with different random seeds, were

conducted for the Richmond network with each configuration of parameters; whereas 25

runs were performed for the Vanzyl network, since the variability of results was higher

for the Vanzyl network and the extra runs were computationally cheap with respect to a

single run for the Richmond network. In order to enable a fair comparison with results

provided by van Zyl, Savic & Walters (2004), we stopped each run of the algorithm after

6000 evaluations (i.e., hydraulic simulations) in the case of the Vanzyl network and 8000

evaluations for the Richmond network. A limit of SW = 3 switches per pump is set and

we evaluate both strict (N sw
p = 3) and relaxed (N sw

p ≤ 3) representations. The use of

heuristic information will be considered later, so for now α = 1 and β = 0 in Eq. (6.1).

Also later we will consider the Max-Min Ant System, which indicates how to set the

initial pheromone value, so for now we will use τ0 = 1. A summary of the parameters

considered in the experimental setup and their values is given in Table 6.1. The results

of these experiments are presented in Tables B.1 and B.2 for the Vanzyl and Richmond

networks, respectively.

Table 6.1: Parameter setup for Ant System experiments.

Parameter Value

Repetitions 25 (Vanzyl network), 15 (Richmond network)

Stopping criteria (Evaluations) 6000 (Vanzyl network), 8000 (Richmond network)

Persistence factor (ρ) 0.85, 0.9, 0.95, 0.98

Number of ants (A) 10, 20, 40, 80

Selection method (Sbest) iteration-best (ib), best-so-far (bf)

Update method (∆τ ) ∆τ(S) = Cmax
E /CE(S), ∆τ = 1

Limit of switches per pump (N sw
p ) N sw

p = 3, N sw
p ≤ 3

Other parameters τ0 = 1, α = 1, β = 0

The empirical analysis is divided in three parts. First, we investigate whether there is

any significant difference between the two alternative update methods discussed in Sec-

tion 6.2.5. Then, we examine the effect of each parameter and their potential interactions.

Finally, we perform additional experiments on a few selected configurations to explore

whether the use of heuristic information further improves the best results obtained.
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6.3.1 Choosing a Pheromone Update Method

In Section 6.2.5, we discussed two alternatives for the parameter ∆τ used for updating

the pheromones: ∆τ(S) =
Cmax

E

CE(S)
and ∆τ = 1. Both alternatives were tested in our ex-

periments and statistically compared. Tables 6.2 and 6.3 compare, for the Vanzyl and

Richmond networks respectively, the two update methods in terms of the best configura-

tions of parameters. On the other hand, Table 6.4 makes a comparison with respect to all

configurations of parameters tested.

Table 6.2 shows the configuration of parameters that obtained the lowest median elec-

trical cost for each update method from all the results in the Vanzyl network. We report

separately the results when using a strict constraint on the pump switches (N sw
p = 3) and

a relaxed constraint (N sw
p ≤ 3). We also show the p-value obtained by a Welch two-

sample t-test comparing the best configurations of parameters for each of the two update

methods. Table 6.3 gives the same information for the Richmond network. The con-

clusion from the t-tests is that there is no statistically significant difference between the

two update methods in the case of the best configuration of parameters for each update

method.

Table 6.2: Comparison of the best configurations of parameters for each pheromone up-

date method for the Vanzyl network.

Pheromone update Best settings p-value (t-test)

N sw
p = 3

∆τ(S) =
Cmax

E

CE(S) A = 80, best-so-far, ρ = 0.95
0.2082

∆τ = 1 A = 80, best-so-far, ρ = 0.98

N sw
p ≤ 3

∆τ(S) =
Cmax

E

CE(S) A = 80, best-so-far, ρ = 0.98
0.9725

∆τ = 1 A = 40, best-so-far, ρ = 0.98

Table 6.3: Comparison of the best configurations of parameters for each pheromone up-

date method for the Richmond network.

Pheromone Update Best Settings p-value (t-test)

N sw
p = 3

∆τ(S) =
Cmax

E

CE(S) A = 40, iteration-best, ρ = 0.90
0.358

∆τ = 1 A = 80, iteration-best, ρ = 0.85

N sw
p ≤ 3

∆τ(S) =
Cmax

E

CE(S) A = 80, iteration-best, ρ = 0.85
0.8083

∆τ = 1 A = 20, iteration-best, ρ = 0.90

If we consider the full results (all configurations of parameters) for each update method,

we obtain p-values much higher than a critical level of 0.05 (see Table 6.4). Moreover,

95% confidence intervals of the difference in mean electrical cost obtained by the two
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update methods give very small extreme values. Therefore, we must conclude that for

this problem there is little difference (if any) between using one or another method. In the

following we will use ∆τ = 1, since it is a much simpler approach.

Table 6.4: 95% confidence interval and p-value reported by Welch two-sample t-test on

the difference in mean electrical cost obtained when using update methods ∆τ = 1 versus

∆τ(S) =
Cmax

E

CE(S)
(the former minus the latter), over all configurations of parameters.

N sw
p = 3 N sw

p ≤ 3

CI p-value CI p-value

Vanzyl [−0.5, 1.69] 0.2866 [−1.37, 0.60] 0.447

Richmond [−0.92, 0.78] 0.8695 [−0.39, 1.69] 0.2202

6.3.2 Analysis of AS Parameters

Following the conclusions from the previous section, we focus on the results obtained

with constant pheromone update ∆τ = 1 and we want to investigate the effect and pos-

sible interactions between the other AS parameters, namely the number of ants A, the

persistence parameter ρ and the selection method. We analyse the results by means of the

Analysis of Variance (ANOVA). In terms of ANOVA, each of these parameters is consid-

ered a factor and their tested values, given in Table 6.1, are levels. We perform ANOVA

for each instance and each constraint on the pump switches, to assess the effect of each

parameter (or interaction thereof) in the electrical cost obtained by AS.

The Vanzyl Network

For the Vanzyl network and constraint N sw
p ≤ 3, ANOVA identifies significant interac-

tions between all parameters. We examine each interaction in detail by means of inter-

action plots and error bars based on Tukey’s Honest Significant Difference intervals in

Fig. 6.3. The conclusion of the analysis is that best results are obtained with either a high

number of ants or high ρ (low evaporation), while the difference between iteration-best

and best-so-far is not statistically significant.1

1 It is relevant to mention that had we started the analysis with a low number of ants or

persistence factor and decided first which selection method was better, we would had

drawn the false conclusion that iteration-best produces the best results, when in fact that

strongly depends on the value of the other parameters.
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Figure 6.3: Interaction plots of AS using N sw
p ≤ 3 for the Vanzyl network.

Number of ants (A) and selection method. Selecting for update the iteration-best ant

seems to give better results when the number of ants is low, as shown in Fig. 6.3a. How-

ever, for high number of ants, which is the setting that obtains the best results, the differ-

ence between iteration-best and best-so-far is not significant.

Persistence factor (ρ) and selection method. Figure 6.3b shows that there is no sig-

nificant difference between the two selection methods for high values of ρ, while best-so-

far performs much worse than iteration-best when combined with low values of ρ (high

evaporation). More importantly, results improve steadily for higher values of ρ when

using best-so-far selection.

Persistence factor (ρ) and number of ants (A). Fig. 6.3c shows that the value ρ =

0.85 produces better results when combined with A = 80 than for the other values of

A. However, this anomaly is unimportant in order to find the best configuration, since

Fig. 6.3c also shows that there is no significant difference with respect to other values of

ρ. This suggests that the effect of ρ is not important when using high number of ants.

Conversely, the effect the number of ants is not important for high values of ρ.
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The above conclusions are consistent with the results for N sw
p ≤ 3 and ∆τ = 1

given in Table B.1, where configurations of parameters with either ρ = {0.95, 0.98} or

A = {40, 80} produce the best results. This suggests that a higher exploration, which is

obtained by using more ants and low evaporation, works better in this case than a faster

convergence. Among these best configurations of parameters, we choose for further com-

parison the configuration that achieves the lowest median electrical cost, which is obtained

by A = 40, best-so-far, ρ = 0.98. Similar conclusions are obtained by applying ANOVA

to the results for the Vanzyl network and constraint N sw
p = 3. In this case, the lowest

median electrical cost was obtained by using A = 80, best-so-far and ρ = 0.98.

The Richmond Network

The results of ANOVA for the data corresponding to the Richmond network when using

constraint N sw
p ≤ 3 also indicate significant interactions for all combinations of factors.

The analysis shows that the best results are obtained when best-so-far selection is com-

bined with a high number of ants or when iteration-best selection is combined with a low

ρ. However, the analysis also suggests that the best approach is low ρ and high number

of ants. To understand this apparent contradiction, we study the third-order interaction.

This reveals that, overall, iteration-best and low values of ρ lead to the best results. We

start the analysis studying the interactions between each pair of parameters, as shown in

Fig. 6.4.

Number of ants (A) and selection method. The interaction between these two param-

eters is evident in Fig. 6.4a. The combination of either best-so-far and high number of

ants, or iteration-best and low number of ants, give the best results.

Persistence factor (ρ) and selection method. In a similar fashion, Fig. 6.4b shows the

strong interaction between evaporation and selection method. However, in this case, it is

clear that iteration-best and low ρ is better than the combination of best-so-far and high ρ.

Persistence factor (ρ) and number of ants (A). Figure 6.4c shows that high ρ = 0.98

does not give good results for any number of ants and it is specially worse for A = 80.

On the other hand, the results for ρ = 0.85 improve with increasing number of ants.

This result suggests that the best approach is low ρ and high number of ants. However,

the previous interaction plots showed high number of ants combines best with best-so-far

selection, while low ρ performs better when combined with iteration-best. In order to

reach a final conclusion, we must consider also the third-order interaction.
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In ANOVA, a third-order interaction is an interaction between three factors. To study

such interaction in our case, we plot the interaction between A and ρ for each selection

method, as shown in Fig. 6.5.

Persistence factor (ρ) and number of ants (A) and best-so-far selection. Figure 6.5a

shows that A = {10, 20} are worse than A = 80 for low values of ρ, while A = 80 is

worse for ρ = 0.98. However, apart from these worst-cases, most intervals overlap, that

is, the overall effect of evaporation and number of ants is small when using best-so-far

selection and there is no clear best configuration.

Persistence factor (ρ) and number of ants (A) and iteration-best selection. In con-

trast, Fig. 6.5b shows a strong influence of ρ when using iteration-best selection and low

values of ρ achieve the best results. In contrast, the influence of the number of ants is

small, since most intervals for different numbers of ants overlap.

Taking the above analysis into account, it is not surprising that the lowest median elec-

trical cost in the Richmond network was obtained by A = 20, ρ = 0.90 and iteration-

best. Yet, the analysis showed (and Table B.2 corroborates) that other configurations of

parameters using iteration-best selection and ρ = {0.85, 0.90} generate results that are

not significantly different from the best configuration. Similar conclusions are obtained

for the ANOVA of results corresponding to the Richmond network and using constraint

N sw
p = 3. In this case, the lowest median electrical cost is achieved by A = 80, ρ = 0.85

and iteration-best, but other combinations of iteration-best selection and high evaporation

(low ρ) produce equally good results for various values of A.

Summary of Analysis of AS Parameters

The overall conclusions of the analysis of AS parameters are that for the Vanzyl network

the best strategy is to use a large number of ants and high ρ (low evaporation), which

suggests a higher exploration and slow convergence is needed to achieve the best results.

Using iteration-best or best-so-far selection is not very important here, which may indicate

that the iteration-best ant frequently becomes the best-so-far ant when using such com-

bination of parameters. Completely different conclusions are obtained for the Richmond

network. Here the selection method clearly influences the performance, and the combina-

tion of iteration-best selection and low values of ρ turns out to be the best configuration.

Iteration-best selection implies exploration of the search space. However, this exploration

probably needs to be counter-balanced with the faster convergence produced by a low

value of ρ in order to produce good results within the limited number of evaluations.
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Figure 6.4: Second-order interaction plots of AS using N sw
p ≤ 3 for the Richmond

network.
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Figure 6.5: Third-order interaction plots of AS using N sw
p ≤ 3 for the Richmond network.
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These differences can be attributed to the structure of the network instances. The

Vanzyl network has only three pumps compared to the seven pumps of the Richmond

network. Furthermore, the pumps in the Vanzyl network have very similar characteristics

(in fact, two of them are parallel), which generates a search space with multiple solutions

of similar cost. This may actually increase the difficulty of finding the global optimal

solution since there is no clear direction of improvement and, thus, algorithms easily find

themselves trapped in a sub-optimal solution. While on the contrary, the Richmond net-

work contains different types of pumps located in various positions in the network. This

reduces the number of different solutions with similar cost.

6.3.3 Heuristic Information

In this Section we evaluate the benefits of incorporating the heuristic information de-

scribed in Eq. (6.7). The influence of the heuristic information is controlled with the

parameter β. The higher the value, the largest the influence on the decision taken by the

ants. We test the best configurations of parameters found in the previous analysis using

different values of β = {0, 0.25, 0.5, 0.75, 1}, where β = 0 corresponds to not using any

heuristic information at all. Results are reported for each constraint on pump switches

in Figures 6.6 and 6.7, for the Vanzyl and Richmond networks respectively. Apart from

the electrical cost, we pay attention as well to the evaluation number when the best so-

lution of each run was found. The results with respect to the electrical cost indicate that

heuristic information does not show any clear improvement for these configurations of

parameters. Looking at the evaluation number, it does not seem that the use of heuristic

information stagnates the search. In fact, heuristic information helps exploration (best
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Figure 6.6: Influence of heuristic information (β) in the best configurations of parameters

for the Vanzyl network (a) when N sw
p = 3 and (b) when N sw

p ≤ 3.
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Figure 6.7: Influence of heuristic information (β) in the best configurations of parameters

for the Richmond network (a) when N sw
p = 3 and (b) when N sw

p ≤ 3.
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Figure 6.8: Influence of heuristic information (β) for the Vanzyl network (a) when

N sw
p = 3 and (b) when N sw

p ≤ 3.

solution is improved until close to the limit of evaluations) but it is not as effective as the

pheromone information in directing the search to the optimal solutions. Still, heuristic in-

formation seems to slightly help the search with β = 0.25 in the Richmond network when

using the relaxed constraint N sw
p ≤ 3 (see Fig. 6.7). In addition, when not using the best

configuration of parameters, the use of heuristic information, again with β = 0.25, may

clearly improve the performance of the AS algorithm, as shown in Fig. 6.8. However, for

the best configurations of parameters, the use of heuristic information does not show any

advantage.
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6.3.4 Comparison among Algorithms

In the previous sections, we have analysed the effect of the different parameters of AS

and identified configurations of parameters that give good results for the pump schedul-

ing problem. Now, we compare the best results obtained by AS with the state-of-the-

art results from the literature, the Hybrid Genetic Algorithm (Hybrid GA) described by

van Zyl, Savic & Walters (2004), and with the best results obtained by the Simple Evo-

lutionary Algorithm (SEA) proposed in Chapter 4. Both AS and SEA are fine-tuned

for relative time-controlled triggers representation, whereas Hybrid GA was designed for

level-controlled triggers representation.

The Vanzyl Network

Table 6.5 shows a comparison of four algorithms according to the median, standard devia-

tion (sd), best and worst values of the daily electrical cost (CE) and total number of pump

switches (N sw). The algorithms compared are the AS algorithm discussed above with

both strict and relaxed constraint on the number of pump switches, the Simple Evolution-

ary Algorithm (SEA) and the results of Hybrid Genetic Algorithm (Hybrid GA) reported

by van Zyl, Savic & Walters (2004).Figure 6.9 graphically displays the comparison ac-

cording to electrical cost.

Comparing the median electrical cost and the number of pump switches obtained by AS

with constraint N sw
p = 3 and constraint N sw

p ≤ 3 reveals that relaxing the constraint on

the number of switches per pump reduces notably the total number of switches, although

at the expense of more variation in the results (higher standard deviation, bigger box in

Fig. 6.9). This could be attributed to the larger solution space explored when N sw
p ≤ 3

was used. The results obtained by AS compare well with those obtained by van Zyl,

Savic & Walters (2004) using Hybrid GA, even though neither AS nor SEA use any

local search method. Moreover, unlike the Hybrid GA, our AS approach did not require

additional runs to tune the penalty costs. Still, SEA seems the clear winner among the

four algorithms, in particular when compared with Hybrid GA, since the worst solution

of SEA is better than the best solution of Hybrid GA.

Although AS obtained a lower median cost than Hybrid GA (in fact, the median of

AS is below the best value of Hybrid GA), AS also obtained solutions with higher cost

than the worst of Hybrid GA. This high variability of AS could mean that the observed

differences are due to the stochastic nature of both algorithms. Therefore, we conducted

a statistical analysis to assess whether there is a significant difference between the algo-

rithms. First, we used a Kruskal-Wallis test to assess whether the median is statistically

the same in all the algorithms or it is significantly different for at least one. As was ex-
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Table 6.5: Experimental results for the Vanzyl network.

CE N sw

Algorithm med. sd. best worst med. sd. best worst

AS (N sw
p = 3) 341.3 9.7 326.5 364.5 9 0 9 9

AS (N sw
p ≤ 3) 340.1 11.5 327.7 362.1 4 1.3 3 8

Hybrid GA 347.1 4.3 344.4 354.8 4 0.8 3 5

SEA 334.1 6.1 315.9 341.4 5 1.2 3 7

AS (N sw
p = 3): A = 80, best-so-far, ρ = 0.98, ∆τ = 1, α = 1, β = 0.

AS (N sw
p ≤ 3): A = 40, best-so-far, ρ = 0.98, ∆τ = 1, α = 1, β = 0.

SEA: relative time-controlled triggers with N sw
p ≤ 3, see also Table 4.1 on page 66.

Hybrid GA: statistics are calculated from the 7 runs reported by van Zyl, Savic &

Walters (2004).
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Figure 6.9: Comparison of AS with constraints (N sw
p = 3) and (N sw

p ≤ 3), Hy-

brid GA and SEA for the Vanzyl network.

Table 6.6: Statistical comparison of algorithms for the Vanzyl net-

work. P-values reported by pairwise Wilcoxon rank sum tests, ad-

justed for multiple comparison using Holm’s method.

AS AS Hybrid GA

N sw
p = 3 N sw

p ≤ 3

AS N sw
p ≤ 3 0.7124 — —

Hybrid GA 0.2497 0.5478 —

SEA 3.4e-05 0.0038 3.6e-06
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pected, the p-value = 1.054e − 05 indicates that there is a difference. Next, to identify

which algorithms have a significantly different median, we use pairwise Wilcoxon rank

sum tests.2 The resulting p-values are reported in Table 6.6. The conclusions are that SEA

is clearly different from the three other algorithms, while there is no statistical evidence

to reject the hypothesis that the median electrical cost is equal for AS and Hybrid GA (at

a confidence value of 0.05).

Finally, in order to illustrate the structure of schedules obtained, Fig. 6.10 shows three

different solutions obtained by the AS algorithm for the Vanzyl network using constraint

N sw
p = 3 on the left and three schedules obtained using constraint N sw

p ≤ 3 on the right.

In both cases, the best solutions take full advantage of the off-peak electricity tariff. It is

also interesting that the best schedule obtained by AS (N sw
p ≤ 3) turns on the pumps at

the start of the scheduling period, when tanks are almost full and pumping is supposed to

be more expensive, which is a counter-intuitive result.

N sw
p = 3

Pump 3B

Pump 2B

Pump 1A

07am 11am 03pm 07pm 11pm 03am 07am

(best)

Pump 3B

Pump 2B

Pump 1A

07am 11am 03pm 07pm 11pm 03am 07am

(median)

Pump 3B

Pump 2B

Pump 1A

07am 11am 03pm 07pm 11pm 03am 07am

(worst)

N sw
p ≤ 3

Pump 3B

Pump 2B

Pump 1A

07am 11am 03pm 07pm 11pm 03am 07am

(best)

Pump 3B

Pump 2B

Pump 1A

07am 11am 03pm 07pm 11pm 03am 07am

(median)

Pump 3B

Pump 2B

Pump 1A

07am 11am 03pm 07pm 11pm 03am 07am

(worst)

Figure 6.10: Pump schedules obtained by AS algorithm for the Vanzyl network: (top)

best solution; (middle) median solution; and (bottom) worst solution.

2 Kruskal-Wallis and Wilcoxon rank sum tests are standard non-parametric statistical

tests, which do not require the data to be normally distributed (Furlong, Lovelace &

Lovelace, 2000). Wilcoxon rank sum test is also called Mann-Whitney U test.
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The Richmond Network

The comparison of the four algorithms for the Richmond network is given in Table 6.7 and

graphically in Fig. 6.11. The algorithms compared are the Ant System algorithm proposed

above with both a strict and a relaxed constraint on the number of pump switches, the

Simple Evolutionary Algorithm (SEA) and the Hybrid Genetic Algorithm (Hybrid GA)

proposed by van Zyl, Savic & Walters (2004). For Hybrid GA there are no numerical

results available, so we estimated the electrical cost following the graphical results of 10

runs reported by the authors. Van Zyl, Savic & Walters (2004) do not provide any concrete

information about the number of pump switches obtained by Hybrid GA in the Richmond

network. However, we do not expect that the total number is significantly lower than the

values obtained by AS (N sw
p ≤ 3) or SEA. On the contrary, the level-controlled triggers

representation used by Hybrid GA tends to generate frequent switching of the pumps.

For the Richmond network, AS (N sw
p ≤ 3) not only reduces the number of total

switches by a third with respect to AS (N sw
p = 3), it also reduces the median electri-

cal cost. The results of AS (N sw
p ≤ 3) are also better than those obtained by SEA in

terms of both median electrical cost and total number of pump switches. Hybrid GA per-

forms substantially worse than any of the other three algorithms. The worse electrical

cost obtained by AS or SEA is almost always lower than the one corresponding to the

best schedule generated by Hybrid GA. The differences are even more clearly shown in

Fig. 6.11, where it can be observed that the worst case of AS (N sw
p = 3) is actually an

outlier and schedules generated by AS have a much lower electrical cost than the best

schedule of Hybrid GA.

We repeat for the Richmond network the same statistical analysis performed above for

the Vanzyl network. As expected, the Kruskal-Wallis test strongly rejects that the real

median value is equal for the four algorithms. Pairwise Wilcoxon tests (see Table 6.8)

indicate significant differences between all algorithms, except for SEA and AS (N sw
p =

3). The conclusion, hence, is that AS with a relaxed constraint generates the best pump

schedules of the four algorithms for the Richmond network, while the ones generated by

Hybrid GA are definitely more expensive.

Now we examine the median pump schedules obtained by the AS algorithm in the

Richmond network. The median schedule obtained when using the strict constraint N sw
p =

3 is shown in the left plot in Fig. 6.12, while the one obtained using N sw
p ≤ 3 is shown in

the right plot. Although both schedules seem quite similar, a careful examination shows

that the off-peak period is better utilised in the right plot. Moreover, for pumps 1A and 7F,

the schedules are almost similar except for a very short active interval at the start of the

scheduling period. The presence of such short pumping intervals indicates that the strict

constraint is forcing more switches than what would be optimal. The relaxed constraint
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Table 6.7: Experimental results for the Richmond network.

CE N sw

Algorithm median sd. best worst median sd. best worst

AS (N sw
p = 3) 92.9 2.1 91.1 97.5 21 0.0 21 21

AS (N sw
p ≤ 3) 90.1 1.9 88.7 94.7 14 1.5 10 15

Hybrid GA 99.5 2.2 97.0 104.0 — — — —

SEA 92.3 1.6 90.3 95.4 16 1.7 14 20

AS (N sw
p = 3): A = 80, iteration-best, ρ = 0.85, ∆τ = 1, α = 1, β = 0.

AS (N sw
p ≤ 3): A = 20, iteration-best, ρ = 0.90, ∆τ = 1, α = 1, β = 0.25.

SEA: relative time-controlled triggers with N sw
p ≤ 3, see also Table 4.2 on page 67.

Hybrid GA: energy costs are estimated from graphical results from van Zyl, Savic &

Walters (2004).
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Figure 6.11: Comparison of AS with constraints (N sw
p = 3) and (N sw

p ≤ 3),

Hybrid GA and SEA for the Richmond network.

Table 6.8: Statistical comparison of algorithms for the Richmond net-

work. P-values reported by pairwise Wilcoxon rank sum tests, adjusted

for multiple comparison using Holm’s method.

AS AS Hybrid GA

N sw
p = 3 N sw

p ≤ 3

AS N sw
p ≤ 3 0.00118 — —

Hybrid GA 0.00036 0.00021 —

SEA 0.20168 0.00988 0.00021
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seems to handle well this situation and is able to generate schedules with just one switch

(pump 1A) and others with 3 switches (pumps 3A and 5C).

