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For any resource theory it is essential to
identify tasks for which resource objects of-
fer advantage over free objects. We show
that this identification can always be ac-
complished for resource theories of quantum
measurements in which free objects form a
convex subset of measurements on a given
Hilbert space. To this aim we prove that
every resourceful measurement offers advan-
tage for some quantum state discrimination
task. Moreover, we give an operational inter-
pretation of robustness, which quantifies the
minimal amount of noise that must be added
to a measurement to make it free. Specifi-
cally, we show that this geometric quantity
is related to the maximal relative advantage
that a resourceful measurement offers in a
class of minimal-error state discrimination
(MESD) problems. Finally, we apply our re-
sults to two classes of free measurements: in-
coherent measurements (measurements that
are diagonal in the fixed basis) and separable
measurements (measurements whose effects
are separable operators). For both of these
scenarios we find, in the asymptotic setting in
which the dimension or the number of parti-
cles increase to infinity, the maximal relative
advantage that resourceful measurements of-
fer for state discrimination tasks.

1 Introduction

Resource theories [1]| constitute a powerful toolbox
to study physical systems in the presence of limi-
tations resulting from experimental or operational
constrains on the ability to address and manipu-
late physical systems. This mathematical framework
is general enough to encompass both classical and
quantum physics, or even more general theories [2].
In recent years it has been successfully applied to
classical and quantum thermodynamics |3, 4], pro-
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cessing of quantum information in distributed sce-
narios [5, 6], contextuality [7], nonlocality [8], steer-
ing [9] and, last but not least, magic state distil-
lation paradigm of quantum computation [10]. On
the general level, all resource theories are defined by
specifying free objects and free operations. Free ob-
jects form a subset of the set of all objects relevant
for the physical situation in question. Likewise, free
operations form a subclass of all relevant physical
transformations. Typically objects that are not free
are called resource objects. The specific choice of free
objects and free operations depends on the physical
context. For example, in entanglement theory the
relevant resource theory is based on the principle
of locality: set of free objects consists of separable
states while free operations are all local operations
assisted by classical communication (LOCC).

For any resource theory it is desirable to give oper-
ational interpretation of resource objects i.e to iden-
tify a task for which a given resource object would
prove advantageous over all free objects. The main
purpose of this work is to provide such interpreta-
tions for resource theories in which a set of free ob-
jects consists of convex subset of the set of quantum
measurements (POVMs) on a relevant Hilbert space.
We realize this goal by showing, that in this setting
for every resourceful measurement M there an in-
stance of minimal-error quantum state discrimina-
tion game for which M gives greater success prob-
ability then all free measurements. Quantum state
discrimination |11, 12] is a popular quantum infor-
mation subroutine that finds applications in differ-
ent areas of quantum information science includ-
ing quantum communication [13]|, quantum metrol-
ogy [14], nonlocality [15] or quantum computation
[16]. We push our operational interpretation fur-
ther by proving the quantitative relation between
the relative advantage of resourceful measurement
for state discrimination and the geometric measure
of resourcefulness called robustness [17, 18], which
quantifies the minimal amount of noise that has to
be added to a POVM to make it free. Previously,
the measure robustness was introduced [19] to math-
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ematically quantify entanglement. Leter, it was em-
ployed in the general resource- theoretic framework
[1, 20, 21].

We apply our general results to two classes of free
measurements: incoherent measurement and sepa-
rable measurements. Incoherent measurements are
POVM analogues of incoherent states [22-24] and
can be understood as measurements originating from
a single projective measurement (in the fixed ba-
sis) followed by arbitrary classical post-processing.
Separable measurements [25-28|, on the other hand,
are POVMs on composite quantum systems whose
effects are separable operators. This class contains
the set of LOCC measurements [29, 30| i.e. measure-
ments that can be implemented via local measure-
ments and LOCC operations. For both incoherent
and separable measurements we focus on the asymp-
totic setting in which the dimension of the system
or the number of particles involved go to infinity.
In this regime we identify, for both classes of mea-
surements, the maximal relative advantage that re-
sourceful measurements can offer for quantum state
discrimination tasks.

Traditionally, operational interpretations of quan-
tum resources were developed case-by-case for differ-
ent resource theories [31-36]. A recent paper [18]
gave an unified treatment of this problem for all
quantum resource theories in which the set of free
objects is convex subset of the set of quantum states.
Specifically, the authors of this work showed that in
this context all resource states offer advantage for
some sub-channel discrimination problem (this re-
sult was previously obtained for resource theories of
entanglement [37], coherence [38], steering [39] and
asymmetry [40]). Our results are complementary
to [18], as they give the operational interpretation
of all conver resource theories of quantum measure-
ments. Moreover, our work greatly generalizes some
of the results of [17], where the analogous analysis
was presented for the case where free measurements
consisted of maximally uninformative measurements
i.e. measurements that do not recover any informa-
tion about the measured quantum states.

