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ARTICLE

Operational reliability evaluation-based maintenance planning
for automotive production line

Hamzeh Soltanali a, Abbas Rohania, Mohammad Tabasizadeha,
Mohammad Hossein Abbaspour-Farda and Aditya Paridab

aDepartment of Biosystems Engineering, Ferdowsi University of Mashhad, Mashhad, Iran; bDivision of Operation
and Maintenance Engineering, Luleå University of Technology, Luleå, Sweden

ABSTRACT

Reliability evaluation plays a critical role in upgrading the availability and
productivity of automotive manufacturing industries by adopting the
well-planned maintenance. Due to the lack of operation management
studies in automotive industry, this paper addresses an operational
reliability evaluation through failure behavior trend in an automotive
production line. The main approaches for reliability analysis in this
study include statistical structure and Monte Carlo simulation model.
The statistical structure consists of three steps: data acquisition and
homogenization process, validity of the trend hypothesis and parameters
estimation. The reliability evaluation under statistical approach identified
the main bottlenecks through the recognized behavior trend of system
so that needs to be considered as a priority. Besides, K–R algorithm as
Monte Carlo simulation was carried out to simulate reliability regarding
failure distribution function. The result of Monte Carlo simulation with
different iterations provides a high prediction accuracy of reliability with
the lowest error. In addition, regarding the computed reliability through
the proposed approaches and total expected cost, a reliability-based
maintenance optimization model was conducted. The proposed main-
tenance intervals could be useful for improving the operational perfor-
mance of critical components in automotive system.
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1. Introduction

With increasing systems’ complexity and automation of manufacturing systems, having a reliable
operation is one of the major challenges facing the implementation of industry 4.0 (Rüßmann et
al., 2015; Shrouf, Ordieres, & Miragliotta, 2014). To achieve a reliable operating condition along
with high productivity and quality in order to remain competitive in the global market, asset
performance analysis such as reliability indices is necessary (Becker, Borst, & van der Veen, 2015;
Xu, Xie, Tang, & Ho, 2003). Comprehensive knowledge of reliability plays a key role in predicting
the spare parts and the unplanned downtime cost as well as suggesting the optimal maintenance
intervals (Darghouth, Chelbi, & Ait-Kadi, 2017; Mokhtari, Mozdgir, & Abadi, 2012). The system
reliability is defined as reaching a remarkable performance in a given time and under given
conditions (Tortorella, 2005). In other words, reliability is the probability that a system functions
adequately without any failure, within a specified period of time, when it is subjected to normal
operating conditions (Cui, Chen, & Gao, 2018).
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In general, the reliability analysis methods can be classified into qualitative, quantitative and
simulation methods, which have been conducted under various situations (Adefarati & Bansal,
2017; Kumar & Goel, 2017; Riascos-Ochoa, Sánchez-Silva, & Klutke, 2016; Tsarouhas, 2015). The
special applicability of these approaches depends on different parameters, such as type of system
or process, accessible data (e.g. real/historical data or expert knowledge), complexity of system,
etc. (Ben-Daya, Kumar, & Murthy, 2016). The lack of quantitative data is one of the main issues
driving researchers to apply the qualitative methods for reliability analysis (Yazdi & Soltanali,
2018). In recent years, a majority of studies have been accomplished to the application of
qualitative approaches based on expert knowledge and overcoming their drawbacks by intelligent
techniques. Besides, the operational data such as failure data set are known as main tool for
quantitative and simulation methods to reliability evaluation (Ahmad & Kamaruddin, 2012;
Görkemli & Kapan Ulusoy, 2010).

The present study focuses on quantitative and simulation methods according to the character-
istics and nature of the accessible quantity data provided by automotive production equipment.
Among the quantitative approaches, the statistical roles are the popular and efficient tools for
evaluating reliability. In this direction, Barabady and Kumar (2008) proposed a statistical structure
for reliability analysis in three steps including data collection, trend test and parameter estimation.
Garmabaki, Ahmadi, Mahmood, and Barabadi (2016) improved a new statistical structure for
reliability analysis that consists of data acquisition and homogenization process, validity of the
trend hypothesis and parameters estimation. Recently, a system reliability performance based on a
dependent two-stage failure process, including the defect initialization stage and the defect
development stage with competing failures, has been improved by Qiu and Cui (2018). The
dependence between these two stages was modeled by statistical role, namely nonhomogeneous
Poisson process (NHPP) model. In another work, Qiu, Cui, Gao, and Yi (2018) developed the
concept of sequential probability series system in failure states. They derived some analytical
expressions for the optimal allocation solutions under certain assumptions. Also, an efficient
genetic algorithm (GA) was conducted to search the optimal solutions, when the lifetime of units
follows general distributions.