N sw
p = 3

7F

6D

5C

4B

3A

2A

1A

07am 11am 03pm 07pm 11pm 03am 07am

N sw
p ≤ 3

7F

6D

5C

4B

3A

2A

1A

07am 11am 03pm 07pm 11pm 03am 07am

Figure 6.12: Pump schedules corresponding to the median solution obtained by AS algo-

rithm for the Richmond network.

6.3.5 Discussion of AS Results

The results of the previous sections show the feasibility of using the ACO framework for

the optimisation of pump schedules. We have covered the main aspects needed to imple-

ment an ACO algorithm for the pump scheduling problem, namely the representation of

solutions, the definition of the pheromone information and the construction mechanism

used by ants to generate new solutions. Update methods and heuristic information have

been also discussed and analysed. An extensive empirical analysis of the Ant System

algorithm has been carried out, examining in detail the effect of each parameter and their

combined influence. By means of statistical testing, the best configurations of parameters

have been identified. One clear conclusion of this analysis is that the Vanzyl and Rich-

mond networks are fundamentally different instances, thus the best configuration on one

of them has little resemblance with the best configuration for the other. As a matter of

fact, using the Vanzyl network as a test network for fine-tuning parameters for the Rich-

mond network will, in all certainty, lead to suboptimal configurations of parameters. It is

not clear at this moment which kind of network instance could take that role, perhaps a

simplification of the Richmond network itself. But it is evident that the Vanzyl network

belongs to a different kind, worth of investigating by its own interest and inherent diffi-

culty. Because it turns out that, for the ACO algorithm proposed here, the Vanzyl network
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seems to be more difficult than the Richmond network.

The final part of our analysis compared AS (both strict and relaxed constraint on the

number of pump switches) with the Simple Evolutionary Algorithm proposed in earlier

chapters and the Hybrid GA proposed by van Zyl, Savic & Walters (2004). AS with a

relaxed constraint generated schedules with a much lower number of switches than when

using a strict constraint. In the case of the Richmond network, the relaxed constraint

produced lower cost schedules. Whereas in the case of the Vanzyl network there was

no significant difference between using one or the other constraint in terms of median

electrical cost. Therefore, it seems more beneficial to focus on AS with relaxed constraint.

Ant System obtained clearly the best results in case of the Richmond network, both in

terms of number of pump switches and electrical cost. Even the worst solutions given

by AS were better than the best solution obtained by Hybrid GA. In addition, statistical

tests showed a significant difference between the medians of AS and SEA, in favour of

the former. In the case of the Vanzyl network, however, the median electrical cost ob-

tained by AS was not statistically different from the one of Hybrid GA. Moreover, AS

for the Vanzyl network showed a high variability. In this network, SEA was clearly the

winner. These results suggest that some characteristic of the Vanzyl network makes this

instance particularly difficult for AS. In fact, pumps for the Richmond network have dis-

tinct features and locations, whereas pumps in the VanZyl network have similar features

and nearby locations. The consequence of the latter is fundamentally different schedules

with similar electrical cost.

One of the consequences of adapting the Pump Scheduling to the ACO framework

rather than creating an ad hoc algorithm is that the proposed approach can be straightfor-

wardly extended to more complex and modern ACO algorithms. In particular, the next

sections study the application of Max-Min Ant System (Stützle & Hoos, 2000) with the

goal of further improving the results obtained so far.

6.4 Max-Min Ant System

In the previous sections we have discussed the application of ACO to the pump scheduling

problem. Empirical results showed that a variant of the Ant System algorithm generates

schedules with lower electrical cost than those published in the literature. In the case of a

real-world instance (the Richmond network), our AS algorithm also improved the results

over those obtained by the Simple Evolutionary Algorithm (SEA) presented in Chapter 4.

These are promising results, yet the AS algorithm examined in earlier sections is probably

not the best ACO algorithm. In fact, literature shows that other ACO approaches typically

outperform the original AS (Dorigo & Stützle, 2004). In this section we focus on the
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empirical application of Max-Min Ant System (MMAS), which is considered one of the

best performing ACO algorithms (Dorigo & Stützle, 2004), with two goals in mind. First,

showing by example that once the pump scheduling problem has been adapted to the ACO

framework, the adaptation to new ACO algorithms is typically trivial. Our second goal is

to investigate what performance improvements, if any, MMAS shows in the test instances.

Max-Min Ant System was proposed by Stützle & Hoos (2000) and its most notable

characteristic is the use of maximum and minimum limits for pheromone values, which

prevents extremely high or small pheromone values, and thus, avoids premature con-

vergence. The maximum pheromone limit is inversely proportional to the evaporation

factor (1 − ρ) and directly proportional to the amount of pheromone added at each iter-

ation (∆τ ). The minimum pheromone limit depends on the maximum pheromone limit

and a parameter pbest which represents the probability of constructing the best solution

found once MMAS has converged. For pbest = 1, the minimum pheromone limit is zero,

whereas the difference between the maximum and minimum gets smaller with decreasing

values of pbest. Another interesting aspect is that MMAS sets the initial pheromone val-

ues (τ0) to the maximum pheromone limit in order to achieve a higher exploration. We

refer to the original publication Stützle & Hoos (2000) for a complete description of how

pheromone limits are calculated. Another characteristic of MMAS, widely used by other

modern ACO algorithms, is that only a single ant is allowed to deposit pheromone at each

iteration. This strategy was already used by the AS algorithm proposed in this study.

6.4.1 Empirical Setup

The empirical analysis of MMAS follows a setup similar to the one previously used for

Ant System. We performed 25 runs of 6000 evaluations for the Vanzyl network and

15 runs of 8000 evaluations for the Richmond network. The parameters of the MMAS

algorithm in this study are: the number of ants A = {10, 20, 40, 80}, the pheromone

persistence parameter ρ = {0.85, 0.9, 0.95, 0.98}, the best ant used for selection is either

the iteration-best (ib) or the best-so-far ant (bf ), and pbest = {0.05, 0.5, 0.7, 0.9, 0.9999}.

The initial pheromone was set to τ0 = τmax while the amount of pheromone deposited by

ants during pheromone updating was set to ∆τ = 1.

The previous analysis of AS showed that relaxing the constraint on pump switches does

not prevent the algorithm from finding schedules with low electrical cost, while it has the

additional benefit of reducing maintenance costs caused by frequent pump switching.

Therefore, we focus solely on a relaxed constraint of less than three switches per pump

(N sw
p ≤ 3) for both Vanzyl and Richmond networks. In the next two sections we analyse

the results for both network instances.
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6.4.2 Analysis of Results for the Vanzyl Network

The complete results for the Vanzyl network are shown in Table B.3. The ANOVA method

used in the previous sections relies in some assumptions, one of them is the normality of

the data, which is not satisfied in this case. Normality is typically tested by means of

a Normal Q-Q plot, which displays points corresponding to the experimental data and a

straight line representing the ideal normal distribution. If the experimental data resembles

a normal distribution, the points should fall close to the straight line. Figure 6.13 shows

the Normal Q-Q plot of the results of MMAS for the Vanzyl network. In this case, a

substantial number of data points show a high deviation from the normal distribution.

Sometimes transforming the data, for example, by taking the logarithm of the data, may

alleviate this deviation. However, in this particular case, no transformation satisfyingly

solves the lack of normality. Therefore, we are unable to apply the ANOVA method.

Nevertheless, we still can observe some trends in the data by means of boxplots.
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Figure 6.13: Normal Q-Q plot of MMAS results for the Vanzyl network

In the following plots, each boxplot summarises the results of 25 runs for a particular

configuration of parameters. The plots summarise the electrical cost of the best schedule

found by each run and the evaluation number at which each run found this solution. By

keeping constant the value of all parameters except one, we can assess the effect of this

parameter on the results.

Probability of constructing the best solution (pbest). Figure 6.14 shows the effect of

pbest for a configuration of MMAS using best-so-far selection (Fig. 6.14a) and the same

configuration but using iteration-best selection (Fig. 6.14b). Figure 6.14a shows how dra-

matically the performance degrades as pbest is increased. The parameter pbest controls the

distance between the upper and lower pheromone limits, and as pbest approaches 1, the

lower limit converges to zero, which is the minimum pheromone value. The explanation

here is that best-so-far selection produces a fast convergence that may lead to stagnation,



6.4. Max-Min Ant System 142

while low pbest (and tighter pheromone limits) favour exploration of new solutions. Stag-

nation is evident for pbest = 0.999, where the algorithm finds a schedule with electrical

cost close to 360 in less than 1000 evaluations but it is not able to improve that solution

thereafter. On the other hand, Fig. 6.14b shows a comparatively more uniform behaviour.

Iteration-best selection is more exploratory, so it is not affected as much by the phero-

mone limits. However, the excess of exploration and lack of direction of the search also

mean that this configuration is not able to obtain as good solutions as the combination of

best-so-far selection and pbest = 0.05.

Persistence factor (ρ). Figure 6.15 illustrates that the value of ρ affects the resulting

electrical cost. Moreover, the influence of ρ varies depending on the value of pbest. Fig-

ure 6.15a shows how for a low pbest, the performance degrades with an increased value of

ρ. In contrast, Fig. 6.15b shows the opposite effect for a high pbest, except for ρ = 0.98,

which obtains the worst results independently of the value of pbest. This demonstrates a

strong interaction between ρ and pbest. High values of ρ indicate a low pheromone evapo-

ration rate, which results in a slower convergence. When combined with tight pheromone

limits (low pbest), which favour exploration of new solutions, the consequence is an ex-

cessively slow convergence. On the other hand, for high pbest (Fig. 6.15b), low values of

ρ make the algorithm converge to a good solution relatively early in terms of evaluations

and stagnate because of the wide pheromone limits, so higher values of ρ work better by

slowing convergence. Yet, in the case of ρ = 0.98 the convergence is too slow and the

search is not focused around the best solutions, despite the wide pheromone limits.

Number of ants (A). Finally, for some configurations of parameters, the number of

ants have a strong influence on the results, whereas for others the influence is less clear.

This is illustrated in Fig. 6.16. Since the number of evaluations is fixed, a higher number

of ants means a lower number of iterations. If the pheromone evaporation is too slow

(ρ = 0.98, Fig. 6.16a), the algorithm does not stagnate but solutions obtained do not

improve fast enough because past solutions keep influencing current decisions. Therefore,

less ants (A = 10) and more iterations produce better results. For a high evaporation rate

(ρ = 0.85, Fig. 6.16b), this is not true anymore and the influence of the number of ants is

not evident.

According to the above analysis, the best configurations of parameters are those using

best-so-far selection. Furthermore, for low number of ants A = 10, the best approach is

low evaporation ρ = 0.9 and low pbest = 0.05. These settings favour a slow convergence

and more exploration, while the low number of ants enables the MMAS algorithm to
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(a) A = 10, best-so-far, ρ = 0.9
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Figure 6.14: Effect of pbest in the results of MMAS for the Vanzyl network.

(a) A = 40, best-so-far, pbest = 0.05
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Figure 6.15: Effect of ρ in the results of MMAS for the Vanzyl network.

(a) best-so-far, ρ = 0.98, pbest = 0.05
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(b) best-so-far, ρ = 0.85, pbest = 0.05
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Figure 6.16: Effect of the number of ants in the results of MMAS for the Vanzyl network.
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A = 10, bf, ρ = 0.9, pbest = 0.05
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Figure 6.17: Influence of heuristic information (β) in several configurations of parameters

for the Vanzyl network.

perform more iterations. By contrast, for high number of ants (A = 40), it is better to

use either low evaporation ρ = 0.95 and high pbest = 0.9, which gives a balance between

slow convergence but less exploration, or high evaporation ρ = 0.85 and low pbest = 0.05,

which results in faster convergence but high exploration. Although the configuration of

parameters that obtains the lowest median electrical cost is A = 10, best-so-far, ρ = 0.9

and pbest = 0.05, these three configurations produce similarly good results according to

Table B.3 on page 183. Therefore, we will consider the three of them when studying the

effect of heuristic information next, in case any of them is affected more strongly by the

heuristic information than the others.

Heuristic Information

We now test whether heuristic information could further improve the results of the three

configurations of MMAS identified above as the best ones for the Vanzyl network, The

heuristic function is the one described in Section 6.2.4 and its intensity is controlled by

the parameter β in Eq. (6.1). Experimental results for different values of β are shown

in Fig. 6.17. As it happened before with the AS algorithm, setting β = 0 gives the best

results in the case of the Vanzyl network, thus the use of heuristic information does not

improve the results of fine-tuned parameters.

Comparison among Algorithms

Table 6.9 (and the corresponding Fig. 6.18) compares the Ant System (AS) algorithm

proposed earlier in this chapter, the Max-Min Ant System, the Simple Evolutionary Al-

gorithm proposed in Chapter 4 and the Hybrid Genetic Algorithm proposed by van Zyl,

Savic & Walters (2004). The results obtained by MMAS are clearly better in the average

and best-case than those obtained using Hybrid GA but not as good as SEA. Our con-

clusion is that our ACO algorithms (both AS and MMAS) in the Vanzyl network have

difficulties to converge fast to the best solutions, yet if exploration is sacrificed to speed-
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up convergence, then they have a tendency to stagnate in sub-optimal solutions with a

cost in the range of (350, 365). Still, Fig. 6.18 shows that the “box” corresponding to

MMAS is below the line that crosses the “box” corresponding to Hybrid GA. This means

that more than 75% of the runs of MMAS obtained a lower electrical cost than the median

cost obtained by Hybrid GA.

In order to test whether the differences observed in Fig. 6.18 are statistically significant,

we first use Kruskal-Wallis test, which rejects the hypothesis that the medians of the four

algorithms are all equal with a p-value < 0.0001. Next, we perform Wilcoxon rank

sum tests for all pairs. The results shown in Table 6.10 indicate that: (1) the median

cost obtained by SEA is significantly different than the median cost obtained by other

algorithms, but (2) we cannot reject the hypothesis that AS, MMAS and Hybrid GA obtain

the same median electrical cost. If we had to choose one among the three, we would

select MMAS, given the lower empirical median with respect to Hybrid GA and smaller

variability and lower worst case with respect to AS. SEA, nonetheless, is clearly better

than the other three algorithms.

6.4.3 Analysis of Results for the Richmond Network

We now examine the results of MMAS for the Richmond network. The complete results

are summarised in Table B.4. We again rely on the ANOVA method to identify which

parameter values have a significant effect on the results. However, we can make one con-

clusion before even applying ANOVA. By studying the results with respect to the values

of each parameter, we observe that for persistence factor (ρ), the value ρ = 0.98 typically

generates much worse results that the other values of ρ (Fig. 6.19). If we eliminate this

particular parameter value from the analysis before applying ANOVA, we can better focus

on the significance of the other parameter values.
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Figure 6.19: Results of MMAS for the Richmond network with respect

to persistence factor (ρ).
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Table 6.9: Experimental results for the Vanzyl network.

CE N sw

Algorithm med. sd. best worst med. sd. best worst

AS 340.1 11.5 327.7 362.1 4 1.3 3 8

MMAS 340.7 9.4 327.7 358.6 5 0.9 3 6

Hybrid GA 347.1 4.3 344.4 354.8 4 0.8 3 5

SEA 334.1 6.1 315.9 341.4 5 1.2 3 7

AS (N sw
p ≤ 3): A = 40, best-so-far, ρ = 0.98, α = 1, β = 0.

MMAS (N sw
p ≤ 3): A = 10, best-so-far, ρ = 0.90, pbest = 0.05, α = 1, β = 0.

SEA (N sw
p ≤ 3): relative time-triggers, see also Table 4.1 on page 66.

Hybrid GA: results from the 7 runs reported by van Zyl, Savic & Walters (2004).
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Figure 6.18: Comparison between AS, MMAS, Hybrid GA and

SEA for the Vanzyl network.

Table 6.10: Statistical comparison of algorithms for the Vanzyl net-

work. P-values reported by pairwise Wilcoxon rank sum tests, ad-

justed for multiple comparison using Holm’s method.

AS MMAS Hybrid GA

MMAS 0.97678 — —

Hybrid GA 0.54780 0.12909 —

SEA 0.00375 0.00045 3.6e-06
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We perform a three-way ANOVA, that is, we expect that the value of one parameter may

change the way two other parameters interact. This seems to adjust better to the data as we

shall see. The ANOVA identifies all third-order interactions between the parameters, with

the exception of the interaction between A, pbest and ρ, as causing a significant effect on

the data. Since all significant third-order interactions contain the selection parameter, we

inspect the interaction plots for each type of selection method, that is, iteration-best (ib)

and best-so-far (bf) selection. The main conclusions are that a moderate number of ants

(lower than A = 80) and high evaporation (low ρ) works best in general, while whether to

use a high or low pbest depends on the particular selection method. High pbest works better

with iteration-best selection, while low pbest is better when using best-so-far selection.

Persistence factor (ρ) and number of ants (A). The interaction plot (Fig. 6.20) indeed

show different behaviours for each selection method. Figure 6.20a shows that for ib

selection a low evaporation (high ρ) produces typically worse results and even worse

as the number of ants increase. While for high evaporation (low ρ), a high number of

ants produces better results than 10 ants. On the other hand, Fig. 6.20a shows that for

bf selection the only significant aspect is that configurations of A = 80 combined with

ρ = 0.95 result in particularly bad performance. This is the most extreme combination

(highest number of ants, highest ρ) and Table B.4 shows that further increasing ρ makes

results much worse. Therefore, this combination of parameters suggests a threshold at

which the MMAS algorithm loses its efficacy.

Probability of constructing the best solution (pbest) and number of ants (A). As

for the relation between pbest and the number of ants, Fig. 6.21a shows that using tight

pheromone limits (low pbest) is generally bad. However, this only applies for ib selection,

while for bf selection (Fig. 6.21b) the results are quite the opposite and low pbest is the

best approach. In addition, for both selection methods, A = 80 results in significantly

worse schedules.

Probability of constructing the best solution (pbest) and persistence factor (ρ). The

most significant interaction occurs between pbest and ρ, shown in Fig. 6.22. For ib selec-

tion, the combination of high pbest and low ρ produces the best results (Fig. 6.22a). In fact,

values of ρ higher than 0.85 result in clearly worse schedules. On the other hand, for bf

selection (Fig. 6.22b), a low value of pbest is better. Low ρ is also desirable but high values

do not produce as bad results as for ib selection.
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Figure 6.20: Interaction between the number of ants and persistence factor (ρ) in the

results of MMAS for the Richmond network.
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Figure 6.21: Interaction between the number of ants and pbest in the results of MMAS

for the Richmond network.
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Figure 6.22: Interaction between pbest and persistence factor (ρ) in the results of MMAS

for the Richmond network.
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A = 20, bf, ρ = 0.85, pbest = 0.05
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Figure 6.23: Influence of heuristic information (β) in three of the best configurations of

parameters for the Richmond network.

Taking into account the above analysis, we identify as the best configurations of param-

eters a combination of iteration-best selection, high pbest, low ρ and a number of ants such

as A = 20 or A = 40. Configurations of MMAS using best-so-far selection are better

when using a number of ants different from A = 80, a low ρ and a low pbest. In particular,

the configuration of parameters A = 20, iteration-best, ρ = 0.85 and pbest = 0.7 is the

best with respect to the median electrical cost shown in Table B.4. Nevertheless, other

configurations of parameters such as A = 20, iteration-best, ρ = 0.85 and pbest = 0.5, or

A = 20, best-so-far, ρ = 0.85 and pbest = 0.05, produce similarly good results.

Heuristic Information

We focus on the three configurations identified above to study the effect of using heuristic

information. Figure 6.23 shows the effect of the parameter β for three different configura-

tions of MMAS. Although a small improvement is obtained for the second configuration

(middle plot) with β = 0.25, the overall conclusion is that the use of heuristic information

does not improve the results of MMAS with fine-tuned parameters. In fact, a high value

of β may result in much worse quality.

Comparison among Algorithms

Finally, we compare the results of AS, MMAS, Simple Evolutionary Algorithm (SEA)

and Hybrid Genetic Algorithm (van Zyl, Savic & Walters, 2004) in the Richmond net-

work. From Table 6.11 and the corresponding Fig. 6.24, we conclude that Hybrid GA

obtains the worst results out of the four algorithms, while the difference between SEA

and MMAS is not so clear. A Wilcoxon rank sum test rejects the hypothesis that SEA

and MMAS obtain equal median electrical cost with a p-value = 0.001408. We also cal-

culate a non-parametric 95% confidence interval around the true difference between the

median of SEA minus the median of MMAS equal to [0.843, 3.409], which suggests that

the real difference is relatively small but clearly in favour of MMAS. Compared with AS,
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Table 6.11: Experimental results for the Richmond network.

CE N sw

Algorithm med. sd. best worst med. sd. best worst

AS 90.1 1.9 88.7 94.7 14 1.5 10 15

MMAS 90.3 1.6 88.3 93.7 12 2.0 9 15

Hybrid GA 99.5 2.2 97.0 104.0 — — — —

SEA 92.3 1.6 90.3 95.4 16 1.7 14 20

AS (N sw
p ≤ 3): A = 20, iteration-best, ρ = 0.90, α = 1, β = 0.25.

MMAS (N sw
p ≤ 3): A = 20, iteration-best, ρ = 0.85, pbest = 0.7, α = 1, β = 0.

SEA (N sw
p ≤ 3): relative time-triggers, see also Table 4.2 on page 67.

Hybrid GA: energy costs are estimated from graphical results from van Zyl, Savic &

Walters (2004).
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Figure 6.24: Comparison of AS, MMAS, Hybrid GA and SEA

for the Richmond network.

MMAS obtains quite similar results but a lower variability. Therefore, we must conclude

that MMAS is an overall improvement over the other three algorithms in the case of the

Richmond network instance.

6.5 Reducing the Computation Time of ACO

6.5.1 Computational Effort of ACO

The proposed ACO approach for the Pump Scheduling problem has some characteris-

tics that would not be appropriate for other problems where hundreds of thousands of

evaluations can be executed in a relatively short time. In particular, we used multiple

pheromone matrices, one for each pump, and each matrix has dimensions intervals ×

durations. For example, in the Richmond network there are seven pumps and, if we es-

tablish a limit of three switches per pump, there are six decision variables (intervals) per

pump. For a scheduling period of 24 hours and a relaxed constraint on the number of
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Table 6.12: Computation time of AS for different network instances and different con-

straints of the number of pump switches.

Instance Constraint Time mean sd. min. max.

Vanzyl N sw
p = 3 Total (s) 128.01 74.46 20.80 330.10

Overhead (s) 0.29 0.05 0.09 0.44

Overhead (%) 0.34 0.23 0.07 1.43

N sw
p ≤ 3 Total (s) 161.73 94.06 27.28 389.70

Overhead (s) 0.34 0.06 0.09 0.91

Overhead (%) 0.34 0.27 0.05 2.34

Richmond N sw
p = 3 Total (s) 4273.64 892.70 2554.00 6833.00

Overhead (s) 0.89 0.10 0.67 1.21

Overhead (%) 0.02 0.01 0.01 0.04

N sw
p ≤ 3 Total (s) 5725.38 1412.59 2432.00 11020.00

Overhead (s) 1.29 0.23 0.78 1.98

Overhead (%) 0.02 0.01 0.01 0.05

pump switches (N sw
p ≤ 3), the duration of each interval is within [0, 24]. Therefore, there

are 7 × 6 × 25 = 1050 pheromone values that need to be considered when constructing

each solution and when performing evaporation. Is the resulting overhead in computation

time significant?

To answer this question, we measured the computation time required by AS when run-

ning on an Intel Pentium 4 (3.20GHz) with 1024KB of cache size under GNU/Linux

2.4.20. Table 6.12 shows the mean, standard deviation, minimum and maximum of total

CPU-time, overhead time and overhead percentage for 875 runs of AS for the Vanzyl net-

work for each constraint and 480 runs for the Richmond network for each constraint with

the parameter values analysed in Section 6.3.2. Total CPU-time is the seconds that the

CPU has spent executing each run, overhead is the seconds that the CPU has spent outside

the evaluation function, and overhead percentage is just the percentage of the total time

represented by the overhead time. The time spent by AS evaluating solutions is the total

time minus the overhead time. The worst overhead percentage for the Vanzyl is slightly

more than 2% of the total time, no more than one second. For the Richmond network

the difference is even stronger: the worst percentage is merely 0.05% of the total and, on

average, only one second is consumed by AS itself, while the rest of the one hour and

a half of execution time is spent evaluating schedules. The computational overhead of

the AS algorithm is, therefore, negligible, and becomes even less relevant as the network

instance grows in complexity. This result indicates that the largest gains in computation

time will be achieved by reducing either the number of function evaluations or the time

required by each evaluation.
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6.5.2 Parallel Evaluation of Schedules in ACO

In the ACO algorithms described in this chapter, once all ants have constructed one so-

lution each, all solutions must be evaluated before updating the pheromones. Solutions

are evaluated sequentially as shown in Fig. 6.25. However, these evaluations could be

performed in parallel by using as many threads as the number of ants.3 The speedup of

a parallel algorithm is defined as the time required by a sequential algorithm divided by

the time required by its parallel variant. The maximum speedup that can be achieved by

evaluating each solution in parallel is limited by the number of ants. The number of ants

typically ranges from 10 to a few hundreds, which is often larger than the number of CPUs

available in a multi-core computer. Hence, the number of ants is not a limitation to the

potential speedup of the algorithm in practice.