So far, research in quantum resource theories fo-
cussed mainly on quantum states while quantum
measurements, despite their importance, did not re-
ceive much attention. Previously, resource-theoretic
perspective was applied in the context of measure-
ment incompatibility [41, 42], measurement simu-
lability via projective measurements [43, 44|, and
simulability in the more general scenarios [42, 45].
We believe that our results, especially previously
unexplored quantitative relation between state dis-

crimination and robustness, provide new quantita-
tive tools to study the restricted classes of POV Ms
and, more generally, quantum resource theories con-
centrated around quantum measurements.

2 Notation and main concepts

Throughout the paper we will be interested in
POVMs on finite dimensional Hilbert space H ~ C?.
Such generalized measurements (POVMs) can be
understood as tuples M = (Mj,..., M,) of non-
negative operators on C? satisfying >.7; M; = 1,
where n is the number of outcomes and 1 is the
identity on C%. The operators M; are called the
effects of POVM M. According to Born’s rule,
when a POVM M is measured on a quantum state
p the probability of obtaining the outcome i is
given by p; = tr(M;p). We denote the set of
POVMs on C? with n outcomes by P (d,n). This
set has a natural convex structure [46]: given two
POVMs M, N € P (d,n), their convex combination
pM -+ (1—p)N is the POVM with i-th effect given by
[PM + (1 — p) N], := pM;+(1—p)N;. The operation
of taking convex combinations of measurements can
be operationally realized as performing POVMs M
and N with certain probabilities and then combining
the outcomes.

Our operational interpretation of resourcefullness
of quantum measurements will be based on the
task of minimal-error state discrimination [11, 12].
The purpose of this task is to optimally distinguish
quantum states states generated by the ensemble
E ={qi, pi}—,, where {g;}!"_, is a probability distri-
bution and {p;}I_; is a collection of quantum states.
The success probability of identifying the states gen-
erated by £ via a measurement M € P(d,n) is given
by

Psuce(E, M) = zn:Qi tr(Mip;) . (1)
i=1

One is often interested in choosing the measurement
M, such that pgycc(€, M) is maximized. However, if
only a restricted class of measurements F C P(d, n)
is allowed, the maximum pgycc may not be achieved.

3 Convex resource theories of measure-
ments and measurement robustness

We now give a minimal formulation of a resource
theory of measurements, under the assumption of
convexity. In our treatment we will focus on a set
of quantum measurements F and a class of free op-
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Figure 1: A figure demonstrating some of the key ideas
of the paper. The blue part denotes the of all free mea-
surements F while orange part denotes the set of all n
outcome measurements on C¢ that are not free. (i) lllus-
tration of Theorem 1: for any M ¢ F there always exists
a hyperplane W which separates any POVM M ¢ F in a
sense (M.W) > (F.W) for all F € F. By Theorem 1,
every separating hyperlane can be rewritten in terms of a
state discrimination problem for the ensemble of quantum
states £ such that for all free measurements F we have
Dsucc(E, M) > pauce(E,F). (ii) Geometric explanation of
Robustness: the straight line represents convex combina-
tions M;EN For a given POVMs M and N there exist
the minimal value s, (depending on N for a fixed M) such
that leéN becomes free. The robustness Rz (M) is de-
fined as the minimum s,, considering all possible POVM
N € P(d,n).

erations I 0. We first assume (i) that the set of
free measurements F is a convex and closed subset
of n-outcome measurements on C% i.e F C P(d,n),
for some suitable Hilbert space # ~ C%. Second, we
assume that the class of free operations O consists
of mappings ¢ : P(d,n) — P(d,n) that (ii) pre-
serve the set of free measurements i.e. for all N € F
we have p(N) € F and (iii) are convex-linear i.e.
P(PM + (1 = p)M') = pp(M) + (1 — p)p(M’) for all
measurements M, M’ € P(d, n).

Justification of assumptions: The convexity of F
can be justified by the fact that, as argued before,
convex combination of measurements can be realised
by a purely classical process. The compactness of F
is a technical assumption that allows us to formally
state our results. However, in basically any physi-
cally interesting case the class of free measurements
F can be viewed as a set of convex combinations

10f course, the full treatment of resource theory of mea-
surements requires to take into account more complicated as-
pects such as composability. We plan to address such ques-
tions in the future work.

(convex hull) of a compact set of "primitive" mea-
surements F’, and hence is naturally compact. Fi-
nally, convex linearity of free operations follows from
linearity of quantum mechanics while preservation
of the F by free operation is also natural - oper-
ations that are considered free should not be able
to create resourceful measurement. In particular,
in many cases the set F contains (a) classical post-
processing i.e. operation of the form Q(M) = M/,
where M] = 37, q(i|j)M;, for some stochastic matrix
Q;; = q(i[j), and (b) unitary symmetries of the set
F.