On the other hand, the analytical methods such as statistical models do not capture all
characteristics of a system. Thus, uncertainty always exists in the hypothesis underpinning the
model (model uncertainty) and in the values of its parameters (parameter uncertainty); these lead
to uncertainty in the model output (Nutt & Wallis, 2004). To overcome such limitations, the
simulation approaches are suggested as a useful alternative to analytical method for reliability
analysis in repairable systems. They can provide a wide range of output parameters including all
moments and complete probability density functions. They can also handle very complex scenar-
ios, such as non-constant transition rate, multi-state systems and time-dependent reliability
problems. Moreover, the simulation techniques provide remarkable flexibility in solving any
type of complex problems (Hoseinie, Ghodrati, & Kumar, 2013; Rao & Naikan, 2016).

For this purpose, the stochastic simulation is an appropriate technique to evaluate and predict
the reliability of a system, which can be applied in two ways (Hoseinie, Al-Chalabi, & Ghodrati,
2018): (a) sequential approach, by examining each basic interval of the simulated period in a
chronological order and (b) random approach, by examining the randomly chosen basic intervals
of the system lifetime. The random approach known as ‘Monte Carlo’ method is a numerical
method that allows the solution of mathematical and technical problems by means of probabilistic
models and the simulation of random variables. The Monte Carlo simulation is a powerful
approach for the reliability analysis of large-scale complex networks that have been employed in
different applications. In this method, the stochastic failure occurrence of the system is analyzed
and the probability of the failure and success of the system operation are computed (Wang &
Pham, 1997).

Therefore, there are many potentials to apply the simulation methods for predicting reliability
and comparing their results with the statistical methods, because of existing complex systems and
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uncertain environment in process industry, particularly in automotive industry under real/opera-
tional data. In general, reliability studies in automotive sector can be divided into two categories:
design reliability focusing on vehicle systems and operational reliability focusing on production
process. Most studies have emphasized on design reliability of vehicle components. In such
studies, the main purpose of reliability analysis is to improve the resilient and recoverability of
automotive systems. In this context, the reliability of a vehicle body-door subsystem is examined
by Zou, Mahadevan, Mourelatos, and Meernik (2002). Subsequently, reliability of automotive
door subsystem is analyzed by Zou, Mahadevan, Mourelatos, and Meernik (2003) and also a
vehicle reliability estimation model for improving performance of crank-case subsystem in a two-
wheeler automobile has been suggested by Garg, Singh, and Singh (2010).

On the other hand, very few studies have been conducted on operation management in
particular focusing on evaluating operational reliability in automotive production phase. The
major studies include reliability analysis for robotic subsystem by Fudzin and Majid (2015) and
operational reliability analysis for critical equipment in automotive assembly line by Li and Ni
(2008). In such studies, the simple traditional distribution function such as Weibull was fitted on
failure data and the main parameters such as homogenization process, validity of the trend
hypothesis and correlation test have been ignored for reliability analysis. In other words, they
assumed that the failure data follow the simple traditional distributions as well as the same
homogenous environment. These issues may affect the accuracy of the estimated reliability and
the proposed maintenance intervals. As a main contribution of this study, for making reliability
model, most of these parameters were included in the proposed statistical structure, and then the
optimal maintenance intervals were suggested. In addition, the application of maintenance
planning based on proposed reliability structures has not yet been studied by researchers. In
other words, they have only suggested the reliability analysis for deciding maintenance intervals as
a future perspective in automotive production process.

Hence, the main objectives of this study are to evaluate the operational reliability based on
statistical modeling and simulation like ‘Monte Carlo’ method, and their extension to cost-based
maintenance models. Accordingly, this study contributes a reliability-based maintenance planning
through the proposed approaches and total expected cost on fluid-filling system (as a case study)
in an automotive production process.