Iteration

Ant 1 Ant 2 Ant 3 Ant 4 Ant 5

Execution Time

Figure 6.25: Sequential evaluation of solutions in ACO.

We must, as well, take into account that some schedules may require more simulation

time than others. This may be due to several factors, such as the time required to find

a solution to the hydraulic equations. System constraints, such as pressure constraints,

may be violated early into the simulation, and, thus, the schedule would be considered

infeasible without requiring a complete simulation. Whatever the reason, the fact is that

some schedules will require more computation time than others and, hence, depending on

the assignment of schedules to threads, some threads may take considerably more time to

finish. The effect of long simulation times can be minimised by making the assignment

dynamic, instead of equally distributing the solutions among the threads. In a dynamic

assignment, one solution is assigned to each thread and the rest of solutions are assigned

dynamically as threads finish evaluating previous solutions. A higher ratio of solutions

per thread would also tend to minimise the impact of particularly long simulations. Fig-

ure 6.26 shows a timeline of the execution of one iteration of the parallel ACO algorithm

using three threads. In this example, ant 5 is assigned to the third thread because the other

threads are still busy evaluating the other ants’ solutions.

3 Threads are lightweight processes that can execute concurrently within the same com-

puter program.
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Figure 6.26: Parallel evaluation of solutions in ACO.

Finally, the time required by the sequential code, which, by definition, is not reduced by

using a higher number of parallel threads, is another factor that influences the maximum

speedup. If the stopping criteria of ACO are a maximum number of evaluations or a

time limit, then a smaller number of ants would increase the number of iterations of

the algorithm. This, in turn, increases the time required by the sequential part of the

algorithm. However, as we concluded in the previous section, the time required by ACO

is negligible compared with the time required by the hydraulic simulations. Hence, we

make no effort to reduce the time required by the sequential parts of the algorithm.

6.5.3 Experimental Evaluation of Parallel ACO

We empirically test the benefits of the parallel ACO approach described above. The un-

derlying ACO algorithm is the AS algorithm described in this chapter. This algorithm is

modified to incorporate the parallel evaluation of solutions by dynamically assigning solu-

tions to a number of threads. This algorithm is linked to a thread-safe version of EPANET.

Appendix E provides more details abut the development of this thread-safe variant of

EPANET.

The goal of our empirical study is to analyse the performance, in terms of wall-clock

time, of the algorithm. The performance in terms of solution quality is not considered

here because the parallel variant generates the same sequence of solutions as the sequen-

tial ACO algorithm. In other words, given the same parameters, the quality of solutions

generated by both algorithms is the same and only the computation time is smaller in the

parallel variant. Our objective is to determine how much computation time is reduced

by the use of multiple concurrent threads. We have argued that the number of ants may

have some effect on the computation time. Thus, several values for the number of ants

are tested. We apply the parallel ACO algorithm to the optimisation of pump schedules



6.6. Summary 154

in the Richmond network and the algorithm is stopped at 8, 000 evaluations. Experiments

are performed on a 4-CPU machine (2 dual-core AMD64 Opteron 275, 2.2 GHz and

64KB/1MB of cache memory per core) running GNU/Linux. The algorithm is imple-

mented in C and uses POSIX threads (Kerrisk, 2005).

We conducted several runs of ACO with different number of ants (5, 10, 20, 40, 80) and

different number of threads (1, 2, 3, 4, 5, 6). Figure 6.27a shows the wall-clock time taken

by ACO for each combination of parameters, while Fig. 6.27b gives the corresponding

speedup. Figure 6.27a shows that the sequential ACO (corresponding to using one thread)

requires almost two hours of computation time. The differences in computation time for

the sequential case are explained by the different sequence of solutions generated when

using different number of ants. As explained above, for the same number of ants, the same

sequence of solutions is generated independently of the number of threads. However,

different number of ants will generate different results and, thus, there will be variations

in the computation time.

The speedup for each value of the number of ants in Fig. 6.27b is calculated with respect

to the computation time required when using the sequential ACO algorithm and the same

number of ants. Therefore, variations in the time required by the sequential algorithm

do not translate into variations in the speedup. It is an interesting result that the speedup

decreases with decreasing number of ants, since this indicates that parallelism is better

exploited by using a high number of ants. The explanation for this result was already

given in the previous section: the higher ratio of ants to threads allows a better utilisation

of the multiple CPUs and minimises the impact of schedules that require particularly long

simulation time. The overall, conclusion is that, in the parallel ACO algorithm, a higher

number of ants reduces the computation time. This is an encouraging result because, as

reported in Section 6.4.3 above, the ACO algorithm obtains the best schedules, in terms

of quality, when using a number of ants equal to 20 or 40.

6.6 Summary

In the present chapter we have gone a step forward in tackling the Pump Scheduling prob-

lem with the adoption of the ACO framework. This has been possible by means of the

new time-controlled triggers representation. Definitions for the pheromone and heuris-

tic information, the idea of using one pheromone matrix for each pump and an iterative

construction mechanism for building pump schedules have been proposed throughout this

chapter. These elements have enabled us to apply the Ant System (AS) algorithm to the

problem of pump scheduling. Empirical results have shown the importance of the balance

between exploration and convergence.
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Figure 6.27: Runtime in seconds (a) and speedup (b) of AS algorithm with parallel

evaluation of schedules.

The best configurations of parameters have been identified by using a full factorial

empirical analysis for each network instance. The AS algorithm was able to outperform

its competitors with the Richmond instance. However, for the Vanzyl network the results

of AS showed a high variability. This is an indication that the Vanzyl network should not

be used as a test instance to fine-tune the Richmond network, since the best configurations

for each of them are notably different.

Another interesting finding is that, in the case of the Richmond network, the relaxed

constraint not only obtains a lower number of pump switches, as was expected, but it is

able to obtain a lower electrical cost than the strict constraint, despite the increase in the

size of the search space. Since the AS algorithm has found the best-known solutions for

the Richmond instance, it may well be that the extra flexibility of the relaxed constraint

allows the algorithm to find better schedules that would violate the strict constraint.

We have also implemented the Max-Min Ant System (MMAS) algorithm and empir-

ically studied its performance. The analysis showed that MMAS reduces the variability

of the results with respect to those obtained by the simpler AS algorithm. In particular, it

typically improves the worst-case. In spite of this, SEA is still better than MMAS for the

Vanzyl network, whereas for the Richmond network, MMAS is the clear winner.

Finally, we have considered the potential overhead in computation time caused by the

proposed pheromone representation and the use of multiple pheromone matrices. The

conclusion of our analysis is that the time required by the ACO algorithm itself is in-

significant when compared with the time required by the simulations of the schedules. In

particular, for large real-world networks, such as the Richmond network, where a run of

eight thousand evaluations may take several hours, the fraction corresponding to the ACO

algorithm is just a few seconds. Therefore, optimising the ACO algorithm is not worth-
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while and we would rather chose to incorporate new techniques that lead to reducing the

number of evaluations or improving the quality of the schedules.

Following these conclusions, we have proposed to evaluate pump schedules in parallel

by means of a thread-safe variant of EPANET. Experimental results showed that the run-

ning time of ACO can be greatly reduced by this technique: from almost two hours to

less than half and hour when using four CPUs. Our experiments with the parallel ACO

algorithm indicated as well that using a large number of ants and more threads than CPUs

usually gives the shortest computation time. The quality of the results is not affected by

the parallel approach, since the ACO algorithm generates the exact same schedules but in

a much shorter time. Therefore, the conclusions obtained from the experimental analysis

of the sequential ACO algorithm are still valid for the parallel variant.



Chapter 7
Conclusion

The optimisation of pump operations in water distribution networks is an important prob-

lem in practice since it may result in substantial energy and monetary savings. By means

of complex hydraulic simulation models and automatic data collection, a very precise

model of a water distribution system can be obtained. However, it is the task of an opti-

misation algorithm to generate candidate pump schedules that minimise energy and main-

tenance costs while providing a reliable and satisfactory service to customers.

General-purpose optimisation algorithms, such as Evolutionary Algorithms, have been

successfully applied to practical cases of the pump scheduling problem. However, the

research literature is lacking on experimental analysis and comparison of alternative ap-

proaches in order to assess the effectiveness of existing methods.

The main subject of this thesis has been the development, application and experimen-

tal analysis of optimisation approaches to the pump scheduling problem. The following

sections review the main conclusions obtained from our research. Next, we briefly sum-

marise the contributions of the thesis and publications arising from or related to this work.

The final section gives some insight on how our conclusions can be applied beyond this

thesis and how our work could be extended in new directions.

7.1 Summary and Conclusions of this Thesis

The work in this thesis can be divided into three main parts. First, the formulation of pump

scheduling as an optimisation problem. Second, the application of various optimisation

approaches to pump scheduling problem. And third, the exhaustive experimental analysis

and comparison of these approaches.

157
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7.1.1 Pump Scheduling as an Optimisation Problem

The formulation of the pump scheduling problem is discussed in detail in Chapter 2 of

this thesis. Within the context of this discussion, we have examined a very general and

flexible formulation of the objectives and constraints of the problem. This formulation

may be applied to multiple instances of the problem. For example, we have proposed

concepts, such as volume deficit tolerance, that permit adapting the general formulation to

more precise applications. We introduced, as well, a distinction between the total number

of pump switches and the number of switches per pump. From our assessment, the latter

is more relevant in order to limit maintenance costs. In Chapter 2, we have additionally

carried out a thorough review of previous approaches for automated pump scheduling.

Chapter 2 also summarised the numerous improvements we have incorporated into the

original hydraulic simulator (EPANET). A more complete list of our modifications was

given in Appendix D.

Two new representations of pump schedules based on the concept of time-controlled

triggers were proposed in Chapter 3. One representation is based on absolute time with re-

spect to the start of the scheduling period. The other uses relative time to indicate elapsed

time between pump switches. The new representations implicitly constraint the number

of switches per pump, leading to a significant reduction in the search space. In addition,

we have developed several recombination and mutation operators as the means to use

the new representations in evolutionary algorithms. Exhaustive experimental analysis has

conclusively shown that an evolutionary algorithm using the new representations is able

to obtain better results than using the traditional representations, while at the same time

ensuring a maximum limit of switches per pump

It is clear from our experiments that the level-controlled triggers representation may

lead to rapid switching of pumps and, hence, produce sudden pressure fluctuations that

may cause damage to the pipes connected to the pump. For this reason, we have proposed

the maximisation of the shortest idle time as a surrogate measure of maintenance costs. In

Chapter 5, the shortest idle time is precisely defined and experimental tests are performed

by means of multi-objective optimisation.

7.1.2 Optimisation Algorithms for Pump Scheduling

During this work, various optimisation approaches were implemented: a single-objective

evolutionary algorithm, a multi-objective evolutionary algorithm and two ant colony op-

timisation algorithms.

Firstly, a single-objective evolutionary algorithm called the Simple Evolutionary Al-

gorithm (SEA) was developed in Chapter 4. This algorithm uses no penalty values to
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handle constraints and it is linked to a hydraulic simulator (EPANET) to evaluate potential

schedules. SEA is adapted to 4 different representations of pump schedules: two tradi-

tional representations, binary and level-controlled triggers, and the proposed absolute and

relative time-controlled triggers.

Secondly, the well-known multi-objective evolutionary algorithm SPEA2 was applied

to the pump scheduling problem. By means of SPEA2, we addressed two alternative

formulations of a multi-objective pump scheduling problem in terms of Pareto optimality.

The first alternative minimised both electrical cost and number of pump switches. The

second variant, replaced the minimisation of pump switches by the maximisation of the

shortest idle time.

Finally, the proposed time-controlled triggers representation allowed us to apply Ant

Colony Optimisation to pump scheduling. To this end, we have developed suitable defini-

tions for the pheromone information, solution (pump schedule) construction, pheromone

update and heuristic information. We first tested the approach using the original Ant Sys-

tem algorithm and later improved it by using a modern algorithm, Max-Min Ant System.

7.1.3 Experimental Analysis and Comparison

To the best of our knowledge, we have performed the most exhaustive experimental anal-

ysis of the pump scheduling problem available in the literature. Our experimental setup

has compared, for the first time, multiple optimisation techniques using various represen-

tations and different network instances. We have relied on sound statistical techniques

from the field of Design of Experiments to assess whether observed differences between

algorithms were, in fact, statistically significant or could be attributed to the stochastic

nature of the algorithms.

In the case of multi-objective optimisation, we have used state-of-art methods. Some of

the tools utilised in the analysis were developed in parallel to this thesis in collaboration

with other researchers. In particular, during the course of this thesis, we have collaborated

in the development of a faster algorithm for the calculation of the hypervolume (Fonseca,

Paquete & López-Ibáñez, 2006), and a method to visualise the differences between the

empirical attainment functions of multi-objective algorithms (López-Ibáñez, Paquete &

Stützle, 2006). These techniques have been applied in this thesis.

Experiments on a Single-Objective Evolutionary Algorithm

An exhaustive experimental analysis was performed on SEA to identify the best settings

for each representation. Then, a comparison among representations was carried out. Our

analysis showed that results obtained by SEA with either the binary representation or rel-
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ative time-controlled triggers outperformed results obtained by a more complex algorithm

from the literature designed for level-controlled triggers.

The effect of the constraint on the number of switches per pump was empirically studied

for the binary representation. Our results suggest that schedules with low electrical cost

typically have a moderate number of pump switches. This observation contradicts the

intuitive notion that a higher number of pump switches would provide more flexibility

and lead to lower cost schedules. We also concluded that the constraint on pump switches

has an effect on the electrical cost that greatly depends on the particular limit and the

network instance. For some networks, a lower limit may reduce the electricity cost of

the schedules generated by the optimisation algorithm. In other cases, a excessively strict

limit may hinder the search and result in sub-optimal schedules. A maximum limit of

three switches per pump was found to be appropriate for the Vanzyl network. For the

Richmond network, on the other hand, some experiments suggested that this limit was

too strict and a maximum limit of four or five switches per pump would result in lower

electricity cost. Nonetheless, even a limit of three switches per pump generated state-of-

the-art results for the Richmond network.

With regard to the new representation based on time-controlled triggers, we investi-

gated various settings for the implicit constraint on number of pump switches. We first

searched for optimal schedules with different number of switches per pump. The best

schedules in terms of electrical cost had two or three switches per pump. Schedules with

one switch per pump produced a very high electrical cost due to the lack of flexibility

of the schedule. Schedules with more than three switches per pump produced increas-

ingly higher electrical costs due to the exponential growth of the search space. Next, we

performed experiments using a relaxed constraint on the number of pump switches that

allowed less switches per pump than the limit. Results showed that, when using the re-

laxed constraint, SEA is very robust to different settings of the maximum limit and, in

fact, the number of pump switches of the resulting schedules grows far slower than the

maximum number allowed by the limit.

Lastly, we tested various settings of the minimum time interval in the time-controlled

triggers representation. The overall conclusion from our experiments is that intervals

larger than one hour do not have enough flexibility and typically produce higher electrical

cost. As for intervals smaller than one hour, they may lead to significant reductions in

electrical cost if the algorithm is given sufficient time. However, for a run of typical

duration, the growth of the search space hinders the search and produces worse results.

Therefore, we concluded that a minimum time interval of one hour was the adequate

setting.
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Experiments on a Multi-Objective Evolutionary Algorithm

We next experimented with multi-objective variants of the pump scheduling problem by

means of SPEA2. Firstly, we considered a multi-objective approach to minimise both

electrical cost and number of pump switches. An exhaustive experimental analysis was

carried out involving various representations and network instances. The results of the

multi-objective approach was compared with the state-of-the-art algorithm in the liter-

ature. Our experimental results showed that the multi-objective approach using time-

controlled triggers outperformed the algorithm proposed in the literature designed for

level-controlled triggers. The multi-objective algorithm generated schedules with lower

electrical cost and a lower number of pump switches within the same computation time.

In addition, a single run of the multi-objective algorithm provides system operators with

multiple optimal schedules that model the trade-off between electrical and maintenance

costs.

We also proposed the maximisation of the shortest idle time between operating periods

as an alternative to the minimisation of pump switches. After an experimental assessment

of this approach, we believe that this approach does not lead to the lowest electricity

cost in general. However, our experimental results showed that schedules with very long

idle times may be found with slightly higher electrical cost than those obtained by the

single-objective algorithm.

Experiments on Ant Colony Optimisation

In Chapter 6, the pump scheduling problem was adapted to the Ant Colony Optimisation

(ACO) framework by means of the time-controlled triggers representation. The proposed

approach was implemented using two different ACO algorithms: Ant System and Max-

Min Ant System.

First, we empirically tested various settings for the parameters of Ant System. Results

showed that Ant System outperformed, in the Richmond network, both the state-of-the-art

algorithm from the literature for level-controlled triggers, and the single-objective evolu-

tionary algorithm (SEA) proposed in this work. However, the analysis was not conclusive

in the case of the Vanzyl network. The application of Max-Min Ant System further im-

proved the results of Ant System on both networks. Nonetheless, SEA was still the best

approach for the Vanzyl network.

Heuristic information for the pump scheduling problem was proposed as well. This

heuristic information assumed that schedules with low energy cost have long idle periods

and short operating periods. After an examination of our experimental results, we con-

cluded that this heuristic information does not help the ACO algorithms to reduce energy
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cost, as long as the algorithms are configured with adequate parameter settings.

Experiments on Computation Effort

The potential overhead in computation time caused by the proposed ACO approach was

thoroughly explored in Chapter 6. After the analysis of empirical measures of computa-

tion time, our conclusion is that the computation time consumed by the ACO algorithm

itself is insignificant when compared with the time spent on the simulation of candidate

schedules. In particular, for large real-world networks, such as Richmond, where a typical

run of eight thousand evaluations may require more than one hour, the computation time

corresponding to the ACO algorithm itself amounted to a few seconds.

As a consequence of this, we proposed to evaluate pump schedules in parallel taking

advantage of multi-core computers. Hence, we modified the Ant System algorithm to

simulate multiple schedules in parallel at each iteration by means of a new thread-safe

variant of EPANET. Experimental results showed a significant reduction of computation

time when running on a four CPUs computer, without any loss of solution quality.

The thread-safe version of EPANET utilised in the above experiments was developed

during the course of this thesis. This thread-safe library may be linked to a wide range

of parallel optimisation algorithms for water engineering problems, enabling concurrent

simulation of different schedules. Appendix E discusses the limitations of the original

EPANET that motivated our work, the strategy followed to implement the new library

and some experimental results obtained by a parallel random search algorithm. From our

experimental testing, we believe that the thread-safe version has no significant overhead

with respect to the original EPANET.

7.2 Contributions of this Thesis

A brief summary of the main contributions of this thesis is:

1. A very general and flexible definition of the pump scheduling problem and its con-

straints that may be adapted to multiple instances of the problem. By comparison,

the objectives and constraints of the pump scheduling problem are loosely defined

or implicitly assumed in other works. Our definition explicitly introduces concepts

such as volume tolerance. Moreover, we explicitly distinguish between the total

number of pump switches and the number of switches per pump, arguing that the

latter is better suited to model maintenance costs.

2. The proposal of two new representations for pump schedules based on the concept

of time-controlled triggers. The new representations implicitly constraint the num-
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ber of switches per pump, avoiding the need of an explicit constraint and leading

to a significant reduction in the search space. Moreover, several recombination and

mutation operators were developed for the new representations. Exhaustive exper-

imental analysis has conclusively shown that an evolutionary algorithm using the

new representations is able to obtain better results than using the traditional repre-

sentations.

3. An evolutionary algorithm called SEA was developed. This algorithm uses no

penalty values to handle constraints and is linked to a hydraulic simulator (EPANET)

to evaluate potential schedules. We concluded that the representation based on

level-controlled triggers, which is the current practice in UK, performs significantly

worse than the rest. In fact, SEA using either the binary representation or relative

time-controlled triggers obtained state-of-the-art results for two network instances

from the literature.

4. The effect of the constraint on the number of switches per pump was empirically

investigated for the binary representation. Our results suggest that schedules with

low electrical cost typically have a moderate number of pump switches. This obser-

vation contradicts the intuitive notion that higher number of pump switches would

provide more flexibility and lead to lower cost schedules. The particular constraint

on pump switches may have different effects on the resulting electrical cost. For

some networks, a lower limit may reduce the electricity cost of the schedules gen-

erated by the optimisation algorithm. In other cases, a excessively strict limit may

hinder the search and result in sub-optimal schedules.

5. We investigated, as well, the effect of various settings of the new representation

based on time-controlled triggers. In the case of the implicit constraint on the num-

ber of pump switches, our conclusion is that if less switches than the limit are

allowed, then the time-controlled triggers representation is able to focus on the best

schedules even if the limit is higher than the optimal limit. On the other hand,

an excessively strict limit (e.g., one switch per pump) will generate poor results.

As for the effect of the minimum time interval, we can say that intervals smaller

than one hour may produce schedules that further minimise the electrical cost if the

algorithm is allowed to run for sufficient time. Otherwise, a setting of one hour

generates the best results.

6. We have shown the viability of multi-objective optimisation for solving the Pump

Scheduling problem, which allows system operators to examine a range of Pareto-

optimal solutions and choose one solution with regard to additional criteria. The
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importance of this has already been noticed by Ormsbee & Reddy (1995).1 We

have investigated two different multi-objective formulations.

7. We tested a multi-objective approach that minimises both electrical cost and number

of pump switches in terms of Pareto optimality. We empirically showed that such

multi-objective approach using relative time-controlled triggers generates schedules

with lower electrical cost and a lower number of pump switches than the state-

of-the-art algorithm available in the literature for level-controlled triggers, within

similar computation time. A single run of the multi-objective algorithm, in addition,

provides system operators with multiple optimal schedules that model the trade-off

between electrical and maintenance costs.

8. We also proposed the maximisation of the shortest idle time as a surrogate measure

of maintenance costs, and as an additional objective to the minimisation of electrical

cost. Experiments with this multi-objective formulation generated schedules with

very long idle times with slightly higher electrical cost than those obtained when

only minimising the electrical cost.

9. The pump scheduling problem was adapted to the Ant Colony Optimisation frame-

work. Our conclusion is that ACO algorithms, in particular Max-Min Ant System,

using time-controlled triggers are able to generate lowest cost pump schedules in

comparison to other algorithms available in the literature for level-controlled trig-

gers optimisation.

10. We have developed a thread-safe variant of EPANET. The thread-safe EPANET

enables the parallel evaluation of different pump schedules for the same network

instance in a efficient manner. Backwards-compatibility was an important goal

and, hence, the numerical results are equivalent as those produced by the original

EPANET.

11. We have shown that most of the computation effort is spent on the simulation of po-

tential schedules. We empirically showed that the overhead of ACO was negligible.

Consequently, we proposed a variant of the ACO algorithm that takes advantage of

parallel processors to significantly reduce the total computation time required by a

single run. This result also applies to the other algorithms considered in this thesis.

1 The exact quote is “Indeed, not only is an optimal solution obtained, but all resulting

feasible solutions are available for examinations by the system operator. As a result, the

operator is provided with an increased flexibility with regard to selection of alternative

solutions that may not be optimal from a purely cost-savings objective but may provide

a superior solution based on additional more subjective operational considerations.”

(Ormsbee & Reddy, 1995).
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7.2.3 Application and Extensions of this Work

The present work provides the groundwork for both practical applications of its results

and further research studies based on its conclusions.

Although level-controlled triggers is the current practice in UK, the results in this the-

sis show that alternative representations may provide significant energy and cost savings.

Moreover, existing algorithms can be adapted to use the time-controlled triggers repre-

sentation in order to enforce an implicit limit of switches per pump and restrict the search

space to those schedules that satisfy this limit. Finally, the results obtained by means of

the proposed thread-safe variant of EPANET should encourage a more wide-spread usage

of parallel computation in order to decrease response time of existing automatic pump

scheduling systems.