For every set of free measurements F it is pos-
sible to introduce a geometric measure quantifying
the minimum amount of noise which has to be added
to a given POVM M to make it free. In analogy to
previous works [17-19] we will call this quantifier ro-
bustness and denote it by Rr. It is formally defined
in the following way (See Fig. 1):

M + sN
Rr(M) := min {s] 3N such that Vs € .7:} .

1+s
(2)

The robustness enjoys a number of natural proper-
ties as stated by the following proposition.

Proposition 1 (Properties of robustness). Let F C
P(d,n) be a closed convex set of free measurements.
The robustness Rr satisfies the following properties:
(i) Faithfulness: Rr(M) > 0 and Rr(M) > 0 iff
M ¢ F, (ii) Convexity: Rr(pMy + (1 —p)M’) <
pRr(M)+(1—p)Rr(M') , (iii) Monotonicity under
free operations: Rr[p(M)] < Rr(M) for all free
operations ¢ € O.

The proof of the above follows directly form the
definitions of the concepts involved and we defer it
to the Appendix.

4  Main results

In this part we give our main results concerning the
operational interpretation of resourceful measure-
ments for a class of quantum state discrimination
tasks.

Theorem 1 (Minimal-error state discrimination
can certify resource character of measurements).
For any resourceful POVM M ¢ F, there exist an
ensemble Ev = {pi, pi} such that

pSHCC(gMu M) > rl\rllgg(__psucc(gMu N) . (3)

Proof. We begin the proof by noting that P(d,n)
is a convex subset of (Herm(#H))*™ where H ~ C?
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is a d- dimensional Hilbert space and Herm(H) is
the set of hermitian operator from H to itself. The
space (Herm(#))*™ can be regarded as nd? dimen-
sional real vector space with the inner product de-
fined by (A,B) = Y tr(A;B;), where A,B €
(Herm(H))*™. We have assumed that F is a com-
pact set and hence, due to hyperplane separation
theorem (see Fig. 1), for any M ¢ F, there exists a
tuple of Hermitian operators W = (W1, Wy, ....W,,)
such that 7, tr(W;M;) > 0 while for all N € F
we have 3, tr(W;N;) < 0. We now define W; =
Wi + |A|L, where A is the smallest eigenvalue of
operators {W;}. We note that for every i the
operator W is positive-semi-definite and moreover
S tr(WiNg) < Y, tr(WiM;). Using this we con-
struct the ensemble & = {Z%, tr%m}, for
which the inequality (3) holds. O

The above result shows the qualitative advantage
of resourceful measurements for a class of state-
discrimination tasks.
natural way to quantify this advantage. In Theorem
2 below we show that under the same assumptions
as above, the robustness Rz(M) is related to the
maximal relative advantage that a resourceful mea-
surement M offers for MESD. To prove this result
we will use the following technical Lemma that can
be regarded as dual characterisation of measurement
robustness. Its proof relies on duality of semi-infinite
convex optimization programs [47] and we present it
in the Appendix.

In what follows we show a

Lemma 1. Let M € P(d,n) and F C P(d,n) be
a compact convex set of free measurements. Then,
the generalized robustness Ry(M) can be expressed
as the following optimisation problem.

n
mazimize Ztr(ZZ-Mi) -1
i=1
subject to Z; >0,i=1,...,n, (4)

> Tr(ZiN;) <1VYNeF

i=1

We are now ready to state and prove our main
result.

Theorem 2 (Operational interpretation of robust-
ness in terms of quantum state discrimination). For
any class of free measurements F and any POVM
M € P(d,n) the generalized robustness can be ex-
pressed as

R]-‘(M) — max psucc(ga M)

-1 5
2 maXNE]:psucc(gaN) ’ ( )

where the outer optimisation is over n element en-
sembles of quantum states.

Proof. We begin by showing that LHS(5) > RHS(5).
From the definition of generalized robustness from
(2) it follows that for each effect M; of POVM
M € P(d,n) it holds that M; + Rr(M)M! =
(14 Rx(M))N/, where M/ are the effects of POVM
M’ € P(d,n) and N/ are the effects of POVM
N’ € F. Therefore, we have M; < (1 + Rx(M))N/
for every ¢ € {1,n} and therefore

Psucc (57 M) < (1 + R]—'(M»psucc(gy N/)
< (1 + R]—'(M)) Igrlg;_(_psucc(ga N) ,

where the second inequality follows from N’ € F.