2. Methodology

2.1. System description

To provide guidelines for reducing failure frequency in automotive assembly line, the fluid-filling
system as the most critical and complex equipment was selected and the reliability-based main-
tenance planning was implemented. Study and analysis of the reliability of such system from the
perspectives of both operational and non-operational aspects are important for the management.
Firstly, because of the importance of the speedy nature of these manufacturing operations, a low
reliability leads to an increase in operational costs and equipment failure, and ultimately a
downtime in the production lines. Secondly, improvement of system reliability and availability
can enhance the safety of operators and vehicle drivers by adapting well-planned maintenance
interval. The main fluid-filling systems in automotive assembly line include six main equipment:
washing, gearbox, coolant, fuel, brake and hydraulic fluid-filling equipment. Each of the fluid-
filling equipment consists of six critical blocks, as shown in Figure 1. Generally, in different fluid-

Initialization 

block

Ready

block

Pressure & 

vacuum block

Filling

block

Lubrication

block

Process end

block

Figure 1. Process description of the fluid-filling system.
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filling systems, most of the blocks are similar. In addition to the same block, even these systems
have almost the same subsystems. The main subsystems of each fluid-filling system include the
hydraulic-pneumatic circuit, the electrical circuit and the filling head set. In this regard, the data
and required information such as failure frequencies, number of failures and time between to
failures (TBFs) data of these subsystems related to the six fluid-filling systems were collected from
the computerized maintenance management system of an Iranian automotive company. Then, the
failure data set were sorted and screened. Subsequently, the outlier identification data were
detected and removed using Minitab version 18 software. Each fluid-filling system takes care of
leakage test through producing pressure and vacuum as well as filling and leveling different fluids
in paths and pipes in vehicles. The filled amounts for types of vehicles based on appointed
standards differ. The most important feature of the system is simultaneous activity of many
components in different blocks. In addition, any failure of the important components in each of
the components leads not only to system disability but also to downtime in the production lines.

Figure 2 shows a scheme of the fluid-filling subsystems including the hydraulic-pneumatic
circuit, the electrical circuit and the filling head set. The filling pump is used for fluid injection, the
pressure controlset (PCS) the required pressure, and the pipes and fittings are designed to carry
air and other fluids. The electrical circuit includes a programmable logic controller (PLC) which
comprises of different sensors, anti-lock braking system (ABS) and starter. The filling head set is
mounted on the vehicles. The crucial components of this set include mini-valves, coupling and O-
rings & seals.

2.2. Reliability and failure rate analysis

There are two popular methods for estimating the reliability: analytical and non-analytical
approaches. Hence, in this study, a systematic decision algorithm under statistical methods was
adapted. This is defined based on statistical distributions. On the other hand, the non-analytical
method employs computer simulation tools like Monte Carlo simulation (Calixto, 2013).

2.2.1. Statistical structure

The process of evaluating reliability using statistical structure is shown in Figure 3 (Barabady &
Kumar, 2008). After sorting and classifying the failure data, in the next step the homogeneous
groups were created based on a checklist that is available from risk analysis for NASA manager’s
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Figure 2. Structural diagram of the fluid-filling system.
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handbook (Stamatelatos et al., 2011). In this study to provide the homogeneous samples, the main
items were considered with the same location and environment, manufacturer, installation and
design and the same software and procedures. Then, the validity of the assumption of indepen-
dent and identically distributed (iid) nature of the time between failure and the time to repair data
of each component is assessed. This can be performed by the trend test and the serial correlation
test approaches (Najafi, Asoodar, Marzban, & Hormozi, 2015; Tsarouhas, 2015). The null hypoth-
esis and the alternative hypothesis are as follows: H0: no-trend in the data (homogeneous poison
process/renewal process) and H1: trend in the data (non-homogeneous poison process).