With regard to further research extending the present work, the work described in this

thesis provides a starting point for further empirical analysis and comparison of algo-

rithms for pump scheduling in additional network instances. We hope that the encourag-

ing results obtained by the new representations motivates research on alternative repre-

sentations. In addition, refinements and new applications of the proposed representations

should be possible.

This work has illustrated the use of statistical analysis techniques and performance as-

sessment methods that indicate the actual factors that determine the performance of an

algorithm. These techniques indicate, as well, whether perceived differences between

algorithms can be deemed significant. We believe that future empirical research on oper-

ational optimisation of water distribution networks should employ similar techniques.

Given its scope, this thesis can only explore a small part of the potential applications

of multi-objective optimisation. Many-objectives formulations, and interactive or goal-

based multi-objective optimisation may be areas of further investigation for the purpose

of obtaining pump schedules that satisfy the expectations of system operators.

Although the results of ACO presented in this work outperform those available in the
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literature, we believe that they may be further improved. In particular, the heuristic in-

formation utilised in this work was shown to be mostly ineffectual. Hence, an extension

to this work may investigate alternative heuristics and compare their results with those

presented in this thesis.

Finally, we have observed that most of the computation time is spent on the hydraulic

simulation of potential schedules. Therefore, future algorithms should be developed with

the goal of decreasing the number of simulations required to achieve a satisfactory solu-

tion. An alternative and complementary goal would be shortening the time required by

the hydraulic simulations. We have shown that a significant reduction of the computation

time can be achieved by using parallel computers. Other techniques worth of considera-

tion would be partial simulation of schedules and approximated evaluation of candidate

schedules.

The application of our thread-safe variant of EPANET to other optimisation algorithms,

such as evolutionary algorithms, and more complex parallel algorithms is a logical next

step. Closely related to the pump scheduling problem are water quality problems, which

can also be evaluated through EPANET. Water quality simulation requires even longer

execution times, thus the benefits of extending the thread-safe library to handle water

quality simulation in parallel would be substantial.



Appendix A
Results of Simple Evolutionary Algorithm

Table A.1: SEA with the binary representation and constraint N sw
p ≤ 3

for the Vanzyl network.

SEA parameters CE N sw

α µ recomb mutation med sd min max med sd min max

50 5 one-point flip 333.0 11.2 324.7 359.6 7 1.2 5 9

50 5 one-point none 396.6 16.5 377.3 431.4 13 1.7 10 17

50 5 two-point flip 341.9 12.2 327.4 361.9 8 1.2 4 9

50 5 two-point none 406.7 19.0 369.7 452.3 14 2.3 9 17

50 5 uniform flip 333.9 11.1 323.0 358.8 7 1.1 5 9

50 5 uniform none 393.2 21.9 363.6 429.6 9 1.5 8 13

50 20 one-point flip 335.6 12.0 327.7 361.9 7 1.1 5 9

50 20 one-point none 390.6 15.2 364.7 423.1 12 2.2 9 18

50 20 two-point flip 349.4 11.2 328.2 359.8 7 1.2 5 9

50 20 two-point none 404.8 14.0 378.1 435.7 14 1.6 11 17

50 20 uniform flip 343.2 11.5 324.5 356.4 7 0.8 5 8

50 20 uniform none 380.0 19.8 351.2 433.8 9 0.9 7 11

100 5 one-point flip 337.6 11.1 323.0 361.1 7 1.2 4 9

100 5 one-point none 389.9 13.2 360.2 422.6 11 1.8 7 15

100 5 two-point flip 343.5 10.7 326.6 360.5 7 1.3 4 9

100 5 two-point none 397.7 17.8 367.3 432.0 11 1.5 8 14

100 5 uniform flip 352.4 12.6 327.2 374.4 7 1.3 4 9

100 5 uniform none 371.1 12.2 348.6 410.4 8 1.2 5 9

100 20 one-point flip 341.8 12.0 328.4 361.0 7 1.0 4 9

100 20 one-point none 385.7 13.9 347.8 413.7 11 1.5 7 12

100 20 two-point flip 343.6 11.8 323.1 362.9 7 1.0 6 9

100 20 two-point none 398.6 16.8 378.8 431.6 11 1.7 8 14

100 20 uniform flip 345.9 11.8 326.4 364.2 7 1.3 4 9

100 20 uniform none 363.7 14.3 334.1 386.3 7 1.3 5 9

200 5 one-point flip 357.9 12.2 329.6 369.8 8 1.4 4 9

200 5 one-point none 369.5 15.8 342.7 406.6 9 1.0 6 10

200 5 two-point flip 362.1 8.7 345.3 377.6 7 1.2 4 9

200 5 two-point none 380.5 14.6 353.0 414.2 9 1.2 7 12

200 5 uniform flip 360.3 9.5 345.6 385.3 7 1.3 4 9

200 5 uniform none 351.1 12.0 328.9 375.2 7 1.1 3 8

200 20 one-point flip 351.7 11.1 330.7 373.8 7 1.0 5 9

200 20 one-point none 368.5 9.0 351.7 388.1 8 1.0 6 11

200 20 two-point flip 352.9 10.8 335.8 373.7 8 0.9 5 9

200 20 two-point none 383.7 14.0 349.9 406.2 9 1.2 7 12

200 20 uniform flip 365.7 8.4 349.3 385.1 8 0.7 6 9

200 20 uniform none 355.9 11.0 327.8 368.7 6 1.1 3 8
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Table A.2: SEA with the binary representation and constraint N sw
p ≤ 3

for the Richmond network.

SEA parameters CE N sw

α µ recomb mutation med sd min max med sd min max

50 5 one-point flip 93.8 2.6 91.4 100.2 26 3.1 19 32

50 5 one-point none 163.5 15.9 122.3 178.9 39 3.0 36 46

50 5 two-point flip 96.2 3.5 90.6 102.6 25 3.8 19 34

50 5 two-point none 150.4 17.9 129.8 195.5 40 4.1 36 51

50 5 uniform flip 95.4 4.0 90.2 107.5 25 3.5 18 29

50 5 uniform none 134.9 21.0 112.8 185.4 37 4.6 29 46

50 20 one-point flip 96.0 2.7 92.8 102.7 26 2.6 21 30

50 20 one-point none 148.6 22.9 128.6 205.9 39 2.8 31 43

50 20 two-point flip 98.0 4.5 92.9 110.1 28 2.1 25 31

50 20 two-point none 138.0 10.2 124.5 161.0 40 3.5 33 46

50 20 uniform flip 98.2 4.4 91.3 103.9 23 3.4 17 29

50 20 uniform none 125.1 16.7 103.5 162.4 33 2.9 31 39

100 5 one-point flip 102.2 5.7 98.1 119.9 24 3.5 19 31

100 5 one-point none 145.1 13.6 121.8 169.2 38 3.4 32 42

100 5 two-point flip 101.9 4.6 95.4 110.1 24 3.4 21 35

100 5 two-point none 135.1 19.9 114.7 192.7 38 3.5 31 42

100 5 uniform flip 102.2 6.2 92.2 115.7 20 2.7 15 25

100 5 uniform none 121.9 10.5 110.8 152.6 30 4.7 21 41

100 20 one-point flip 100.6 5.4 94.5 111.6 25 3.6 18 30

100 20 one-point none 152.5 20.7 120.4 193.2 38 4.9 33 47

100 20 two-point flip 103.8 4.8 95.6 112.5 24 3.7 20 32

100 20 two-point none 133.7 12.3 122.6 167.5 34 4.2 27 41

100 20 uniform flip 107.9 6.3 98.2 117.1 19 2.6 16 27

100 20 uniform none 118.6 8.7 105.5 133.1 26 2.5 20 31

200 5 one-point flip 112.4 6.9 102.3 127.8 25 3.2 19 28

200 5 one-point none 127.5 9.4 118.0 153.2 32 3.3 25 41

200 5 two-point flip 113.1 9.8 101.4 136.5 24 2.6 20 27

200 5 two-point none 132.2 9.1 117.0 156.0 34 1.1 32 36

200 5 uniform flip 121.8 14.0 112.1 154.3 22 2.7 19 27

200 5 uniform none 119.9 12.1 102.0 138.1 20 2.2 18 24

200 20 one-point flip 115.0 11.0 104.3 137.6 26 2.9 19 28

200 20 one-point none 125.6 8.3 110.9 137.2 32 2.0 28 37

200 20 two-point flip 109.8 8.7 104.0 135.3 25 2.7 20 28

200 20 two-point none 127.9 11.7 112.7 153.0 33 2.9 29 39

200 20 uniform flip 126.4 5.7 118.0 135.9 24 2.1 19 26

200 20 uniform none 111.7 10.4 102.4 138.2 20 2.6 17 26



APPENDIX A. RESULTS OF SIMPLE EVOLUTIONARY ALGORITHM 170

Table A.3: SEA with level-controlled triggers representation and constraint N sw
p ≤ 3

for the Vanzyl network. All results use extended-intermediate recombination.

SEA parameters CE N sw

α µ mutation med sd min max med sd min max

50 5 none 362.6 6.7 344.9 377.4 3 0.6 2 5

50 5 gaussian 353.9 11.6 336.6 382.3 3 0.9 2 5

50 5 replace 346.9 5.3 337.2 357.1 3 0.9 2 6

50 5 uniform 349.8 5.7 337.0 358.2 3 0.8 2 5

50 20 none 360.1 10.2 343.9 391.9 3 0.9 2 6

50 20 gaussian 353.6 7.7 340.7 372.0 3 1.3 2 7

50 20 replace 347.7 7.2 330.5 360.1 4 1.2 2 7

50 20 uniform 351.9 7.9 323.3 360.4 3 0.9 3 6

100 5 none 358.6 6.8 337.2 369.0 3 0.8 2 5

100 5 gaussian 351.7 7.2 329.9 360.4 3 1.0 2 5

100 5 replace 346.1 6.7 328.5 358.2 3 0.8 3 5

100 5 uniform 347.1 7.3 334.5 357.8 3 1.1 3 6

100 20 none 353.8 7.5 339.4 364.3 3 0.6 2 5

100 20 gaussian 352.7 5.8 339.3 361.2 3 0.9 2 5

100 20 replace 346.9 5.8 338.6 357.8 3 0.9 2 5

100 20 uniform 350.1 7.3 337.2 360.0 3 1.1 2 7

200 5 none 354.8 7.3 338.2 363.4 3 0.8 2 5

200 5 gaussian 353.1 5.1 341.9 360.4 4 0.9 2 5

200 5 replace 346.4 7.6 319.5 355.4 3 0.8 3 5

200 5 uniform 350.7 5.2 340.6 360.0 3 0.7 3 5

200 20 none 353.7 6.4 337.5 363.8 3 0.9 2 5

200 20 gaussian 347.0 6.2 336.8 360.4 3 0.8 3 5

200 20 replace 347.4 4.0 338.8 353.1 3 0.9 3 6

200 20 uniform 350.4 5.4 342.5 360.4 4 0.8 3 5

Table A.4: SEA with level-controlled triggers representation and constraint N sw
p ≤ 3

for the Richmond network. All results use extended-intermediate recombination.

SEA parameters CE N sw

α µ mutation med sd min max med sd min max

50 5 none 136.0 36.4 106.6 247.1 6 2.5 4 13

50 5 gaussian 120.9 38.5 106.4 215.5 8 2.6 4 13

50 5 replace 101.5 3.1 98.2 108.0 10 1.1 9 12

50 5 uniform 103.3 3.6 97.2 112.2 10 0.9 9 11

50 20 none 122.5 30.4 107.0 209.2 7 2.2 3 10

50 20 gaussian 124.2 25.4 103.2 201.6 9 2.3 4 12

50 20 replace 100.0 2.5 99.1 107.0 10 1.5 8 13

50 20 uniform 103.6 3.6 99.9 111.1 10 1.7 7 13

100 5 none 123.1 32.0 102.8 236.4 7 1.4 5 10

100 5 gaussian 121.0 7.9 110.3 133.2 6 1.6 4 9

100 5 replace 102.1 2.6 97.9 106.3 10 1.6 7 12

100 5 uniform 103.2 2.6 98.7 110.2 10 1.6 7 12

100 20 none 121.6 19.8 111.4 193.2 7 2.0 4 10

100 20 gaussian 117.2 22.5 100.8 194.5 8 1.9 4 11

100 20 replace 102.2 2.4 97.5 105.6 10 1.7 7 13

100 20 uniform 102.9 2.9 100.7 111.8 10 1.5 8 13

200 5 none 118.9 7.0 107.0 128.3 7 1.6 6 11

200 5 gaussian 118.5 8.8 101.9 140.1 8 1.9 5 11

200 5 replace 103.6 1.3 101.7 105.5 11 1.7 7 13

200 5 uniform 105.0 2.3 101.3 110.0 9 1.5 7 12

200 20 none 115.8 6.5 104.6 124.3 8 1.7 5 11

200 20 gaussian 114.8 6.4 105.5 125.0 9 1.9 5 11

200 20 replace 103.7 2.3 100.3 109.7 9 1.4 7 12

200 20 uniform 106.1 3.7 100.2 113.4 9 2.0 7 14
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Table A.5: SEA with absolute time-controlled triggers representation and

constraint N sw
p ≤ 3 for the Vanzyl network.

SEA parameters CE N sw

α µ recomb mutation med sd min max med sd min max

50 5 one-point none 377.0 15.1 351.5 423.1 6 1.4 4 9

50 5 one-point replace 336.4 8.2 327.2 358.5 6 0.9 4 8

50 5 one-point uniform 353.7 13.5 327.1 367.5 5 0.9 4 7

50 5 rand-arithmetical none 398.3 17.8 369.4 437.6 8 0.8 6 9

50 5 rand-arithmetical replace 338.2 11.4 324.8 362.4 7 0.9 6 9

50 5 rand-arithmetical uniform 344.2 10.8 329.2 363.8 9 0.8 7 9

50 5 two-point none 369.3 11.3 347.0 394.3 6 1.4 4 9

50 5 two-point replace 340.5 9.3 327.7 362.9 6 1.3 4 8

50 5 two-point uniform 343.9 11.6 322.2 359.4 5 1.2 3 7

50 5 uniform none 377.3 8.2 361.6 393.6 6 1.5 4 9

50 5 uniform replace 358.6 9.1 339.3 373.1 7 1.0 4 8

50 5 uniform uniform 361.8 10.1 331.8 372.8 6 1.2 4 9

50 20 one-point none 373.1 9.8 359.2 395.8 7 1.1 5 8

50 20 one-point replace 340.0 8.7 328.0 362.1 6 0.9 5 7

50 20 one-point uniform 341.9 10.8 329.3 361.9 6 1.4 3 9

50 20 rand-arithmetical none 388.3 14.0 370.3 425.8 8 0.8 6 9

50 20 rand-arithmetical replace 342.1 9.4 330.0 363.8 8 1.0 5 9

50 20 rand-arithmetical uniform 344.3 11.7 330.9 365.9 9 0.5 8 9

50 20 two-point none 369.5 11.3 349.4 387.1 5 1.5 3 9

50 20 two-point replace 338.7 5.6 325.3 351.2 6 1.3 4 8

50 20 two-point uniform 337.7 12.5 325.3 365.9 5 1.4 3 8

50 20 uniform none 371.3 9.8 355.9 393.1 5 1.2 3 8

50 20 uniform replace 360.6 7.9 340.1 370.1 6 1.0 4 8

50 20 uniform uniform 362.1 10.0 341.5 370.9 6 1.2 4 8

100 5 one-point none 365.1 10.1 331.9 382.8 6 1.0 5 8

100 5 one-point replace 340.9 8.0 329.7 364.3 6 0.9 4 8

100 5 one-point uniform 337.3 8.5 323.4 357.6 6 1.0 4 8

100 5 rand-arithmetical none 388.7 12.6 371.1 414.8 8 0.7 7 9

100 5 rand-arithmetical replace 342.9 7.4 332.0 361.3 8 0.8 6 9

100 5 rand-arithmetical uniform 348.8 10.8 332.1 365.5 9 0.5 7 9

100 5 two-point none 356.7 10.4 341.5 380.2 6 0.9 4 8

100 5 two-point replace 344.2 7.0 331.7 362.7 6 1.1 4 8

100 5 two-point uniform 337.9 8.7 327.4 360.3 5 0.9 4 7

100 5 uniform none 366.0 8.3 350.5 381.4 6 1.3 3 9

100 5 uniform replace 367.5 7.7 348.4 378.5 7 0.8 5 8

100 5 uniform uniform 365.6 4.8 345.4 370.5 6 1.4 3 8

(continues in next page . . . )
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Table A.5: SEA with absolute time-controlled triggers representation and

constraint N sw
p ≤ 3 for the Vanzyl network (continued from previous page).

SEA parameters CE N sw

α µ recomb mutation med sd min max med sd min max

100 20 one-point none 368.7 8.2 356.6 390.4 7 1.5 4 9

100 20 one-point replace 338.1 7.0 328.2 356.0 6 1 4 8

100 20 one-point uniform 350.7 11.8 327.6 365.3 6 1.3 3 8

100 20 rand-arithmetical none 388.1 14.0 360.1 410.7 9 0.6 7 9

100 20 rand-arithmetical replace 341.8 8.8 332.4 364.5 8 0.8 6 9

100 20 rand-arithmetical uniform 345.0 9.5 332.3 365.1 9 0.5 7 9

100 20 two-point none 361.3 9.4 341.7 381.4 5 1.0 4 7

100 20 two-point replace 344.6 7.6 331.0 359.0 6 1.0 3 8

100 20 two-point uniform 339.2 9.8 326.8 359.1 5 1.1 3 8

100 20 uniform none 369.4 9.3 343.6 384.3 6 1.0 4 8

100 20 uniform replace 368.2 5.9 353.6 376.4 6 1.1 4 8

100 20 uniform uniform 366.0 7.6 348.8 377.4 6 1.1 4 8

200 5 one-point none 358.8 9.1 342.7 371.2 6 1.3 3 8

200 5 one-point replace 345.3 6.8 333.2 361.1 6 1.3 4 9

200 5 one-point uniform 347.8 8.3 328.2 362.0 6 1.3 3 8

200 5 rand-arithmetical none 375.3 12.6 356.0 417.1 9 0.4 8 9

200 5 rand-arithmetical replace 356.6 6.6 339.2 365.6 8 0.9 6 9

200 5 rand-arithmetical uniform 351.9 9.9 338.1 367.3 9 0.5 7 9

200 5 two-point none 349.4 10.2 333.8 367.2 5 0.7 4 6

200 5 two-point replace 351.3 7.0 332.9 364.9 6 1 4 8

200 5 two-point uniform 345.3 7.8 327.5 358.6 5 1.2 3 8

200 5 uniform none 369.6 5.6 350.7 381.6 5 1.0 4 8

200 5 uniform replace 367.6 7.4 352.7 381.1 6 1.1 4 7

200 5 uniform uniform 369.8 4.2 356.5 377.6 7 1.1 5 8

200 20 one-point none 357.9 8.7 335.2 370.7 6 1.2 3 8

200 20 one-point replace 345.8 5.7 334.8 362.1 6 1.3 3 8

200 20 one-point uniform 340.9 6.6 331.6 355.9 6 1.3 4 8

200 20 rand-arithmetical none 378.2 8.6 367.1 399.7 9 0.5 7 9

200 20 rand-arithmetical replace 351.2 7.5 339.5 366.5 8 0.9 6 9

200 20 rand-arithmetical uniform 353.2 10.1 331.0 369.2 9 0.6 7 9

200 20 two-point none 350.6 7.8 336.3 368.7 6 1.0 4 8

200 20 two-point replace 348.3 6.6 333.1 358.4 6 0.8 5 7

200 20 two-point uniform 347.2 8.6 330.0 362.5 5 1.2 3 7

200 20 uniform none 367.6 5.8 353.6 376.9 6 1.0 4 7

200 20 uniform replace 367.8 7.3 354.0 382.2 6 1.2 4 9

200 20 uniform uniform 365.1 6.2 350.7 375.5 6 1.3 3 8
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Table A.6: SEA with absolute time-controlled triggers representation and

constraint N sw
p ≤ 3 for the Richmond network.

SEA parameters CE N sw

α µ recomb mutation med sd min max med sd min max

50 5 one-point none 157.2 21.1 124.5 199.2 15 2.0 11 19

50 5 one-point replace 95.5 3.4 90.4 104.2 13 1.1 12 15

50 5 one-point uniform 97.1 3.9 91.7 106.2 16 1.1 14 17

50 5 rand-arithmetical none 161.1 21.2 133.5 214.6 20 1.8 16 21

50 5 rand-arithmetical replace 105.0 4.7 96.9 110.6 19 0.9 19 21

50 5 rand-arithmetical uniform 96.1 7.8 94.1 124.1 21 0.4 20 21

50 5 two-point none 159.9 17.1 117.1 174.2 14 2.0 11 18

50 5 two-point replace 95.4 2.9 91.0 102.5 14 1.0 12 15

50 5 two-point uniform 94.3 2.9 90.9 99.9 14 1.2 13 17

50 5 uniform none 131.4 26.7 114.1 198.7 14 1.8 11 17

50 5 uniform replace 109.8 7.2 100.2 124.1 17 1.5 14 19

50 5 uniform uniform 103.6 4.2 93.6 109.9 15 1.6 12 18

50 20 one-point none 158.4 14.7 129.6 178.5 15 1.8 13 19

50 20 one-point replace 96.1 2.5 91.8 100.1 14 0.9 13 16

50 20 one-point uniform 95.5 4.6 91.2 107.4 15 2.3 11 18

50 20 rand-arithmetical none 162.7 19.1 124.5 199.3 21 0.9 18 21

50 20 rand-arithmetical replace 102.6 5.8 96.9 113.2 20 1.2 17 21

50 20 rand-arithmetical uniform 97.5 2.9 92.6 101.1 20 0.5 20 21

50 20 two-point none 141.1 22.6 124.2 198.3 14 1.6 11 17

50 20 two-point replace 95.5 2.2 92.1 100.9 13 1.6 10 16

50 20 two-point uniform 98.3 5.8 90.0 106.3 14 2.0 11 19

50 20 uniform none 122.1 31.5 111.2 211.4 13 2.0 10 17

50 20 uniform replace 104.8 4.9 94.8 111.5 15 2.3 11 19

50 20 uniform uniform 103.1 4.7 98.3 116.3 14 1.7 12 18

100 5 one-point none 135.3 19.4 115.3 191.3 14 2.3 10 17

100 5 one-point replace 96.4 3.1 91.0 102.3 14 1.5 12 17

100 5 one-point uniform 98.1 5.0 94.1 112.7 15 2.6 12 20

100 5 rand-arithmetical none 175.7 19.3 136.9 197.5 21 0.5 20 21

100 5 rand-arithmetical replace 106.9 7.1 98.0 129.3 20 1.0 18 21

100 5 rand-arithmetical uniform 97.7 3.0 92.4 102.3 21 0.4 20 21

100 5 two-point none 126.7 10.5 112.2 148.7 13 1.1 12 15

100 5 two-point replace 103.0 3.7 96.2 108.8 13 1.6 10 16

100 5 two-point uniform 96.5 4.4 91.0 106.6 14 1.2 12 17

100 5 uniform none 147.7 24.7 113.5 213.4 14 2.3 11 18

100 5 uniform replace 116.3 7.8 107.4 135.4 15 2.1 10 19

100 5 uniform uniform 116.8 7.3 105.0 131.1 14 1.7 12 18

100 20 one-point none 129.8 13.3 109.8 160.3 15 2.0 12 18

100 20 one-point replace 97.0 2.8 91.7 100.5 13 1.9 11 17

100 20 one-point uniform 96.0 3.6 90.4 103.8 15 2.0 13 20

100 20 rand-arithmetical none 159.8 15.4 129.5 176.9 20 1.0 18 21

100 20 rand-arithmetical replace 104.7 12.5 98.1 148.7 20 0.9 18 21

100 20 rand-arithmetical uniform 97.3 3.3 93.6 105.4 21 0.4 20 21

100 20 two-point none 125.3 13.6 112.6 162.8 13 2.2 10 18

100 20 two-point replace 101.9 2.9 96.9 106.7 14 1.7 11 17

100 20 two-point uniform 98.0 4.2 88.8 107.1 14 1.6 13 18

100 20 uniform none 126.0 21.7 103.4 168.8 15 2.0 10 18

100 20 uniform replace 121.8 12.7 110.0 157.2 15 1.2 13 17

100 20 uniform uniform 115.8 6.8 102.6 131.9 14 1.6 11 17

200 5 one-point none 122.3 10.4 106.1 149.9 14 1.6 12 17

200 5 one-point replace 105.8 3.7 99.0 111.4 16 1.6 13 19

200 5 one-point uniform 101.0 5.0 94.8 113.5 15 1.5 13 19

200 5 rand-arithmetical none 166.0 20.0 134.5 222.4 21 1.4 16 21

200 5 rand-arithmetical replace 114.6 5.1 105.2 122.3 20 0.6 19 21

200 5 rand-arithmetical uniform 106.1 4.1 97.7 109.9 21 0.5 19 21

200 5 two-point none 117.7 9.9 97.7 134.4 13 1.4 11 15

200 5 two-point replace 113.9 3.7 106.6 121.0 15 1.3 13 18

200 5 two-point uniform 108.3 5.2 96.4 115.3 14 2.2 10 18

200 5 uniform none 142.2 13.9 120.2 165.8 14 1.6 12 18

200 5 uniform replace 135.5 14.8 115.2 164.9 15 1.9 12 19

200 5 uniform uniform 140.8 11.2 119.7 157.0 15 2.0 11 19
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Table A.6: SEA with absolute time-controlled triggers representation and

constraint N sw
p ≤ 3 for the Richmond network (continued from previous page).

