
This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Heikkila, Ville T.; Paasivaara, Maria; Rautiainen, Kristian; Lassenius, Casper; Toivola, Towo;
Jarvinen, Janne
Operational release planning in large-scale Scrum with multiple stakeholders - A longitudinal
case study at F-Secure Corporation

Published in:
Information and Software Technology

DOI:
10.1016/j.infsof.2014.09.005

Published: 01/01/2015

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY-NC-ND

Please cite the original version:
Heikkila, V. T., Paasivaara, M., Rautiainen, K., Lassenius, C., Toivola, T., & Jarvinen, J. (2015). Operational
release planning in large-scale Scrum with multiple stakeholders - A longitudinal case study at F-Secure
Corporation. Information and Software Technology, 57, 116-140. https://doi.org/10.1016/j.infsof.2014.09.005

https://doi.org/10.1016/j.infsof.2014.09.005
https://doi.org/10.1016/j.infsof.2014.09.005

Operational release planning in large-scale Scrum with multiple
stakeholders – A longitudinal case study at F-Secure Corporation

Ville T. Heikkilä a,⇑, Maria Paasivaara a, Kristian Rautiainen a, Casper Lassenius a, Towo Toivola b,
Janne Järvinen b

aDepartment of Computer Science and Engineering, Aalto University, PO Box 15400, FI-00076 Aalto, Finland
b F-Secure Oyj, PO Box 24, FI-00181 Helsinki, Finland

a r t i c l e i n f o

Article history:

Received 3 September 2014

Accepted 14 September 2014

Available online 22 September 2014

Keywords:

Agile software development

Scrum

Large projects

Release planning

Software project management

a b s t r a c t

Context: The analysis and selection of requirements are important parts of any release planning process.

Previous studies on release planning have focused on plan-driven optimization models. Unfortunately,

solving the release planning problem mechanistically is difficult in an agile development context.

Objective: We describe how a release planning method was employed in two case projects in F-Secure, a

large Finnish software company. We identify the benefits which the projects gained from the method,

and analyze challenges in the cases and improvements made to the method during the case projects.

Method: We observed five release planning events and four retrospectives and we conducted surveys in

the first two events. We conducted six post-project interviews. We conjoined the observation notes, sur-

vey results and interviews and analyzed them qualitatively and quantitatively.

Results: The focal point of the method was release planning events where the whole project organization

gathered to plan the next release. The planning was conducted by the development teams in close col-

laboration with each other and with the other stakeholders. We identified ten benefits which included

improved communication, transparency, dependency management and decision making. We identified

nine challenges which included the lacking preparation and prioritization of requirements, unrealistic

schedules, insufficient architectural planning and lacking agile mindset. The biggest improvements to

the method were the introduction of frequent status checks and a big visible planning status board.

Conclusion: The release planning method ameliorated many difficult characteristics of the release plan-

ning problem but its efficiency was negatively affected by the performing organization that was in tran-

sition from a plan-driven to an agile development mindset. Even in this case the benefits clearly

outweighed the challenges and the method enabled the early identification of the issues in the project.

� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Planning the next product release is recognized to be a chal-

lenging part of market-driven product development [1] and an

important success factor in agile software development projects

[2]. The main goal of release planning is to select an appropriate

scope for a release while taking into account constraints such as

the budget, resources, dependencies and technical aspects, and

factors such as the importance or urgency of the candidate require-

ments [1,3,4]. Release planning is especially vital in market-driven

product development, as it puts into practice the strategy of the

company [5].

Conceptually, software product release planning is performed

on two levels [5,6]. On the strategic level, the focus is on selecting

the appropriate requirements for the next public release of the

product. On the operational level, the focus is on planning how

the requirements for the next release can be best implemented

[7]. Strategic release planning activities are sometimes called

pre-project activities [1], indicating that requirements gathering,

prioritization and planning are performed before the development

begins. In agile software development projects, strategic and oper-

ational level planning activities are not strictly separated [1]. Sev-

eral strategic release planning activities, such as the market,

customer and competitor analysis, are typically performed by the

product managers or Product Owners. However, most of the

release planning activities on both levels, such as the prioritization

of requirements, implementation scheduling and cost/benefit

http://dx.doi.org/10.1016/j.infsof.2014.09.005

0950-5849/� 2014 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

⇑ Corresponding author. Tel.: +358 50 526 8483.

E-mail addresses: ville.t.heikkila@aalto.fi (V.T. Heikkilä), maria.paasivaara@aalto.

fi (M. Paasivaara), kristian.rautiainen@aalto.fi (K. Rautiainen), casper.lassenius@aal-

to.fi (C. Lassenius), towo.toivola@f-secure.com (T. Toivola), janne.jarvinen@f-secure.

com (J. Järvinen).

Information and Software Technology 57 (2015) 116–140

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.09.005&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1016/j.infsof.2014.09.005
http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:ville.t.heikkila@aalto.fi
mailto:maria.paasivaara@aalto.fi
mailto:maria.paasivaara@aalto.fi
mailto:kristian.rautiainen@aalto.fi
mailto:casper.lassenius@aalto.fi
mailto:casper.lassenius@aalto.fi
mailto:towo.toivola@f-secure.com
mailto:janne.jarvinen@f-secure.com
mailto:janne.jarvinen@f-secure.com
http://dx.doi.org/10.1016/j.infsof.2014.09.005
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

analysis, are performed collaboratively with the development

organization [8,9].

Scrum is an iterative and incremental agile development

method [10], meaning that work is planned one development iter-

ation, or a sprint, at a time. Scrum was originally created for small

co-located teams, and it emphasizes direct and informal communi-

cation between the team members, which limits the maximum

size of a single development team [8]. The Scrum approach to

release planning is very different from the approach used by tradi-

tional, plan-driven software development life-cycle models [11].

Instead of employing project plans that are based on a set of prede-

fined factors and constraints, Scrum relies on collaborative human

judgement and informal negotiations [8,9].

The majority of published research on software release plan-

ning focuses on different kinds of mathematical models and simu-

lations which are designed to create the most valuable, satisfying

or risk-free release plans when the candidate requirements can

be described in sufficient detail, and key constraints and factors

are known and can be estimated sufficiently accurately [5]. The

model or simulation is then used to generate one or a set of opti-

mal or near-optimal release plan(s). However, the mathematical

approach to release planning has proven to be problematic in prac-

tice, since the above conditions are mostly difficult to fulfill in

practice [4,9,12–14].

According to the 2013 State of Agile survey [15], the Scrum soft-

ware development method has reached an established status in the

software development community, and many large software

development organizations have adopted or aspire to adopt agile

methods. Freudenberg and Sharp [16] gathered participants’ opin-

ions on what were the most important questions or issues related

to agile software development during the XP2010 conference. In

their results, ‘‘Agile and large projects’’ was voted as the most

important issue. Although neither of these surveys was, strictly

speaking, methodologically robust, they both suggest that research

on scaling Scrum and Scrum-based software development methods

are relevant to the industry.

Furthermore, the Scrum approach to planning focuses on the

single iteration level for a single team. Published empirical

research on successful practices for adopting agile methods in

large-scale software development organizations is still scarce

[17], despite the fact that practitioner literature with normative

but empirically weakly supported advice exists [18,19].

Considering the importance of release planning for the success

of a development project [1,2], the dominance of the model-driven

release planning in research [5,13,20], and the lack of solid empir-

ical evidence of successful practices for scaling up Scrum release

planning, there is an obvious gap in the research of release plan-

ning in large-scale agile software development organizations.

In this paper we work towards filling this gap by presenting two

examples of the use of a release planning method in a large Scrum

organization. We describe the release planning method used, as

well as the benefits and challenges of its use. The release planning

method consisted of Release Iteration Planning events, during which

release planning was performed, and of the preparations con-

ducted for those events. Consequently, we call the method the

Release Iteration Planning method. The method has been briefly

described in the practitioner literature [21]. We concentrate on

the collaborative release planning performed in the Release Itera-

tion Planning events. The market facing tasks of product manage-

ment, such as the market, competitor and customer analysis, are

out of the scope of our study. Although these knowledge areas

are important in any market-driven product development project,

there is already a myriad of literature that provides insight and

instructions for these activities (see e.g. [22,23]).

In previous work, we described the Release Iteration Planning

method [24]. This paper considerably expands that work by includ-

ing results from three additional Release Iteration Planning events

and from six post-project interviews, as well as describing and dis-

cussing the benefits and challenges the case organization experi-

enced when applying the method. Additionally, members of the

case organization have published an account of the release plan-

ning in the project from an insider point of view [25]. Compared

with their account, this paper has a similar topic, but it is consid-

erably broader in scope and contains considerably more detailed

description and in-depth analysis of the method and the case

projects.

The main contribution of this paper is that, to our knowledge, it

presents the first empirical and longitudinal in-depth study of the

use of the Release Iteration Planning method. We describe how the

method was applied to a real large-scale agile organization, how

the organization modified the method over the time, and what

the benefits and challenges of applying this method were.

The paper is structured as follows: Section 2 provides an over-

view of the related work on software release planning, Section 3

describes the research goals and methods, Section 4 presents the

case organization and case project backgrounds, Sections 5 and 6

describe how the Release Iteration Planning method was applied

in the case projects, Section 7 analyzes the benefits of the method,

while Section 8 discusses the challenges faced in applying the

method, Section 9 discusses our findings and their validity, and

finally Section 10 presents the conclusion and directions for future

work.

2. Software release planning

In this section, we review the literature related to software

release planning. First, we describe empirical research on the char-

acteristics of release planning and on the reasons why software

release planning is difficult. Then, we describe existing research

on model-based release planning, the most popular research sub-

ject at the time of writing. Finally, we look at the literature on

release planning in multi-team Scrum development organizations.

2.1. Characteristics of the release planning problem

According to empirical release planning research, there are sev-

eral technical and human factors that make release planning a dif-

ficult task. A shared understanding of the requirements arises

during development and may be weak in the beginning of the

release development project [9]. The requirements selection crite-

ria are time dependent and may change both qualitatively and

quantitatively during the release development project [9]. The

great majority of requirements have dependencies between them

that constrain the implementation order. These dependencies

may be difficult to identify and complex [9,26]. Decision makers

have difficulties expressing how value is created by selecting and

prioritizing requirements [27] and gut-feeling, lobbying, politics,

sell-in and strong individuals affect the requirements prioritization

in practice [28]. The size of the client base affects how the release

planning of a product can be performed, and some customers are

strategically more important than others [27]. The business per-

spective is often considered the most important requirements

selection factor, which results in implicit prioritization of feature

development over system improvement and innovation [27–29].

2.2. Model-based release planning

Software release planning has been widely accepted to be a dif-

ficult problem [3,4,13]. Mathematical release optimization models

treat release planning as an mathematical optimization problem

[4,5]. Such models select requirements to be included in one or

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 117

more subsequent releases based on different kinds of factors that

are related to the requirements, releases or stakeholders. The goal

is to optimize an utility function which is typically defined as a sys-

tem of equations. The optimization algorithm must also take into

account any constraints that are in effect, which are typically

defined as inequalities. The inequalities and equations contain

variables that reflect the different factors of the planning problem.

The utility function is expected to represent the overall planning

objective of the software releases. A mathematical algorithm or

simulation is then employed to solve the optimization problem

described by the inequalities and equations. The models produce

one or more release plans which are optimal or near-optimal given

the constraints which are in effect.

The model-based planning research proposes logically compel-

ling models to which decision making should conform. The models

gather the properties of the requirements in isolation one by one

and put the decision making into the hands of a few authoritative

stakeholders [7,30–35]. On the operational level, release planning

research has concentrated on models for optimizing the assign-

ment the development tasks to the developers in relation to a set

goal, for example to maximize the utilization of development

resources or to minimize the overall development time

[6,7,9,13,36].

The model-driven (or plan-driven) approach to release planning

is normative, linear and authoritative and it requires the taming of

the release planning problem into a problem which can be algo-

rithmically solved [13]. This approach has resulted either in mod-

els which are too simple to be useful in practice, or models which

are so complex that the practitioners find it difficult to provide the

necessary input values and find it hard to trust the output, as they

cannot understand the process that created it [4,9,13].

2.3. Release planning in multi-team Scrum development organizations

Small group research has found that groups of 3–6 members are

more productive than larger groups and reach high productivity

faster [37], and that software development teams of nine or more

members are less productive than smaller teams [38]. The pro-

posed way to scale up the size of a Scrum development organiza-

tion is to employ multiple small Scrum teams which

simultaneously develop the same software system [39]. There are

usually architectural complexities which result in a network of

dependencies between requirements [4,9], making coordination

between the independent Scrum teams difficult. The early Scrum

literature provided little guidance for strategic release planning,

as the focus was on planning and developing software one sprint

at the time in a single team, single project context [8]. However,

large development organizations have adopted Scrum practices

[15]. In large, market-driven software development organizations

the existence of release plans is the norm, although they are often

embedded in the product and project plans. In theory, strategic

plans are agnostic towards the implementation of the require-

ments, and by extension, towards the development process

employed [5]. Thus, the adoption of Scrum does not need to affect

the strategic planning process of the company. In a Scrum project,

the release plan provides information on how the goals of the

development project are reached over a multi-sprint time horizon

[40]. The release plan unifies the expectations about the likely out-

come and timeframe of the next release [40].

Existing empirical research on release planning methods in

large-scale agile development organizations is scarce [41]. In addi-

tion to earlier research [24,25] on the Release Iteration Planning

method described in this paper, to our knowledge there is only

one other publication on the topic. It describes how Ericsson per-

forms continuous release planning in a large, multi-team agile

development organization [42]. Vlaanderen et al. [43] propose an

extension to Scrum which applies Scrum principles to software

product management. Their model does not explicitly address

release planning, but product managers are expected to provide

the developers well refined requirements that the developers are

expected to implement in during following development sprints.

Thus, the selection of requirements that are to be refined implicitly

affects the contents of the next release.

The existing prescriptive guidance for organizing development

and for release planning in a multi-team Scrum development envi-

ronment has been written by practitioners and consultants based

on their personal experiences. A fewnotable examples are the books

written by Schwaber [39], by Larman andVodde [44] and by Leffing-

well [18,21]. The approaches prescribed in these books differ nota-

bly on the organization of development and on the process model.

Schwaber [39] suggest organizing the development using a tree

structure of multiple levels of integration Scrum teams in the

branch nodes and (development) Scrum teams in the leaf nodes.

The integration Scrum teams do not develop functional software,

but instead integrate, build and test the software implemented

by the (development) Scrum teams. Both kinds of Scrum teams

have a dedicated Product Owner. All requirements are listed in a

product backlog as user stories. The branch node Product Owners

are responsible for assigning sections of the product backlog for

the lower level teams. Release planning is performed by the root

node Product Owner by selecting a subset of the product backlog

as the release product backlog.

Larman and Vodde [44] propose a two-layer model for a large-

scale, agile development organization. Development teams are

arranged as feature teams that work on a single feature at a time.

Feature teams are grouped into technical product areas. Each prod-

uct area is managed by an area Product Owner, who in turn is man-

aged by a Product Owner. The Product Owner manages the product

backlog and assigns backlog items to the product areas. Features are

large backlog items that describe functionality that is valuable for

the customer. Features are split into smaller backlog items which

can be implemented during a single sprint. The dates of releases

are planned by the Product Owner and the contents of each release

are defined by what is ready by the time of the release.

Our case organization used an early version of Leffingwell’s

release planning method which was further refined and published

in his book in 2011 [21]. Themodel is based on Leffingwell’s experi-

ences as a practitioner and consultant in several software develop-

ment organizations of different sizes. Among other things, it

prescribes a comprehensive model for scheduling, planning and

managing releases in a large enterprise. The central concept is the

release train, in which the internal and external releases of the soft-

ware follow each other like the cars in a train. The central principles

of the train are frequent timeboxed releases and release planning

events, global milestones, continuous integration, synchronized

development iterations, and hardening (or finalization) iterations.