Moreover, the test statisticU is chi-square distributed with 2(n – 1) degrees of freedom (df) (Tsarouhas,
2015). The U statistic is calculated based on the experimental failure data, whereas the ᵪ2 a, df can be
determined by the chi-square distribution given the df. If the statistic is U> ᵪ2 a, df , the null hypothesis is
plausible, otherwise the null hypothesis is rejected and the alternative hypothesis H1 is accepted. The
trend test results are compared with the statistical parameter U as follows (Najafi et al., 2015):

U ¼
X

n�1

i¼1

ln
Tn

Ti

� �

(1)

If the assumption that the data are ‘iid’ is not valid, then classical statistical techniques for
reliability analysis may not be appropriate’; therefore, a non-stationary model such as non-
homogeneous poison process (NHPP) based on power law process (PLP) needs to be fitted.
The PLP has been widely used in reliability growth and software reliability models. The intensity
function of the PLP is given by (Tsarouhas, 2012)

Data collection

Trend test

Correlation test

Non-homogeneous 
poison process 

(NHPP)

Homogeneous 
poison process 

(HPP)

Data are “iid” Best fit distribution

Parameter 

estimation 

Reliability analysis

Yes
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Split data/use 
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Figure 3. The statistical structure for the reliability analysis adapted from Barabady and Kumar (2008).
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ρðtÞ ¼
β

α

t

α

� �β�1

α; β > 0 (2)

where α and β are the scale and shape parameters of the PLP, respectively, and t is the running
time. The cumulative failure function is defined as

HðtÞ ¼
t

α

� �β

(3)

The scale and shape parameters of the PLP can be estimated as follows:

β ¼
n

Pn
i¼1 ln

tn
ti

� � (4)

α ¼
tn

n
1=β

(5)

where ti is the total running time at the ith event and n is the number of failure events. If the shape
parameter β > 1, reliability decreases. In the case of shape parameter β < 1, reliability improves. If β = 1,
the PLP reduces to the homogenous poison process (HPP) with intensity of 1/α. Hence, the reliability
and failure probability functions at time t are defined by (Tsarouhas & Arvanitoyannis, 2011)

RðtÞ ¼ exp �HðtÞ½ � ¼ exp�
t

α

� �β
" #

(6)

QðtÞ ¼ 1� RðtÞ ¼ 1� exp�
t

α

� �β
" #

(7)

2.2.2. Monte Carlo simulation

The Monte Carlo simulations are performed by different algorithms for reliability evaluation
which are mainly built up on the Kamat and Raily (K–R) algorithm. It is considered the most
general reliability simulation method, and other methods, such as Rice and Moore (R–M), Chao
and Huang (C–H), Lin et al. (L–D–L) and Lin and Donagh (L–D) are known as the modifications
or specializations of K–R algorithm (Hoseinie et al., 2013; Rao & Naikan, 2016).

The K–R algorithm has been well adopted in system reliability analysis of complex systems.
Furthermore, it is the first one in analyzing repairable systems and has a very simple substance
and fast running process (Hoseinie, Ataei, Khalokakaie, Ghodrati, & Kumar, 2012; Wang & Pham,
2006). In this method, the random failure times for each subsystem are generated based on
defined failure distribution functions, which are then applied to assess the success or the failure of
the system. The main steps of K–R algorithm for reliability prediction are as follows (as displayed
in Figure 4) (Hoseinie et al., 2013):

(I) Find all minimal tie-sets from system block diagram. Assume, we should obtain system
reliability interval at some time t.

(II) Generate a random failure time ti according to the life distribution of each subsystem
where i represents the ith subsystem, 0 < i < t.

(III) Compare ti with t for all subsystems. If ti > t this shows that at the time t subsystem i
holds proper functions. If ti < t, the subsystem i has failed.

(IV) Determine whether the whole system is properly functioning or not according to the
statue of its subsystems at t from step (III). Check all subsystems in a minimal tie-circuit.
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If all are operational, the system is properly operating at time t. If one or more fails, the
tie-circuit is broken (failure) at t. Check the next minimal tie-circuit until an unbroken
one appears which means the system is operational at t. If all minimal tie-circuits are
broken, the system fails at t.

(V) Repeat steps (II), (III) and (IV) for N times. Count the failure and success numbers of the
system, respectively: Ns (t) and NF (t). It should be mentioned that N = Ns (t) + NF (t).