SEA parameters CE N sw

α µ recomb mutation med sd min max med sd min max

200 20 one-point none 119.1 7.8 109.8 138.4 14 2.4 10 18

200 20 one-point replace 104.1 3.7 100.9 112.0 15 2.2 12 18

200 20 one-point uniform 101.6 4.0 96.3 111.2 16 1.9 12 18

200 20 rand-arithmetical none 160.3 14.0 130.9 179.7 21 1.0 18 21

200 20 rand-arithmetical replace 115.1 3.6 110.7 124.6 21 0.5 20 21

200 20 rand-arithmetical uniform 105.0 3.3 100.4 113.3 21 0.3 20 21

200 20 two-point none 117.5 7.7 103.1 131.1 12 1.5 11 16

200 20 two-point replace 111.0 4.8 102.9 119.2 14 1.1 13 16

200 20 two-point uniform 109.4 4.6 99.7 115.0 14 1.4 12 17

200 20 uniform none 139.5 14.8 115.9 171.8 15 2.2 11 19

200 20 uniform replace 135.4 9.4 121.5 152.2 14 1.3 12 17

200 20 uniform uniform 137.3 18.5 113.7 174.8 15 1.9 11 17
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Table A.7: SEA with relative time-controlled triggers representation and

constraint N sw
p ≤ 3 for the Vanzyl network.

SEA parameters CE N sw

α µ recomb mutation med sd min max med sd min max

50 5 one-point none 371.1 11.5 340.6 394.2 5 2.2 1 9

50 5 one-point replace 340.7 7.4 331.3 359.2 4 0.7 3 5

50 5 one-point uniform 344.8 10.3 330.4 361.1 5 0.9 3 7

50 5 rand-arithmetical none 374.7 7.2 358.9 387.9 9 0.6 7 9

50 5 rand-arithmetical replace 336.7 10.8 325.0 361.0 5 1.1 4 7

50 5 rand-arithmetical uniform 331.6 8.1 322.5 357.0 7 0.9 4 8

50 5 two-point none 372.6 12.9 350.5 404.1 5 2.1 2 9

50 5 two-point replace 352.5 9.6 328.1 362.0 4 0.8 3 5

50 5 two-point uniform 342.9 11.7 328.3 363.0 5 0.9 3 6

50 5 uniform none 361.4 8.7 341.4 385.8 5 1.5 2 8

50 5 uniform replace 341.2 9.9 328.8 362.1 4 1.0 2 6

50 5 uniform uniform 348.2 9.3 329.3 358.1 5 1.2 3 8

50 20 one-point none 379.5 11.1 354.0 405.4 6 1.6 3 9

50 20 one-point replace 344.5 11.2 323.4 362.8 3 0.7 2 5

50 20 one-point uniform 339.5 12.6 323.1 363.6 5 1.0 3 6

50 20 rand-arithmetical none 369.9 9.4 355.7 389.2 8 0.9 7 9

50 20 rand-arithmetical replace 334.1 6.1 315.9 341.4 5 1.2 3 7

50 20 rand-arithmetical uniform 332.2 10.8 324.6 356.0 6 1.1 4 9

50 20 two-point none 374.7 9.7 356.1 400.5 5 1.7 4 9

50 20 two-point replace 345.8 9.4 327.2 362.0 4 0.8 3 6

50 20 two-point uniform 355.3 10.7 325.6 359.9 5 1.0 3 7

50 20 uniform none 363.4 8.2 338.6 378.7 5 1.1 3 8

50 20 uniform replace 344.4 9.3 332.2 360.0 4 0.6 3 5

50 20 uniform uniform 353.5 10.9 328.2 361.3 5 0.6 4 6

100 5 one-point none 368.6 8.2 348.5 387.7 4 1.6 2 9

100 5 one-point replace 348.1 7.3 335.9 360.5 4 0.9 3 6

100 5 one-point uniform 355.9 7.9 335.2 362.7 5 1.2 4 8

100 5 rand-arithmetical none 364.2 7.6 348.5 375.6 9 0.8 7 9

100 5 rand-arithmetical replace 335.4 7.2 323.2 355.0 6 1.3 3 8

100 5 rand-arithmetical uniform 332.8 8.2 325.8 356.7 7 0.9 6 9

100 5 two-point none 366.4 10.2 338.5 389.0 5 1.2 3 8

100 5 two-point replace 349.0 7.8 331.1 361.0 4 0.8 3 5

100 5 two-point uniform 355.4 9.1 331.5 365.2 5 0.8 3 6

100 5 uniform none 359.3 7.2 339.9 368.1 4 0.8 2 5

100 5 uniform replace 346.6 8.4 325.8 359.8 4 0.6 3 5

100 5 uniform uniform 354.2 9.1 328.2 364.0 5 1.1 3 6

100 20 one-point none 364.4 9.4 336.4 379.5 5 1.8 2 9

100 20 one-point replace 351.5 8.3 333.0 363.1 4 0.8 3 5

100 20 one-point uniform 353.7 10.1 330.5 362.9 5 0.9 3 6

100 20 rand-arithmetical none 367.2 9.5 340.5 375.0 9 0.5 8 9

100 20 rand-arithmetical replace 336.9 8.1 326.6 358.6 7 1.1 4 8

100 20 rand-arithmetical uniform 330.5 4.8 323.0 342.8 7 0.8 6 9

100 20 two-point none 364.6 8.4 339.3 382.5 5 1.8 2 9

100 20 two-point replace 349.5 6.3 335.8 361.2 4 0.7 3 5

100 20 two-point uniform 356.9 6.3 339.6 362.1 5 1.4 3 8

100 20 uniform none 358.4 6.5 336.6 364.0 4 1.5 2 8

100 20 uniform replace 351.7 5.9 340.1 360.3 4 0.7 3 6

100 20 uniform uniform 356.3 5.9 341.1 363.9 5 1.4 3 9

200 5 one-point none 363.4 8.6 334.3 371.1 4 1.3 2 7

200 5 one-point replace 351.8 9.0 329.3 363.4 4 1.0 3 7

200 5 one-point uniform 359.6 5.9 344.3 364.0 5 1.0 3 7

200 5 rand-arithmetical none 355.3 9.0 339.6 373.2 9 0.7 7 9

200 5 rand-arithmetical replace 341.9 6.0 331.2 353.8 6 1.1 4 8

200 5 rand-arithmetical uniform 338.2 5.6 334.5 354.4 8 0.9 5 9

200 5 two-point none 360.5 6.5 338.4 370.3 4 1.0 2 6

200 5 two-point replace 351.4 8.8 327.2 364.4 4 0.8 3 6

200 5 two-point uniform 358.6 5.1 349.5 368.1 4 1.0 3 7

200 5 uniform none 358.3 5.4 344.1 365.8 4 0.7 3 5

200 5 uniform replace 352.6 6.9 333.2 361.0 4 0.8 3 6

200 5 uniform uniform 359.0 5.5 339.0 364.4 4 1.1 3 7
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Table A.7: SEA with relative time-controlled triggers representation and

constraint N sw
p ≤ 3 for the Vanzyl network (continued from previous page).

SEA parameters CE N sw

α µ recomb mutation med sd min max med sd min max

200 20 one-point none 362.5 7.5 338.2 367.2 4 1.7 2 8

200 20 one-point replace 349.4 7.3 335.1 361.5 4 0.7 3 5

200 20 one-point uniform 356.3 5.9 341.0 365.7 5 1.1 3 6

200 20 rand-arithmetical none 352.4 8.8 340.3 375.2 9 0.5 7 9

200 20 rand-arithmetical replace 340.8 5.3 325.9 349.7 6 1.3 4 9

200 20 rand-arithmetical uniform 339.6 7.3 327.8 358.1 8 1.2 5 9

200 20 two-point none 359.4 10.3 333.2 377.3 4 1.0 3 7

200 20 two-point replace 352.5 7.1 334.5 362.3 4 0.7 3 5

200 20 two-point uniform 361.8 5.9 345.5 367.0 5 1.2 3 7

200 20 uniform none 357.3 6.7 343.3 365.1 4 0.8 3 5

200 20 uniform replace 350.1 7.5 339.4 361.5 4 0.9 3 6

200 20 uniform uniform 354.9 6.5 342.6 363.4 4 1.0 3 6



APPENDIX A. RESULTS OF SIMPLE EVOLUTIONARY ALGORITHM 177

Table A.8: SEA with relative time-controlled triggers representation and

constraint N sw
p ≤ 3 for the Richmond network.

SEA parameters CE N sw

α µ recomb mutation med sd min max med sd min max

50 5 one-point none 174.7 24.5 136.6 221.6 19 1.0 17 21

50 5 one-point replace 101.3 3.8 97.0 112.1 19 1.0 18 21

50 5 one-point uniform 99.2 11.0 94.8 125.2 20 0.6 19 21

50 5 rand-arithmetical none 140.3 21.3 125.9 189.6 20 1.1 18 21

50 5 rand-arithmetical replace 93.9 3.5 90.5 104.0 13 1.7 11 16

50 5 rand-arithmetical uniform 92.3 1.6 90.3 95.4 16 1.7 14 20

50 5 two-point none 161.3 26.9 141.6 220.1 16 3.3 9 21

50 5 two-point replace 96.9 2.7 92.7 101.7 10 1.4 8 13

50 5 two-point uniform 100.4 3.9 91.0 104.3 13 2.4 9 16

50 5 uniform none 154.5 32.4 123.9 243.6 13 3.6 8 20

50 5 uniform replace 102.3 4.5 92.5 108.6 10 1.5 7 12

50 5 uniform uniform 101.8 7.1 92.5 121.3 13 2.5 9 19

50 20 one-point none 175.2 27.0 130.7 216.4 20 1.2 18 21

50 20 one-point replace 100.2 3.6 97.1 108.2 19 0.9 18 21

50 20 one-point uniform 98.3 5.2 93.6 110.6 20 0.6 19 21

50 20 rand-arithmetical none 147.3 20.9 124.0 193.5 21 0.9 19 21

50 20 rand-arithmetical replace 94.4 3.5 89.3 104.3 13 1.8 11 18

50 20 rand-arithmetical uniform 93.6 1.5 91.6 97.4 16 1.7 12 18

50 20 two-point none 168.2 29.6 132.9 226.2 17 3.0 10 20

50 20 two-point replace 100.4 4.4 93.2 110.2 10 0.9 9 12

50 20 two-point uniform 102.3 7.3 90.4 122.6 14 1.5 11 16

50 20 uniform none 150.4 22.0 120.1 192.4 13 2.4 10 19

50 20 uniform replace 102.0 5.4 92.9 109.6 10 1.3 8 12

50 20 uniform uniform 101.8 6.3 94.8 121.5 14 2.2 10 18

100 5 one-point none 168.5 24.7 127.0 211.8 19 1.1 17 21

100 5 one-point replace 113.4 5.2 107.7 123.5 19 1.0 17 20

100 5 one-point uniform 114.4 6.5 106.3 128.9 20 0.8 18 21

100 5 rand-arithmetical none 140.3 14.5 123.8 173.9 21 0.5 20 21

100 5 rand-arithmetical replace 100.1 4.9 93.6 111.2 15 2.5 11 19

100 5 rand-arithmetical uniform 94.6 1.6 92.6 97.0 18 1.4 15 19

100 5 two-point none 151.9 31.6 119.8 225.8 16 2.9 11 20

100 5 two-point replace 112.8 4.7 108.2 125.7 10 1.9 6 13

100 5 two-point uniform 117.5 5.8 107.8 125.2 12 2.4 7 15

100 5 uniform none 132.6 13.8 112.4 164.0 11 3.6 9 20

100 5 uniform replace 117.2 5.8 108.6 127.8 10 1.7 8 13

100 5 uniform uniform 120.7 4.8 109.5 125.1 13 2.0 9 16

100 20 one-point none 146.8 19.7 127.6 189.9 19 1.2 17 21

100 20 one-point replace 112.2 5.1 104.4 120.4 18 1.3 17 21

100 20 one-point uniform 115.5 6.9 107.6 128.7 20 1.0 18 21

100 20 rand-arithmetical none 139.4 11.0 129.0 168.1 21 0.8 19 21

100 20 rand-arithmetical replace 97.4 5.1 89.8 109.4 16 1.6 13 18

100 20 rand-arithmetical uniform 95.1 2.0 91.5 98.9 18 1.4 16 20

100 20 two-point none 168.0 25.3 130.5 209.2 15 4.1 6 20

100 20 two-point replace 114.7 4.2 105.7 118.5 9 1.7 8 13

100 20 two-point uniform 117.2 6.1 104.2 123.2 13 2.4 8 17

100 20 uniform none 136.5 13.3 117.8 166.2 12 2.7 7 17

100 20 uniform replace 114.8 4.0 109.6 125.5 9 1.5 6 11

100 20 uniform uniform 120.4 5.7 102.6 125.4 12 1.5 10 16

200 5 one-point none 135.1 14.4 120.9 165.3 14 3.3 8 19

200 5 one-point replace 123.8 6.0 116.9 136.6 9 4.3 7 20

200 5 one-point uniform 127.1 8.6 118.7 147.9 13 1.8 9 15

200 5 rand-arithmetical none 134.5 9.1 120.6 155.9 21 0.4 20 21

200 5 rand-arithmetical replace 106.8 3.7 97.8 111.8 17 2.3 10 19

200 5 rand-arithmetical uniform 100.6 3.0 97.5 108.7 20 0.8 18 21

200 5 two-point none 147.6 21.0 125.6 200.0 14 3.1 9 21

200 5 two-point replace 127.3 6.3 116.3 137.8 9 2.5 6 17

200 5 two-point uniform 131.1 8.1 116.0 143.3 14 2.6 10 21

200 5 uniform none 135.1 13.4 122.8 172.3 13 4.0 9 21

200 5 uniform replace 130.3 3.8 120.7 136.9 11 2.8 7 20

200 5 uniform uniform 132.5 6.7 123.4 142.9 12 2.3 9 16
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Table A.8: SEA with relative time-controlled triggers representation and

constraint N sw
p ≤ 3 for the Richmond network (continued from previous page).

SEA parameters CE N sw

α µ recomb mutation med sd min max med sd min max

200 20 one-point none 135.6 16.8 122.3 187.7 14 3.4 6 18

200 20 one-point replace 130.9 5.6 121.6 140.9 11 2.1 7 15

200 20 one-point uniform 127.2 8.2 104.4 138.9 12 2.3 8 17

200 20 rand-arithmetical none 129.0 9.7 122.0 159.8 21 0.6 19 21

200 20 rand-arithmetical replace 107.9 4.2 102.6 118.0 17 2.0 14 20

200 20 rand-arithmetical uniform 100.5 3.1 94.9 105.8 19 1.0 18 21

200 20 two-point none 132.9 12.5 116.8 156.6 15 2.9 7 19

200 20 two-point replace 127.3 7.6 113.9 142.2 9 1.3 7 11

200 20 two-point uniform 128.8 6.3 117.7 139.9 12 3.4 8 20

200 20 uniform none 132.6 10.6 123.2 156.6 11 2.8 7 18

200 20 uniform replace 129.4 6.7 114.6 138.6 10 4.0 8 20

200 20 uniform uniform 132.1 6.2 118.1 140.2 11 2.3 8 16

Table A.9: Results of SEA with the binary representation and not

constraint on number of pump switches for the Vanzyl network.

SEA parameters CE N sw

α µ recomb mutation med sd min max med sd min max

50 20 one-point flip 344.0 4.7 332.6 351.0 12 1.6 9 16

50 20 one-point none 380.8 10.4 362.6 399.5 15 1.9 12 19

50 20 two-point flip 345.7 4.3 338.7 357.8 13 2.1 9 18

50 20 two-point none 381.3 16.2 355.9 424.6 17 1.7 12 20

50 20 uniform flip 345.4 3.4 336.8 354.0 13 2.1 9 17

50 20 uniform none 352.7 10.5 333.3 375.1 14 2.8 8 19

100 20 one-point flip 350.7 4.3 343.6 358.3 13 1.6 10 16

100 20 one-point none 371.5 10.6 351.2 394.8 15 2.0 11 19

100 20 two-point flip 351.0 5.0 344.4 365.5 13 1.6 10 17

100 20 two-point none 373.4 9.1 358.1 394.4 16 2.5 11 21

100 20 uniform flip 349.7 4.6 337.5 357.4 13 1.6 10 16

100 20 uniform none 338.7 9.9 327.8 358.4 11 1.8 8 16

200 20 one-point flip 357.2 3.9 349.2 362.7 14 2.0 11 18

200 20 one-point none 350.9 9.5 331.1 364.8 13 2.1 9 20

200 20 two-point flip 358.4 3.9 350.6 365.6 15 2.5 10 19

200 20 two-point none 360.9 7.1 349.6 372.3 14 1.8 10 18

200 20 uniform flip 356.5 4.8 348.5 364.6 14 1.6 11 16

200 20 uniform none 328.2 2.6 323.5 333.5 10 2.0 6 14
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Table A.10: Results of SEA with the binary representation and not

constraint on number of pump switches for the Richmond network.

SEA parameters CE N sw

α µ recomb mutation med sd min max med sd min max

50 5 one-point flip 93.2 1.9 91.7 98.0 33 3.3 28 38

50 5 one-point none 146.4 15.0 124.0 179.1 40 2.6 36 44

50 5 two-point flip 94.0 1.3 91.8 95.7 31 3.0 28 38

50 5 two-point none 146.9 20.0 119.2 183.1 42 3.4 37 46

50 5 uniform flip 91.7 1.9 90.4 97.0 30 2.7 26 37

50 5 uniform none 120.4 7.7 109.8 136.4 40 4.0 33 48

100 5 one-point flip 94.9 1.5 91.8 96.6 32 2.4 28 37

100 5 one-point none 126.7 12.6 113.6 155.8 40 3.5 34 45

100 5 two-point flip 95.1 2.0 92.5 99.1 35 2.9 28 40

100 5 two-point none 121.7 19.6 113.1 173.8 39 3.3 35 47

100 5 uniform flip 93.6 1.0 92.3 95.9 31 2.6 26 35

100 5 uniform none 106.4 8.5 97.8 124.3 38 4.3 31 46

200 20 one-point flip 122.7 4.0 116.4 131.2 41 2.9 36 48

200 20 one-point none 115.0 9.0 106.9 142.8 40 2.9 34 48

200 20 two-point flip 117.4 2.1 114.1 121.8 40 2.3 36 44

200 20 two-point none 115.1 5.1 108.2 129.8 39 2.4 33 43

200 20 uniform flip 123.5 1.9 120.3 126.6 40 3.1 34 44

200 20 uniform none 94.8 3.0 91.1 102.3 31 2.7 28 36
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Table B.1: Results of ACO for the Vanzyl network.

ACO parameters CE (N sw
p = 3) CE (N sw

p ≤ 3)