In this approach, release planning is performed in release plan-

ning events where all stakeholders of the product assemble to plan

the next release together. Leffingwell proposes roughly the follow-

ing agenda for the release planning events: opening, introduction

and guidance presentations, team planning breakouts, plan

reviews and status checks, final plan review, risk and impediment

review, and retrospective. The goal is to create a tentative imple-

mentation plan of the next internal or public release on the user

story level [21].

On a more general level, van Waardenburg and van Vliet [11]

identified challenges in cases where agile methods co-existed with

a traditional, plan-driven enterprise. They studied two companies

that had adopted agile methods and stabilized their software

development processes. Most of these challenges and the strate-

gies for mitigating them were related to planning and require-

ments engineering. They found that concurrent development

118 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140

streams, separated layer development and different process

approaches increased the IT landscape complexity. The high IT

landscape complexity then caused problems with communication,

dependent definition of done and difficulties creating change. They

identified the following strategies for mitigating the high IT land-

scape complexity: stimulating a common sense of purpose, manag-

ing programme level alignment, combining product backlogs, end-

to-end representation in team and facilitating project manage-

ment. They also found that centralized IT department and tradi-

tional project organization caused lack of business involvement.

The lack of business involvement caused problems with require-

ments gathering, slow reaction to change, problems with require-

ments prioritization and limited feedback from business. The

mitigation strategies for lack of business involvement were the fol-

lowing: changing business’ mindset, channelling business knowl-

edge through the Product Owner and managing business-level

alignment with intense stakeholder communication.

3. Research method

3.1. Research objective and questions

The overall objective of the research presented in this paper is

to start filling the large-scale agile planning research gap by

describing the Release Iteration Planning method adopted in a large

organization that employed the Scrum software development

method in two multi-team development projects.

We aim to reach the research objective by answering the fol-

lowing three research questions:

RQ1: How did the case projects adopt the Release Iteration Plan-

ning method in practice?

RQ2: What kind of benefits did the case projects gain from adopt-

ing the Release Iteration Planning method?

RQ3: What kind of challenges did the case projects face in adopt-

ing the Release Iteration Planning method?

We focus on the release planning that was conducted in the

Release Iteration Planning events. The market facing tasks of prod-

uct and project management are out of the scope of our study.

These knowledge areas include, but are not limited to, market anal-

ysis, competitor analysis, product strategy, roadmapping, product

pricing, recruitment and project budgeting (see e.g. [22,23,45]).

3.2. Case study method

We conducted the research as a longitudinal multiple case

study [46]. According to Yin, the case study method is most appro-

priate when the subject of the study is contemporary, situated in a

real-world context and the researcher has little or no control of the

events [46]. The case organization was purposefully selected, as it

provided an opportunity to perform an information-rich longitudi-

nal study [46,47]. In addition, the first of the studied development

projects was the largest in the company history (in terms of the

number of developers), which made the project a prime candidate

for an information-rich, or a revelatory, case study [46]. Table 1

shows an overview of the data sources and the quantity and type

of data from each data source in the two studied projects. Details

of the data collection are described in the two following sections.

3.3. Project a data collection

The researchers observed five Release Iteration Planning events

which took place over a nine-month time period between Decem-

ber 2009 and September 2010. The Release Iteration Planning

events were part of a project (hereafter called Project a) for devel-
oping a new version of a software product. The Release Iteration

Planning events are hereafter referred to as Events 1–5.

Data was collected by three researchers. Data collection was

performed using multiple methods. We used several data sources

to allow for data triangulation and multiple researchers for inves-

tigator triangulation to increase the reliability and construct valid-

ity of the results [48,47,46]. During the events, we attempted to

identify and observe the most interesting or remarkable discus-

sions and happenings. We observed how the different develop-

ment teams worked and interacted with the participants. We

voice-recorded the plan reviews, status checks and interesting dis-

cussions during the events. During the planning events, we acted

as neutral observers and did not affect proceedings.

We used two data collection methods in the Release Iteration

Planning events. First, we used voice recorders to record the pre-

sentations and informal dialogue during the events. Second, we

took field notes during the planning events. Immediately after each

event, we compared notes and composed an entry into a case diary.

Each entry contained an abridged description of the observations

and an initial analysis of the observations. We provided feedback

reports for the organization after Event 1 (see Section 5.4.6) and

Events 2 and 5 (see Section 5.5.10). These reports were based on

the case diary. They described the biggest issues we had identified

in the events and improvement suggestions, and in the case of

Event 2 and 5, observations of improvements from the previous

events.

A survey was conducted after Event 1 and Event 2 to gather

opinions on the planning method from the participants. The survey

conducted after Event 1 contained questionnaire statements on a

six-point Likert-like scale, open questions, and a question for grad-

ing the event. Event 2 survey contained a subset of the statements

from the first survey, selected by the case organization representa-

tives and by the researchers based on the topics seen as the most

important for the success of the planning. The surveys were anon-

ymous to increase the reliability of the results. All participants of

the events were invited to respond to the surveys.

In addition to the planning events, we participated in four ret-

rospectives. A retrospective (Retrospective Rx) of a project previ-

ous to Project a was conducted in June 2009. The discussions

during the retrospective were recorded with a voice recorder.

Table 1

Overview of the data collection.

Data source Data collected Project

Planning events

Event 1 Voice recordings (13 h 19 min), notes a
Event 2 Voice recordings (7 h 34 min), notes a
Event 3 Voice recordings (5 h 28 min), notes a
Event 4 Voice recordings (5 h 5 min), notes a
Event 5 Voice recordings (3 h 41 min), notes a

Retrospectives

Retrospective Rx Voice recording (1 h) a
Retrospective Ra1 Voice recordings (56 min) a
Retrospective Ra2 Voice recordings (4 h 45 min) a
Retrospective Rpost Field notes a

Surveys

Event 1 survey 33 Responses (response rate � 33%) a
Event 2 survey 26 Responses (response rate � 19%) a

Post-project interviews

Product Owner Voice recording (1 h 22 min) a;b

Scrum Master/Facilitator Voice recording (1 h) a;b

SPI Manager Voice recording (1 h) a;b

Product Manager A Voice recording (41 min) a
Product Manager B Voice recording (58 min) b

R&D Line Manager Voice recording (48 min) a

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 119

The goal was to identify issues regarding requirements

management.

In Event 2 the introduction and vision presentations were fol-

lowed by a retrospective (Retrospective Ra1). The purpose of the

retrospective was to find and solve impediments and learn from

the good and bad practices observed in the project so far. The ret-

rospective was performed in role-based groups. The groups were

given 1.5 h to conduct the retrospective. Each group presented

their briefing to the other groups at the end of the retrospective.

The briefings were voice recorded.

A retrospective of the first release iteration (Retrospective Ra2)

was conducted the day before Event 3. The goal was to identify

and solve issues in the software development and development

management processes in the project. Eleven topics were selected

for discussion by the participants. There were three discussion ses-

sions which lasted for 45 min each. The participants split into

groups which each discussed a single topic during the discussion

session. Between the sessions the topics were changed and the par-

ticipants selected new groups. There was a 45-min review of the

results after the third session. Two researchers observed the retro-

spective and used two voice recorders to record several discussion

sessions and the final review of the results. Overall, this retrospec-

tive lasted for three hours.

A retrospective (Retrospective Rpost) of Project a was conducted

after Event 5 in December 2010. The purpose of the retrospective

was to learn from the issues identified in the project so far. Due

to confidentiality issues, the researcher and case organization rep-

resentatives agreed that the retrospective would not be recorded.

Instead, the researcher took detailed field notes. The retrospective

lasted for four hours.

Project a officially ended in October 2011 and in August 2012,

the first and third author conducted five post-project interviews

in the case organization to gather more data on the Release Itera-

tion Planning method, and to gather data on the developments in

Project a after Event 5 and regarding the planning process after

the case study period.

The interviewees of the post-project interviews were purpose-

fully selected. The goal was to interview the most information

rich informants, and the selection was performed together with

a case company representative. The interviewees had the follow-

ing roles: Product Owner, Scrum Master, Software Process

Improvement (SPI) Manager, Product Manager and R&D Line

Manager. The interviews were conducted in a semi-structured

fashion. The list of interview questions was based on the analysis

of the previously collected data. Specifically, the questions cov-

ered the history of the project preceding Project a, the motivation

for adopting the Release Iteration Planning method in Project a,
the changes in the project organization during Project a, the

developments in Project a after Event 5, and the evaluation of

the Release Iteration Planning method including both challenges

and benefits of the method. The full list of interview questions

can be found in Appendix A.

Fig. 1 shows the timeline of the data collection. The segments

above the timeline show the approximate time span of each

release iteration.

3.4. Project b data collection

During the post-project interviews on Project a, we were

informed that another project, Project b, had adopted the Release

Iteration Planning method. In effort to increase the validity of our

results, we decided to include Project b in the scope of our study.

The interviews for collecting data of Project b were conducted

alongside the interviews about Project a in August 2012. A total

of three persons were interviewed concerning Project b. Two of

the interviewees were also interviewed about Project a. These

were the Software Process Improvement (SPI) Manager and the

Scrum Master. The Scrum Master had worked as a Scrum Master

in Project a and facilitated the Release Iteration Planning events

in Project b (thus he will be called the Facilitator regarding Pro-

ject b) and the SPI Manager had participated in the introduction

of the method to Project b. The third interviewee was the Product

Manager responsible for the product that was developed in Pro-

ject b.

3.5. Data analysis

All the post-project interviews and the recordings from the retro-

spectives were transcribed in their entirety. The transcribed retro-

spectives and the transcribed interviews were imported into the

qualitative analysis program Atlas.ti for analysis. The transcribed

materialswere thencodedbasedona concept listwhichwas created

based on the analysis of the data collected during the case study. The

concepts included the following stakeholders that were identified

during the data collection: architects, development teams, Product

Managers, Product Owners, project steering group, Scrum Masters.

Due to the novelty of the method in the case company in the first

Release Iteration Planning event, the descriptions of the first event

and the later events were coded separately with the following con-

cepts: Event 1 description, Event 2–5 description. The following two

codes were used to extract opinions towards the method: good in

the release planning method, problems in the release planning

method. During the analysis of the data, the following additional

concepts, that gave further insights into the data, were identified:

after the observation period, collaboration between the Product

Management and the R&D, dependencies, release planning in Pro-

ject b, why the method was adopted.

The backgrounds of the case organization and projects were

written based on publicly available data on the case organization,

based on observation notes and recordings from the presentations

in the Release Iteration Planning events, and based on the inter-

view data. The transcribed interviews and retrospectives together

with the field notes, feedback reports, survey results and the case

diary, were employed to create the description of Project a. After
we had constructed the general description of the case, we

reviewed the description and identified topics that were especially

interesting or confusing. The codes or combinations of codes were

used to extract passages related to those topics and the passages

were reread to elaborate the topic in the case descriptions. When

necessary, the voice recordings from the Release Iteration Planning

events were listened to in order to extract details which were not

available in the other data sources.

Since the observation period ended in December 2010, the

descriptions of what had happened afterward are solely based on

the quotations on ‘‘after the observation period’’ from the inter-

views. The description of Project b was based solely on the full

transcriptions of the three interviews.

The benefits of the method and challenges in the adoption of

the method were identified based on the quotations on ‘‘good in

the release planning method’’ and ‘‘problems in the release plan-

ning method’’ from the transcribed interviews and retrospectives,

and based on the field notes, survey results, feedback reports and

the case diary. Quotations related to benefits and challenges were

extracted from all transcribed interviews and retrospective record-

ings and read in their entirety. Triangulation [46–48] was done by

comparing the data collected from different sources, by different

researchers and with different methods in order to identify any

divergence between the data sources, researchers and methods.

Any divergent points of data were then analyzed further to find

out what the cause of the divergent data points was and if it

affected the validity and reliability of our results.

120 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140

4. The case organization and project backgrounds

In this section, we describe the case organization, followed by a

more detailed background of the two projects we studied.

4.1. Case organization background

F-Secure Corporation was established in 1988 under the name

Data Fellows. The company published its first computer security

program in 1991. In 1999, Data Fellows changed its name to F-

Secure Corporation and was listed on the Helsinki Stock Exchange.

In 2009, the corporation employed over 800 employees and had

subsidiaries around the world. In addition to traditional PC com-

puter security software, the offerings included mobile security

and data security software.

The adoption of the Scrum development method begun in 2006.

The goal was to improve the efficiency and decrease the lead-time

of software development. When Project a begun in 2009, the dif-

ferent parts of the organization were still in different stages of

adopting Scrum. Some parts had employed Scrum for several years

and some parts were still working using traditional, plan-driven

processes.

4.2. Project a background

The first version of the software product developed in Project a
was published in 2003. A new version of the product had been pub-

lished yearly since then. Previously to Project a, the development

organization of the software product had been divided into the

three following areas: the front-end, the back-end and the engine.

This division existed because of the different technologies

employed in the different parts of the product and due to legacy

reasons. The developer level communication between the different

areas had been minimal and dependencies had been managed

using well-defined APIs. In the front-end area the developers had

been organized into 6–7 member Scrum teams. Each team had a

high abstraction level component area which they were the most

familiar with (for example automatic updates or user notifica-

tions). The engine and back-end development had been organized

as line-organizations with continuous incremental development

processes. The front-end part of the software had been rewritten

in the previous project.

While the overall goal of Project a was the development of the

new version of the software, one of the subgoals was to rewrite the

back-end using a new architecture. To accommodate the simulta-

neous rewrite of the back-end and improvement of the front-end,

teams from both parts were included in the project organization,

while the engine part was kept separate. The existing teams were

kept mostly intact at the beginning of the project. The develop-

ment organization of the project consisted of approximately 140

stakeholders, including 10 software development teams of six to

seven members each. One of the teams was from an off-shore site

located in Malaysia. During the project three more off-shore teams

from the Malaysian site were added as well as one contracted team

from Poland.

4.3. Project b background

The Release Iteration Planning method was also employed in an

other project of the case company, Project b. At the time of our

interviews in August 2012, Project b had successfully applied the

method twelve times starting in the summer of 2010. Projects a
and b did not share any resources. In Project b, four development

teams and two Product Owners were located in Russia, while

two Product Managers and the main architect were located in Fin-

land and visited the Russian site once a month. In this project, the

Release Iteration Planning events were conducted every other

month as face-to-face meetings at the Russian site with all mem-

bers (the Product Managers, Product Owners and development

teams) physically present.

5. Release planning in Project a

In this section, we provide a detailed description of the release

planning in Project a. We first provide an overview of the project.

Then, we describe the first Release Iteration Planning event (Event

1) in detail. In the subsequent section, we describe the notable

changes made to the Release Iteration Planning method over the

following events (Events 2–5). After the event descriptions, we

describe our feedback reports to the case organization and finally

we describe what happened in the project after Event 5.

5.1. Motivation for adopting the Release Iteration Planning method

The motivation for adopting the Release Iteration Planning

method was tied to the issues the case organization experienced

in the development project previous to Project a (hereafter

referred to as Projectx) and also related to the size and complexity

of Project a, which had the largest project organization the case

company had ever had in a single project. A retrospective of Project

x was held in June 2009 (Retrospective Rx). The two main issues

related to the planning and monitoring of Project x identified in

Retrospective Rx are described below.

The first issue was that the developers were unavailable to sup-

port project planning. At the beginning of Project x, the develop-

ment teams were still finalizing the project preceding Project x
and had no time to assist the Product Owners and Product Manag-

ers in the planning of the project. However, the estimates provided

by developers were considered crucial for performing the cost/ben-

efit analysis for the candidate requirements of Project x.

The second issue was the difficulty of monitoring the progress

of software development during the project. While the goal of

the managers had been to organize the development in an agile

way, the requirements management was still quite waterfall-like.

The whole project had been planned on feature level before the

development begun. Features had been assigned to the develop-

ment teams by managers. After a six month development period,

Fig. 1. Timeline of the research in Project a.