To show LHS(5) < RHS(5), we use the dual
characterization of the generalized robustness from
Lemma 1. Let (Z7,..., Z}) be the optimal tuple for
which (4) is maximized. We now define

SR LE I
TS e(Z) w(Z))
Simple algebraic manipulations give Rx(M) +
L = ( ?:ltr(Z:)>psucc(€*,M)- On the other

hand from (4) it follows that YN € F we have
Psuce(Ex, N) < m Using these two proper-

(7)

ties we obtain

pSuCC (8*7 M)
maxNerF Psuce (8*7 N)

>Rr(M)+1. (8)

By combining (6) and (8) we complete the proof. [

Importantly, Theorems 1 and 2 are valid for all
convex and compact sets of free measurements F. In
particular, we can directly apply them to the mea-
surements that are simulable by projective measure-
ments [43, 44] or k-outcome measurements [42, 45].
In what follows, we will consider application of our
results to two other classes of free measurements:
incoherent measurements and separable measure-
ments. We will focus on obtaining the maximal rel-
ative advantage for MESD that can be obtained in
these scenarios by resourceful measurements.

4.1 Incoherent measurements

Quantum coherence or superposition is one of the
salient nonclassical aspects of quantum theory. Re-
cently, this feature of quantum theory was inves-
tigated thoroughly form the resource-theoretic per-
spective [23, 24|. Moreover, quantum coherence has
been identified as resource for a number of quantum
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information processing tasks like quantum channel
discrimination [37], designing quantum algorithms
[48], quantum metrology [14] and quantum thermo-
dynamics [3]. Finally, there is a plethora of works
on quantification of quantum coherence of quantum
states [23, 49] and operations [50, 51] and on giv-
ing operational interpretation to some quantifiers
[35, 36].

Here we propose to introduce a concept of coher-
ence to the realm of POVMs. Specifically, we define
the class of incoherent measurements ZC(d,n) con-
sisting of n-outcome measurements S on C¢, whose
effects are diagonal in a particular orthogonal basis
{|#)}. In what follows, for the sake of simplicity, we
assume n > d. Incoherent measurements constitute
a POVM analogues of the set of incoherent states.
More formally, the effects of incoherent measure-
ments S can be expressed as S; = ;l:l q(il7)17) (41
where ¢ € [n]. In is now easy to see that incoherent
measurements can always be obtained via classical
post-processing of projective measurements in the
standard basis.

One way to quantify the coherence present in a
POVM is the robustness Rz¢(M) with respect to
the set of incoherent measurements. Importantly,
Rzc(M) satisfies a number of natural properties
stated in Lemma 1. Here, the class of free opera-
tions Oz¢ can be chosen to contain all diagonal uni-
taries and classical post-processing . By applying
Theorem 2 directly to this setting we get that ro-
bustness Rzc(M), can be identified as the maximal
relative advantage of M for a suitable state discrim-
ination problem. In the following we will take the
complemenary approach based on semi-definite pro-
gramming [52]. From the definition of incoherent
measurements it follows that Rz¢(M) can be casted
as the following semi-definite program (SDP)

minimize s
M, N,
S = Talahlai va

9
Noe>0,a=1,....,n. Y No=I, )
a

s.t

> qlali)(1+5)=b Vi.

Taking the dual problem we get the following aux-
iliary result whose proof we defer to the Appendix.

Lemma 2 (Dual characterization of robustness

w.r.t. incoherent measurement). Robustness of a

“In fact all quantum channels A such that A* is an inco-
herent channel also preserve ZC(n, d).

POVM M € P(d,n) w.r.t set of incoherent mea-
surement ZC(d,n), i.e, Rzc(M) can be expressed as
the solution of optimization problem given by

n
maximaize Z tr(ZgM,) — 1

a=1
subject to Vi,a Zg >0 (i|Z,)i) = (i|Zy]i) ,
tr(Zp) =1.

(10)

From the above we get a physical characteriza-
tion of ensembles of states that suffice to capture
the maximal advantage of coherent measurements
over the incoherent ones.

Proposition 2 (Alternative characterisation of ro-
bustness for incoherent measurements). Let M €
P(d,n). We have the following equality

succ b M
Rze(M) = max Psuce (60, M)

-1, (11
o maXNEZC(d,n)pSucc(gO)N) ( )

where the outer optimisation is over ensembles &y =
{1/n,0;}1, consisting of states that cannot be clas-
sically distinguished [53] (that is, for all j € [d] and
for all i € [n] we have (j|o;|j) = 1/d). Due to this
property of o; for all incoherent measurements N we
have pgyce(E9, N) = 1/n.

Proof. We observe that due to the assumed prop-
erty of states o; (for all k (k|o;|k) = 1/d), for any
POVM N € IC(d, n)v MaxXNezce(d,n) psucc(gmN) =
1. Then RHS of (11) is exactly the same as opti-
mization problem given in (10) which completes the
proof. O

The above operational characterisation of Rz¢ al-
lows us to identify measurements with the great-
est possible robustness (hence relative advantage for
MESD) in a given dimension d.