A Sel. ρ Update med. sd. best worst med. sd. best worst

10 bf 0.85 ∆τ(S) = Cmax
E /CE(S) 368.8 5.2 355.3 376.7 363.6 4.4 355.7 374.2

10 ib 0.85 ∆τ(S) = Cmax
E /CE(S) 361.8 8.8 330.6 366.3 359.6 6.0 336.1 367.7

10 bf 0.90 ∆τ(S) = Cmax
E /CE(S) 365.3 7.7 346.9 375.9 362.3 7.5 342.4 378.5

10 ib 0.90 ∆τ(S) = Cmax
E /CE(S) 358.4 11.1 324.9 362.0 356.7 4.9 341.9 361.3

10 bf 0.95 ∆τ(S) = Cmax
E /CE(S) 362.8 8.2 338.5 371.8 360.0 7.7 334.1 366.5

10 ib 0.95 ∆τ(S) = Cmax
E /CE(S) 352.7 8.3 329.6 361.4 354.1 7.0 329.3 359.6

10 bf 0.98 ∆τ(S) = Cmax
E /CE(S) 362.1 9.4 337.6 367.9 357.6 12.3 328.1 365.9

10 ib 0.98 ∆τ(S) = Cmax
E /CE(S) 353.2 5.9 336.8 362.4 353.0 7.0 330.0 358.9

20 bf 0.85 ∆τ(S) = Cmax
E /CE(S) 364.5 8.0 341.5 373.0 360.2 6.5 342.0 369.6

20 ib 0.85 ∆τ(S) = Cmax
E /CE(S) 359.6 11.4 327.4 363.9 357.5 9.0 331.1 362.8

20 bf 0.90 ∆τ(S) = Cmax
E /CE(S) 361.7 9.3 340.4 370.1 359.8 9.9 332.7 365.1

20 ib 0.90 ∆τ(S) = Cmax
E /CE(S) 353.2 12.3 328.3 363.6 356.0 9.0 327.4 363.3

20 bf 0.95 ∆τ(S) = Cmax
E /CE(S) 360.8 11.3 331.7 368.0 359.0 8.0 336.0 366.3

20 ib 0.95 ∆τ(S) = Cmax
E /CE(S) 356.2 9.0 329.8 363.0 349.9 7.8 330.5 361.1

20 bf 0.98 ∆τ(S) = Cmax
E /CE(S) 358.4 13.1 325.3 363.2 356.9 10.1 330.2 360.2

20 ib 0.98 ∆τ(S) = Cmax
E /CE(S) 355.6 5.6 343.7 362.2 351.2 7.2 335.0 360.3

40 bf 0.85 ∆τ(S) = Cmax
E /CE(S) 361.5 9.9 326.0 366.5 360.0 8.6 335.8 366.3

40 ib 0.85 ∆τ(S) = Cmax
E /CE(S) 359.5 10.2 330.1 365.2 355.5 8.2 330.6 361.4

40 bf 0.90 ∆τ(S) = Cmax
E /CE(S) 357.3 11.5 327.1 367.0 358.6 11.7 330.6 365.1

40 ib 0.90 ∆τ(S) = Cmax
E /CE(S) 357.6 14.4 326.7 362.0 354.9 9.2 324.8 361.8

40 bf 0.95 ∆τ(S) = Cmax
E /CE(S) 359.0 11.5 332.4 364.3 356.7 11.8 326.7 362.3

40 ib 0.95 ∆τ(S) = Cmax
E /CE(S) 352.9 10.3 327.6 361.4 351.8 7.9 327.2 359.9

40 bf 0.98 ∆τ(S) = Cmax
E /CE(S) 341.9 12.7 326.9 365.5 354.3 10.3 330.0 360.8

40 ib 0.98 ∆τ(S) = Cmax
E /CE(S) 352.7 5.7 338.3 358.3 350.9 6.8 337.0 361.6

80 bf 0.85 ∆τ(S) = Cmax
E /CE(S) 356.3 9.6 335.8 366.4 357.4 10.7 329.8 363.9

80 ib 0.85 ∆τ(S) = Cmax
E /CE(S) 353.1 13.3 321.6 361.9 355.8 11.4 327.4 361.7

80 bf 0.90 ∆τ(S) = Cmax
E /CE(S) 346.0 11.3 328.6 365.3 356.7 11.0 333.3 364.3

80 ib 0.90 ∆τ(S) = Cmax
E /CE(S) 343.6 11.2 329.3 360.2 349.3 11.1 324.8 358.9

80 bf 0.95 ∆τ(S) = Cmax
E /CE(S) 338.5 9.7 327.5 362.8 345.6 12.4 318.2 361.3

80 ib 0.95 ∆τ(S) = Cmax
E /CE(S) 348.0 6.5 334.8 360.7 352.9 7.3 329.8 360.2

80 bf 0.98 ∆τ(S) = Cmax
E /CE(S) 344.3 9.4 327.4 363.7 339.9 11.1 326.8 359.4

80 ib 0.98 ∆τ(S) = Cmax
E /CE(S) 352.1 5.2 339.5 363.2 353.7 6.2 337.1 361.5

10 bf 0.85 ∆τ = 1 366.6 4.4 354.9 377.2 362.4 6.2 351.7 377.5

10 ib 0.85 ∆τ = 1 360.5 5.8 343.7 367.3 360.0 6.6 334.4 364.4

10 bf 0.90 ∆τ = 1 365.2 6.0 351.0 373.3 362.6 5.9 344.1 372.4

10 ib 0.90 ∆τ = 1 359.5 11.7 330.1 367.1 356.4 7.4 328.2 362.0

10 bf 0.95 ∆τ = 1 364.6 7.7 340.8 369.7 358.7 7.2 338.4 366.2

10 ib 0.95 ∆τ = 1 354.7 7.9 332.1 361.8 352.0 6.2 335.5 359.8

10 bf 0.98 ∆τ = 1 361.4 9.7 334.9 367.9 357.6 12.1 319.8 367.3

10 ib 0.98 ∆τ = 1 356.4 6.4 342.1 363.9 347.8 7.1 334.1 359.4

20 bf 0.85 ∆τ = 1 365.4 6.5 337.0 371.3 361.8 5.6 344.1 368.4

20 ib 0.85 ∆τ = 1 359.9 11.5 327.7 367.1 358.4 6.3 332.7 364.1

20 bf 0.90 ∆τ = 1 363.7 8.7 341.2 370.4 359.3 9.6 335.8 364.7

20 ib 0.90 ∆τ = 1 355.1 13.9 325.5 363.8 355.6 10.4 323.9 359.3

20 bf 0.95 ∆τ = 1 359.6 10.3 334.4 365.4 358.4 11.7 328.2 365.0

20 ib 0.95 ∆τ = 1 350.1 8.3 330.7 361.7 352.2 6.7 334.4 358.7

20 bf 0.98 ∆τ = 1 358.7 13.0 329.3 365.3 357.5 11.1 329.6 362.1

20 ib 0.98 ∆τ = 1 351.7 6.2 336.8 362.2 351.6 6.5 338.3 360.1

40 bf 0.85 ∆τ = 1 361.3 11.0 331.2 368.1 361.6 7.5 339.4 367.3

40 ib 0.85 ∆τ = 1 355.2 11.5 331.0 366.2 357.8 10.7 325.4 362.1

40 bf 0.90 ∆τ = 1 361.0 9.3 334.1 369.1 357.3 11.4 327.2 363.9

40 ib 0.90 ∆τ = 1 351.4 11.4 327.0 361.0 354.3 10.4 329.0 362.1

40 bf 0.95 ∆τ = 1 344.1 10.4 334.3 363.9 356.0 11.1 328.7 362.6

40 ib 0.95 ∆τ = 1 351.0 9.0 329.0 361.7 348.1 6.8 332.7 360.1

40 bf 0.98 ∆τ = 1 350.4 10.4 331.6 365.4 340.1 11.5 327.7 362.1

40 ib 0.98 ∆τ = 1 352.5 7.0 328.7 361.8 351.0 6.7 338.4 360.3

80 bf 0.85 ∆τ = 1 351.2 10.6 334.8 365.6 344.6 12.4 329.3 363.1

80 ib 0.85 ∆τ = 1 352.8 12.7 321.6 362.7 345.8 12.7 326.1 361.3

80 bf 0.90 ∆τ = 1 355.1 11.7 329.6 363.7 354.1 12.4 326.7 363.9

80 ib 0.90 ∆τ = 1 346.4 12.0 324.0 361.0 349.2 10.1 327.6 359.8

80 bf 0.95 ∆τ = 1 346.2 10.6 330.1 363.3 342.6 11.2 326.5 362.2

80 ib 0.95 ∆τ = 1 349.1 7.1 334.1 360.2 354.4 6.5 333.6 360.8

80 bf 0.98 ∆τ = 1 341.3 9.7 326.5 364.5 350.2 8.8 334.9 359.8

80 ib 0.98 ∆τ = 1 355.1 5.4 340.6 363.7 352.8 6.6 338.9 361.3
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Table B.2: Results of ACO for the Richmond network.

ACO parameters CE (N sw
p = 3) CE (N sw

p ≤ 3)

A Sel. ρ Update med. sd. best worst med. sd. best worst

10 bf 0.85 ∆τ(S) = Cmax
E /CE(S) 110.6 6.0 99.0 120.8 117.2 10.0 103.3 136.1

10 ib 0.85 ∆τ(S) = Cmax
E /CE(S) 99.0 3.7 95.4 107.4 95.6 5.4 88.1 105.8

10 bf 0.90 ∆τ(S) = Cmax
E /CE(S) 112.2 6.6 101.5 124.0 111.9 3.5 107.5 118.5

10 ib 0.90 ∆τ(S) = Cmax
E /CE(S) 93.8 2.4 91.4 100.8 90.5 3.1 88.7 99.1

10 bf 0.95 ∆τ(S) = Cmax
E /CE(S) 102.7 4.5 98.5 113.6 103.9 3.9 95.0 110.6

10 ib 0.95 ∆τ(S) = Cmax
E /CE(S) 102.2 3.6 97.1 108.5 102.3 3.4 94.4 108.1

10 bf 0.98 ∆τ(S) = Cmax
E /CE(S) 99.4 3.7 93.2 106.4 98.1 6.5 91.4 115.8

10 ib 0.98 ∆τ(S) = Cmax
E /CE(S) 108.9 3.1 105.9 115.8 110.2 3.2 104.6 117.1

20 bf 0.85 ∆τ(S) = Cmax
E /CE(S) 107.9 7.6 99.5 129.2 107.3 6.8 96.8 121.3

20 ib 0.85 ∆τ(S) = Cmax
E /CE(S) 95.7 2.4 92.2 101.4 94.3 3.5 90.2 102.4

20 bf 0.90 ∆τ(S) = Cmax
E /CE(S) 103.0 7.1 92.0 118.2 101.5 5.9 97.3 114.1

20 ib 0.90 ∆τ(S) = Cmax
E /CE(S) 94.1 3.6 90.6 102.3 91.0 2.7 89.0 97.6

20 bf 0.95 ∆τ(S) = Cmax
E /CE(S) 98.9 3.8 93.3 108.7 98.6 3.4 94.5 105.2

20 ib 0.95 ∆τ(S) = Cmax
E /CE(S) 102.9 3.1 96.1 106.1 100.9 3.2 98.3 111.0

20 bf 0.98 ∆τ(S) = Cmax
E /CE(S) 96.5 3.0 93.1 103.9 95.6 6.0 89.1 109.2

20 ib 0.98 ∆τ(S) = Cmax
E /CE(S) 109.2 2.3 104.7 111.8 108.8 3.5 106.0 117.5

40 bf 0.85 ∆τ(S) = Cmax
E /CE(S) 101.2 4.5 92.5 108.9 103.5 7.1 94.5 116.7

40 ib 0.85 ∆τ(S) = Cmax
E /CE(S) 94.7 1.8 91.2 97.1 93.9 3.2 89.2 98.5

40 bf 0.90 ∆τ(S) = Cmax
E /CE(S) 98.2 3.5 94.1 107.6 102.9 5.2 93.7 108.6

40 ib 0.90 ∆τ(S) = Cmax
E /CE(S) 92.9 1.7 89.6 96.5 90.8 2.1 88.2 95.6

40 bf 0.95 ∆τ(S) = Cmax
E /CE(S) 96.1 1.9 91.6 98.0 96.0 4.0 90.5 104.8

40 ib 0.95 ∆τ(S) = Cmax
E /CE(S) 102.3 2.8 98.9 109.3 105.2 3.3 97.7 111.7

40 bf 0.98 ∆τ(S) = Cmax
E /CE(S) 99.1 3.5 94.0 103.7 96.6 3.2 93.0 101.4

40 ib 0.98 ∆τ(S) = Cmax
E /CE(S) 110.0 2.9 103.4 115.4 111.5 2.5 107.2 115.1

80 bf 0.85 ∆τ(S) = Cmax
E /CE(S) 96.2 3.0 92.1 104.2 98.2 5.3 90.3 106.0

80 ib 0.85 ∆τ(S) = Cmax
E /CE(S) 94.0 2.6 89.0 99.3 90.5 2.7 89.0 99.0

80 bf 0.90 ∆τ(S) = Cmax
E /CE(S) 97.0 2.2 93.7 101.9 96.7 4.4 90.8 106.5

80 ib 0.90 ∆τ(S) = Cmax
E /CE(S) 95.5 3.7 91.6 103.5 95.0 2.6 91.3 100.2

80 bf 0.95 ∆τ(S) = Cmax
E /CE(S) 95.8 2.2 91.8 100.1 95.6 4.7 90.6 105.1

80 ib 0.95 ∆τ(S) = Cmax
E /CE(S) 107.3 3.2 100.6 111.5 107.8 2.3 105.3 112.2

80 bf 0.98 ∆τ(S) = Cmax
E /CE(S) 101.2 2.8 95.9 106.3 101.0 5.4 90.6 111.7

80 ib 0.98 ∆τ(S) = Cmax
E /CE(S) 110.5 2.3 106.3 114.8 113.8 3.3 108.4 120.7

10 bf 0.85 ∆τ = 1 109.1 6.7 95.9 120.6 112.5 5.5 101.2 119.3

10 ib 0.85 ∆τ = 1 100.5 5.1 89.9 109.5 95.4 3.3 90.3 102.7

10 bf 0.90 ∆τ = 1 104.2 6.7 96.7 118.1 113.4 10.8 99.8 138.8

10 ib 0.90 ∆τ = 1 94.0 2.3 90.2 97.9 94.7 3.0 90.1 100.5

10 bf 0.95 ∆τ = 1 101.6 4.3 96.7 111.7 103.5 6.6 95.3 116.5

10 ib 0.95 ∆τ = 1 100.5 4.2 96.4 111.0 104.1 3.4 100.4 111.0

10 bf 0.98 ∆τ = 1 97.5 4.2 90.8 107.0 98.7 4.4 93.9 108.9

10 ib 0.98 ∆τ = 1 110.2 3.1 103.3 114.0 110.4 2.8 105.3 114.9

20 bf 0.85 ∆τ = 1 106.0 5.7 97.3 119.2 105.6 7.7 93.1 124.3

20 ib 0.85 ∆τ = 1 96.0 4.0 92.6 106.0 92.2 3.1 88.4 99.2

20 bf 0.90 ∆τ = 1 101.4 5.2 93.7 109.8 102.6 7.3 96.6 120.8

20 ib 0.90 ∆τ = 1 93.1 1.8 90.2 95.4 91.1 2.7 88.5 98.4

20 bf 0.95 ∆τ = 1 97.6 2.7 94.2 103.4 99.1 3.3 93.7 103.6

20 ib 0.95 ∆τ = 1 103.0 3.6 98.3 110.0 104.7 3.9 96.5 110.2

20 bf 0.98 ∆τ = 1 97.4 3.2 91.5 102.1 97.8 4.9 90.6 109.3

20 ib 0.98 ∆τ = 1 111.2 2.0 109.5 117.2 111.9 3.1 106.9 118.3

40 bf 0.85 ∆τ = 1 101.2 4.5 95.4 110.4 101.6 3.1 97.2 107.6

40 ib 0.85 ∆τ = 1 95.0 1.7 91.4 97.6 91.1 3.3 88.5 99.3

40 bf 0.90 ∆τ = 1 99.9 4.8 90.4 106.8 102.6 4.7 93.3 109.2

40 ib 0.90 ∆τ = 1 94.5 1.7 91.8 97.3 92.2 2.1 89.3 96.9

40 bf 0.95 ∆τ = 1 95.8 2.2 91.4 99.4 96.2 3.9 89.0 102.7

40 ib 0.95 ∆τ = 1 106.0 3.8 98.9 111.5 105.9 3.4 100.4 113.3

40 bf 0.98 ∆τ = 1 99.2 2.4 95.4 104.0 97.4 4.3 92.5 106.8

40 ib 0.98 ∆τ = 1 108.7 3.1 105.6 116.4 113.7 4.4 104.5 120.7

80 bf 0.85 ∆τ = 1 98.9 3.8 94.3 107.9 97.5 4.4 91.4 106.0

80 ib 0.85 ∆τ = 1 92.9 2.1 91.1 97.5 94.4 2.9 88.1 99.1

80 bf 0.90 ∆τ = 1 96.8 2.3 93.0 99.9 98.9 3.5 91.2 103.2

80 ib 0.90 ∆τ = 1 97.1 2.2 92.2 100.8 99.9 2.7 95.1 105.0

80 bf 0.95 ∆τ = 1 96.3 2.4 92.7 100.6 96.2 2.8 90.4 100.7

80 ib 0.95 ∆τ = 1 108.8 3.0 104.6 114.0 110.7 3.9 103.1 116.5

80 bf 0.98 ∆τ = 1 103.3 3.3 95.9 108.6 106.9 3.8 97.3 111.5

80 ib 0.98 ∆τ = 1 111.4 3.6 105.0 118.7 115.4 4.2 108.0 120.5
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Table B.3: Results of MMAS for the Vanzyl network for constraint N sw
p ≤ 3.

MMAS parameters CE N sw

A Sel. ρ pbest med. sd. best worst med. sd. best worst

10 bf 0.85 0.05 343.8 10.9 327.7 360.7 4 1.2 3 7

10 ib 0.85 0.05 354.9 6.8 339.3 362.7 4 1.0 3 6

10 bf 0.85 0.5 355.7 10.1 334.1 363.1 4 1.1 3 7

10 ib 0.85 0.5 353.0 6.7 331.7 360.6 4 1.2 3 7

10 bf 0.85 0.7 358.5 9.8 336.3 369.5 5 1.0 3 7

10 ib 0.85 0.7 355.0 4.9 345.6 362.7 4 1.1 3 6

10 bf 0.85 0.9 359.3 8.7 334.2 364.8 4 1.0 3 7

10 ib 0.85 0.9 358.4 6.0 332.8 363.6 4 1.1 2 7

10 bf 0.85 0.9999 363.4 7.9 339.8 379.4 4 1.0 3 6

10 ib 0.85 0.9999 358.5 4.5 342.2 363.6 5 1.0 3 7

10 bf 0.90 0.05 340.7 9.4 327.7 358.6 5 0.9 3 6

10 ib 0.90 0.05 351.2 7.2 334.9 365.4 4 1.0 2 6

10 bf 0.90 0.5 357.3 11.5 324.7 363.6 4 1.1 3 7

10 ib 0.90 0.5 350.6 5.4 340.0 359.2 5 0.8 3 6

10 bf 0.90 0.7 359.0 10.3 330.8 366.5 4 1.1 2 6

10 ib 0.90 0.7 356.7 7.4 335.8 360.4 4 0.9 3 6

10 bf 0.90 0.9 361.2 10.4 328.2 365.5 4 1.1 2 6

10 ib 0.90 0.9 356.7 9.5 328.1 359.8 4 1.0 3 7

10 bf 0.90 0.9999 362.4 7.7 340.4 370.9 4 1.1 2 7

10 ib 0.90 0.9999 355.6 4.6 341.3 365.7 5 0.9 3 6

10 bf 0.95 0.05 341.7 9.1 327.0 358.5 5 1.3 3 9

10 ib 0.95 0.05 356.0 5.8 342.3 363.2 4 1.0 3 6

10 bf 0.95 0.5 353.9 10.9 331.4 363.1 4 0.9 2 6

10 ib 0.95 0.5 350.8 5.9 339.7 360.7 4 1.2 2 8

10 bf 0.95 0.7 358.0 12.7 327.1 365.4 4 1.4 2 7

10 ib 0.95 0.7 350.8 5.1 341.8 359.2 4 1.1 3 6

10 bf 0.95 0.9 356.0 9.7 332.3 361.6 4 0.9 3 6

10 ib 0.95 0.9 354.1 8.0 334.2 359.5 5 1.0 3 7

10 bf 0.95 0.9999 359.4 5.4 344.3 365.0 4 1.0 3 6

10 ib 0.95 0.9999 350.6 6.5 337.3 358.8 5 1.0 3 7

10 bf 0.98 0.05 344.7 11.2 327.6 359.3 5 1.1 3 7

10 ib 0.98 0.05 357.9 5.8 346.7 365.1 4 1.0 2 6

10 bf 0.98 0.5 349.8 10.0 328.2 363.1 4 0.8 3 6

10 ib 0.98 0.5 356.3 8.1 326.3 362.6 4 1.0 3 6

10 bf 0.98 0.7 346.7 12.1 329.8 363.5 5 0.8 3 6

10 ib 0.98 0.7 353.3 5.3 340.9 360.0 4 1.0 3 6

10 bf 0.98 0.9 354.9 11.4 327.7 362.7 4 0.9 3 6

10 ib 0.98 0.9 354.5 4.7 341.4 360.7 4 1.0 3 7

10 bf 0.98 0.9999 358.1 10.1 327.7 363.6 4 1.1 2 6

10 ib 0.98 0.9999 353.1 5.9 340.3 359.3 4 1.0 3 7

20 bf 0.85 0.05 345.3 11.3 328.2 361.0 5 0.9 4 7

20 ib 0.85 0.05 354.2 5.9 341.6 360.9 4 0.8 3 6

20 bf 0.85 0.5 356.7 10.3 327.4 363.1 4 0.9 3 6

20 ib 0.85 0.5 356.4 6.8 327.4 359.6 5 1.0 3 7

20 bf 0.85 0.7 358.3 9.1 327.7 363.1 4 1.0 3 6

20 ib 0.85 0.7 356.1 10.6 324.7 361.7 4 0.9 3 6

20 bf 0.85 0.9 358.6 10.9 327.1 365.5 4 1.0 2 7

20 ib 0.85 0.9 358.0 6.0 333.6 363.9 5 1.1 2 6

20 bf 0.85 0.9999 359.1 9.1 338.2 365.9 4 1.1 2 7

20 ib 0.85 0.9999 356.9 8.3 329.5 362.7 4 1.0 3 6

20 bf 0.90 0.05 342.9 11.6 327.7 359.9 5 0.9 3 7

20 ib 0.90 0.05 353.3 6.7 331.6 360.4 4 0.9 3 6

20 bf 0.90 0.5 356.0 11.3 327.7 363.1 4 0.8 3 5

20 ib 0.90 0.5 355.6 6.1 336.5 359.9 4 0.6 3 5

20 bf 0.90 0.7 353.4 10.8 333.3 363.6 5 0.7 3 6

20 ib 0.90 0.7 354.2 7.7 332.1 359.7 5 0.9 3 7

20 bf 0.90 0.9 359.3 10.9 330.2 368.2 4 0.9 3 6

20 ib 0.90 0.9 356.9 8.2 331.5 361.3 4 1.0 3 6

20 bf 0.90 0.9999 359.9 10.9 332.0 366.6 4 1.0 2 6

20 ib 0.90 0.9999 356.0 5.2 343.7 362.1 5 0.9 3 6

20 bf 0.95 0.05 350.3 10.3 329.8 360.7 4 1.2 3 7

20 ib 0.95 0.05 355.4 6.4 334.5 362.4 4 1.0 3 7
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Table B.3: Results of MMAS for the Vanzyl network for constraint N sw
p ≤ 3

(continued from previous page).

MMAS parameters CE N sw

A Sel. ρ pbest med. sd. best worst med. sd. best worst

20 bf 0.95 0.5 347.4 12.8 327.0 368.7 4 0.7 3 5

20 ib 0.95 0.5 354.4 5.5 341.2 360.5 4 1.0 3 7

20 bf 0.95 0.7 347.4 11.5 326.5 363.6 5 1.0 3 7

20 ib 0.95 0.7 354.1 7.2 331.7 359.5 5 0.9 3 7

20 bf 0.95 0.9 357.1 11.5 322.7 362.1 4 1.4 2 7

20 ib 0.95 0.9 352.2 5.4 340.5 359.5 4 0.9 3 6

20 bf 0.95 0.9999 356.9 8.6 335.7 365.3 4 1.2 2 7

20 ib 0.95 0.9999 352.0 5.3 341.8 360.3 5 1.1 3 7

20 bf 0.98 0.05 349.3 9.9 330.6 360.1 5 1.1 3 7

20 ib 0.98 0.05 359.3 4.8 345.3 363.8 4 1.0 3 6

20 bf 0.98 0.5 348.7 10.6 328.7 362.1 5 0.8 3 6

20 ib 0.98 0.5 357.2 9.5 327.4 363.9 4 1.0 2 6

20 bf 0.98 0.7 344.5 9.7 331.9 361.7 4 0.7 3 6

20 ib 0.98 0.7 356.7 7.4 332.2 364.5 4 0.9 3 6

20 bf 0.98 0.9 341.0 12.0 325.8 361.2 4 1.2 3 8

20 ib 0.98 0.9 354.9 5.0 343.8 362.7 5 1.1 3 7

20 bf 0.98 0.9999 341.6 11.0 323.1 359.4 5 0.9 3 6

20 ib 0.98 0.9999 358.4 6.0 341.8 362.7 4 1.0 3 7

40 bf 0.85 0.05 340.8 10.1 322.4 359.8 5 1.0 3 7

40 ib 0.85 0.05 353.6 6.5 337.7 361.6 4 0.9 3 6

40 bf 0.85 0.5 350.2 12.1 325.7 363.1 4 0.9 2 6

40 ib 0.85 0.5 354.3 8.8 332.4 363.1 5 1.0 3 6

40 bf 0.85 0.7 342.5 11.6 326.5 361.4 5 1.0 3 7

40 ib 0.85 0.7 355.7 11.6 325.8 359.8 4 1.1 3 6

40 bf 0.85 0.9 358.0 9.9 326.3 363.1 4 1.3 2 8

40 ib 0.85 0.9 356.0 8.1 329.6 359.4 4 1.0 3 6

40 bf 0.85 0.9999 358.9 11.1 327.4 365.3 4 0.8 3 6

40 ib 0.85 0.9999 356.3 9.4 330.0 363.2 4 0.9 3 6

40 bf 0.90 0.05 345.9 12.2 327.6 359.8 4 1.0 3 6

40 ib 0.90 0.05 352.3 6.5 336.1 362.7 4 0.7 3 6

40 bf 0.90 0.5 354.6 12.7 323.2 362.5 4 0.8 3 6

40 ib 0.90 0.5 355.1 5.1 339.3 361.0 5 0.8 3 6

40 bf 0.90 0.7 355.6 12.8 324.2 362.1 5 1.1 3 8

40 ib 0.90 0.7 346.9 9.7 327.2 360.7 5 0.8 3 6

40 bf 0.90 0.9 352.6 9.2 334.6 361.7 4 0.8 3 6

40 ib 0.90 0.9 350.3 10.6 325.0 360.4 4 1.0 3 6

40 bf 0.90 0.9999 358.4 11.2 326.5 363.9 4 1.1 2 6

40 ib 0.90 0.9999 352.4 9.4 327.7 361.2 4 0.7 3 6

40 bf 0.95 0.05 346.2 8.8 331.2 359.4 4 1.0 3 6

40 ib 0.95 0.05 357.1 4.2 345.0 363.3 4 0.9 3 6

40 bf 0.95 0.5 344.9 12.7 326.0 363.1 5 1.0 3 6

40 ib 0.95 0.5 353.8 7.7 333.8 361.0 5 1.1 3 6

40 bf 0.95 0.7 345.3 12.2 327.4 361.2 5 0.7 3 6

40 ib 0.95 0.7 353.9 5.7 339.1 362.3 4 0.9 3 6

40 bf 0.95 0.9 340.3 9.6 328.7 362.1 4 1.2 2 7

40 ib 0.95 0.9 355.4 7.1 336.8 360.8 5 1.0 3 6

40 bf 0.95 0.9999 339.7 13.8 325.0 362.1 4 0.7 3 5

40 ib 0.95 0.9999 356.1 6.9 339.0 360.1 5 0.8 3 6

40 bf 0.98 0.05 358.5 6.5 343.0 363.7 4 0.9 3 6

40 ib 0.98 0.05 358.1 4.2 348.3 363.6 5 0.8 3 6

40 bf 0.98 0.5 359.1 6.8 333.4 364.2 5 1.1 3 7

40 ib 0.98 0.5 358.4 4.5 349.2 365.3 5 1.0 3 7

40 bf 0.98 0.7 359.4 7.0 338.5 364.1 4 1.2 2 7

40 ib 0.98 0.7 359.1 10.4 323.4 365.5 4 1.1 3 7

40 bf 0.98 0.9 358.6 5.1 345.3 363.5 4 1.1 3 7

40 ib 0.98 0.9 361.0 6.9 336.7 366.8 5 0.8 3 6

40 bf 0.98 0.9999 359.9 6.7 344.3 365.8 5 1.2 3 7

40 ib 0.98 0.9999 357.0 8.8 335.0 368.1 4 1.1 2 6

80 bf 0.85 0.05 345.3 9.6 332.8 359.0 4 1.0 3 7

80 ib 0.85 0.05 352.3 8.6 335.7 361.5 4 1.1 3 7

80 bf 0.85 0.5 356.4 13.2 325.0 363.1 5 1.2 3 8
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Table B.3: Results of MMAS for the Vanzyl network for constraint N sw
p ≤ 3

(continued from previous page).