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 121

a two-month period to improve quality and finalize the project had

been scheduled. The Product Managers expressed that they could

get no information on the progress during the first six months

and could not informmarketing and sales about upcoming features

and improvements, which was considered a problem:

And now that we are at the last two months we know what we are

getting. We can start making our sales material, we are confident

on what we get. But the first six months of the project, I would

not dare to talk to any partner or whoever about [Project x],

because we had basically zero confidence on what would be the

end product. That only comes when we are really close to the

release . . . but through the project the visibility and the confidence

is extremely low on what you will be getting.

[Product Manager, Retrospective Rx]

The case organization had hired an external agile development

consultant to assist in their release planning. The external consul-

tant suggested conducting planning events which he called ‘‘joint

release planning events’’, and we refer to as the Release Iteration

Planning events. According to the consultant, he had previously

facilitated such events in several companies, but the Project a orga-

nization was the largest organization he knew that had tried the

method. The benefits the organization expected to gain from the

Release Iteration Planning method were the following:

1. Better communication between the development organization

and Product Management.

2. Better transparency of development progress for Product

Management.

3. Better coordination between the development teams, especially

between the front-end and back-end teams.

4. Reduced planning overhead and faster planning.

5.2. Overview of the project

The project was initially distributed to two sites: Finland, which

was the main site, and Malaysia. During the project, the number of

development teams in Finland and Malaysia varied and one addi-

tional contracted Polish team was added. Table 2 shows the overall

number of development teams at each site during the studied

Release Iteration Planning events. The Product Owners and Scrum

Masters had responsibilities as prescribed in the Scrum method

[39]. However, in the beginning of the project, the Product Owners

were not dedicated to the teams. During all planning events, most

members of the Finnish development teams were present. The

Malaysian and Polish teams were typically represented in the plan-

ning events by each team’s Scrum Master and the rest of the teams

participated remotely via a videoconferencing system. In addition,

several other stakeholders participated in the planning events.

They will be described in detail in the following sections.

The development project was divided into release iterations and

each release iteration was divided into development sprints. Pro-

ject a was originally expected to last approximately six months,

until the end of Release Iteration 2, when the new version of the

software was expected to be published. Both release iterations

were planned to begin with a Release Iteration Planning event.

Before Event 1, the external consultant suggested that an addi-

tional Release Iteration Planning event should be conducted in

the middle of the first release iteration to adjust the plan. Thus,

an additional Release Iteration Planning event (Event 2) was sched-

uled to be held in the middle of Release Iteration 1.

Release Iteration 1 was expected to end in a test release. Release

Iteration 2 was planned to end in a public release of a feature com-

plete version of the software. During Release Iteration 2 the project

was first extended by one release iteration and during Release Iter-

ation 3, the project was extended by one more release iteration.

Fig. 1 illustrates the overall timeline of Project a and Fig. 2 shows

an overview of the schedules of the Release Iteration Planning

events in Project a.
Each release iteration consisted of two-week development

sprints. The number of sprints in each release iteration varied

based on the length of the release iteration. Release Iteration 1 con-

sisted of eight sprints, Release Iteration 2 of four sprints, Release

Iteration 3 of six sprints, and Release Iteration 4 of eight sprints.

The length of the release iterations varied as the case organization

tried to find the optimal number of sprints for a release iteration.

5.3. Requirements management

The organization had defined a four-level hierarchical model of

requirements management in the project. In the organization’s

model, epics formed the high-level goals of the product for the

multi-release time horizon. Epics were split into more concrete

features which described the requirements for the whole release

project. Features were expected to encompass functionality that

would create concrete value for the customer or user. There was

no limit to the size of features except a working definition of ‘‘a fea-

ture is something that can be implemented in a single release iter-

ation’’. At the beginning of the project, there were 135 features

proposed for implementation. Features in turn were split into user

stories to be developed in sprints. User stories were expected to

describe a small portion of functionality from a user’s point of

view. The fourth level was taskswhich described in technical terms

what needed to be done to realize the user stories.

At the beginning of the project, the Product Management team

was responsible for creating the features and epics and prioritizing

them. They were supported by the product architecture team, the

user experience team and the engine development team represen-

tatives. Together, these stakeholders represented the customers

and users of the software in the Release Iteration Planning events.

Since one of the goals of the project was to create a new version of

the product using the new back-end architecture, many features

were required to replicate the functionality of the previous version

of the software on the new architecture. Initially, the product man-

agement did not see value in prioritizing features until the func-

tionality of the previous version was completed, as they

considered that the product could not be released before the com-

pletion of those features.

The development teams together with their Product Owners

were responsible for creating user stories based on the features

and for planning the contents of the development sprints. The

implementation order of the user stories was typically based on

the dependencies between user stories.

Non-functional requirements, such as usability, reliability, per-

formance and supportability, were included in the feature defini-

tion when the nature of the feature required it. Performance

standards concerning the memory and processor load created by

the software were explicitly defined for the whole system. The user

experience team representative provided graphical layouts and

Table 2

Number of development teams at each location during each event in Project a.

Event Teams per location

Finland Malaysia Polanda

Event 1 9 1 –

Event 2 10 3 –

Event 3 9 2 1

Event 4 8 2 1

Event 5 7 4 1

a Contracted team, not a company site.

122 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140

usability guidance in the planning events. Non-functional require-

ments were also elaborated in the events by informal discussion

between the participants when required.

Initially, each release iteration was expected to end in a release

of a test version of the software, or in the case of the last release

iteration, in the release of the public, feature-complete version of

the software. The purpose of the test releases was to be a milestone

for the project, to practice and test the release process, and to

gather feedback from test users. The test users belonged to the

company’s customer feedback program. The test releases were to

be the main method of validating if the right requirements were

implemented and if the features were implemented in a satisfac-

tory way. The features included in the test release were planned

to be complete and of publishable quality.

5.4. Release Iteration Planning Event 1

In this section we first provide an overview of the Release Iter-

ation Planning Event 1. Then, we describe the different segments of

the event: introductory presentations, team planning breakouts,

draft plan reviews and the final plan review. Finally, we describe

the feedback report we gave to the case organization after the

event.

5.4.1. Overview of the event

Project a officially begun with Event 1, although materials such

as feature and architecture descriptions and user interface guid-

ance had been prepared beforehand by the responsible stakehold-

ers. The overall goal was to create an initial plan for the first release

iteration on the feature and user story level. A three-hour training

session was conducted a day before Event 1. The purpose of the

training session was to give an overview of the agile practices

which were to be used in the project. Event 1 was originally sched-

uled to take two days. After the first day, the external consultant

(who also facilitated the event) and the Release Project Manager

decided that the planning needed to be extended into third day,

as the planning was not close to completion.

Fig. 3 illustrates the project organization, the stakeholders and

the work items in Event 1. Most developers from the nine local

development teams were present during the event. One developer

or tester from each team took on the role of team Scrum Master,

with approximately 50% of the working time allocated to the

Scrum Master work. The Malaysian team did not have a Product

Owner. Instead, the team was jointly managed by an architect,

the Product Managers and the team’s ScrumMaster. One developer

and the team’s Scrum Master were present from the Malaysian

team. There were three Product Owners participating in the event.

One Product Owner was guiding the front-end teams and two

Product Owners were guiding the back-end teams.

The project had several other external stakeholders with advi-

sory or supporting roles: a user experience team representative,

a representative from the engine development organization, a

product management team that consisted of Product Managers

and a Release Project Manager, and a product architecture team

consisting of a lead architect and product architects. A Software

Process Improvement (SPI) team also participated in the events.

The team’s purpose was the continuous improvement of the soft-

ware development processes and tools in the company.

The external consultant, as an event facilitator, had an impor-

tant role in the planning event. The facilitator made sure that the

Fig. 2. Schedules of the Release Iteration Planning events.

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 123

event was proceeding as planned and within schedule, and solved

conflicts and impediments that rose during the event.

The training day and Event 1 were conducted in an external

space rented by the case organization. Fig. 4 shows an approximate

floorplan of the space. The space had a separate area for presenta-

tions. Each team had a dedicated planning table. The tables were

separated by movable walls which acted as planning boards and

dampened noise, but did not hinder access between the teams.

5.4.2. Introduction, vision and planning guidance presentations

Event 1 began with several introduction and guidance presenta-

tions given by the Release Project Manager, a Product Manager,

and different stakeholders. These presentations gave an overview

of the goals and the schedule of Project a, more detailed informa-

tion on the features intended to be implemented in the first release

iteration, and instructions for architecture and user interface

development. In addition, the facilitator gave a presentation on

the practicalities and schedule of the planning event and gave

planning instructions for the development teams. These included

instructions for writing user stories, for writing high level objec-

tives for the whole release iteration (i.e. release iteration objec-

tives), and instructions for using different color sticky notes for

recording user stories, dependencies, objectives, and risks. Finally,

the teams were instructed to start the planning by discussing the

product vision and features with their Product Owner.

5.4.3. Team planning breakouts

After the presentations ended, the development teams started

planning the first release iteration. First, the teams gathered

around their Product Owner. The Product Owners and the teams

then discussed how the features should be assigned to the teams.

After each team had been given at least one feature, the teams

broke out to their own designated planning tables, hence this seg-

ment was called the (first) team planning breakout.

Eventually, with guidance from their Product Owner and,

when required, from the Product Managers and other stakehold-

ers, the teams split their features into user stories. The teams

then scheduled the user stories into the sprints of the release

iteration based on the estimated development capacity of the

team. Fig. 5 shows several teams planning during a team plan-

ning breakout.

In Event 1, most of the teams did not write user stories from a

user’s point of view. Instead, they split the features into large tech-

nical tasks. During the event, they were repeatedly instructed by

the facilitator to use the user story format, but we observed no

changes in their conduct. We also observed that many teams strug-

gled formulating their release iteration objectives.

Fig. 3. Project a organization and stakeholders in Event 1.

Fig. 4. Approximate floorplan of the event space in Event 1. Fig. 5. Teams planning during a team planning breakout.

124 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140

5.4.4. Draft plan reviews

The planning was coordinated using intermediate plan reviews.

An intermediate plan review was conducted at the end of both the

first and second day. In the intermediate plan reviews, all event

participants gathered in the presentation area. A representative

from each development team, which usually was the Scrum Mas-

ter, shortly reported how their planning had progressed and how

much time was still needed, what their unsolved issues were,

and what dependencies, if any, they had discovered. Each team

was given 4 min to give their presentation. The other participants

were encouraged to ask questions and comment on the

presentations.

Regardless of the short time given for each presentation, the

intermediate plan reviews took a considerable portion of the time

allocated for the event overall (see Fig. 2). From the approximate

20 h of effective working time, the intermediate plan reviews took

approximately 4 h in total. Observing the participants during the

plan reviews, we noticed that many developers seemed not to be

paying attention to the presentations of the other teams. We also

observed that most of the presentations were very technical; the

teams explained how they planned to implement some functional-

ity. This issue was also identified by the participants during Event 1:

The planning session felt too short, just when we started to get

some traction there was someone coming to say you need to start

wrapping up and writing those big pictures. . . . I think every day

felt really short. I feel that we spent too little time with our own

team and too much time listening to the other teams. . . . the expla-

nations were really vague and we could not really understand the

[other teams’] team internal speak.

[Developer, Event 1]

5.4.5. Final plan review

The final plan review was conducted at the end of the third day

in a similar fashion as the intermediate plan reviews. Each team

had 6 min of time to present the plan and objectives they had for

the first release iteration. Fig. 6 shows a picture of a team member

presenting the team’s plan to the other participants during the

final plan review. The teams had written risks on sticky notes dur-

ing the team breakout sessions. Each risk was discussed briefly and

assigned to a person or a teamwho would be handling the risk. The

review was followed by a vote of confidence by a show of hands.

First, all developers voted on how confident they were in their

team’s plan and then everyone present voted for confidence on

the whole plan. In Event 1, both votes showed a high overall con-

fidence level. The plan review was followed by a short discussion

on how the event went. The facilitator asked the participants

to voice their opinions on what went well and what did not go

well.

5.4.6. Feedback by the researchers

After the event, the researchers wrote a feedback report with

the following improvement suggestions: each team should have

a dedicated Product Owner. Features should be tentatively pre-

assigned to teams before the planning event. Teams should split

features into user stories, instead of large technical tasks. Instead

of having the lengthy daily status checks, there should be an hourly

short status checks where only one representative from each team

participates. Most of these suggestions were followed in the later

events. Only writing user stories instead of large tasks continued

to be an issue in the later events.

5.5. Events 2–5

Overall, Events 2–5 were conducted quite similarly to Event 1.

The number of development teams varied slightly over the course

of the project. The Scrum Masters of the Malaysian teams were

physically present in the planning events, and the Malaysian teams

participated in the events remotely via a videoconferencing sys-

tem. Before Event 3, a contracted Polish team was added to the

project. The team was considered a part of the project, although

they were developing an independent small component. The Polish

team was represented in the event by their Scrum Master. The

notable changes that were made to the Release Iteration Planning

method over the course of Project a are summarized in Table 3 and

described in more detail below. We also describe the feedback

reports we sent to the case organization.

5.5.1. Feature prioritization and assignment

Starting from Event 2, the Product Owners and Product Manag-

ers prepared a prioritized list of features and preliminary assign-

ment of those features to the teams. The priority order and

assignments were tentative and could be changed during the plan-

ning event.

5.5.2. Table for stakeholders

Starting from Event 2, the Product Managers, architects and

other stakeholders present in the event had a reserved table in

the planning space where they could be found when they were

not working with the teams. According to the surveys (see

Fig. 9), the support the teams received from the stakeholders, the

ScrumMasters and the facilitator was much better in Event 2 com-

pared to Event 1.

5.5.3. Short status checks

The third change in Event 2 were short status meetings: two

meetings during the first day and four during the second day.

Besides the short status meetings, a draft plan review was still

arranged at the end of the first day. These status checks were par-

ticipated in by a single representative of each team and by the

Product Owners and the Product Managers. The goal was to

decrease the overhead created by the lengthy draft plan reviews

in Event 1, to provide better visibility to the progress of planning

and to assist in identifying and solving inter-team dependencies.

After Event 2, no draft plan reviews were conducted in the rest

of the events, since the frequent status checks had made the draft

plan reviews obsolete. Only the final plan review in the end of the

last planning day was kept.

5.5.4. Planning matrix

In the Event 4, a planning matrix wall was introduced. On the

matrix, each column represented one software development team
Fig. 6. A team member presenting the team’s planning board during the final plan

review.

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 125

and each row represented one sprint. Whenever a team finished

planning a feature, the wall was updated to show when the team

planned to start and when to finish the development of the feature.

Fig. 7 illustrates the planning matrix. The location of the feature

sticker indicates the beginning of the development and the tail

indicates the time span of the development. The purpose of the

planning matrix was to provide an overview of the feature devel-

opment schedule and of the progress of the planning. The planning

matrix appeared to help in the identification of risky or conflicting

feature development plans.

5.5.5. Architectural status checks

Starting from Event 4, there were two types of status check

meetings: planning status checks (explained above) and architec-

tural status checks. Both types were held in front of the planning

matrix. The status checks were held approximately once an hour,

alternating between the planning status checks and architectural

status checks. The architectural status checks were led by the lead

architect. The goal of the architectural status checks was to solve

architectural and technology related risks, dependencies and other

architecture-related issues. Typically architectural status checks

were quite short, but allowed effective identification and solving

of issues. Issues were raised during the status checks and smaller

groups of people suitable for solving the issues continued discus-

sions after the status checks.

5.5.6. Re-organization of the development teams

Between Events 4 and 5, a portion of the development organiza-

tion was laid off or moved to other projects due to an internal reor-

ganization of the company’s Finnish site. The lay-offs left many

development teams short-handed. A week before Event 5, the

Finnish development teams were rearranged. The teams were dis-

banded and new teams were formed from scratch. Each team was

also assigned a dedicated full-time Scrum Master. Seven Finnish

development teams were formed. Two of the teams were

end-to-end teams, one was a back-end team, and four were

front-end teams. Moreover, in Event 5, we observed that several

teams were using user stories instead of large technical tasks when

planning. This might be attributed to the introduction of the full-

time Scrum Masters, many of which had formal Scrum Master

training.