Proposition 3 (Maximal advantage of coherent
measurements over incoherent measurements). The
following equality holds

M) = min{d,n} — 1 . 12
Mg}%n)ch( ) = min{d, n} (12)

Moreover, when n > d the measurement M attains

the maximal value of Rx if and only if its effects are
proportional to maximally coherent states i.e pure

states of the form |1) = (1//d) Z;-lzl exp(if;)|7)-

Proof. From Lemma 2 it follows that Rz¢(M)+1 =
> tr(M;o;), where o; cannot be classically distin-
guished. Since for any p we have tr(M;p) < tr(M;)
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we obtain Rze(M) + 1 < Y, tr(M;) = d. More-
over, if n > d this bound can be easily satu-
rated for projective measurements in the Fourier
basis |7) = \[Zk b ex p(ﬂwk) |k) =with ensem-
ble & = {%, ) }4 G=1

For n < d, we will use (10) to get the missing
upper bound. We first note that since operators
M, are upper bounded by 1 we have tr(Z,M,) <
tr(Z,) = 1. Therefore , from (10) we can conclude
that Rze(M) = Y tr(Z,M,) < Y, tr(Zs) = n,
hence Rz¢(M) < n — 1. Combining this with the
previous case we conclude Rz¢(M) = min{d,n} —1.
Just like in the case n > d we will proof the satu-
ration of this bound using Fourier transform of the

127r]k
f E |k). To prove the

equality for the case n < d, we choose an ensemble &
uniformly distributed over first n orthonormal states
from ensemble &, i.e, € = {1, 7)}j=1 and an n out-

2 G-

For this particular case, again RHS of (11) reduce
to n — 1. Combining these two cases we obtain
maxnjep(d,n) fze(M) = min{d,n} — 1.

Now we will show that for n > d any
POVM for which (11) holds, have the effects
directly proportional to |¥)(¢| where [¢) =
(1/Vd) S j 1exp(if;)]7). This follows from the sim-
ple observation that for n > d, maximization of
(10) Va, tr(Z,M,) = tr(M,) requires that Z, =
PSupp(Ma) + B,, where tr(BaPSupp(Ma)) = 0. More-
over, to satisfy the constraint of (10), Psypp(ar,) has
to be one dimensional. This implies only feasible
solution will be

original basis |j) =

come POVM M := {{m(ﬂ}? 11711 -

M, = a,0l, Z,=T1,, (13)

where I, is rank one projector with trace 1. Then
to be a valid POVM,

Dl =1= ) g (i[lla]i) = 1. (14)

Combining (14) and (10) we obtain (i|I,|i) = 3
for every a. This leads to the conclusion that the
POVM M with n > d outcomes and satisfying
Rze(M) = d — 1 must have effects proportional to

[) (9] where [) = (1/Vd) -y exp(i6))]j). O

4.2 Separable measurements

We now turn our attention to the measurements
that can be performed on a composite quantum sys-
tems. In what follows we will study the maximal
advantage that entangled measurements can offer
for MESD over so-called separable measurements on

multiparticle quantum systems. Separable measure-
ments contain the set of LOCC measurements and
are relatively easy to characterize. For this reason
the maximal advantage with respect to separable
measurements is in general smaller then the advan-
tage with respect to LOCC measurements.

Consider a biparticle quantum system Hap =
Ha ® Hp. We define a POVM F as separable if
all its effects {Fj}}_, are separable operators i.e.
F; = ¥, QF ® QF where {QF}7_, and {QF}7, are
positive operators on H4 and 7—[ B respectlvely. The
above definition can be easily extended to system of
multiple qubits Hy = (C2)®N. We denote the set of
biparticle separable measurements by Sep(AB) and
separable multiqubit measurements by Sep(N). Re-
call that we made the dependence on number of out-
comes n implicit. In what follows we will assume
that n is fixed and equals at least the dimension
of the relevant Hilbert space (d4dp and 2N respec-
tively). It easily follows that Sep(AB) and Sep(N)
are convex compact subsets of P(d,n) for suitable
Hilbert spaces. The following Lemma gives the com-
prehensive answer to the question about the maxi-
mal advantage for MESD that entangled measure-
ments can offer over separable measurements in both
bipartite and multiparty scenario.

Proposition 4 (Maximal advantage of entangled
meaurements over separable measurements). Let d4
and dp denote the dimensions of local spaces in the
biparticle Hilbert space Hap. Then, the following
inequalities hold

min{da,dp}—1 < max Rgep(apy(M) < min{da,dp} ,
(15)
where the mazimization is over all measurements on
HaB.
Moreover, the maximal robustness of entangled qubit
measurement increases exponentially with the size of
the system. Specifically, for sufficiently large N we
have
2N

CgNT T 1< max Rgep(ny(M) < 22N

M\w

11, (16)

where the maximization is over all measurements on
Hy and c > 0.7.