(VI) The system reliability is estimated in period t by

R tð Þ ¼
NS tð Þ

NS tð Þ þ NF tð Þ
(8)

2.2.3. Maintenance optimization model

The optimal maintenance interval for cycle T (planning horizon) has been suggested by Rezaei,
(2015). The failures take place at times kτ(τ, 2τ, …, kτ), as well, repair are performed at the end of
the cycle T (for k = n, at the time nτ).τ is the time between two consecutive maintenances, i.e.τ
= T/n. The objective is to find the optimal maintenance interval time to minimize the total
expected cost of the system over the cycle T. The total expected cost incurred in the inspection k
for each cycle (τ) is given by

(t)  fR (t) = Ns (t) / Ns (t) + N

Read t
Read N

K=1
Ns= 0

= 0fN

component) for each iGenerating the random failure times (t

All tis are 
greater than t? System works 

properly at t

System is failed at t 

+1f= NfN

Ns = Ns+1

K=K+1

K< N?

Figure 4. K–R algorithm to calculate the reliability at time t (Hoseinie et al., 2013).
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Eτ CT
Total

� �

¼
X

n

i¼1

X

T=τ

k¼1

Eτ C
k�1ð Þτ;kτ
i

h i

P

n

i¼1

P

T=τ

k¼1

τIiW
I þ τIiP

� 	

þ
P

n

i¼1

P

T=τ

k¼1

Rei þ τRi W
R þ τRi P

� 	

ð1� RðkτÞÞþ

P

n

i¼1

P

T=τ

k¼1

τPFi P þ L
� 	

ð1� RðkτÞÞ

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

"τ ¼ T;T=2;T=3; :::;T=T

(9)

where Eτ CT
Total

� �

is the total expected cost, W is the inspection/preventive cost, Re is the repair/
perfect replacement cost, P is the production loss cost and L is the downtime cost.

According to the work of Rezaei (2015), the optimal maintenance interval can be obtained as
follows:

ηC ¼

P

n

i¼1

P

T=τ

k¼1

Eτ C
k�1ð Þτ;kτ
i

h i

k:

ð

τ

0

R ðkτÞdt

(10)

where ηC(kτ) is the optimal maintenance interval at kτ (τ, 2τ, …, kτ), R (kτ) is the computed
reliability based on proposed methods (based on Sections 2.2.1 and 2.2.2).

3. Results and discussion

3.1. Statistical description

In order to facilitate the computation, the fluid-filling systems were divided into three major
subsystems: filling head set, electrical circuit and hydraulic-pneumatic circuit. Based on data
collected in recent years, the contributions of failure frequencies in fluid-filling system for the
above subsystems were 42%, 35% and 23%, respectively. The descriptive statistics of the basic
features of the TBF data are given in Table 1. The following observations were made: (a) the mean
TBFs for three subsystems were 639, 336 and 225 h suggesting that in every 26, 14 and 9 days of
operation a failure occurs in the fluid-filling system, respectively. (b) The coefficients of variance
(CoefVar) at three subsystems were around 75.54, 125.59 and 88.64 h, respectively. Also, the
subsystems had the greatest standard deviation (StDevs). To put it differently, they had high

Table 1. The descriptive statistics of the failure data for failure data at fluid-filling system.

Subsystem Component TBF (h) St. dev CoefVar Minimum Maximum Skewness Kurtosis

Hydraulic-pneumatic circuit Vacuum pump 1293 633 48.90 316 2852 0.76 0.32
Valves 3950 2669 67.56 1601 10635 1.66 2.33
PCS 1685 934 55.41 553 4174 1.05 0.69
Total 639 483.1 75.54 6.5 2050 0.66 −0.40

Electrical circuit Sensors 1049 858 81.70 858 3411 1.13 0.84
Starter 1623 1482 91.31 114 5469 1.29 1.10
ABS 599 818.50 136.57 2.5 4520 2.40 6.76
Total 336 422.20 125.59 0.5 3240 2.93 13.51

Filling head set O-rings & seals 393 309.83 78.70 8.50 1698 1.31 2.17
Coupling 1191 605.20 50.78 76 2602 0.33 −0.51
Mini-valves 977 514.50 53.36 209 2269 0.45 −0.43
Total 225 199.70 88.64 1.5 999 1.20 1.01
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deviation from their means. (c) The minimum TBFs were observed at the filling head set with
1.5 h, and at the next rank electrical circuit with 0.5 h. Therefore, the maintenance personnel must
pay due attention to these components. The maximum TBFs were estimated 2050, 3240 and 999 h
at three subsystems levels, respectively. (d) The more distributions of TBF at system level showed
positive skew values. This indicates that the tail on the right side is longer than on the left side.