5.5.7. Limiting the number of features

According to an SPI team member, the number of features

brought to Event 5 was limited to the estimated total capacity of

the teams plus 15%. The goal was to reduce and focus the prepara-

tion work of the Product Managers and Product Owners. The smal-

ler amount of features allowed them to better elaborate and

prioritize the included features. In addition, the shorter feature list

reduced the development team’s pressure to over-estimate their

capacity. Since they did not see the whole backlog of features that

were proposed to be included in the product release, they planned

according to their real capacity instead of trying to fit the whole

backlog in the plan, which would have created an unrealistic plan.

5.5.8. Introductory presentations before the event

Instead of having the presentations the same day as the plan-

ning, the introductory and guidance presentations were given the

day before Event 5. Between the presentations and the first plan-

ning day, the managers and architects had time to improve mate-

rials and guidance based on questions raised during the

presentations. This also enabled the teams to start planning

straight away at the beginning of the first day.

5.5.9. Test version releases

The organization failed to publish a test release after the first

release iteration due to the incompleteness of the features and

due to quality issues. After the first release iteration, the manage-

ment decided to try to publish test release every two weeks. How-

ever, due to the similar incompleteness and quality reasons, only

Table 3

Notable changes to the Release Iteration Planning method.

Event Change compared to the previous event(s)

Event 2 A prioritized list of features and preliminary assignment of the features to the teams

Short status checks during the planning breakouts

A table reserved for the Product Managers, architects and other stakeholders

Event 3 No draft plan review at the end of the first day

Event 4 Introduction of the planning matrix

Alternating planning status checks and architectural status checks

Event 5 Reorganization of the development teams, introduction of full-time Scrum Masters

A few teams planned with user stories instead of large technical tasks

Number of stories brought to the event was limited to estimated capacity plus 15%

Presentations were given the day before the event

Fig. 7. Illustration of the planning matrix.

126 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140

approximately half of the test releases were successful between

Events 2–5. Two of the four test releases were successfully pub-

lished during Release Iteration 2, three of the six during Release

Iteration 3 and two of the four during Release Iteration 4. After

Release Iteration 4, most of the bi-weekly test releases were

successful.

5.5.10. Feedback reports

The researchers gave feedback to the case organization after

Event 2. The report contained the following observations and rec-

ommendations: the communication between the teams was much

improved from the first event, but there were some individuals

who seemed to have an attitude problem towards the Release Iter-

ation Planning method. Teams still planned using large technical

tasks instead of user stories. The new status checks seemed to

work well and we suggested that the draft plan reviews could be

dropped. The preparations for the event were lacking, and many

features were too vague to plan with.

The researchers wrote a feedback report also after Event 5 with

the following observations and recommendations for further

improvement of the method: the case organization should make

sure that the two new end-to-end teams are really working in a

cross-functional way, instead of working internally as separate

teams. While it looked like the planning was nearly completed

after the first planning day, in the beginning of the second day it

became apparent that the initial plan was unrealistic and there

were still many open issues. Two days seemed to be the minimum

timeframe for a Release Iteration Planning event in this kind of a

project, since the additional time between the days allows the

stakeholders to solve issues identified during the first day and to

create additional materials to guide the planning during the second

day.

According to the post-project interviews, the observations and

recommendations in these feedback reports were agreed by the

SPI-teammembers who read them. No feedback reports were writ-

ten after Events 3 and 4, as the researchers did not observe any

new phenomena significant enough to report.

5.6. Finalizing Project a

Event 5, held in December 2010, was the last Release Iteration

Planning event in Project a. After the fifth release iteration, ending

in March 2011, the project was considered to be in the finalization

stage and it was decided that further Release Iteration Panning

events were not needed.

The first version of the product was publicly released in October

2011, with fewer features than was originally planned. Thus,

reaching the first public release took two years instead of the six

months the product management team had originally envisioned.

The project continued development after the first public release

with a smaller number of teams divided into front-end and back-

end sub-projects. New releases were made every quarter. An inter-

viewee summarized the project in the following way:

. . . initially this was supposed to be 10 km run which might take

40 min, in the end it was a marathon where we got to the goal

barely before the time limit, six hours. . . . even though we got to

the goal, . . . the thing we had at that point was really not what

we were supposed to have.

[Product Manager, Post-project interview]

The interviewees gave several reasons for the initial over-opti-

mism in the schedule and scope of the project in the post-project

interviews. First, building the new product architecture took con-

siderably more effort than what was initially expected. Second,

the product management team assumed that a certain large

component of the software was almost completed when the Pro-

ject a begun, when in reality what was available was more akin

to a prototype. Third, the developers tended to over-estimate their

capacity and under-estimate the effort required by the require-

ments they had planned to implement during a release iteration.

Fourth, the development organization expected that the adoption

of Scrum and the Release Iteration Planning method would

increase the speed of the development.

6. Release planning in Project b

Project b was distributed between Finland and Russia. The four

Russian development teams and the Russian Product Owners col-

laborated with the Finnish Product Managers and the lead

architect.

The Release Iteration Planning method had been taken into use

in Project b because the project organization was planning big

changes to the product they were developing and they had heard

good things about the Release Iteration Planning method from Pro-

ject a members. The Project b organization was especially looking

to improve requirements transparency so that the developers

would better understand what was expected of them and why.

The overall conduct in the Release Iteration Planning events was

similar to the ones in Project a. The events were scheduled to last

two days. Before each event, the Product Managers, the Product

Owners, and the lead architect prepared a prioritized list of fea-

tures. The planning events begun with a Scrum-style retrospective

where all members of the development project tried to solve issues

that had been identified during the previous release iteration. Next,

presentations on the current status of the project, on the goals for

the next release iteration, and on technical information were given.

This typically left a few hours for the team planning breakout dur-

ing the first day. The second day was mostly reserved for the team

planning breakout. Short status meetings were conducted every

other hour. The second day ended in a collective plan review. All

12 Release Iteration Planning events, conducted by the time of

the post-project interviews, had been led by a facilitator from the

SPI team. This was perceived as an important practice as the facil-

itator had brought an external point of view to the events.

Our interviewees emphasized that good preparations were

essential for the success of Project b. All features had to be priori-

tized and the backlog had to be in a good shape before the planning

events. They had accomplished this by arranging backlog grooming

sessions on two levels: the Product Managers, the Product Owners

and the lead architect met face-to-face in monthly grooming work-

shops, and the Product Owners arranged a grooming workshop

together with the teams before each Release Iteration Planning

event. However, our interviewees mentioned that they should

pay even more attention to backlog management in the future.

In the Release Iteration Planning events of Project b, the Product

Owners and Product Managers had recently tried to replace a por-

tion of the status check meetings with status visits to each team.

The benefit of the status visits was that the participants were able

to see each team’s planning wall and ask detailed questions about

it. However, our interviewees expected that this might decrease

the inter-team visibility which was created by the status check

meetings. In this small project, with only four teams, this was

not seen as a major challenge and they were planning to continue

with the status visit practice. Our interviewees mentioned that in

the future they aimed at shortening the planning events to one

day by putting even more effort into preparation. By the time of

the interviews, the shortest Release Iteration Planning event had

taken one day and a half.

Overall, the interviewees thought that the members of the Pro-

ject b organization were happy with the Release Iteration Planning

method. It had made the planning easier in this distributed project

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 127

and improved transparency between the sites and between the

Product Managers and the development teams. According to an

interviewee, the process was well received and perceived to be

useful:

. . .widely it [the Russian site] is considered the most successful of

the sites that have adopted the joint release planning method. . . .

And it would not be so impressive if it was only performed in [Rus-

sia], but because it is led solely from [Finland], which has a different

language and a different time zone . . .

[SPI manager, Post-project interview]

7. Benefits of the method

In this section, we present the benefits of the Release Iteration

Planning method experienced in the case organization. Overall,

the Release Iteration Planning method was regarded as successful

in both case projects. All the expected benefits were at least par-

tially realized and additional benefits were recognized. Even

though Project a cannot be seen as a total success, the Release Iter-

ation Planning method positively affected the ability of the project

to finally create a public release. In Project b, at the time of our

interviews, the Release Iteration Planning method had been

applied successfully twelve times, and our interviewees saw that

this method had brought impressive results.

All our data show an overall positive attitude towards the

Release Iteration Planning method. The members of the case orga-

nization saw the method as a clear improvement to the previous

projects. In the surveys conducted after the first two Release Iter-

ation Planning events of Project a (Survey 1 and Survey 2), the pro-

ject members rated both events positively. Survey 1 had a median

of 5.0 and Survey 2 had a median of 4.0 on a six point scale

(1 = Poor, 6 = Excellent). See Fig. 8 for details. Comments on the

method in the observed retrospectives were positive as well.

We were able to identify some good things that had happened so

far. Number one, clearly, was the new planning method. So people

liked this way of working, they think it does bring benefit.

[Manager, Retrospective Ra1]

Moreover, all the persons interviewed in 2012 regarded the

method as successful and were eager to take it into use in similar

future projects. In the case projects, we recognized ten benefits of

the Release Iteration Planning method, which we will discuss

below.

7.1. Clear and unified goals for all stakeholders

As the Release Iteration Planning events gathered the whole

organization in the same space regularly, it was possible to create

clear and unified goals for all stakeholders, from Product Managers

to developers.

. . . there the whole group gets a common direction and sees who

actually belong to the project and can manage the dependencies

faster, already during the event.

[R&D Line Manager, Post-project interview]

It is really important that in two, three months interval, we gather

everybody in the same room, Product Owners, architects, Product

Managers, everybody sees each other’s faces, especially when we

are not at the same office, and we gain a common direction.

[Scrum Master, Post-project interview]

The results from the surveys in Project a also support this ben-

efit. The statements: ‘‘The necessary information was readily avail-

able thorough the event (e.g. agenda posted, handouts distributed,

etc.)’’, ‘‘I have a clear vision of what I am going to do for the next

business iteration’’ and ‘‘My team’s plan for creating the next

release is realistic’’ got medians of 5 (Agree) in both surveys. The

statement ‘‘I believe this project will create a successful solution’’

got median of 5 (Agree) in Survey 1 and median of 4.5 (between

Agree and Slightly agree) in Survey 2. See Fig. 9 for details of the

survey results.

7.2. Fast recognition of the size and challenges of the project

According to the post-project interviews, an important positive

aspect of the Release Iteration Planning method was that it helped

the project organization to realize the true magnitude of the work

in Project a. Otherwise, most probably, it would have been realized

much later. Moreover, many of the challenges of the project came

up and to the knowledge of all stakeholders during the Release

Iteration Planning events. Our interviewees presumed that even

though individual persons would have known the challenges or

thought that the project would require higher effort than expected,

this would not have became to the knowledge of a large group of

managers and other stakeholders as early as it came now.

Good was that we became aware of, already in the beginning . . .

that this project is massive . . . What we wanted complete during

this project is impossible. . . . After one and half months, when we

had the first re-planning, then at the latest we could see that this

is much more massive operation than we had realized. And without

that kind of events, I believe, we would have realized this many

months later.

[Scrum Master, Post-project interview]

7.3. Improved communication and transparency

The collaboration and visibility between the Product Managers,

Product Owners and the development teams had been a big chal-

lenge in the organization, as these groups had traditionally worked

quite apart from each other. Thus, the improved communication

and transparency between these groups was one of the benefits

that the organization hoped to gain from the method. This benefit

was clearly realized in both case projects, although this happened

gradually. Both the developers and the managers thought that the

communication and especially the transparency between the

groups had improved immensely.

The first time ever there has been this kind of visibility for the

developers to what the other teams are doing. It is better than ever

before. Previously, it has been that the project steering group
Fig. 8. Results from the survey question ‘‘Overall, how would you rate the whole

release planning event?’’.

128 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140

manages everything and developers don’t really know what is

happening in the other room.

[Developer, Event 1]

. . . the teams had much better visibility on what was coming, the

Product Owners had better visibility and the Product Managers

had better visibility on what they were getting, what was possible.

It just improves the communication at several levels.

[Scrum Master, Post-project interview]

In the Event 1 survey, 15 of the 19 answers to the open ended

question on ‘‘the best parts of the joint release planning event’’ sta-

ted collaboration and communication as the best parts. A few rep-

resentative excerpts follow.

It was easy to discuss with all the relevant people of different prob-

lems and synchronize work with other teams in case of dependen-

cies. Also visibility of other teams’ objectives was good.

[Anonymous respondent, Event 1 survey]

Having business people present all the time. Showing business how

realistic R&D think the targets are right at the beginning, and not

2 months before the release.

[Anonymous respondent, Event 1 survey]

Collaboration between all feature teams and [product] manage-

ment. All stakeholders are now focused on the same things, with

the same expectations.

[Anonymous respondent, Event 1 survey]

The Release Iteration Planning events gave the developers bet-

ter visibility on what was coming in the future and allowed them

to directly ask questions and clarifications from the product man-

agement and other stakeholders. The Product Managers saw how

the development teams worked, what was problematic, how com-

plex and demanding the developers considered the different fea-

tures and what the developers considered possible to implement

in the following release iteration. Thus, the predictability started

to improve after the first few planning events in both case projects.

I cannot think of any other way how we could accomplish the same

transparency and fast problem solving [in Project b]. I do believe in

this method, especially when I have seen how it works at Russia . . .

there business gets transparency to the practical work, especially

when in that case the business is located in a different country.

[SPI manager, Post-project interview]

7.4. Fast identification and management of dependencies

In the Release Iteration Planning events, the regular status

checks revealed dependencies between the teams and issues

regarding the dependencies.

. . . from the team perspective we had to learn that we cannot just

think that ’if we do this [our own tasks], then everything is fine’

. . . that if you get caught that ’Ops we had a dependency to there,

but we didn’t notice it.’ . . . so this kind of things were so much bet-

ter visible.

[Product Owner, Post-project interview]

As the dependencies were noticed quickly and all relevant

stakeholders were present, it was possible to discuss how to coor-

dinate the teams and solve the issues right away. Dealing immedi-

ately with the dependencies made it possible for teams to continue

their planning without the need to wait or to leave the issue

unsolved.

7.5. Enabling inter-team coordination

We observed that during the first few events of Project a, the
teams expected that the other stakeholders, like the Product Own-

ers and architects, would take care of the coordination and solve

inter-team dependencies. However, gradually the teams learned

to do this by themselves.

As all the teams were present in the events (at least by using a

telecommunications system in Project a), coordinating with the

other teams was straightforward. Moreover, during these events

the team members from different teams learned to know each

other and collaborate. Thus, the inter-team coordination became

easier also between the events, as the project organization mem-

bers knew each other and knew the assignments of the features.

Fig. 9. Results from the surveys.

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 129

7.6. Fast recognition and mitigation of impediments and risks

Recognizing impediments and risks was part of the daily sche-

dule during the Release Iteration Planning events. As the impedi-

ments and risks were recognized collaboratively, the collective

knowledge improved the coverage of the recognized risks. More-

over, one of the aims of the events was that the impediments

and risks were discussed and, if possible, mitigated already during

the events. As the impediments and risks were brought to every-

body’s knowledge, everybody could affect on mitigation of the

impediments and risks during their work.

. . . it was especially good that in the end of the events, we checked

the impediments, listed them from the whole project so that they

were clearly visible, . . . and we tried to resolve them as far as pos-

sible and assigned owners.

[R&D Line Manager, Post-project interview]

7.7. Fast decisions in the events

It was seen as very important that all stakeholders were present

or represented in the Release Iteration Planning events, as that

made it possible to get everybody needed together immediately

to discuss identified impediments and make decisions right away

on how to solve them. Previously that kind of decisions could take

up to several weeks.