Sketch of the proof. The upper bounds in (15) and
(16) follow from application of explicit simulation
strategy based on (global) depolarizing map @;.
This map, transforms effects of a measurement M
as follows: @;(M;) = tM; + (1 — )tr(M)]l It is
easy to check that the resulting operators still form
a POVM on a total space. Because this map pre-
serves traces of the effects we can write ®;(M;) =
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tr(M;) (Pi(p;)), where p; = M;/tr(M;) is a quan-
tum state. To get an upper bound on the robustness
of M it that suffices to find lower bond on ¢, defined
as the number for which all states p; constructed
from the effects of M, are separable. To find the
upper bound we can directly use the results from
entanglement theory. Concretely, the problem of
how much "white noise" can be added to a quantum
state before it becomes separable quantum states
has been studied before. Specifically the maximal
value of "random robustness" (minimal s = 1/t —1
such that ®,(p) is separable) equals min{d4,dp}—1
in the biparticle scenario [19] and can be upper
bounded by 22V~ — 1 for the multipartice case [54].
To obtain the lower bounds we use characterization
of the robustness MESD given in Eq.(5) by showing
advantage of entangled measurements over separa-
ble ones for particular uniform ensambles of quan-
tum states. for biparticle case we consider exnamble
consisting of orthogonal maximally states [29], while
for multiparticle case we consider ensemble consist-
ing of 2V iid random quantum states taken from
the Haar measure on (C2)®V [55] (see Appendix for
details). O

Remark. The above results complement existing re-
sults [29, 56, 57] on the relative power of LOCC sep-
arable, and global state discrimination. Our focus
was on the advantage in discrimination of arbitrary
ensembles of quantum states while previously the
emphasis was put mostly on ensembles consisting of
two states (for example in the context of quantum
data hiding).

5 Open problems

We finish with giving possible directions of further
study. First, it is tempting to ask if non-free char-
acter of measurements can be certified in a device-
independent manner in prepare-and measure scenar-
ios [58, 59]. Second interesting problem concerns
finding the maximal that resourceful POVMs ad-
vantage for state discrimination problems for other
important classes of measurements such as LOCC
measurements [29, 30| or projective-simulable mea-
surements [43, 44|. The potential lack of the increas-
ing separation (as d — 00) between projective and
general POVMs will likely have strong consequences
for quantum information processing and Bell nonlo-
cality. Finally, it is natural to ask if analogous oper-
ational interpretations hold also for other classes of
quantum objects such as quantum channels or quan-
tum instruments.
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Appendix

In what follows we give proofs that were omitted in the main part of the manuscript. In Part A we give
proofs concerning the general properties of the robustness Rr and its dual formulation. In Part B we give
justifications of results specific to particular scenarios of incoherent and separable measurements.

A Proofs of general results

For the convenience of the reader we first recall the definition of robustness for general convex and compact
subset of free measurements F C P(d,n)

M + sN
Rxr(M) := min {s| N such that M AN € .7:} . (17)

1+s

Proposition 1 (Properties of robustness). Let F C P(d,n) be a compact convex set of free measurements.
The robustness Rr satisfies the following properties: (i) Faithfulness: Rr(M) > 0 and Rr(M) > 0 iff
M ¢ F, (ii) Convexity: Rr(pM + (1 — p)M') < pRx(M) + (1 — p)Rx(M’) , (iii) Monotonicity under free
operations: Rr[p(M)] < Rr(M) for all free operations ¢ € O.

Proof.

(i) Faithfulness. This property follows directly from the definition given in Eq.(17).

(7i) Convexity. From the definition of the robustness (17) it follows that for two POVMs M, M’ there exist
POVMs N,N’ € P(d,n), such that

M = (1+Rx(M))M — Rr(M)N , (18)
M’ = (1 + Re(M'))M’ = Rr(M/)N' (19)

where N, N’ € F. We therefore get that for all p € [0, 1]

PM £ (1— p)M' = p[(1 + Re(M))M — Rx(M)N]

20
(1= p)[(1+ Rr(M)M' — Rr(M)N] 2
After defining

7= pRr(M) + (1 - p)Rr(M’) , (21)

_ NN/

7
T :— p(M + Rf(M)M) + (1 — p)(M/ + R}—(M/)M,) (23)
' 1+7 ’

we note that N € P(d,n), while T € F. We finally observe that

pPM+ (1 —p)M = (1+7)T - 7N, (24)

which directly implies 7 = pRx(M) + (1 — p)Rr(M’) > Rr(pM + (1 — p)M’).
(i) Monotoqicity under free operations. From the definition we have that for every M there exist N €
P(d,n) and M € F such that

M = (1+ Rr(M))M — Rr(M)N . (25)

Applying ¢ to both sides of the above equality we obtain

p(M) = (1+ Rr(M))p(M) — Rr(M)p(N) . (26)

Since, by assumption, p(M) € F, equation (26) directly implies Rr [p(M)] < Rx(M). O
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Lemma 1. Let M € P(d,n) and F C P(d,n) be a compact convex set of free measurements. Then, the
generalized robustness Ry(M) can be expressed as the following optimisation problem.