3.2. Reliability evaluation result

The validity of the assumption for ‘iid’ nature of the TBF data of each subsystem was checked. The
validity of the trend for the TBF based on MIL-Hdbk-189 test and Laplace’s test (A significant
level of 0.05) are shown in Table 2. It is assumed that the null hypothesis and the alternative
hypothesis are as follows: H0: no-trend in data (renewal process/homogeneous Poisson process)
and H1: trend in data (non-homogeneous Poisson process). According to the values obtained in
the two tests (>0.05), the null hypothesis is plausible. In other words, the data have not trended.
Furthermore, Figure 5 represents a serial correlation graphical test for the components.
Accordingly, TBF data set for these components with 5% significance level is ‘iid’. Therefore,
they can be subjected RP models in forms of theoretical distributions to reliability evaluation.

Table 2. Trend tests results for failure data of fluid-filling system.

Subsystem Component MIL-Hdbk-189 test (U) Laplace’s test Decision for H0

Hydraulic-pneumatic circuit Vacuum pump 0.61 0.63 >0.05 Not rejected
Valves 0.36 0.31 >0.05 Not rejected
PCS 0.61 0.33 >0.05 Not rejected

Electrical circuit Sensors 0.12 0.41 >0.05 Not rejected
Starter 0.60 0.28 >0.05 Not rejected
ABS 0.56 0.47 >0.05 Not rejected

Filling head set O-rings & seals 0.50 0.23 >0.05 Not rejected
Coupling 0.91 0.22 >0.05 Not rejected
Mini-valves 0.72 0.30 > 0.05 Not rejected

Figure 5. Autocorrelation test of failure data for (a) filling head set, (b) hydraulic-pneumatic circuit and (c) filling head set at 5%
significance level.
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Furthermore, the serial correlation (autocorrelation (ACF)) test for failure data of the sub-
systems is evident in Table 3. It is assumed that the null hypothesis H0: No-correlation in data, and
the alternative hypothesis H1: Correlation in data. Considering that the t-test values are in the
range of the confidence level (−1.96 <confidence level of 95% <+1.96), the null hypothesis (No-
correlation in data) is plausible. In addition to, a serial correlation diagram represents the
sketching of ρ,k against lag k, where ρ,k are the correlation coefficients and lag k are the lag-
time periods separating the ordered data. Correlation coefficients range from −1 (a perfect
negative relationship) to +1 (a perfect positive relationship). The value of 0 indicates no linear
relationship that is no-correlation. Therefore, the failure data for the fluid-filling system are ‘iid’.
Further, Figure 5 represents a serial correlation graphical test for the components. Accordingly,
TBF data set for fluid-filling system with 5% significance level is ‘iid’. Therefore, they can be
subjected RP models in forms of theoretical distributions to reliability evaluation.

The MLE method was applied to calculate the scale and shape parameters of theoretical
distributions. The AD test was performed to select the best fit of the distributions (Table 4). It
is well known that the smaller the statistic value is the better model fit. Therefore, making clear
that the failure data have followed the Weibull distribution as best fit with the lowest value. Based
on the competed parameters, since the most of failure rates are increasing (α > 1), it is implied
that the fluid-filling system is in ‘wear out’ phase of their life cycle. This means that the current
applied maintenance strategies are not adequate and must be upgraded immediately.

Table 3. Serial correlation (autocorrelation) test for failure data of fluid-filling system.

Subsystem Component ACF t-test LBQa
−1.96 < confidence level

of 95% < +1.96

Hydraulic-pneumatic circuit Vacuum pump 0.006 0.016 3.75 Not reject
Valves −0.14 −0.52 2.77 Not reject
PCS 0.03 0.20 3.97 Not reject

Electrical circuit Sensors −0.02 −0.14 3.96 Not reject
Starter −0.02 −0.11 2.88 Not reject
ABS 0.04 0.38 19.80 Not reject

Filling head set O-rings & seals 0.01 0.14 37.65 Not reject
Coupling 0.18 0.98 20.43 Not reject
Mini-valves 0.18 1.07 26.13 Not reject

* With 5% significance limits for the autocorrelation. a Ljung–Box Q (LBQ).