Without a doubt a good thing was that everyone was in the same

space, it was the reason why it works, the reason why it was so use-

ful. Whatever question comes up, you have a person within 30

meter radius who can answer that question.

[Scrum Master, Post-project interview]

Things happen really fast [during the event]. Things that would

take weeks to handle over e-mail and over telephone . . . in there

you gather those three or four people, drag them into a corner

and state that we have this kind of issue, what shall we do?

[SPI Manager, Post-project interview]

7.8. Meeting people face-to-face and creation of a project spirit

Both case projects were distributed and even the people on the

same site sat separately. Managers sat in their rooms or cubicles

and each team had a dedicated team room, which were located

on several office floors. Many team members did not know what

the other teams were doing. In the Release Iteration Planning

events the Product Managers met and discussed with the team

members. Previously, they had been somewhat isolated from the

development teams. In the predecessor project of Project a, Project
x, some of the teams had worked on the front-end and others on

the back-end. Consequently, the members of the different teams

did not initially know each other well. In the release planning

events the participants met each other face-to-face. The intensive

effort of working a few days in a row in the same space towards

a common goal helped create a project spirit.

. . . I didn’t know the teams and others beforehand, everyone was

there, and we saw that this is ’us’, this is our project, kind of ’us’

spirit was born. . . . I came to know the teams because otherwise

the teams are easily anonymous . . .

[Product Manager, Post-project interview]

[otherwise] I would have never seen all those people over such

time. . . . if I as a Product Owner saw a lot of people, others did

too and started to talk in a different way. . . . it was not anymore

that people would just be in their own team room and that nobody

would disturb them.

[Product Owner, Post-project interview]

7.9. Showing the importance of the project

Organizing the release planning events where all productmanag-

ers were present conveyed the importance of Project a to the partic-

ipants. TheCEOof the companyvisited thefirstplanning event,which

was also an sign of the importance of the project. In Project b, sending

the ProductManagers and the lead architect to the planning events in

the Russian site conveyed the development team that they were val-

ued and that the project was important for the company.

7.10. Enabling the successful finalization of the project

Even though Project a took much longer than expected at the

beginning, many of our interviewees mentioned that the Release

Iteration Planning method immensely impacted to the finalization

of the project. First, it revealed during the first few events that the

projectwasmuch bigger than expected.Without the events the size

of the project would probably have been realized much later. Sec-

ond, the events forced the Product Managers and Product Owners

to collaborate. They had to prioritize the features and to leave parts

of the originally envisioned functionality out. Third, the events

enhanced the inter-team coordination and enabled immediate

dependency management. Finally, our interviewees admitted they

could not think of a better way to perform release planning in such

a large project:

The first event, I have heard, was a quite painful experience to

everybody, but after that everybody has agreed that this is a good

way of working, much better than what we had previously.

[Scrum Master, Post-project interview]

I don’t believe we could have managed without [the release plan-

ning events]. Because then we had that amount of teams working

on exactly the same area. Who must share the understanding.

And several sites. . . . I have really hard time coming up with an

another way which we could have used instead of that kind of

large-scale release planning.

[Product Owner, Post-project interview]

8. Challenges in the application of the method

Even though the Release Iteration Planning method received

generally positive comments, there were several challenges in its

application in Project a. Many of them originated from the com-

pany’s previous ways of working, as their application of the Scrum

method and agile thinking was still somewhat lacking when they

started the project. In this section, we concentrate on the chal-

lenges the company had in applying the method, especially in Pro-

ject a, but also to some extent in Project b. We recognized nine

challenges the case organization had in the application of the

Release Iteration Planning method. These are discussed below.

8.1. Lack of preparation of the requirements before the events

The lack of preparation of the requirements was most notable in

Event 1 of Project a, but it continued to be a challenge also in other

events. At the beginning of the project, the Product Managers did

not understand the nature of the planning events and it seemed

that they tried to prepare all possible requirements beforehand.

This created confusion when the first planning breakout started

in Event 1. The different Product Managers had not synchronized

the requirements between each other and the requirements were

not described at a low enough abstraction level for the team mem-

bers to be able to plan effectively. In addition, the overall number

of requirements, which were not prioritized, was many times more

than what the teams could realistically implement during the next

three-month release iteration.

130 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140

. . .Week before [Event 1] I saw those business requirements. It was

shocking 75 pages of Power Point. No synchronization, you could

see that one person had filled in one part and another person

had filled in another part, and third person had filled in yet another

part. They had never looked crosswise together whether these

requirements are even synchronized, and they were not.

[Product Owner, Post-project interviews]

. . . the preparation [for Event 1] was really weakly attended to by

us. Everything what came up there was new to the team members,

. . . they didn’t know what to expect, so for the most part the time

went into fumbling around, clarifying basic things that should have

been clear already in the planning.

[Product Owner, Post-project interview]

The same problem could be seen from the answers to the Event

1 survey. For example, the answers to the question ‘‘In my opinion,

the biggest problems in this release planning event were’’ con-

tained the following answer.

Insufficient preparations for the team breakout materials: too

many pages with duplicates in features under different titles, tech

& business materials separated (from teams’ perspective) - how

probable it is that anyone would have the time to go through such

amount of material with good enough of understanding on the

entity as the presentations never got to that level (epics/vision &

features were not in par for the teams to operate efficiently)?

[Anonymous respondent, Event 1 survey]

The preparation improved in over time in the consecutive

events as the managers and Product Owners learned to better pre-

pare. However, during the whole study period we observed that

communication between the development organization and Prod-

uct Management was an issue. The development teams requested

more guidance on the prioritization and implementation of fea-

tures and clearer feature information materials.

At the time of the post-project interviews, preparation was not

identified as an issue in Project b. Compared with Project a, the
preparation was more systematic in Project b. The backlog groom-

ing performed on the two levels made it easier for the teams to

start the planning right away in the planning events. In addition,

the backlog items were always prioritized before the planning

events.

8.2. Lacking feature prioritization and allocation

The list of 135 features that the Product Managers brought to

Event 1 in Project awas not in any priority order, nor were the fea-

tures pre-assigned to the teams. Three Product Owners and ten

development teams participated in Event 1. Everything was new

to the development teams, from the planning method to the prod-

uct architecture and features. The developers seemed to have diffi-

culties in getting enough support from the Product Owners and

other stakeholders. It took at least one hour for most teams to even

select their first feature. The feature list was much better prepared

for Event 2. The Product Managers and Product Owners had pre-

pared a prioritized list of features which contained pre-assign-

ments features to the development teams.

. . . in the following [release] iterations we then somewhat pre-des-

ignated them [features] based on competency and other things. And

then we made sure that the thing that was fifth on the list, this is a

thing no-one wants to do because this is kind of boring and difficult

and no end in sight, this must be assigned to someone because the

teams don’t always want to take such things that are challenging

and difficult, because they are afraid of failing and such things

are taken fast that are impressive end-user features.

[Product Manager, Post-project interview]

According to our observations, the prioritization and pre-

assignments seemed to help the teams to start the actual planning

much faster compared with Event 1. We also observed that new

information uncovered during Event 2 caused several changes to

the feature assignments during the event, which suggests that

the participants understood that the pre-assignments were only

tentative.

According to the post-project interviews, Product Manage-

ment’s role in the feature prioritization in Project a was not clear.

This issue existed from the beginning of the project until the re-

organization preceding Event 5. The Product Management was offi-

cially responsible for prioritizing the features. However, according

to the interviewed Product Manager, Product Management was

unwilling to give the features a priority order, since there was a

set of features mandatory to create a product which could be sold.

Thus, from the business point of view, it would have made no sense

to prioritize the features before the mandatory set was imple-

mented. According to him, the prioritization of features should

have been made by the Product Owners based on the most efficient

implementation order of the mandatory features:

. . .we used an airplane [metaphor] then, that we cannot prioritize

which is more important, an engine or a wing, because the air

plane won’t fly anyway and we cannot enter the market if we have

an air plane that doesn’t fly, that doesn’t have seats.. . . [It is a mat-

ter of] implementation order because we . . . don’t know which is

more sensible so we don’t want to make that decision, because

[there are] those who know and can, so let them make it, Product

Owners and architects. Because naturally we want a plane that flies

and where you can fit 200 passengers, so whether you make a wing

or an engine first . . . does not matter.

[Product Manager, Post-project interview]

According to an interviewee, before the reorganization of the

development teams prior to Event 5 of Project a, the feature back-

log was too unorganized and unprioritized to be of much use. The

Product Owners were not allowed to touch the feature backlog.

There were conflicting and misleading features, and different Prod-

uct Managers had wildly different ways of describing features.

After the reorganization preceding Event 5, the Product Owners

took the ownership of the feature backlog, which allowed them

to prioritize features and write them in a format they could under-

stand. During Event 5, the concept of a minimum marketable fea-

ture, which is the minimal set of functionality that is requisite for

the publication of a feature, was also discussed, but was not con-

cretely adopted at that time. After the reorganization, the manage-

ment and prioritization of features was performed in weekly

meetings between the Product Owners, Product Managers, archi-

tects and other relevant stakeholders. According to an interviewee,

this was identified as one of the main learnings from Project a:

. . .backlog ownership cannot be in a place where they don’t under-

stand what the actual implementation work is. Or [don’t under-

stand] how to write a feature in a way that the people who are

implementing it, for example, can only understand it in a singular

way.

[Product Owner, Post-project interview]

8.3. Lacking understanding of the creation of end-to-end features and

feature teams

According to the large-scale agile model Project a initially fol-

lowed, all features should be end-to-end features and provide

functionality visible to end users, and all teams should be cross-

functional and able to implement any feature. The goal was to cre-

ate features that could be implemented during a single release iter-

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 131

ation and included in a release at the end of the release iteration to

gather immediate user feedback.

Due to the history of the case organization, this was not possible

in the beginning of Project a. The development teams had knowl-

edge of either the back-end or front-end of the product. Therefore,

end-to-end features required involvement from the front-end and

the back-end teams. In addition, the Product Management had not

previously written end-user oriented end-to-end features. They did

not know how to write them and instead wrote new features

according to their previous technical and component oriented

way, but still managed to create features which often required

development in the back-end and in the front-end.

As a result there were lots of dependencies between the front-

end and back-end teams, which required keeping the front-end

and back-end development synchronized. The teams should have

taken care of this network of dependencies, but they lacked the

skills to handle the situation. Moreover, dependencies between

features caused even more complexities.

. . .we didn’t know those dependencies beforehand. In the planning,

we looked at them, and there were quite many [such] that the fea-

tures were not sensibly created in a way that you could implement

them alone, in a team. Instead, it was easily so that ’okay, we will

take this, but we must get that from them [another team] before we

can create it, but then those [yet another team] are waiting for this

thing from us’ . . . and then there is a network when you have dozen

teams and each team is contributing to a couple of features per

iteration over three months’ time. It became very complex.

[Product Owner, Post-project interview]

The Finnish site development re-organization preceding Event 5

did not solve the issues, as the newly formed end-to-end teams

seemed to have challenges in planning their work in an end-to-

end fashion. First, the features brought to Event 5 by the Product

Management were still component-oriented. We observed that

the newly formed end-to-end teams had difficulties in creating

end-to-end user stories based on the features. Second, we observed

that these teams split into two sub-teams during the planning. One

sub-team planned the front-end functionality of the features and

the other sub-team planned the back-end functionality. According

to the post-project interviews, the end-to-end teams did not per-

form well, and were disbanded soon after Event 5.

We tried this [end-to-end teams], but we didn’t have in the backlog

cross-functional work to give them. . . . it is a very technical back-

log, it is written in a way that would make Ken Schwaber turn in

his grave if he was dead. We did not have a back-end-front-end

thing to give that would produce customer value.

[SPI Manager, Post-project interview]

It [end-to-end teams] did not work, unfortunately. The main rea-

son, or one of the reasons, was that, at least in the beginning, we

did not have end-to-end features to give to the teams. Thus, the

teams kept receiving front-end features and back-end features,

which means that those end-to-end teams split internally into

two small teams.

[Scrum Master, Post-project interview]

In Project b, the teams were divided into front-end and back-

end teams. However, most features were written as end-to-end

features, which required collaboration between the teams and

had caused some minor coordination challenges.

8.4. Challenges in learning inter-team coordination

During Event 1, the team members did not seem to realize that

they needed to, in addition to planning the team’s work, take

care of the inter-team coordination. Instead, they expected that

somebody else, such as the Product Owners and architects, would

take care of that. The Product Owners and Product Managers

became information bottlenecks, as they had to convey informa-

tion between the teams in addition to guiding the planning

process. On multiple occasions during Event 1, the Product Owners

discovered that no team was planning to implement an important

part of some feature. This was especially evident regarding

dependencies between the front-end and back-end teams. The

inter-team coordination issue was raised during Event 1:

To some extent the Product Owners were bottlenecks, they were

not present all the time they were needed. And also when you were

solving dependencies with other team, [and] they needed to ask

something from their Product Owner and [he was] not there avail-

able to answer our questions.

[Developer, Event 1]

During the project the teams started to learn which team was

doing what and with which other teams they had dependencies.

Getting to know the team members from the other teams seemed

to help, as well. Thus, the teams were able to perform more of the

inter-team coordination themselves.

8.5. Challenges in allocating architecture planning

Another organizational issue, which existed over the whole

study period in Project a, was the planning and implementation

of the new product architecture. The project was supposed to

implement fundamental changes to the product architecture.

However, the planning of the new architecture was not very far

at the time of Event 1 and some of the participants were concerned

about this already after the first event:

Since we are doing so large architectural changes, the planning

work should have already been started before the [release] plan-

ning. Now we were trying to figure out some architectural prob-

lems in the middle of [the] planning [event].

[Anonymous respondent, Event 1 survey]

It was not clear whether only the architects or also the teams

should be involved in architecture planning and how should the

dependencies rising from architectural issues be coordinated

between the teams. Many groups identified challenges related to

the architecture and dependencies in Retrospective Ra2, one exam-

ple follows:

. . .which levels the architecture should be given to the teams, and

what is the role of the lead architect or the lead software engineer.

Those are the areas that require clarification and the definition of

responsibilities.

[Anonymous participant, Retrospective Ra2]

8.6. No unified understanding of the planning mindset

According to our observations, and according to the post-project

interviews, there was also an overall uncertainty regarding the goal

of the release planning in Project a. During Event 1, many partici-

pants assumed that the goal of the event was to create a plan which

should be precisely followed during the next, three month release

iteration. However, according to the facilitator, the goal was to cre-

ate the best possible plan given the time available and then adjust

the plan based on new information which was uncovered during

the release iteration. This also meant, that the stakeholders had to

keep on talking to each other during the release iterations.

However, it was evident from the first planning event that the

participants did not have a ‘‘unified understanding of the planning

mindset’’. Instead, many of the participants expected that the

132 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140

planned work would be exactly completed after the following

release iteration. They were surprised when this did not happen:

Now [after Event 1] we had a plan . . . Well, I expected that now we

have planned it, the teams have planned it, that this is it what

will come out. And then it took three months and then we looked

what we got, and only half of it [what was planned] had been

realized.

[Product Manager, Post-project interview]

Actually, I feel that it is still difficult for people to understand the

purpose of the [release] planning. Because an engineer usually

thinks that when you do some work, the goal is the end result.

And in this case it is not so, the purpose of the work is the process

which creates the end result, and the plan which comes out is sec-

ondary. And this is terribly difficult to explain.

[SPI Manager, Post-project interview]

This issue alleviated over time, but according to our observa-

tions the planning mindset was not completely unified in Project

a during our study period. In Project b, after the twelve planning

events, the planning process and activities were well established

and the goal of planning better understood.

8.7. Leaving no slack in the plans

At the beginning of Project a, the company had limited experi-

ence with the use of agile methods in large projects. They had chal-

lenges both in making realistic estimates as well as in leaving slack

in the plans. This led to unrealistic plans, and as plans did not come

together exactly, it was easy to blame the new method.