n
mazimize Ztr(ZiMi) -1
subject to Z; >0,i=1,...,n, (27)
n
> Tr(ZiN;) <1VYN€EF .
i=1
Proof. Our proof starategy is the following. The problem in (27) belongs to the class of semi-infinite
optimisation problems [47]. We will compute its dual and argue that there is no duality gap. Finally, the

dual problem will turn out to be equivalent to the original definition of robustness from (17). After simple
algebraic manipulations we obtain that (27) is equivalent to

— mi M;) —1:Vi, X; <0, iNi) = —
min{;tr(Xle) 1:Vi, X; <0, VN € F ;TT(XN) 1}

(28)
~ I ~
= —mi tr(X;M;) Vi, X; < - VN Tr(X;N;) > .
mfén{z r( ) : Vi dV eF EZ: 7( ) 0}
The Lagrangian corresponding to the last problem in (28) reads
LIX, G, {k(N)})=>" (tr(XiM) + tr(X; G /de N) tr(NV; X; )) (29)

i=1
where G = (G, ...,Gy) and k(N) are lagrange multipliers which satisfy G; > 0 Vi and kN) > 0 for almost
all N € F. To construct the dual problem to (29) we minimize £(X, G, {k(N)}) over primal variables X.
Since the Lagrangian is affine function of X, we obtain minimum equal to oo unless G + M = J k(N)NdN.
If the condition holds then we obtain — 37 tr(G;). Hence we see that the dual of the problem (27) can
be written as

1 n
minimize p Z tr(G;)

=1
subject to G+ M = /k:(N)NdN , (30)
Gi > 0Vi y
E(N)>0 VN e F.
We note that the primal problem (27) posseses a strictly feasible points (for example Z = (%1, cel )‘dl, for

A € (0,1)), which follows from the assumption of the compactness of F and the form of the constrains in
(27). Finally, we conclude the proof by noting that G+ M = [ k(N)NdN iff G = sM’ where M’ € P(d, n)
and s =) ; “TIG". O

B Proofs of results that concern particular classes of free measurements

B.1 Incoherent measurements

From the definition of robustness (see Eq.(17)) and the definition of incoherent measurements we obtain that
Rzc(M) can be cast as the following SDP program

minimize s
M, N,
s TR S gali)li) (] Va
7

1+s
Ng>0,a=1,...,n. ZNa:H,
a

an| J(1+s)=0b Vi.
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Lemma 2 (Dual characterization of robustness w.r.t. incoherent measurement). Robustness of a POVM
M € P(d,n) w.r.t set of incoherent measurement ZC(d,n), i.e, Rzc(M) can be expressed as the solution of
optimization problem given by

n
mazximize Z tr(Z,M,) — 1

o=t (32)
subject to Niya Zg >0 (i|Z]i) = (i|Zy]i) ,
tr(Z,)=1.

Proof. Introducing variables ¢(ali) := (1 + s)g(alé) Vi and Va € [1,(n — 1)] we obtain an equivalent form of
problem from (31)
minimize b—1

subject to  — Z(j(a|2)|2><z\ + M, <0 Vaell,(n—-1)],

n—1
— 0L+ > G(ald)|i)(i| + My, < 0.

i a=1

To construct the dual of the optimization problem [52, 64] given in (33), we start by writing down the
Lagrangian associated with primal problem

n—1 n—1
L(Z,q(ali)) = (b— 1) + tr(Zu(=bL+ D > dlali)|i)(i] + M) + D tr(Za(= D dlali)|i)(i] + Ma) , (34)
a=1 i

i a=l1

where we have introduced Z = (Z1, Zs, ..., Z,) as dual variable (Lagrange multipliers). To ensure that the
Lagrangian is always smaller than the objective function whenever the constraints of the (33) are satisfied,
we impose Z; > 0 and (i|Z;|i) = (i|Z,]i) Vj € [1,n]. To ensure that the Lagrangian is independent of primal
variables we have tr(Z,) = 1. Finally, the corresponding dual problem which sets the upper bound for
primal optimization problem is given by

n
maximize Z tr(Z,M,) — 1
a=1

N 35
subject to Vi,a Z, >0 (i|Z,]i) = (1| Z,]i) , (35)
tr(Zy,) =1.
By inspection one can conclude that strong duality holds, since Zg = (%, ey %) satisfy the constraints in
(35) and is positive-definite. Therefore, the solutions (33) and (35) are equal. O

B.2 Separable measurements

Proposition 4 (Maximal advantage of entangled measurements over separable measurements). Let d4 and
dp denote the dimensions of local spaces in the biparticle Hilbert space Hap. Then, the following inequalities
hold

min{dg,dp} — 1< max Rgep(ap) (M) < min{dy,dp} , (36)

where the maximization is over all measurements on Hap.
Moreover, the maximal robustness of entangled qubit measurement increases exponentially with the size of
the system. Specifically, for sufficiently large N we have