MMAS parameters CE N sw

A Sel. ρ pbest med. sd. best worst med. sd. best worst

80 ib 0.85 0.5 351.2 9.7 330.2 361.9 4 1.0 3 7

80 bf 0.85 0.7 344.6 11.1 327.2 360.8 4 1.0 3 6

80 ib 0.85 0.7 352.9 10.4 329.6 359.8 4 1.0 3 6

80 bf 0.85 0.9 357.9 12.3 324.7 363.6 4 1.1 3 6

80 ib 0.85 0.9 350.7 10.1 325.3 361.2 4 1.3 3 8

80 bf 0.85 0.9999 356.3 9.6 334.4 363.9 4 0.9 2 6

80 ib 0.85 0.9999 352.9 8.8 331.9 359.3 4 1.0 3 6

80 bf 0.90 0.05 344.5 10.4 329.6 362.0 4 1.2 3 9

80 ib 0.90 0.05 355.4 7.0 338.1 361.1 4 0.8 3 6

80 bf 0.90 0.5 340.1 12.1 323.3 361.8 5 0.9 3 6

80 ib 0.90 0.5 355.4 7.5 335.2 360.4 4 1.1 3 7

80 bf 0.90 0.7 343.8 12.1 324.6 364.3 5 0.9 3 6

80 ib 0.90 0.7 353.9 7.4 333.4 360.4 4 0.8 3 6

80 bf 0.90 0.9 344.9 10.4 329.4 362.2 4 1.1 3 7

80 ib 0.90 0.9 345.5 8.5 328.7 359.8 4 0.8 3 6

80 bf 0.90 0.9999 344.1 12.1 325.7 362.1 5 0.9 2 6

80 ib 0.90 0.9999 353.5 7.5 329.4 359.4 4 1.0 3 7

80 bf 0.95 0.05 353.4 10.6 325.9 366.0 4 1.0 3 7

80 ib 0.95 0.05 357.3 7.8 339.6 364.7 4 1.0 3 6

80 bf 0.95 0.5 359.3 7.6 337.9 364.4 4 1.0 3 6

80 ib 0.95 0.5 358.9 6.8 340.2 365.0 4 1.0 3 6

80 bf 0.95 0.7 356.5 7.4 337.0 364.4 4 1.0 3 6

80 ib 0.95 0.7 357.4 7.5 338.6 365.9 5 1.1 3 7

80 bf 0.95 0.9 354.9 9.8 326.2 363.8 4 1.0 3 6

80 ib 0.95 0.9 359.4 5.8 345.0 364.5 4 1.0 3 6

80 bf 0.95 0.9999 353.3 7.9 333.0 361.9 5 1.2 3 6

80 ib 0.95 0.9999 356.3 6.4 341.1 363.7 4 1.3 3 8

80 bf 0.98 0.05 359.7 8.7 330.4 365.5 4 1.2 2 7

80 ib 0.98 0.05 360.2 5.8 344.2 366.9 4 1.2 2 7

80 bf 0.98 0.5 358.4 6.9 342.3 366.2 4 1.0 3 7

80 ib 0.98 0.5 359.1 3.9 351.7 367.5 5 1.1 3 7

80 bf 0.98 0.7 359.6 4.3 347.0 365.2 4 1.0 3 6

80 ib 0.98 0.7 360.8 4.8 350.2 365.9 4 1.2 2 7

80 bf 0.98 0.9 359.4 6.5 343.1 364.5 5 1.1 3 8

80 ib 0.98 0.9 360.1 6.4 339.4 366.6 5 1.2 3 7

80 bf 0.98 0.9999 359.3 6.3 341.4 365.0 5 1.3 3 7

80 ib 0.98 0.9999 361.2 4.8 349.0 366.9 5 1.2 3 8
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Table B.4: Results of MMAS for the Richmond network for constraint N sw
p ≤ 3.

MMAS parameters CE N sw

A Sel. ρ pbest med. sd. best worst med. sd. best worst

10 bf 0.85 0.05 91.7 1.6 90.3 95.0 12 1.4 10 14

10 ib 0.85 0.05 115.8 4.1 110.5 125.4 10 1.8 7 12

10 bf 0.85 0.5 93.5 3.6 89.1 101.8 11 2.0 8 15

10 ib 0.85 0.5 100.2 5.2 90.0 110.3 12 1.8 9 15

10 bf 0.85 0.7 93.8 5.1 89.2 107.2 11 2.0 6 13

10 ib 0.85 0.7 90.9 2.1 88.7 95.3 12 1.2 10 14

10 bf 0.85 0.9 98.1 4.3 91.1 109.7 12 1.6 8 14

10 ib 0.85 0.9 91.7 3.2 89.2 97.2 11 1.6 9 14

10 bf 0.85 0.9999 108.4 13.1 94.1 148.2 12 2.8 6 17

10 ib 0.85 0.9999 95.4 3.3 90.3 99.7 12 1.3 9 14

10 bf 0.90 0.05 92.7 3.7 88.9 103.1 12 1.1 10 14

10 ib 0.90 0.05 117.8 3.6 111.8 123.5 10 1.9 7 13

10 bf 0.90 0.5 92.0 3.4 88.3 100.7 11 1.7 9 15

10 ib 0.90 0.5 106.9 3.4 96.8 110.9 12 2.0 9 15

10 bf 0.90 0.7 92.1 4.4 88.5 106.1 12 1.8 10 16

10 ib 0.90 0.7 102.9 3.5 96.3 108.2 12 2.1 8 15

10 bf 0.90 0.9 95.3 5.2 91.6 108.5 11 1.5 9 14

10 ib 0.90 0.9 96.9 2.9 90.8 99.5 12 2.0 9 16

10 bf 0.90 0.9999 108.2 7.2 101.0 124.6 10 1.2 7 12

10 ib 0.90 0.9999 92.5 2.6 90.2 99.8 12 2.1 10 17

10 bf 0.95 0.05 92.9 2.3 90.0 97.3 11 1.5 9 14

10 ib 0.95 0.05 114.9 3.9 106.0 120.6 10 1.3 7 12

10 bf 0.95 0.5 92.2 3.6 89.6 102.1 11 1.2 8 13

10 ib 0.95 0.5 110.7 3.6 104.9 117.3 11 1.9 9 15

10 bf 0.95 0.7 92.5 4.8 90.1 109.1 11 1.8 9 16

10 ib 0.95 0.7 106.5 3.0 103.3 114.2 13 1.8 11 17

10 bf 0.95 0.9 94.7 2.9 90.4 100.8 11 1.9 7 15

10 ib 0.95 0.9 108.0 3.0 101.0 111.6 12 1.1 10 14

10 bf 0.95 0.9999 103.5 5.5 92.4 113.8 10 1.8 6 13

10 ib 0.95 0.9999 104.7 4.1 97.4 110.4 13 1.9 8 15

10 bf 0.98 0.05 93.9 2.7 90.0 99.5 12 1.8 9 14

10 ib 0.98 0.05 122.1 3.5 115.6 130.5 10 1.9 7 13

10 bf 0.98 0.5 95.0 4.0 89.2 105.7 12 1.5 8 13

10 ib 0.98 0.5 116.9 4.7 104.5 125.0 11 1.5 8 13

10 bf 0.98 0.7 94.8 3.8 89.3 103.4 12 1.9 9 16

10 ib 0.98 0.7 115.8 3.0 109.0 118.5 10 1.2 8 12

10 bf 0.98 0.9 94.7 4.0 88.5 103.8 11 1.2 9 13

10 ib 0.98 0.9 112.8 3.6 108.1 120.0 10 1.8 8 14

10 bf 0.98 0.9999 100.0 4.8 91.1 107.7 10 1.0 9 12

10 ib 0.98 0.9999 115.5 3.5 108.1 120.3 11 2.1 7 16

20 bf 0.85 0.05 91.6 2.9 90.5 100.8 12 1.9 10 16

20 ib 0.85 0.05 111.9 3.3 105.8 118.4 12 1.1 10 13

20 bf 0.85 0.5 93.8 2.7 88.8 98.9 11 1.2 9 14

20 ib 0.85 0.5 91.3 2.2 88.0 96.4 12 1.5 9 14

20 bf 0.85 0.7 94.4 2.4 91.2 99.7 11 1.9 9 16

20 ib 0.85 0.7 90.3 1.6 88.3 93.7 12 2.0 9 15

20 bf 0.85 0.9 94.3 3.8 90.3 102.6 10 1.6 9 14

20 ib 0.85 0.9 91.8 4.8 88.8 109.5 11 0.9 10 13

20 bf 0.85 0.9999 102.7 7.5 94.5 121.3 11 1.8 8 13

20 ib 0.85 0.9999 95.9 3.7 89.1 100.0 10 1.4 9 13

20 bf 0.90 0.05 92.4 2.5 88.3 97.8 11 1.5 10 14

20 ib 0.90 0.05 112.7 3.8 106.2 118.8 10 1.6 8 13

20 bf 0.90 0.5 93.7 3.1 88.9 97.6 11 1.2 9 13

20 ib 0.90 0.5 98.7 2.6 94.6 105.8 11 1.8 9 15

20 bf 0.90 0.7 92.4 3.1 90.8 102.1 12 1.7 9 15

20 ib 0.90 0.7 96.9 3.5 90.8 102.0 11 2.4 9 18

20 bf 0.90 0.9 97.0 4.6 91.5 105.6 11 1.6 7 13

20 ib 0.90 0.9 91.6 2.2 89.0 96.9 11 1.2 9 13

20 bf 0.90 0.9999 105.2 6.7 91.3 117.9 11 1.7 8 14

20 ib 0.90 0.9999 91.9 1.7 88.8 96.0 13 1.4 9 15

20 bf 0.95 0.05 96.0 3.5 90.6 102.1 11 1.0 10 13

20 ib 0.95 0.05 114.1 4.3 108.1 124.5 11 1.5 8 14
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Table B.4: Results of MMAS for the Richmond network for constraint N sw
p ≤ 3

(continued from previous page).

MMAS parameters CE N sw

A Sel. ρ pbest med. sd. best worst med. sd. best worst

20 bf 0.95 0.5 91.6 4.6 88.4 104.8 11 1.5 9 14

20 ib 0.95 0.5 107.9 3.0 104.0 113.8 12 1.1 10 13

20 bf 0.95 0.7 93.0 2.9 88.5 98.6 11 1.6 8 13

20 ib 0.95 0.7 106.7 3.3 102.2 113.0 11 1.7 8 14

20 bf 0.95 0.9 94.4 5.0 90.8 106.3 11 1.6 7 13

20 ib 0.95 0.9 105.5 2.9 101.2 109.8 11 1.9 9 15

20 bf 0.95 0.9999 95.2 3.2 90.7 101.5 11 1.6 8 14

20 ib 0.95 0.9999 104.9 3.7 98.4 111.1 13 1.2 11 15

20 bf 0.98 0.05 100.7 3.7 94.3 107.3 11 1.0 9 13

20 ib 0.98 0.05 122.5 5.1 111.2 128.7 10 1.4 7 12

20 bf 0.98 0.5 102.1 3.4 93.8 103.2 11 2.0 8 15

20 ib 0.98 0.5 117.6 5.4 106.9 128.9 11 1.6 8 13

20 bf 0.98 0.7 98.6 3.3 94.4 105.5 10 1.6 8 13

20 ib 0.98 0.7 118.4 4.1 111.0 127.9 11 1.6 8 13

20 bf 0.98 0.9 98.7 3.9 90.8 104.5 11 1.5 9 15

20 ib 0.98 0.9 119.5 4.0 112.4 127.5 10 1.8 7 13

20 bf 0.98 0.9999 97.6 3.8 92.3 105.7 11 1.5 8 14

20 ib 0.98 0.9999 119.7 3.9 106.8 122.5 10 1.4 9 14

40 bf 0.85 0.05 92.1 2.4 88.9 98.2 12 1.7 10 15

40 ib 0.85 0.05 107.7 3.5 102.9 116.0 12 1.5 9 14

40 bf 0.85 0.5 92.5 3.1 88.6 100.0 11 1.7 8 14

40 ib 0.85 0.5 90.9 1.7 88.7 96.1 11 0.8 10 13

40 bf 0.85 0.7 92.1 2.6 90.6 99.8 11 1.7 8 15

40 ib 0.85 0.7 90.7 1.7 87.7 93.2 11 1.4 9 14

40 bf 0.85 0.9 92.9 4.1 90.1 104.4 12 1.8 9 15

40 ib 0.85 0.9 91.7 2.5 90.0 98.2 11 1.5 9 15

40 bf 0.85 0.9999 104.2 6.2 94.2 113.4 11 1.5 8 13

40 ib 0.85 0.9999 92.5 3.4 88.7 100.7 11 1.4 9 13

40 bf 0.90 0.05 93.6 2.3 89.6 97.2 12 1.5 10 15

40 ib 0.90 0.05 110.5 3.8 103.1 118.9 11 1.7 7 14

40 bf 0.90 0.5 92.5 2.8 89.0 100.0 11 1.5 8 14

40 ib 0.90 0.5 101.1 3.8 94.9 107.7 11 0.8 10 12

40 bf 0.90 0.7 93.3 2.7 87.9 99.8 11 1.5 9 15

40 ib 0.90 0.7 98.2 4.2 92.1 108.7 13 1.6 9 13

40 bf 0.90 0.9 94.4 3.4 91.2 103.5 11 1.5 10 15

40 ib 0.90 0.9 94.6 2.8 91.2 100.1 11 1.3 9 14

40 bf 0.90 0.9999 96.5 4.0 93.1 105.2 11 1.9 7 14

40 ib 0.90 0.9999 94.6 2.9 89.5 101.5 11 1.2 10 14

40 bf 0.95 0.05 98.3 4.1 90.8 105.5 11 1.5 7 13

40 ib 0.95 0.05 113.2 3.9 108.5 124.1 10 1.6 8 14

40 bf 0.95 0.5 96.2 3.2 91.4 103.9 11 1.6 8 14

40 ib 0.95 0.5 111.1 3.9 103.3 116.9 11 2.1 8 15

40 bf 0.95 0.7 96.6 5.1 90.7 106.7 11 1.3 9 13

40 ib 0.95 0.7 111.3 3.5 106.6 118.7 10 1.7 8 14

40 bf 0.95 0.9 95.7 3.8 89.6 103.0 10 1.4 9 14

40 ib 0.95 0.9 112.1 3.6 104.0 115.7 10 1.1 9 12

40 bf 0.95 0.9999 95.1 3.6 91.8 103.0 11 1.4 9 13

40 ib 0.95 0.9999 110.4 4.6 96.2 115.5 11 2.3 8 16

40 bf 0.98 0.05 118.5 2.7 113.3 124.6 10 1.9 7 13

40 ib 0.98 0.05 125.1 7.1 113.4 141.7 11 1.8 7 13

40 bf 0.98 0.5 121.7 6.3 110.5 137.0 10 1.7 8 13

40 ib 0.98 0.5 124.4 8.1 106.3 140.8 10 1.6 9 13

40 bf 0.98 0.7 117.6 4.7 107.3 126.7 10 2.0 8 15

40 ib 0.98 0.7 125.2 7.1 111.0 137.5 11 1.8 7 13

40 bf 0.98 0.9 117.0 4.8 107.0 126.8 10 2.3 7 16

40 ib 0.98 0.9 130.1 8.3 116.9 142.5 11 2.0 7 14

40 bf 0.98 0.9999 114.8 7.2 107.5 129.0 10 2.1 7 15

40 ib 0.98 0.9999 123.6 8.0 114.2 138.2 10 2.0 8 14

80 bf 0.85 0.05 94.8 3.6 89.4 102.4 11 1.1 9 13

80 ib 0.85 0.05 105.6 2.9 101.9 111.6 12 1.7 9 15

80 bf 0.85 0.5 93.2 2.4 89.7 97.1 11 1.7 9 15
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Table B.4: Results of MMAS for the Richmond network for constraint N sw
p ≤ 3

(continued from previous page).

MMAS parameters CE N sw

A Sel. ρ pbest med. sd. best worst med. sd. best worst

80 ib 0.85 0.5 94.4 4.3 91.2 103.4 11 1.5 9 14

80 bf 0.85 0.7 94.3 3.8 89.9 102.4 11 1.7 8 13

80 ib 0.85 0.7 93.2 3.2 89.0 100.6 11 1.2 9 13

80 bf 0.85 0.9 94.3 3.6 90.1 103.3 10 1.3 8 13

80 ib 0.85 0.9 93.1 3.3 90.3 99.8 11 1.6 8 14

80 bf 0.85 0.9999 97.7 4.4 92.3 105.6 11 1.5 8 13

80 ib 0.85 0.9999 93.1 3.0 90.2 100.1 11 1.3 9 14

80 bf 0.90 0.05 96.5 2.9 91.6 102.8 11 1.1 9 13

80 ib 0.90 0.05 111.6 3.0 107.0 117.5 12 1.8 7 14

80 bf 0.90 0.5 94.9 2.9 90.9 101.0 11 2.1 9 16

80 ib 0.90 0.5 105.3 3.2 100.9 113.8 12 2.0 9 15

80 bf 0.90 0.7 94.8 3.4 89.8 100.3 11 1.3 9 13

80 ib 0.90 0.7 107.4 3.9 99.7 111.7 12 1.6 8 14

80 bf 0.90 0.9 94.9 4.7 90.8 108.3 11 0.8 9 11

80 ib 0.90 0.9 104.8 2.4 100.3 108.9 10 1.7 8 14

80 bf 0.90 0.9999 94.8 4.1 92.2 103.0 11 1.6 9 14

80 ib 0.90 0.9999 103.6 3.1 98.8 108.7 11 1.5 9 14

80 bf 0.95 0.05 113.1 3.7 104.5 117.6 11 2.1 9 16

80 ib 0.95 0.05 121.3 5.3 111.3 133.9 10 1.8 8 14

80 bf 0.95 0.5 108.6 3.1 102.7 113.4 11 1.2 9 13

80 ib 0.95 0.5 120.2 5.9 110.7 130.7 9 1.9 6 13

80 bf 0.95 0.7 110.3 5.4 105.5 123.3 10 1.2 9 13

80 ib 0.95 0.7 122.6 4.5 112.2 128.0 10 1.9 7 13

80 bf 0.95 0.9 113.1 5.2 101.5 117.6 11 2.0 8 15

80 ib 0.95 0.9 118.7 4.4 113.6 129.0 10 1.6 8 13

80 bf 0.95 0.9999 111.0 4.1 101.9 117.3 10 1.5 8 14

80 ib 0.95 0.9999 118.9 5.4 109.2 130.1 10 2.2 6 13

80 bf 0.98 0.05 129.8 8.2 117.0 142.0 11 1.7 7 12

80 ib 0.98 0.05 128.2 6.3 118.6 140.7 10 1.8 7 13

80 bf 0.98 0.5 129.8 5.4 122.4 142.5 10 1.8 8 13

80 ib 0.98 0.5 132.7 9.4 117.6 150.6 10 1.8 7 13

80 bf 0.98 0.7 125.6 10.7 118.8 159.1 11 1.7 8 14

80 ib 0.98 0.7 132.6 6.6 119.6 143.1 10 2.1 7 14

80 bf 0.98 0.9 127.8 7.9 113.8 144.2 10 2.8 6 19

80 ib 0.98 0.9 131.9 8.2 116.7 143.0 10 2.1 7 14

80 bf 0.98 0.9999 130.6 8.3 112.1 143.7 9 2.0 6 14

80 ib 0.98 0.9999 126.6 9.7 107.2 142.8 10 1.8 7 14



Appendix C
Description of Solutions

Results of our experiments are publicly available at http://sbe.napier.ac.uk/

˜manuel/. All algorithms presented in this work use a common format for their output.

We provide here a description of the format to help understand those results.

The output format of our optimisation algorithms is plain-text. Each solution is con-

tained in a single line with fields separated by white space. Tab characters are used to

separate main fields while simple spaces separate elements within a variable-length field.

This format is both understandable for human readers and easier to read by computer

programs. Each solution contains the objective values, additional information about the

solution (such as constraint violations), the representation of the schedule of pumps used

by the optimisation algorithm, and a canonical representation of the schedule.

The first elements of each line are the objective values. In a single objective algorithm,

such as SEA (Chapter 4) or ACO (Chapter 6), this is a single value that indicates the total

energy cost per day (CE in Eq. 2.1). In the multi-objective variants proposed in Chapter 5,

one additional field is given after the total energy cost. This additional field is one of: (i)

total number of pump switches (N sw in Eq. 2.2); (ii) shortest idle time (IT in Eq. 5.1); or

(iii) total volume deficit (∆V in Eq. 2.4).

Independently of the problem formulation, additional fields contain information that

may be helpful to assess the quality of a solution. The values of these fields represent in

this order:

• Total volume deficit (∆V in Eq. 2.4), which is the sum of volume deficits for all

tanks. The volume deficit of a tank is the percentage of the initial volume minus

the final volume with respect to the initial volume. Only percentages that are higher

than a given volume deficit tolerance are accumulated to avoid surplus in one tanks

compensating loss of volume in another. Unless explicitly stated otherwise, volume

tolerance was zero in our experiments. The total volume deficit should be zero in
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any feasible solution, otherwise, there is a deficient balance between the supply and

demand of water.

• Total number of pump switches (N sw in Eq. 2.2). A pump switch is defined as

turning on a pump that was not operating in the previous period Lansey & Awumah

(1994). This value represents the number of switches performed by all pumps. High

values are undesirable, since switching pumps on/off causes wear and tear of pumps

that will increase future maintenance costs.

• Shortest idle time (IT in Eq. 5.1) is the minimum idle time among all pumps. The

idle time is the time interval in seconds between two operating periods of a pump.

Very short time intervals between two operating periods may damage pumps and

pipes due to sudden pressure fluctuations. Therefore, longer values are assumed to

limit future maintenance costs.

• Pressure deficit (∆H in Eq 2.6) is the total amount of pressure violations produced

in all demand nodes during the scheduling period. This value should be zero in any

feasible schedule.

• Number of warnings from the hydraulic simulator (see Section 2.4.1). Warnings

indicate that EPANET encountered problems while evaluating the schedule. These

warnings do not signal a problem in EPANET itself. A warning points out a poten-

tial issue with the schedule. For example, EPANET will issue a warning whenever

a pump is forced to shut down or operate beyond its maximum rated flow. Sched-

ules that generate warnings are considered infeasible, since it is very likely that the

calculated objective values and constraints are incorrect.

Further variable-length fields indicate two different representations of the schedule of

the pumps. The first group of fields is the schedule of pumps in the representation utilised

within the optimisation algorithm. In this group, there are as many variable-length fields

as pumps in the network instance. In the solutions generated in this work, this represen-

tation can be either:

• The binary representation (Section 3.1), where each element of the variable-length

field is the pump status at each operating period. Therefore, in each field there are

as many elements as the number of time intervals (NT). An example of such field

is:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1
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• Level-controlled triggers (Section 3.2), wherein each field contains four elements

that represent two pairs of trigger levels, for off-peak and peak electrical tariff peri-

ods respectively. Each pair contains a lower trigger, whenever water in the associ-

ated tank is below this level the pump is activated, and an upper trigger, whenever

water in the associated tank is above this level the pump is shut down. An example

of this field is:

2.72 3.37 0.25 2.21

• Absolute time-controlled triggers (Section 3.3.1), wherein each field contains 2 ·

SW elements, where SW is a representation parameter that defines the maximum

number of switches per pump. Each element is the absolute time since the start of

the scheduling period at which a pump changed its status. The time unit depends on

the minimum time interval tmin used by the representation, typically one hour. Odd-

numbered elements correspond to a switch from off to on, while even-numbered

elements indicate a switch from on to off. Values higher than the scheduling period

are ignored and allow to represent a pump schedule with less switches than SW .