. . . this is a quite common issue, that we plan too optimistically . . .

and then we have noticed that we do not know enough about these

things, which has made the planning even more difficult.

[Product Manager, Post-project interview]

The development teams continued to over-estimate their

capacity during the whole study period and most teams included

a little or no slack in their plans. On the other hand, Product Man-

agement had considerably underestimated the overall amount of

work required to complete the project.

We though that yes, we can in three or six months get these things

done, but they were regardless so large . . . [that] perhaps more

realistic would have been [to estimate] . . . that this is really a

two year project.

[R&D Line Manager, Post-project interviews]

Later on in Project a, the managers learned that they constantly

could expect to get only about half of what was planned. This dou-

bled the length of the project in the eyes of the management,

which caused some additional challenges with the development

budget and marketing of the product.

The first release planning event, I don’t know how accurately it [the

plan] was realized. After that the degree of success was approxi-

mately 65%. I.e. two thirds of what was planned was realized.

And at some point we realized that this is how it is . . . we asked

the teams for commitment, and took half of it, and called it a high

confidence plan.

[Scrum Master, Post-project interview]

Taking in and planning too many features was not efficient and

made the events longer in Project a. In Project b, the organization

had learned from this. They did not take in so many new features,

the planning horizon (or release iteration) was only two months,

instead of three months, and the teams got familiar with the

upcoming features in the backlog grooming workshops.

8.8. Effort invested in the planning events

The Release Iteration Planning events were a big investment for

the case organization. In Project a, the whole project organization

spend two to three days every two to three months in the planning

events. The managers interviewed in the post-project interviews

raised the perceived low efficiency and large man-hour investment

as an issue:

We performed this [Release Iteration Planning] for two [or] three

quarters and noticed that it is a monstrous investment. [External

process consultant] is present for three days, all teams, and the plan

is in that sense poor that it doesn’t reflect the end result.

[Product Manager, Post-project interview]

The interviewees had different opinions on whether this invest-

ment was worth it. On the other hand, the interviewees also stated

that given the novelty of Project a and the size of the development

organization, they could not think of a better way to perform

release planning:

. . .we calculated that these are the meetings that would be needed

[without the Release Iteration Planning events] . . . it would take

three weeks only for the meetings where they talk and agree on

things. . . . I don’t see it [the effort put into release planning] as a

downside . . . on the contrary, if it is performed correctly, it saves

time later on, as everyone has the same goal in mind, as everyone

hopefully has dependencies in control. From this offset I believe it is

absolutely worthwhile.

[R&D Line Manager, Post-project interview]

Several of the post-project interviewees expressed that one of

the improvement goals regarding the method was to shorten the

length of events to one day. In Project b, the Release Iteration Plan-

ning events had already been shorter in duration than in Project a.
They lasted for from one day and a half to two days. The inter-

viewed manager, who had facilitated several of release iterations

planning events in Project b, believed that with proper preparation

they could shorten the length even more:

It is two days currently, but it could be squeezed to one day only, by

arraigning the retrospective separately . . . and putting even more

effort on grooming before the events.

[Project b facilitator, Post-project interview]

Project b was much smaller than Project a, employing only four

development teams. Moreover, the Project b organization was

already quite experienced with the Release Iteration Planning

method, as they had been using it for two years. According to

our interviewees, one day planning events might well be possible

in a project like Project b. For a large project containing several

new elements, such as Project a, one day would most probably

not be enough.

. . .However, if the [preparatory] work is unfinished . . . then you just

have to use the three days. I would not shorten it by force, if it is just

not possible, if the organization is not ready for it. . . . Especially if a

totally new thing starts, a new project, . . . then you take a bit more

massive event, that you sit two days and try to create a common

understanding on what is going to happen, what is possible.

[Project b facilitator, Post-project interview]

8.9. Over-optimism towards the new method

A lot of expectations were placed on the new method. In the

case company it was expected that the application of the new

method with the help from an experienced facilitator would make

Project a a success, even though there was much new for the com-

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 133

pany and lots of challenges; The project was the biggest one in the

company’s history thus far, it employed more teams and involved

more geographically distributed sites than ever before, and it

strived to build a new architecture for the existing product while

keeping the normal yearly release rhythm. The initial expectations

towards the increased development speed brought by Scrum and

the Release Iteration Planning method were clearly overly

optimistic.

. . . there were gigantic problems. First, we wanted a normal yearly

release, . . . at the same time we had to do a totally new architec-

ture and at the same time implement new business models, that

nobody actually knows what they are . . . So, a lot of unrealistic

expectations from everywhere, everyone of these would be too

much as such, and then we try to do all that at once and then

we add subcontracting . . .

[SPI Manager, Post-project interview]

. . . the whole autumn was promoted [to us] that with this [release

planning method] we can get this whole thing done . . . and there

had been discussions how much this agile and Scrum makes it fas-

ter. So they [business] saw that this allows them to put there just

any amount [of new features].

[Product Owner, Post-project interview]

9. Discussion

In this section, we first answer the three research questions and

discuss the implications of the results. We also discuss the implica-

tions of our findings to the software engineering theory, our contri-

butions to software engineering practitioners, the threats to the

validity and limitations of our results. Finally, we discuss future

work on the topic.

9.1. RQ1: How did the case projects adopt the Release Iteration

Planning method in practice?

Overall, the adoption of the Release Iteration Planning method

was considered a success, although Project a took considerably

more time than the managers of the project originally expected.

The method was also successfully adopted in the considerably

smaller Project b. The method was considered very helpful in Pro-

ject b.

Although several changes were made to the preparations and to

the communications practices over the study period, the conduct

in all the events in both projects was quite similar. First, the

participants were informed about the current status of the project.

Second, the participants were given information on what they

were expected to contribute in the following release iteration.

Third, the participants planned the following release iteration.

Fourth, the plans and the associated risks and issues were

reviewed.

The Release Iteration Planning method was based on both infor-

mal and formal communication between the software developers

and other stakeholders who were gathered to the same space.

The informal communication became more and more prevalent

during the Release Iteration Planning events in Project a. This sug-
gest that the informal face-to-face communication between the

participants was considered more efficient than the formal com-

munication in the form of presentations and status reviews

although the more formal, regular short status meetings were

required to synchronize the work of the teams and to solve issues.

This finding is in line with the agile software development princi-

ple of direct and informal communication. Our results suggest that

the principle holds also during Release Iteration Planning in a large,

multi-team development organization.

Fogelström et al. [1] claim that agile software development

methods are inherently misaligned with the needs of market-dri-

ven software product development. Possible problems they claim

to be caused by agile methods in market-driven software product

development include short-term thinking, architectural deteriora-

tion, integration problems, limited understanding about the value

and cost of requirements and the increased difficulty of change

management [1]. Our results suggest, that with some alterations,

agile principles can be successfully applied also in marked-driven

software product development. Although some of the problems

listed above were observed in Project a, our analysis suggests that
the observed problems were created by the transition period from

a plan-driven to an agile development method and the problems

alleviated when the organization become more mature in their

agile adoption. The challenges are discussed in detail in Section 9.3.

Table 4 shows how the Release Iteration Planning method

addresses several characteristics of the release planning problem

on both operational and strategic level. However, it does not solve

all issues related to it. Gut feeling, lobbying, politics, sell-in and

strong individuals [28] may affect the decision making in the

Release Iteration Planning events, although the presence and avail-

ability of the whole project organization may mitigate the negative

effects. The product management still has the responsibility for

analyzing the complex and competitive market and making strate-

gic decisions. The Release Iteration Planning method is not focused

on assisting the product management in their market-facing

responsibilities, but the relatively rapid, partial test releases do

allow them to gather feedback during the project, which provides

them accurate information about the market and the reception of

the released features.

While the Release Iteration Planning method adopted in the

case organization was based on the method described by Leffing-

well [21], the Project a organization made several alterations to

the method over the study period. Leffingwell [21] suggests that

the last development sprint of each release iteration should be a

so-called hardening sprint which is reserved for fixing any remain-

ing bugs and for general quality assurance activities. However,

hardening sprints were not scheduled in the release iterations of

Project a. Instead, after Event 5 the project was shifted to a finaliza-

tion phase where the last features were completed, and integration

testing, verification, documentation and localization work was

finalized.

Leffingwell [21] suggests that a draft plan review should be con-

ducted at the end of the first day of a release planning event. In

Project a, draft plan reviews were not conducted after Event 2.

The draft plan reviews were abandoned because they were per-

ceived to take too much time and also provide little value to the

participants. Instead, short status check meetings were arranged

regularly during the planning. Although the problem might have

been that the development team members did not have enough

experience of communicating their plans for other teams to find

the best level of detail, we did not observe any issues caused by

the lack of draft plan reviews. The informal communication

between the participants and the frequent status checks conducted

starting from Event 2 seemed to be enough to convey planning

progress information between the participants. The communica-

tion of planning progress was further enhanced by the introduction

of the planning matrix during Event 4.

Originally, the schedules of the Release Iteration Planning

events in Project a did not explicitly include time for solving prob-

lems at the end of the first planning day. However, such a practice

emerged. After the development teams had left for the day, the

managers, Product Owners and Scrum Masters stayed behind to

discuss and solve problems. The solutions and possible changes

to plans were then presented to the development teams at the

beginning of the second day. This practice is explicitly suggested

134 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140

by Leffingwell [21] and, according to our study, is an effective way

to solve problems during a Release Iteration Planning event.

According to Leffingwell [21], each development team should

create release objectives which depict their overall goal for the

next release iteration. In Project a, during Events 1 and 2, the teams

were instructed to create release objectives. Forming meaningful

release objectives seemed to be a very difficult task and the value

of creating release objectives, in addition to user stories and fea-

tures, was unclear. In the subsequent events the teams were not

instructed to create release objectives. We did not observe any det-

rimental effects from leaving out the release objectives.

9.2. RQ2: What kind of benefits did the case projects gain from

adopting the Release Iteration Planning method?

Table 5 summarizes the benefits we identified in the cases.

Most of the benefits were related to the way the Release Iteration

Planning method facilitated decision making. During the Release

Iteration Planning events the participants could communicate

directly which improved communication and transparency, enabled

inter-team coordination, and allowed fast decisions in the events, fast

identification and management of dependencies and meeting people

face-to-face and created project spirit. The collaborative and interac-

tive decision making can be considered to be the main benefit of

the Release Iteration Planning method.

Since the most members of the project organization and most

stakeholders were present in the same space, the managers could

present clear and unified goals for all stakeholders and show the

importance of the project. Such information sharing was clearly a

major benefit of the method. In the Release Iteration Planning

events, the managers were present and available during all plan-

ning events, which implicitly showed the importance of the project

and allowed them to directly answer any questions regarding the

goals of the project. This was clearly an improvement over simple

project kick-off or project status update presentations often

employed in traditional, plan-driven projects.

In addition to the communication-related benefits, the rela-

tively rapid iterative nature of the Release Iteration Planning

method allowed fast recognition of the size and challenges of the pro-

ject and enabled the successful finalization of the project. These were

clearly benefits over traditional, plan driven projects where the

realization of the lateness of the project often comes late in the

project. The rapid feedback from real users following each release

is one of the proposed strengths of the agile software development

methods [10]. Although only approximately half of the planned

test releases were successfully completed during the case study

period in Project a, these releases provided the Product Manage-

ment feedback about the features and revealed the progress of

the development in a very concrete way. This was clear improve-

ment over the previous projects where the Product Management

had little information on the development progress during the first

six months of a development project.

9.3. RQ3: What kind of challenges did the case projects face in

adopting the Release Iteration Planning method?

Table 5 summarizes the challenges we identified in the cases.

We recognized only two challenges that were clearly caused by

the way the method was used. At the beginning of Project a the

external consultant and the managers expected that the features

would be elaborated, prioritized and allocated during the events.

However, it quickly became apparent that lacking of preparation

of the requirements before the events and lacking feature prioritiza-

tion and allocation were major causes of confusion and slow pro-

gress during the early planning events. The informal elaboration,

prioritization and allocation of features are good examples of agile

practices that have been claimed to work well in the bespoke, sin-

gle team, single customer representative Scrum sweet spot [8], but

created challenges in Project a due to the size and complexity of

the project.

The pre-assignment of features to teams and the improved fea-

ture descriptions clearly reduced the overburden of managers and

Table 4

Comparison of the characteristics of the release planning problem and the properties of the Release Iteration Planning method.

Release Planning Characteristic Release Iteration Planning method

Shared understanding of requirements arises during the

development and may be weak first [9]

(Iterative process that takes into account new understanding from the previous iteration(s)

The values of the requirements selection criteria are time

dependent [9]

(Iterative process that allows reprioritization of requirements during the project

Great majority of requirements have complex dependencies

between each other [9,26]

(The whole project organization is present and can identify and solve dependencies efficiently

Decision makers have difficulties expressing how

requirements should be prioritized [27]

(The final plan is based on face-to-face discussions instead of a simple authoritative list of priorities

Feature development is implicitly prioritized higher than

system improvement and innovation [27–29]

(The prioritization between feature development and system improvement and innovation is

explicit and forces the decision makers to justify their prioritization decisions

Table 5

Benefits and challenges in the application of the method.

Benefits Challenges

Clear and unified goals for all stakeholders Lack of preparation of the requirements before the events

Fast recognition of the size and challenges of the project Lacking feature prioritization and allocation

Improved communication and transparency Lacking understanding of the creation of end-to-end features

Fast identification and management of dependencies Challenges in learning inter-team coordination

Enabling inter-team coordination Challenges in allocating architecture planning

Fast recognition and mitigation of impediments and risks No unified understanding of the planning mindset

Fast decisions in the events Leaving no slack in the plans

Meeting people face-to-face and creation of project spirit Effort invested in the planning events

Showing the importance of the project Over-optimism towards the new method

Enabling the successful finalization of the project

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 135

sped up the planning events. We also observed that the pre-assign-

ments were, indeed, considered tentative and the assignments of

features to teams changed during the events when new informa-

tion affecting the assignments came up. Initially, the prioritization

of features was a challenge, as the Product Managers considered

most of the features mandatory and equally valuable. Eventually,

the product management started to produce prioritized lists of fea-

tures, but explicit criteria for requirements prioritization or value

was not given during any of the events. Thus, the user stories were

split from the features and prioritized based on dependencies and

on informal discussions between the teams, the Product Owners

and the Product Managers, which required lots of time and created

bottlenecks. Previous research has found that decision makers

often have difficulties providing explicit criteria for requirements

prioritization [27] and our results affirm those findings.

One solution proposed to the problem of splitting and prioritiz-

ing requirements in the agile software development literature is to

employ the concept of the minimum marketable feature (MMF)

[21]. For each feature, the minimum set of essential functionality

that is valuable to the customers (i.e. the MMF) is first imple-

mented. The rest of functionality is postponed until feedback from

customers using the MMF can be employed to improve and prior-

itize the rest of the feature. Often customers are satisfied with the

MMF and the development resources can be employed to imple-

ment other, more exiting features instead of extending the MMF.

This solution was also considered in Project a, but not adopted dur-

ing the study period.

Over-optimistic schedules are a well known problem in soft-

ware projects [49]. This problem manifested in leaving no slack in

plans and over-optimism towards the new method in Project a. In
this case, leaving no slack in the plans was caused by the inexperi-

ence of the developers and by the pressure created by the manag-

ers who, in turn, had unrealistic expectations about the scope and

schedule of the project. The Release Iteration Planning method was

expected to reduce the planning overhead and thus speed up the

project. However, the initial expectations were clearly over-opti-

mistic. The true scope of the project was at least four times larger

than what was expected in the beginning of the project. It is clear

that finishing the project according to the original schedule and

scope was not possible regardless of the release planning, or devel-

opment, method used.

The case organization was clearly still in progress of transform-

ing from a plan-driven line organization to an agile project organi-

zation. The front-end teams had been arranged as Scrum teams in

the project previous to Project a, but it was the first Scrum project

for the back-end teams. Many of the challenges we identified in

Project a were caused by the immature adoption of the large-scale

agile model and agile mindset.