N

2
CW < ml\z/ilx RSep(N) (M) <2

(S

N=1_ 1 ) (37)

where the maximization is over all measurements on Hy and ¢ > 0.7.
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Proof of lower bounds in Eq.(36) and Eq.(37). Our strategy to prove the lower bounds is to construct en-
sembles £ for which the relative advantage

Psucc (55 M)
MAXNeSep(H 4:Hp)Psucc (57 N)

(38)

of some entangled measurement M over the separable ones will be large. (%) Biparticle case Let D =

min{da,dp}. Following Nathanson [29], we consider an uniform ensemble & = {%, \I/nm}n e COnSisting
orthogonal maximally entangled states from H 4 ® Hp,
1 i2win
Wim) = Z e a |j)@|(j+m) modd) . (39)

Since vectors |W,,,) are orthogonal, they can be distinguished perfectly by measurement My whose effects
are of the form M, = ¥+ Rpm, where Ry, are operators orthogonal to states |¥y,,,). On the other hand
there is a limit of distinguishability of states from Ej via separable measurements because of the well-known
property (see for example Lemma 2 of [25]) stating that for all biparticle quantum states |Psi) € Ha Q@ Hp
and positive separable operators T'

tr(UT) < A2 tx(T) (40)

where ) is the greatest Schmidt coefficient of |¥). Let Py be a projector onto a subspace Huip C Hagp
spanned by vectors |i)|j), where i,j = 0,...,D — 1. Importantly, Py is a separable operator. Applying
inequality (40) to our problem we obtain that for all D-outcome separable measurements N we can upper
bound pgycc as follows

1 2 1 = 1
psucc(507N) = ﬁ Z tr(\I/nmNnm) = Z tI‘ \I/nmPONnmPO < BF PONnmPO> 5 5
n,m=1 n,m=1 n,m=1
(41)

where we have used the separability of operators PyNV,,;,[Pp and the fact that states ¥,,, are maximally
entangled and hence A\ = 1/ V/D. Using the operational interpretation of the robustness Rgep(ap we conclude
the proof by observing that

Dsucc (507 MO)
max N € Sep(AB)psucc(‘Sbv N)

Rgep(apy(Mo) > —1>D—1. (42)

(ii) Multiparticle case We proceed analogously to the biparticle case. Consider a random uniform ensemble
of M = 2" Haar random, independant and identically distributed pure states in Hy,

2N

1
gHaar = {QN’ \Ilz} . (43)

i=1

The above ensemble is random as states composing it are independent random pure states i.e. ¥; = U; \IJOU ,
for U; distributed according to Haar measure on the group U(Hy). In [55] it was shown that in the limit of
large N, for typical realizations of the ensemble &,y the so-called pretty good measurement M paas(Exaar)
is capable to to distinguish states from Ep.,.r with success probability bounded away form zero

psucc(gHaara MPGM(EHaar)) > 0.7 . (44)

Importantly, since states ¥; are Haar random, they are typically highly entangled and this causes them
to be indistinguishable by separable measurements. To show this we will use a result that can be found
in the proof of Theorem 2 form [65], which states that for Haar random pure state ¥ with probability
P < exp(—N?)

8N?

max tr(¢W) >

$HESEP 9N (45)
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where the maximum is over all separable pure states on Hy. Now, since states ¥; are iid Haar-random, by
the union bound, we get that with probability ¢ > 1 — 2Vexp(—N?), in the limit of large dimensions

8N?
4 ¢IélsaE))(P tr(pW¥;) < N (46)

The above bound (which holds with high probability as N — oo) can be the used to upper bound the
success probability of discrimination of states from the thg ensemble. Note that for every separable effect
N; we have tr(¥;N;) < tr(NV;) maxgspp tr(p¥;) < tr(NZ-)SQLN. Using this we obtain

N
= 2N 8N?
Psuce (EHaar, N) < oN Ztr(Nz)W = N - (47)
i=1

Finally, combining (44), (47), and the operational characterisation of Rge,(n) We obtain the desired lower
bound by realizing that there exist a realization of a random ensemble Epp,,, such that

Psucc (gHaary Mpam (gHaar)) 2N
max Rg, M) > —1>c—=—1. 48
M S p(N)( ) MaAXNeSep(N) Psucc (gHaar, N) 8N? ( )

Accepted in (Yuantum 2019-03-29, click title to verify 13



	1 Introduction
	2 Notation and main concepts
	3 Convex resource theories of measurements and measurement robustness
	4 Main results
	4.1 Incoherent measurements
	4.2 Separable measurements

	5 Open problems
	 Acknowledgments
	 References
	A Proofs of general results
	B Proofs of results that concern particular classes of free measurements
	B.1 Incoherent measurements
	B.2 Separable measurements