An example of this representation would be:

0 1 5 24 25 25

• Relative time-controlled triggers (Section 3.3.2), wherein each field contains 2 ·

SW elements, as well. However, in this case, each element is the duration of an

operating or idle interval. Odd-numbered elements correspond to an idle status

of the pump while even-numbered elements indicate an active status. Zero values

represent empty intervals and allow to represent a pump schedule with less switches

than SW . An example of this representation is:

0 7 0 7 3 7

Finally, the last group of variable-length fields of each solution is a canonical repre-

sentation of the schedule. This canonical representation is independent of the particular

representation used by the optimisation algorithm. This representation contains as many

fields as pumps. Each variable-length field contains as many elements as times the pump

changed its status. These elements are non-negative integers that represent the time in

seconds since the start of the scheduling period when a change on the status of a pump

occurred. The following example shows the binary representation and its corresponding

canonical representation of the schedule of a single pump:

0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1

10800 14400 28800 36000 39600 43200 61200 64800
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A complete example is given below of the output corresponding to a single solution

obtained by a single-objective optimiser using the binary representation. In this example,

tabs are replaced by new lines for the sake of readability:

321.527

0.00

10

10800

0.0

0

1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 1

1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1

18000 21600 25200 28800 32400 36000 39600 57600

7200 10800 21600 25200 32400 36000 39600 61200

0 32400 36000 39600



Appendix D
Changelog of EPANET Toolkit

During the development of our algorithms, it was necessary to add some features to the

EPANET Toolkit and, in some cases, to fix some defects in the original code. Since one

of our goals is the reproducibility of the results to allow future comparison, we made an

effort to maintain backwards compatibility with the original code and to document any

changes that may affect the computation of the results. In addition, the modified code

is publicly available at http://sbe.napier.ac.uk/˜manuel/epanetlinux.

For reference, we provided here a list of all the modifications to the EPANET Toolkit.

• Added a file Makefile to simplify building on GNU/Linux. As a result, the

library can be build by simply issuing the command make in the source directory.

• GNU/Linux specific code is conditional on a the macro LINUX being defined. It is

automatically defined by Makefile when building the library in GNU/Linux.

• Added three example applications:

evalleveltriggers: takes as input a network instance and a schedule of the

pumps in level-controlled triggers representation. The schedule is evaluated

and results are printed.

evalpattern: takes as input a network instance and a schedule of the pumps

described by utilisation patterns. The schedule is evaluated and results are

printed.

getcoords: takes as input a network instance. Prints the coordinates of the

elements of the network.

• A vector (pump schedule vector) saves the time of day (in seconds) when a pump

changes its status. No more than 24 events will be recorded in the vector of pump

schedule and events occurred after 24 hours will not be recorded. Calculation of
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pump switches and update of the pump schedule vector are performed by function

pumpswitch(), which must be called from every point where the status of a

pump is changed.

• Controls may be dynamically added by calling ENsetcontrol() with a value of

parameter cindex such that cindex = count+ 1, where count was obtained

by calling ENgetcount(EN CONTROLCOUNT, &count).

• When function ENaddleveltrigger() (epanet.c) is called with parame-

ters start time > stop time, it adds one rule for the interval [start time,

SECperDAY − 1] and another for [0,stop time]. In case that start time is

equal to stop time, do nothing.

• Function addlevelbasedtrigger() (rules.c) returns error 202 if called

with parameters start time ≥ stop time.

• New parameter codes were added to existing toolkit functions:

– EN UPATTERN of ENsetlinkvalue() allows to assign an utilisation pat-

tern to a pump.

– EN SCHEDULE of ENgetlinkvalue() returns the pump schedule vector,

which describes the time of the day (in seconds) when a pump status changed.

– EN JUNCS, EN PUMPCOUNT and EN RESERVCOUNT of ENgetcount()

return the number of junctions, pumps and reservoirs in the network, respec-

tively.

– EN INITVOL and EN VOLUME of ENgetnodevalue() return initial and

current volume of a tank.

– EN CLOCKSTART of ENgettimeparam() returns time of the day at which

simulation begins (seconds).

– EN MAXLEVEL and EN MINLEVEL of ENgetnodevalue() return maxi-

mum and minimum levels of a tank.

• New functions were added to the application program interface of the EPANET

library:

– ENgettotalleakage() gives total volume of water leaked by emitters.

– ENgetnode xcoord() gives x coordinate of a node.

– ENgetnode ycoord() gives y coordinate of a node.
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– ENgettankindex() and ENgetpumpindex() return the node index

corresponding to each tank or pump without knowing its id.

– ENgetpumpswitches() returns the number of switches of a pump.

– ENgettotalenergycost() calculates total energy cost per pump plus

demand cost.

– ENaddpattern() adds a new pattern to the database.

– ENaddleveltrigger() adds rule with following format:

IF SYSTEM CLOCKTIME >= start_time (in seconds)

AND SYSTEM CLOCKTIME < stop_time (in seconds)

AND TANK id(tank_index) LEVEL [BELOW|ABOVE] level

THEN PUMP id(pump_index) STATUS IS status

– ENgetminstoptime() returns the shortest time interval (in seconds) that

a certain pump was not active.

– ENrulesclear(void) removes all rules.

– ENgetnumwarnings(void) returns number of warnings generated.

• Several modifications of the code were investigated in order to reduce the compu-

tation time without altering simulation results:

– pipecoeff() marked as static inline.

– Help arrays in linsolve() moved from vars.h to smatrix.c.

– Enabled GCC option -fmerge-constants which attempts to merge iden-

tical constants (string constants and floating point constants) across compila-

tion units.

– Saved one division in pipecoeff().

– Removed unneccessary variables and operations in linsolve(). For ex-

ample, calloc() should set memory to zero, and thus, memset() is re-

dundant.

– Replaced ABS() by fabs(), which is faster. However, not all ABS() calls

could be replaced because of implicit casting between float and double result-

ing on rounding errors.

– Added the option to compile for a particular architecture using a version of

GNU Compiler Collection (GCC) higher than 3. For example, the command

would be ‘make march=pentium4’ for an Intel Pentium 4 architecture.
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The GCC documentation specifies the names of the architectures supported

by each version of GCC.

The above modifications reduced the computation time by 13.7% on average when

compiling with GCC 3.2.2 and running on an Intel Pentium 4 CPU 2.66GHz (cache

size: 512 KB).

• Compiling with optimisation level 3 (-O3) reduces execution time by approxi-

mately 35%. However, this optimisation level affects floating-point calculations

producing slightly different results. Therefore, optimisation is turned off by default.

In order to turn it on, build the library using ‘make all OPTIMISE=-O3’.

• Section [COORDINATES] of input file is now parsed by ENopen().

• The following constants are defined in toolkit.h, and hence, they may be used

by application programs:

EN MAX ID LEN: Maximum number of characters in ID name.

EN MAX MSG LEN: Maximum number of characters in message text.

EN MAX FILENAME LEN: Maximum number of characters in file name.

EPANET VERSION: Version number corresponding to our variant of EPANET

library.

• Fixed bugs in EPANET 2.00.10:

– Missing parameter code EN SOURCEPAT in ENgetnodevalue() caused

error 251.

– Avoid segmentation fault when ENgetcontrol() in epanet.c is called

with *nindex > Nnodes.

– Complex rules are checked since the start of the simulation. This may break

compatibility with the original EPANET version 2.00.10, where the complex

rules are not enforced until the first time step (1/10 of time interval) and, there-

fore, the results are slightly different if the initial conditions are not consistent

with the rules)

– Do not return error if the name of the report file and the name of the binary

output file are both the empty string "".

– Setting lindex to 0 using ENsetcontrol() should remove the control.

However, controltimestep() does not check that lindex is equal to

0 before using other parameters, and thus, it does not ignore this control. The
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result is a wrong time step or a segmentation fault depending whether the

parameters were valid or uninitialized values. This bug fix may break back-

ward compatibility for programs which remove controls by setting lindex

to 0 using ENsetcontrol() since a wrong time step may affect the results

without the program reporting any error or crashing.



Appendix E
Thread-Safe Variant of EPANET Toolkit

From high-performance supercomputers accessible to researchers, to the new generation

of multi-core personal computers and laptops, parallel computers are becoming increas-

ingly prevalent nowadays. Parallel computation may reduce the time required to solve a

problem. However, our tools need to be adapted in order to take advantage of it. In the

context of the problem of finding an optimal schedule of pumps in a water distribution

network, the tool may be a combination of an optimisation algorithm and a hydraulic

simulator. The optimisation algorithm generates potential schedules of pumps, while the

hydraulic simulator evaluates those schedules to calculate its cost and identify violations

of system and performance constraints. Although a hydraulic simulator may require just

a few seconds to perform an extended period simulation of a particular pump schedule,

finding a near-optimal schedule typically requires the evaluation of thousands of differ-

ent schedules. Some optimisation algorithms, such as Evolutionary Algorithms and Ant

Colony Optimisation (ACO), are particularly well-suited for parallel execution, since, at

each iteration, they generate a population of candidate solutions that can be independently

evaluated. However, one of the most popular research simulators, the EPANET Toolkit

(Rossman, 1999), was not designed with parallelism in mind.

In this appendix, we propose the implementation of a thread-safe variant of the EPANET

Toolkit, which involves a more object-oriented design, allowing concurrent multiple sim-

ulations within the same application to be performed. This thread-safe variant allows a

program to execute multiple simulations in concurrent threads, which are lightweight pro-

cesses within the same computer program. The performance benefits of this thread-safe

variant of EPANET Toolkit have been tested by combining it with an Ant Colony Opti-

misation (ACO) algorithm (see Section 6.5.2). This appendix explains the motivations

behind the development of the thread-safe EPANET library. In addition, the thread-safe

library is tested in a simple random search algorithm to assess its feasibility and its over-

head compared to the original EPANET.
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E.1 Limitations of EPANET Toolkit For Parallel Algorithms

The EPANET Toolkit (Rossman, 1999) is an open-source C library that provides an ap-

plication programming interface (API) for hydraulic and water quality simulations. An

optimisation algorithm would call certain functions of EPANET to load a network descrip-

tion, modify the schedule of the pumps, run an extended period simulation and collect in-

formation such as the energy consumption of the pumps, tank levels and pressure values.

Figure E.1 shows the algorithmic schema that a hypothetical sequential optimisation al-

gorithm would follow when interacting with EPANET. Among other functions, EPANET

allows an application to load a network instance (ENopen), obtain information about

the network (ENgetcount), assign schedules to pumps (ENsetpattern), and run

extended period simulations (ENopenH, ENinitH, ENrunH, ENnextH, ENcloseH).

The simple and straightforward interface is probably one of the reasons why EPANET is

widely used for research.

However, some aspects of the design of EPANET make difficult its use in parallel ap-

plications. First, the complete status of a particular simulation cannot be easily retrieved

and saved. In other words, we cannot simply make a copy of a running simulation, then

start a new one and, once the new one is finished, restart the first one. In fact, the im-

plementation of the library keeps most of its internal information on global variables that

are dynamically allocated with no encapsulation at all. Moreover, data structures related

to a particular simulation are often lumped together with data concerning the network de-

scription, which typically never changes during the simulation. This lack of encapsulation

means that the status of a particular simulation cannot be isolated from another different

simulation. The second issue that precludes the use of EPANET in parallel algorithms

is that most API functions are not reentrant. A reentrant function only depends on its

arguments and it does not hold any internal state. It neither calls non-reentrant functions.

Therefore, it can be re-entered while it is running. This does not imply thread-safety by

itself. If a reentrant function modifies its arguments and multiple threads call the function

with the same arguments, there will be a problem of data synchronisation. However, a

non-reentrant function called by multiple threads will not execute correctly even if the

arguments are not shared among threads. In order to take advantage of parallel execution

of multiple simulations, the functions called during simulation must be reentrant.

Two main refactoring efforts were undertaken to enable parallelism in EPANET. First,

data structures related to a hydraulic simulation were encapsulated within a simulation

object, thus multiple simulations can be created and modified concurrently. There are

already types in EPANET for pumps, tanks and other elements. However, these objects

contain both data that corresponds to the description of the network, such as pump shut-off
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head and tank maximum volume, and data that is dynamically calculated during simula-

tion, such as pump energy usage and tank head. Thus an important step in our refactoring

effort was the separation of these two kinds of data. Simulation data is encapsulated into

a new type of object (ENsimulation t). This was not the only new type that was cre-

ated during refactoring. Other internal structures were also encapsulated within objects in

order to make crucial EPANET functions reentrant.

The second refactoring task was the review of all EPANET functions, identifying those

which are required in order to perform concurrent hydraulic simulations and converting

them into reentrant functions. Since a reentrant function should only call other reentrant

functions, the conversion proceeded from the API functions down to the internal functions

used only within EPANET. In the original EPANET code, a function would depend on

some internal state, reading and writing global variables, thus the same function cannot

be executed by multiple threads. A reentrant variant works on a simulation object which is

passed as an argument to the function. Hence, two threads can execute the same function

concurrently as long as they use different simulation objects.

Figure E.2 shows an example of an optimisation algorithm using the new thread-safe

variant of EPANET. For our purposes, it is not necessary that two threads are able to con-

currently execute all EPANET functions on the same data. In fact, we do not even need

all functions to be reentrant, since there is no need in a parallel optimisation algorithm

to execute those functions in parallel. An example would be the function ENopen(),

which is responsible for reading the network description from an input file. This function

only needs to be called once. By restricting ourselves to our objective of enabling parallel

hydraulic simulation, we obviate the incorporation to the EPANET library of synchronisa-

tion mechanisms, such as locking and mutual exclusion, that would be required otherwise.

As well, this avoids new dependencies in order to build and use the EPANET library. We

do not negate that future developments of EPANET may incorporate these characteristics.

Nevertheless, the current approach is sufficient to implement state-of-the-art optimisation

algorithms that make use of parallelism.

E.2 Parallel Random Search

We use a parallel random search algorithm to assess the potential of the new thread-safe

version of EPANET. This random search algorithm simply generates a number of random

pump schedules and evaluates them. After reaching a maximum of evaluations, it returns

the schedule that generated the lowest electrical cost without violating any constraint.

The parallel random search evaluates schedules in parallel by using several threads. A

candidate schedule of the pumps is assigned to each thread, which evaluates the schedule



APPENDIX E. THREAD-SAFE VARIANT OF EPANET TOOLKIT 201

Initialize ()

{

...

ENopen (network_file);

ENgetcount (EN_PUMPCOUNT, &num_pumps);

...

}

solution_t GenerateSolution ()

{

...

schedule = GenerateSchedules ();

...

}

EvaluateSolution (solution_t schedule)

{

...

ENopenH ();

for (p = 0; p < num_pumps; p++)

ENsetpattern (pump[p], schedule[p], 24);

ENinitH (0);

do {

ENrunH ();

ENnextH (&tstep);

} while (tstep > 0);

ENgettotalenergycost (&cost);

EncloseH ();

...

return cost;

}

main ()

{

...

Initialize ();

while (not stopping_criteria) {

for (i = 0; i < population_size; i++) {

solution[i] = GenerateSolution ()

cost[i] = EvaluateSolution (solution[i])

...

}

...

}

Figure E.1: Example of optimisation algorithm using EPANET.
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Initialize ()

{

...

ENopen (network_file);

ENgetcount (EN_PUMPCOUNT, &num_pumps);

...

}

solution_t GenerateSolution ()

{

...

schedule = GenerateSchedules ();

...

}

double EvaluateSolution (solution_t schedule)

{

...

/ / A new s i m u l a t i o n o b j e c t i s c r e a t e d e v e r y t i m e

/ / t h i s f u n c t i o n i s e x e c u t e d .

ENsimulation_t simulation;

ENopenH (&simulation);

for (p = 0; p < num_pumps; p++)

ENsetpattern (simulation->pump[p], schedule[p], 24);

ENinitH (simulation, 0);

do {

ENrunH (simulation);

ENnextH (simulation, &tstep);

} while (tstep > 0);

ENgettotalenergycost (simulation, &cost);

EncloseH (simulation);

...

return cost;

}

main ()

{

...

Initialize ();

while (not stopping_criteria) {

for (i = 0; i < population_size; i++) {

/ / T h i s ‘ ‘ f o r ’ ’ can be e x e c u t e d c o n c u r r e n t l y

/ / u s i n g i p a r a l l e l t h r e a d s .

solution[i] = GenerateSolution ();

cost[i] = EvaluateSolution (solution[i])

...

}

...

}

Figure E.2: Example of algorithm using the thread-safe version of EPANET.
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by performing a hydraulic simulation. As soon as one thread finishes the evaluation of a

solution, a new random solution is generated and assigned to it. Therefore, a thread does

not wait for other threads to finish.

We apply the random search algorithm to the Richmond network instance described in

Section 2.5.2. The efficacy of the algorithm in terms of solution quality is of no interest

here. Our only goal is to study how much the execution time is reduced by increasing

the number of threads in a multi-core computer. We are also interested in the algorithm

speedup, which is defined as:

Sn =
T1

Tn

(E.1)

where Sn is the speedup, n is the number of processors, T1 is the time required by the

sequential algorithm and Tn is the time of the parallel algorithm with p processors. The

concept of speedup indicates how well a parallel algorithm performs in comparison to the

sequential code when using an increasing number of processors. Ideal speedup occurs

when Sn = n. Conversely, an ideal parallel execution time can be calculated, which

corresponds to the execution time of the parallel algorithm that result in ideal speedup.
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Figure E.3: Runtime in seconds for Random Search algorithm.

Figure E.3 shows the wall-clock time required for 8000 evaluations of the random

search algorithm in a 4-CPU machine (2 dual-core AMD64 Opteron 275, 2.2 GHz and

64KB/1MB of cache memory per core) running GNU/Linux. The algorithm is imple-

mented in C and uses POSIX threads (Kerrisk, 2005). With one thread the algorithm is

sequential and only makes use of one CPU. In this case, Fig. E.3 shows that the runtime

for 8000 evaluations is close to one hour. By using two threads, the load is shared between

two CPUs and therefore, the computation time is halved. For a number of threads equal or
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higher than four, the speedup obtained is practically ideal, that is, close to four. Therefore,

there is little to no overhead in the parallel implementation of the EPANET library with

respect to the sequential version.

E.3 Summary

In this appendix we have discussed the limitations of the original EPANET Toolkit for

parallel computing. Thereby, we present a thread-safe variant of the EPANET Toolkit that

can be used by parallel applications. By introducing encapsulation to the data structures

of the original EPANET and modifying functions to be reentrant, the proposed thread-

safe library can simulate multiple schedules in parallel on the same network instance.

This enables optimisation algorithms to take advantage of multiple processors to evaluate

multiple candidate solutions concurrently, hence reducing the total runtime of the algo-

rithm. Source code of the thread-safe version of EPANET proposed here is available at

http://sbe.napier.ac.uk/˜manuel/epanet-thread-safe.

Experiments were performed by linking the thread-safe library with a trivial random

search algorithm. Experimental results showed that the speedup obtained by the algorithm

was practically ideal. Admittedly, the random search algorithm discussed here is of little

practical interest. Nonetheless, it suffices to show that there is no noticeable overhead of

the thread-safe variant with respect to the original EPANET. As shown in Section 6.5.2,

the computation time of state-of-the-art optimisers can be greatly reduced by using the

thread-safe library proposed here.

http://sbe.napier.ac.uk/~manuel/epanet-thread-safe


Appendix F
Vanzyl Network EPANET Input File

This test network was proposed by van Zyl, Savic & Walters (2004). We reproduce here a

more complete description of the network, which can be directly used by EPANET without

further modifications.

[JUNCTIONS]

;ID Elev Demand Pattern

n1 10 0 ;

n10 100 0 ;

n12 100 0 ;

n11 100 0 ;

n13 100 0 ;

n2 10 0 ;

n3 75 0 ;

n361 100 0 ;

205
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n362 100 0 ;

n364 100 0 ;

n365 100 0 ;

n5 30 50 pattern24 ;

n6 30 100 pattern24 ;

[RESERVOIRS]

;ID Head Pattern

r1 20 ;

[TANKS]

;ID Elevation InitLevel MinLevel MaxLevel Diameter MinVol VolCurve

t6 85 9.5 0 10 20 0 ;

t5 80 4.5 0 5 25 0 ;

[PIPES]

;ID Node1 Node2 Length Diameter Roughness MinorLoss Status

p1 r1 n1 1 1000 100 0 Open ;

p10 n1 n10 1 1000 100 0 Open ;

p12 n1 n12 1 1000 100 0 Open ;

p11 n11 n2 1 1000 100 0 Open ;

p13 n13 n2 1 1000 100 0 Open ;

p2 n2 n3 2600 450 100 0 Open ;

p18 n3 n361 1 1000 100 0 Open ;

p361 n361 n362 1 1000 100 0 Open ;

p364 n364 n365 1 1000 100 0 Open ;

p4 n365 t6 2000 350 100 0 Open ;

p6 t6 n6 1100 300 100 0 Open ;

p5 t5 n5 500 300 100 0 Open ;

p3 n3 t5 1000 350 100 0 Open ;

p7 n6 n5 1 200 100 0 Open ;

p19 n361 n365 1 1000 100 0 CV ;

[PUMPS]

;ID Node1 Node2 Parameters

pmp1 n10 n11 HEAD 1 ;

pmp2 n12 n13 HEAD 1 ;

pmp3 n362 n364 HEAD 6 ;

[PATTERNS]

;ID Multipliers

;

pattern24 0.62 0.62 0.67 0.76 0.91 1.1

pattern24 1.48 1.71 1.48 1.02 0.73 0.55
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pattern24 0.49 0.55 0.73 1.02 1.36 1.53

pattern24 1.53 1.36 1.1 0.91 0.76 0.67

;

pumptariff 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244

pumptariff 0.0244 0.1194 0.1194 0.1194 0.1194 0.1194

pumptariff 0.1194 0.1194 0.1194 0.1194 0.1194 0.1194

pumptariff 0.1194 0.1194 0.1194 0.1194 0.1194 0.1194

[CURVES]

;ID X-Value Y-Value

;PUMP:

1 0 100

1 120 90

1 150 83

;PUMP:

6 0 120

6 90 75

6 150 0

;EFFICIENCY:

leff 50 78

leff 107 80

leff 151 68

leff 200 60

[ENERGY]

Global Efficiency 85

Global Price 0

Demand Charge 0

Pump pmp1 Efficiency leff

Pump pmp1 Price 1

Pump pmp1 Pattern pumptariff

Pump pmp2 Efficiency leff

Pump pmp2 Price 1

Pump pmp2 Pattern pumptariff

Pump pmp3 Price 1

Pump pmp3 Pattern pumptariff

[REACTIONS]

Order Bulk 1

Order Tank 1

Order Wall 1

Global Bulk 0

Global Wall 0

Limiting Potential 0
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Roughness Correlation 0

[TIMES]

Duration 24

Hydraulic Timestep 1:00

Quality Timestep 0:05

Pattern Timestep 1:00

Pattern Start 7:00

Report Timestep 1:00

Report Start 0:00

Start ClockTime 7 am

Statistic None

[REPORT]

Status Full

Summary No

Page 0

[OPTIONS]

Units LPS

Headloss H-W

Specific Gravity 1

Viscosity 1

Trials 40

Accuracy 0.00001

Unbalanced Continue 10

Pattern1

Demand Multiplier 1.0

Emitter Exponent 0.5

QualityNone mg/L

Diffusivity 1

Tolerance 0.01

[COORDINATES]

;Node X-Coord Y-Coord

n1 2100.00 3900.00

n10 2300.00 4100.00

n12 2300.00 3700.00

n11 2700.00 4100.00

n13 2700.00 3700.00

n2 2900.00 3900.00

n3 3800.00 4800.00

n361 3800.00 5300.00

n362 3500.00 5300.00

n364 3500.00 5800.00
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n365 3800.00 5800.00

n5 4500.00 6000.00

n6 4500.00 6500.00

r1 1800.00 3900.00

t6 3800.00 6500.00

t5 4500.00 4800.00

[LABELS]

;X-Coord Y-Coord Label & Anchor Node

2315.11 3553.23 "Pump1A"

2344.09 4408.22 "Pump2B"

3074.43 5558.25 "Pump3B"

4270.52 4707.55 "TankA" t5

3451.77 6482.73 "TankB" t6

[BACKDROP]

DIMENSIONS 46.32 2697.51 5335.63 7152.33

UNITS None

FILE

OFFSET 0.00 0.00

[END]
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IRIDIA, Université Libre de Bruxelles, Belgium. This has been published as a book
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