The immature agile transformation caused lacking understand-

ing of the creation of end-to-end features and feature teams and chal-

lenges in learning inter-team coordination. At the beginning of

Project a, the Product Managers did not have enough experience

creating end-to-end features that the teams could easily under-

stand and implement, and the development teams did not under-

stand that they were responsible for inter-team coordination of

feature development. Both of these challenges alleviated during

the project as the teams and Product Managers got more experi-

ence in the new agile development process and in the Release Iter-

ation Planning method.

The transformation from a plan-driven process to an agile

method requires a change of mindset of both developers and man-

agers. The most obvious challenge caused by the traditional, plan-

driven mindset was that the project organization had no unified

understanding of the planning mindset. Although the introductory

presentations in the planning events emphasized that the release

plan should only be thought as a tentative starting point for further

adjustments during the following release iteration, many manag-

ers and developers expected that the plan should be exactly exe-

cuted during the following release iteration.

The role of software architecture and software architects in

large-scale agile development is still an issue which does not have

a clear solution [41]. In Project a the project organization had chal-

lenges in allocating architecture planning between the development

teams and the software architects. This challenge alleviated over

time as the architecture of the system stabilized and the teams

became more experienced in developing the system. The teams

would have benefited from more detailed architectural guidance

at the beginning of the project.

Whether the effort invested in the planning events was a problem

or not in Project a depended on the perspective it was viewed

from. The whole development organization spent two or three

days without developing any software, which can be viewed as

waste of effort. On the other hand, the requirements, schedules

and plans would have needed to be created and communicated

in the project organization anyway. Effort spent on those activities

was previously included in the daily work of the project organiza-

tion and the release iteration method made the effort visible and

calculable. Only true experiments could reveal if there is any sig-

nificant difference between the effort spent on those activities in

plan-driven and agile projects.

When the Release Iteration Planning method was introduced to

Project b, the organization was already more mature regarding the

agile transformation. Moreover, Project b was also much smaller

than Project a. In Project b the Release Iteration Planning method

seemed to function successfully without any major challenges.

9.4. Implications for theory

Although there have been claims to the contrary [29], a release

planning method based on agile software development principles

can be successfully applied in market driven product development

and in large-scale projects. Release planning is not an unsolvable

issue when agile software development methods are scaled up to

large, multi-team projects. However, to accommodate the size of

the project and to make the planning more efficient, the prepara-

tions to the release planning events must be more rigorous than

in small, single-team agile development projects. Although release

planning is a difficult problem [3,4,13], many of its problematic

characteristics can be ameliorated by applying a planning method

that is iterative and based on face-to-face discussions (see Table 4).

Most of the previous research on software release planning has

concentrated on authoritative, deterministic and plan-driven

methods and tools [5,13]. Our results support the previous findings

[4,9,12–14] that such tools have limited applicability, especially in

agile software development projects.

According to the traditional project success criteria, that is, the

deviations from the originally planned budget, schedule and scope

are within acceptable range [23], Project a would be no doubt con-

sidered deeply challenged. One of the proposed benefits of the

Scrum development method are the short sprints that enable all

stakeholders to see the development progress at the end of each

sprint in the sprint demo [8,50]. Our findings in Project a suggest

that the Release Iteration Planning method enabled the project

organization to quickly realize how unrealistic the original plan

for Project a was. Our results suggest that an iterative and incre-

mental release model combined with the Release Iteration Plan-

ning method may help project organizations to identify

unrealistic project plans quicker than they could identify using

the traditional, single release model.

van Waardenburg and van Vliet [11] identified challenges cre-

ated by increased IT landscape complexity and by lack of business

involvement when agile development methods were employed in

136 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140

traditional, plan-driven context. The context of our study was

somewhat similar to theirs. In Project a, especially the business-

oriented stakeholders in the case organization were still in transi-

tion from a plan-driven mindset to the agile mindset. The Release

Iteration Planning method implements many strategies that Waar-

denburg and Vliet identified for mitigating the challenges. We

found that the Release Iteration Planning method enabled the

meeting people face-to-face and creation of project spirit, provided

the stakeholders with clear and unified goals and enabled inter-

team coordination. These benefits match with the mitigation strat-

egies of stimulating a common sense of purpose, end-to-end repre-

sentation in team and intensive stakeholder communication. The

Release Iteration Planning method also helped to show the stake-

holders the importance of the project, improved communication

and transparency and enabled fast decision making in the events.

These benefits match with the mitigation strategies of changing

business’ mindset, channelling business knowledge and managing

business-level alignment. This comparison suggests that the

Release Iteration Planning method might be a powerful tool for

mitigating challenges that rise when an agile development organi-

zation works with a plan-driven business organization.

9.5. Contributions to practitioners

We have described how a software development organization

adopted the Release Iteration Planning method. Although our goal

was not to provide a prescriptive guide for the Release Iteration

Planning method, companies that are in comparable situation

can employ our results as a starting point for creating their own

release planning method. The benefits and challenges we have

detailed help practitioners to identify whether this kind of method

is suitable for their situation and to avoid or mitigate the chal-

lenges our case organization faced. We have also provided a sum-

mary of why release planning, in general, is difficult, and a

description of characteristics that should be taken into account

when a release planning method is considered.

9.6. Limitations and threats to validity

We employed both quantitative and qualitative methods for

data collection and analysis. In the discussion of the validity and

reliability of our results and analysis, we rely on the definitions

proposed by Yin [46] and by Shadish et al. [51]. We discuss the

validity of our research from four different aspects which are the

internal validity, the construct validity, the external validity and

the reliability [46]. The fourth type of validity, the statistical con-

clusion validity, is not relevant to this study as we do not employ

statistical analyses to infer causal relationships [51].

Internal validity concerns the validity of the causal relationships

observed in the case [46]. On several occasions we have suggested a

causal relationship between a change made to the Release Iteration

Planning method and a perceived improvement to the efficiency of

conduct in the following planning events. Due to the limited scope

of this research, we cannot completely rule out the possibility that

the perceived improvements were caused by a confounding factor

or by the maturation of the organization [51]. This is especially true

in this case where no existing theory explains the causal relation-

ships and no similar studies in other organizations exist.

In case study research, construct validity concerns how well the

description of the cases represents the reality [46]. The post-

project interviews were conducted approximately two years after

the Release Iteration Planning events in Project a. In the post-

project interviews, we asked the interviewees to recall what had

happened during the project two years earlier. This may have

decreased the validity of the interview data concerning the Release

Iteration Planning events in Project a. However, we triangulated

the interview data with data that was collected during the project.

The construct validity of a case study can be increased by the trian-

gulation of data sources, investigators, theories and methods [46–

48]. Of these, we employed the investigator, method and data

source triangulation. Three different investigators collected and

analyzed the data. We employed three different research methods:

observations, interviews and surveys. Our data sources included

observation notes and recordings from the Release Iteration Plan-

ning events, interview recordings and quantitative and qualitative

survey responses. Moreover, this manuscript was reviewed by two

employees of the case organization who agreed that this manu-

script presents a fair account of the two case projects.

Theexternalvalidityofresearchconcernsthedomaintowhichthe

resultsof researcharegeneralizable [46]. Bothof thestudiedprojects

were carried out by the same company, which makes it difficult to

identify the characteristics of a project or organization that areman-

datory for our results to hold in other contexts. To summarize the

main characteristics of the cases: the lifecycle-model was based on

Scrum, multiple teams were working on the same software system

and the development was market- and project-driven. The Release

Iteration Planning method and the benefits and issues identified in

this research are likely generalizable to projects that share the afore-

mentioned characteristics. However, more studies of multi-team

Scrum release planning in other organizations are required to truly

assess the generalizability of our results.

The reliability of a case study concerns whether different

researchers had produced the same results if they had studied

the same projects [46]. The main threat to the reliability is the var-

iability in the data collection. The observation notes written during

the Release Iteration Planning events were an account of the obser-

vations the researchers found noteworthy and different research-

ers might have noted other things. However, two researchers

wrote separate observation notes which increased the reliability

of the observations. Discussions and meetings during the events

were also recorded whenever it was possible. These recordings

provide an additional account of the Release Iteration Planning

events and increase the reliability of our results. The post-project

interviews provided third account of the Release Iteration Planning

events. This data source triangulation makes our results robust

against threats to reliability [46–48].

Most of the data we collected converged between the investiga-

tors, methods and data sources and revealed no notable threats to

the construct validity or reliability of our results. Triangulation

revealed one significant point of divergence between different data

sources, which was the cost-efficiency of the Release Iteration

Planning method. Further analysis revealed that the different

stakeholders had different opinions on the cost-efficiency of the

method. Additional quantitative financial and effort data would

have been required to analyze the cost-efficiency of the method.

Since such data was not collected by us or by the case organization,

we cannot reach a conclusion regarding the cost-efficiency of the

method, which is a clear limitation of our study.

Project a was unique in the case company as the scope of the

project and the size of the development organization were larger

than ever before in the case company. Without a point of compar-

ison, we cannot say what kinds of effects the Release Iteration

Planning method had to the success of the project or if the tradi-

tional, plan-driven project management approach would have

been better. Thus, the conclusions on the effects of the method

to the success of the project are limited to observed benefits from

the method we have disseminated in this article.

9.7. Future work

Our in-depth case descriptions allow other researchers of the

field to compare and contrast their findings to our results and anal-

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 137

ysis. Building evidence based and solid theories of agile software

development has been identified as an important goal for the

research field [41]. The long-term goal of the agile release planning

research should be the building of an overall theory of agile release

planning, and our study is a small step towards that goal.

10. Conclusion

We studied a case organization that had faced challenges with

release planning and consequently adopted a new release planning

method which we call the Release Iteration Planning method. The

method was based on the agile software development principles of

direct and efficient communication between the stakeholders of

the project and iterative and incremental development. This article

presents the first extensive scientific study of the Release Iteration

Planning method.

We studied two projects of the case organization that adopted

the Release Iteration Planning method. We described how the

method was applied and improved over a twelve-month time per-

iod, what kinds of benefits the method brought to the projects and

what kinds of challenges the projects faced when applying the

method. Although the first project faced several challenges at the

beginning, the method, adopted from Leffingwell [21] and subse-

quently altered to suit the large organization better, contributed

to the eventual success of both projects.

We identified the following ways the method ameliorates the

difficult characteristics of the release planning problem: the com-

munication between the development organization and the Prod-

uct Management enabled by the events allows both of them to

better understand the requirements from the business and the

technical points of view. The iterative and incremental releases

enable frequent feedback from the users and customers and allow

the reprioritization of the requirements if their value changes over

time. The face-to-face communication in the planning events

enables fast dependency identification and management. The

Product Management shares the responsibility for the final feature

prioritization with the development organization instead of pro-

viding a simple authoritative list of prioritized features. The prior-

itization between feature development and system improvement

and innovation is explicit and can be discussed in the planning

events, which prevents excessive focus on the short term feature

development tasks.

The market facing product management activities are impor-

tant in market driven software product development. However,

our final conclusion is that release planning in agile software

development organizations requires collaborative effort between

the market facing stakeholders and the development organization.

Acknowledgements

We would like to thank F-Secure Oyj for making this study pos-

sible and all the anonymous interviewees for providing valuable

contributions to this research.

This work was supported by TEKES as part of the Cloud Soft-

ware Finland and the Need for Speed research programs of DIGILE

(Finnish Strategic Centre for Science, Technology and Innovation in

the field of ICT and digital business).

Appendix A. 2012 Interview questions

A.1. Project a specific questions

� What was your role during Project a and before it?

� How did you find out about the Release Iteration Planning

method?

� Why did you decide to try the method?

� How did you try to perform the planning before adopting the

method?

� Were there some specific challenges you tried to solve with the

method?

� Did you have any training in the method?

� Did you have a specific process to improve the Release Iteration

Planning method?

� When did you start to adopt the Scrum model?

� What was the release cycle of the product?

� How did you prepare for the first Release Iteration Planning

event?

� How do you think the first event went in general?

� Do you think the later [compared to Event 1] events were

better?

� Who belonged to the project organization?

� How many teams there were at different times in Project a?
� What was the organization of the development teams?

� How was product management organized in Project a?
� Did every team have a dedicated Product Owner?

� Did every team have dedicated Scrum Master?

� Where did the Scrum Masters come from?

� Did the small number of Product Owners compared to the

teams cause any problems?

� Did the Malaysian teams have Product Owners?

� Is your organizational culture very hierarchical?

� What caused the friction between the product management and

the development organization?

� Was writing requirements in the feature format done before?

� How did you prioritize features in the beginning of Project a?
� Did features typically have dependencies between them?

� Did you measure howmuch effort went into the preparation for

the first Release Iteration Planning event?

� What kind of training you had before the first event?

� Did you have trouble getting approval for this method from the

upper management?

� Would you do things identically if you had similar project [to

Project a] starting now?

� Did you try to create cross-cutting features in the beginning [of

Project a]?
� Did each team have a certain component they knew best?

� Were the same teams involved in the previous project?

� How did you communicate the feature development plans to

the teams in the previous project?

� How did you monitor the progress of development in the previ-

ous project?

� Can you think of anything that was especially good in the

Release Iteration Planning method?

� Do you think the planning was successful?

� Do you have any improvement suggestions [to the method]?

� Can you think of any other downsides of the method?

� Do you think there is an upper size limit when the method stops

working well?

� Would you recommend this method to others?

� Did you see or read the feedback reports we sent to the

company?

� How many teams were from Poland and how many from

Malaysia after [Event 5]?

� How did you accommodate the distributed teams in the plan-

ning events?

� If you would now conduct this kind of planning event, would

you like to have all teams present or is it enough to have a

videoconference?

� Why do you think the management did not initially realize the

project would be impossible to complete in the given time?

� What happened in the project after [Event 5]?

138 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140

� Why did the project stop having the Release Iteration Planning

events after [Event 5]? When did it happen? Why did it

happen?

� When did you complete everything that was planned for the

product?

A.2. Project b specific questions

� What was your role in Project b?

� What is your role in the organization?

� When was the Release Iteration Planning method adopted in

Project b?

� How did you, concretely, initiate the adoption of the method?

� In how many Release Iteration Planning events you have been

in?

� How many Release Iteration Planning events there has been in

Project b?

� Was the Russian site involved in the project from the

beginning?

� Did the Russian site develop the previous version of the

software?

� Why did you take the Release Iteration Planning method into

use?

� Where did you hear from about the Release Iteration Planning

method?

� What had you heard about the Release Iteration Planning

method?

� Before adopting the Release Iteration Planning method, how did

you try to show the developers the big picture?

� Did you have any forum where you [the PO and developers]

discussed?

� What was the typical schedule in the Release Iteration Planning

events?

� Who facilitated the Release Iteration Planning events?

� On what precision level you try to predict the feature develop-

ment schedule?

� How many POs there are in [Project b]?

� How do product managers collaborate with the Russian site?

� Why does the frontend backend division exist?

� Are the teams split between the frontend and backend?

� How many teams do you have [in Project b]?

� Do all teams work solely on [Project b]?

� How are features brought to the Release Iteration Planning

events?

� Is backlog grooming performed by each team individually?

� Are features specific to the frontend or the backend?

� How do you handle the coordination between the frontend and

backend when features are end-to-end?

� On what abstraction level are your backlog items?

� Is there an intermediate step between features and user stories?

� When are product demonstrations given?

� What is the typical length of the Release Iteration Planning

events?

� Is the goal to get features done over single release iteration? Has

it been successful?

� Is the backlog of the Russian teams electronic?

� Do you have status meetings during the Release Iteration Plan-

ning events?

� Does every team have their own Scrum Master?

� Is it typical that everyone gathers together at the end to review

the plan? Is this a good way to review the plan?

� Can you think of anything especially good in the Release Itera-

tion Planning method compared to the previous planning

method?

� Do you think that the developers have courage to speak about

issues when you and other managers are present in the events?

� Is the product architect from [Russia] or from [Finland].

� Do you have a team of architects that thinks about the

architecture?

� Do you have any dependencies to other products of the

company?

� How do you manage the dependencies?

� Have you noticed if the teams in the Release Iteration Planning

events talk to each other?

� Did you pre-assign backlog items to the teams?

� From your point of view, what are the things that could be

improved [in the Release Iteration Planning method]?

� Do you think the planning has been successful?

� Do you have any problems related to the Release Iteration Plan-

ning in Project b?

� Would you recommend this method to others?

� Do you know why the method is not used in other parts of the

company?

References

[1] N.D. Fogelström, T. Gorschek, M. Svahnberg, P. Olsson, The impact of agile
principles on market-driven software product development, J. Softw. Maint.
Evol.: Res. Practice 22 (1) (2010) 53–80.

[2] T. Chow, D.-B. Cao, A survey study of critical success factors in agile software
projects, J. Syst. Softw. 81 (6) (2008) 961–971.

[3] A. Ngo-The, G. Ruhe, A systematic approach for solving the wicked problem of
software release planning, Soft Comput. – Fusion Found., Methodol. Appl. 12
(1) (2008) 95–108.

[4] P. Carlshamre, Release planning in market-driven software product
development: provoking an understanding, Requirements Eng. 7 (3) (2002)
139–151.

[5] M. Svahnberg, T. Gorschek, R. Feldt, R. Torkar, S.B. Saleem, M.U. Shafique, A
systematic review on strategic release planning models, Inform. Softw.
Technol. 52 (3) (2010) 237–248.

[6] A. Al-Emran, D. Pfahl, Operational planning, re-planning and risk analysis for
software releases, in: J. Münch, P. Abrahamsson (Eds.), Proceedings of the 8th
International Conference on Product-Focused Software Process Improvement
(PROFES 2007), Lecture Notes in Computer Science, vol. 4589, Springer, Berlin
Heidelberg, 2007, pp. 315–329.

[7] G. Ruhe, J. Momoh, Strategic release planning and evaluation of operational
feasibility, in: Proceedings of the 38th Annual Hawaii International Conference
on System Sciences (HICSS ’05), 2005.

[8] K. Schwaber, M. Beedle, Agile Software Development with Scrum, Prentice-
Hall, Upper Saddle River, NJ, 2002.

[9] H.C. Benestad, J.E. Hannay, A comparison of model-based and judgment-based
release planning in incremental software projects, in: Proceeding of the 33rd
International Conference on Software Engineering (ICSE’11), ACM, New York,
NY, USA, 2011, pp. 766–775.

[10] A. Cockburn, Agile Software Development, Addison-Wesley, Boston, MA, 2002.
[11] G. van Waardenburg, H. van Vliet, When agile meets the enterprise, Inform.

Softw. Technol. 55 (12) (2013) 2154–2171.
[12] L. Cao, B. Ramesh, Agile requirements engineering practices: an empirical

study, Software 25 (1) (2008) 60–67.
[13] S. Jantunen, L. Lehtola, D.C. Gause, U.R. Dumdum, R.J. Barnes, The challenge of

release planning, in: Proceedings of the Fifth International Workshop on
Software Product Management (IWSPM 2011), IEEE, Piscataway, NJ, USA,
2011, pp. 36–45.

[14] B.W. Boehm, Requirements that handle IKIWISI, COTS, and rapid change,
Computer 33 (7) (2000) 99–102.

[15] VersionOne, Inc, 7th Annual State of Agile Development Survey, 2013. <http://
www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-
Survey.pdf> (cited May 2013).

[16] S. Freudenberg, H. Sharp, The top 10 burning research questions from
practitioners, IEEE Softw. 27 (5) (2010) 8–9.

[17] M. Paasivaara, C. Lassenius, Scaling Scrum in a large distributed project, in:
Proceedings of the International Symposium of Empirical Software
Engineering and Measurement (ESEM 2011), 2011, pp. 363–367.

[18] D. Leffingwell, Scaling Software Agility: Best Practices for Large Enterprises,
Addison-Wesley Professional, Reading, MA, 2007.

[19] C. Larman, B. Vodde, Scaling Lean & Agile Development: Thinking and
Organizational Tools for Large-scale Scrum, Addison-Wesley, Upper Saddle
River, 2009.

[20] L. Lehtola, M. Kauppinen, S. Kujala, Requirements prioritization challenges in
practice, in: F. Bomarius, H. Iida (Eds.), Proceedings of the Product Focused
Software Process Improvement conference (PROFES 2004), Lecture Notes in
Computer Science, vol. 3009, Springer, Berlin Heidelberg, 2004, pp. 497–508.

[21] D. Leffingwell, Agile Software Requirements: Lean Requirements Practices for
Teams, Programs, and the Enterprise, Addison-Wesley, Upper Saddle River, NJ,
2011.

V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140 139

http://refhub.elsevier.com/S0950-5849(14)00204-3/h0005
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0005
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0005
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0010
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0010
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0015
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0015
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0015
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0020
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0020
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0020
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0025
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0025
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0025
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0030
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0030
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0030
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0030
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0030
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0030
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0030
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0030
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0040
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0040
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0040
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0045
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0045
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0045
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0045
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0045
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0050
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0050
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0055
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0055
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0060
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0060
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0065
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0065
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0065
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0065
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0065
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0070
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0070
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0080
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0080
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0090
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0090
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0090
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0095
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0095
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0095
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0095
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0100
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0100
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0100
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0100
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0100
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0100
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0100
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0105
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0105
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0105
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0105

[22] E. Ferrari, Product Management for Software, Mondo Strategies Press, 2008.
[23] H.-B. Kittlaus, P.N. Clough, Software Product Management and Pricing: Key

Success Factors for Software Organizations, Springer, Berlin, 2009.
[24] V. Heikkilä, K. Rautiainen, S. Jansen, A revelatory case study on scaling agile

release planning, in: Proceedings of the 36th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), IEEE Computer
Society, 2010, pp. 289–296.

[25] G. Gunyho, J.G. Plaza, Evolution of longer-term planning in a large scale agile
project – F-Secure’s experience, in: A. Sillitti, O. Hazzan, E. Bache, X.
Albaladejo, W. Aalst, J. Mylopoulos, M. Rosemann, M.J. Shaw, C. Szyperski
(Eds.), Agile Processes in Software Engineering and Extreme Programming,
Lecture Notes in Business Information Processing, vol. 77, Springer, Berlin
Heidelberg, 2011, pp. 306–315.

[26] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, J. Natt och Dag, An industrial
survey of requirements interdependencies in software product release
planning, in: Proceedings of the IEEE International Conference on
Requirements Engineering (RE ’01), IEEE Computer Society, Piscataway, NJ,
USA, 2001, pp. 84–91.

[27] S. Barney, A. Aurum, C. Wohlin, A product management challenge: creating
software product value through requirements selection, J. Syst. Architect. 54
(6) (2008) 576–593.

[28] M. Lindgren, C. Norström, A. Wall, R. Land, Importance of software architecture
during release planning, in: Proceedings of the 7th IEEE/IFIP Working
Conference on Software Architecture (WICSA 2008), 2008, pp. 253–256.

[29] N.D. Fogelström, M. Svahnberg, T. Gorschek, Investigating impact of business
risk on requirements selection decisions, in: Proceedings of the 35th
Euromicro Conference on Software Engineering and Advanced Applications
(SEAA ’09), IEEE Computer Society, Piscataway, NJ, USA, 2009, pp. 217–223.

[30] G. Ruhe, A. Ngo, Hybrid intelligence in software release planning, Int. J. Hybrid
Intell. Syst. 1 (1–2) (2004) 99–110.

[31] J. Momoh, G. Ruhe, Release planning process improvement – an industrial case
study, Softw. Process: Improv. Pract. 11 (3) (2006) 295–307.

[32] V. Heikkilä, A. Jadallah, K. Rautiainen, G. Ruhe, Rigorous support for flexible
planning of product releases – a stakeholder-centric approach and its initial
evaluation, in: Proceedings of the 43th Hawaii International Conference on
System Sciences (HICSS ’10), IEEE Computer Society, 2010.

[33] M.O. Saliu, G. Ruhe, Bi-objective release planning for evolving software
systems, in: Proceedings of the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering (ESEC-FSE ’07), ACM, New York, NY, USA, 2007, pp.
105–114.

[34] K. Logue, K. McDaid, Agile release planning: dealing with uncertainty in
development time and business value, in: Proceedings of the 15th IEEE
International Conference and Workshops on the Engineering of Computer-
Based Systems, IEEE, Piscataway, NJ, USA, 2008, pp. 437–442.

[35] M. Li, M. Huang, F. Shu, J. Li, A risk-driven method for eXtreme programming
release planning, in: Proceedings of the 28th International Conference on
Software Engineering (ICSE ’06), ACM, New York, NY, USA, 2006, pp. 423–430.

[36] A. Al-Emran, K. Khosrovian, D. Pfahl, G. Ruhe, Simulation-based uncertainty
analysis for planning parameters in operational product management, in:
Proceedings of the 10th International Conference on Integrated Design and
Process Technology (IDPT-2007), Society for Design and Process Science, USA,
2007, pp. 191–201.

[37] S.A. Wheelan, Group size, group development, and group productivity, Small
Group Res. 40 (2) (2009) 247–262.

[38] D. Rodríguez, M.A. Sicilia, E. García, R. Harrison, Empirical findings on team
size and productivity in software development, J. Syst. Softw. 85 (3) (2012)
562–570.

[39] K. Schwaber, The Enterprise and Scrum, Microsoft Press, Redmond, WA, 2007.
[40] M. Cohn, Agile Estimating and Planning, Prentice Hall Professional Technical

Reference, Upper Saddle River, NJ, 2005.
[41] T. Dingsøyr, S. Nerur, V. Balijepally, N.B. Moe, A decade of agile methodologies:

towards explaining agile software development, J. Syst. Softw. 85 (6) (2012)
1213–1221.

[42] V.T. Heikkilä, M. Paasivaara, C. Lassenius, C. Engblom, Continuous release
planning in a large-scale Scrum development organization at Ericsson, in: H.
Baumeister, B. Weber (Eds.), Agile Processes in Software Engineering and
Extreme Programming, Lecture Notes in Business Information Processing, vol.
149, Springer, Berlin Heidelberg, 2013, pp. 195–209.

[43] K. Vlaanderen, S. Jansen, S. Brinkkemper, E. Jaspers, The agile requirements
refinery: applying SCRUM principles to software product management,
Inform. Softw. Technol. 53 (1) (2011) 58–70.

[44] C. Larman, B. Vodde, Practices for Scaling Lean & Agile Development: Large,
Multisite, and Offshore Product Development with Large-scale Scrum,
Addison-Wesley, Upper Saddle River, NJ, USA, 2010.

[45] J. Rothman, Manage it!: Your Guide to Modern, Pragmatic Project
Management, The Pragmatic Bookshelf, Raleigh, NC, 2007.

[46] R.K. Yin, Case Study Research: Design and Methods, fourth ed., Sage
Publications, Thousand Oaks, CA, 2009.

[47] T.D. Jick, Mixing qualitative and quantitative methods: triangulation in action,
Adm. Sci. Quart. 24 (4) (1979) 602–611.

[48] M.Q. Patton, Qualitative Research and Evaluation Methods, third ed., Sage
Publication, Inc., Thousand Oaks, CA, 2002.

[49] K.E. Emam, A.G. Koru, A replicated survey of IT software project failures, IEEE
Softw. 25 (5) (2008) 84–90.

[50] K.H. Pries, J.M. Quigley, Scrum Project Management, CRC Press, Boca Raton, FL,
USA, 2011.

[51] W.R. Shadish, T.D. Cook, D.T. Campbell, Experimental and Quasi-experimental
Designs for Generalized Causal Inference, Houghton Mifflin, Boston, MA, USA,
2001.

140 V.T. Heikkilä et al. / Information and Software Technology 57 (2015) 116–140

http://refhub.elsevier.com/S0950-5849(14)00204-3/h0110
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0110
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0115
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0115
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0115
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0120
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0120
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0120
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0120
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0120
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0125
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0130
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0130
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0130
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0130
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0130
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0130
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0135
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0135
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0135
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0145
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0145
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0145
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0145
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0145
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0150
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0150
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0155
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0155
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0160
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0165
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0165
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0165
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0165
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0165
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0165
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0170
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0170
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0170
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0170
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0170
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0175
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0175
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0175
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0175
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0185
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0185
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0190
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0190
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0190
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0195
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0195
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0200
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0200
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0200
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0205
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0205
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0205
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0210
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0210
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0210
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0210
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0210
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0210
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0210
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0210
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0215
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0215
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0215
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0220
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0220
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0220
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0220
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0225
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0225
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0225
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0230
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0230
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0230
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0235
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0235
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0240
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0240
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0240
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0245
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0245
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0250
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0250
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0250
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0255
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0255
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0255
http://refhub.elsevier.com/S0950-5849(14)00204-3/h0255

	Operational release planning in large-scale Scrum with multiple stakeholders – A longitudinal case study at F-Secure Corporation
	1 Introduction
	2 Software release planning
	2.1 Characteristics of the release planning problem
	2.2 Model-based release planning
	2.3 Release planning in multi-team Scrum development organizations

	3 Research method
	3.1 Research objective and questions
	3.2 Case study method
	3.3 Project α data collection
	3.4 Project β data collection
	3.5 Data analysis

	4 The case organization and project backgrounds
	4.1 Case organization background
	4.2 Project α background
	4.3 Project β background

	5 Release planning in Project α
	5.1 Motivation for adopting the Release Iteration Planning method
	5.2 Overview of the project
	5.3 Requirements management
	5.4 Release Iteration Planning Event 1
	5.4.1 Overview of the event
	5.4.2 Introduction, vision and planning guidance presentations
	5.4.3 Team planning breakouts
	5.4.4 Draft plan reviews
	5.4.5 Final plan review
	5.4.6 Feedback by the researchers

	5.5 Events 2–5
	5.5.1 Feature prioritization and assignment
	5.5.2 Table for stakeholders
	5.5.3 Short status checks
	5.5.4 Planning matrix
	5.5.5 Architectural status checks
	5.5.6 Re-organization of the development teams
	5.5.7 Limiting the number of features
	5.5.8 Introductory presentations before the event
	5.5.9 Test version releases
	5.5.10 Feedback reports

	5.6 Finalizing Project α

	6 Release planning in Project β
	7 Benefits of the method
	7.1 Clear and unified goals for all stakeholders
	7.2 Fast recognition of the size and challenges of the project
	7.3 Improved communication and transparency
	7.4 Fast identification and management of dependencies
	7.5 Enabling inter-team coordination
	7.6 Fast recognition and mitigation of impediments and risks
	7.7 Fast decisions in the events
	7.8 Meeting people face-to-face and creation of a project spirit
	7.9 Showing the importance of the project
	7.10 Enabling the successful finalization of the project

	8 Challenges in the application of the method
	8.1 Lack of preparation of the requirements before the events
	8.2 Lacking feature prioritization and allocation
	8.3 Lacking understanding of the creation of end-to-end features and feature teams
	8.4 Challenges in learning inter-team coordination
	8.5 Challenges in allocating architecture planning
	8.6 No unified understanding of the planning mindset
	8.7 Leaving no slack in the plans
	8.8 Effort invested in the planning events
	8.9 Over-optimism towards the new method

	9 Discussion
	9.1 RQ1: How did the case projects adopt the Release Iteration Planning method in practice?
	9.2 RQ2: What kind of benefits did the case projects gain from adopting the Release Iteration Planning method?
	9.3 RQ3: What kind of challenges did the case projects face in adopting the Release Iteration Planning method?
	9.4 Implications for theory
	9.5 Contributions to practitioners
	9.6 Limitations and threats to validity
	9.7 Future work

	10 Conclusion
	Acknowledgements
	Appendix A 2012 Interview questions
	A.1 Project α specific questions
	A.2 Project β specific questions

	References