Table 4. The best-fit distribution for failure data of components.

Subsystem Component Weibull Lognormal Exponential Logistic Normal Best exact parameter
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Vacuum pump 0.67a 0.79 5.04 0.91 1.02 Shape = 2.18,
Scale = 1468.00

Valves 1.30a 1.46 2.34 2.12 2.05 Shape = 1.70,
Scale = 4474.96

PCS 0.69a 0.75 3.24 1.29 1.24 Shape = 1.94,
Scale = 1920.69
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al
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it

Sensors 0.55a 0.90 0.99 1.46 1.71 Shape = 1.23,
Scale = 1126.02

Starter 0.71a 0.81 0.74 1.58 1.73 Shape = 1.15,
Scale = 1692.30

ABS 0.36a 0.92 5.25 7.09 9.32 Shape = 0.72,
Scale = 489.14

Fi
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g
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ea
d
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t

O-rings & seals 0.40 a 1.29 2.59 3.00 3.70 Shape = 1.29,
Scale = 426.47

Coupling 0.44a 1.37 4.60 0.71 0.58 Shape = 2.06,
Scale = 1342.08

Mini-valves 0.97a 1.30 5.40 1.18 1.27 Shape = 2.04,
Scale = 1090.67

a Indicates the lowest value.
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In addition, exact parameters, estimating the confidence intervals (upper and lower) for the shape-
parameter and the scale-parameterwere discussed. The simultaneousTukey test for reliability evaluationof
the fluid-filling system considering three types of parameter estimation approaches is presented in Table 5.
The mean comparison result revealed that there is no significant difference between the exact parameters
and with the upper and lower parameters for reliability estimation (significant at 0.05). In other words, it
can be concluded that the exact parameters could be a useful manner for estimating reliability function.

The failure rate of each component of the three subsystems including filling head set, hydraulic-
pneumatic circuit and electrical circuit for fluid-filling system is presented in Figure 6, respectively.
It can be seen that the min-valves of the filling head set and the vacuum pump of hydraulic
pneumatic circuit have the highest failure rate with the most increasing trend (with the steepest
slope). In addition, the electrical circuit has the lowest decreasing failure rate (with fairly negative
slope) compared with the other subsystems in particular the starter.

Table 5. Simultaneous Tukey test for comparison of exact versus upper and lower parameters.

Subsystem Component Lower value Upper value
Significant reliability
estimation (P-value)
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Mini-valves Shape = 1.71,
Scale = 955.00

Shape = 2.48,
Scale = 1258.59

0.21

0.000

0.002

0.004

0.006

0.008

0.010

0 1000 2000 3000 4000 5000 6000 7000

F
ai

lu
re

 r
at

e 
(N

o
./

h
o

u
r)

Time (hour)

Vacuum pump

Valves

PCS

0.000

0.001

0.002

0.003

0.004

0 1000 2000 3000 4000 5000 6000 7000

F
ai

lu
re

 r
at

e 
(N

o
./

h
o

u
r)

Time (hour)

Sensors

Starter

ABS

b)

c)

0.000

0.002

0.004

0.006

0.008

0.010

0 1000 2000 3000 4000 5000 6000 7000

F
ai

lu
re

 r
at

e 
(N

o
./

h
o

u
r)

Time (hour)

O-rings & seals

Coupling

Mini-valves

a)

Figure 6. The failure rate functions: (a) filling head set, (b) hydraulic-pneumatic circuit and (c) electrical circuit.
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Based on the failure rates, the reliability functions confirm that the components of filling head set
including, O-rings & seals, mini-valves and coupling tend to reach zero earlier after 1500 and 2200
and 2400 h of operation, receptively (Figure 7 (a)). Corrosion of O-ring and seals due to chemical
impact of fluids and more functioning can affect the leakage of couplings and mini-valves in the
filling head set. In addition, the main aspect of coupling failure affected by frequently hit, because of
operator’s error that might be due to weakness of maintenance staffs in servicing and daily
inspections, and also neglecting suitable training schedule of operators. Moreover, improving the
design aspects of filing head set such as using light weight and appropriate material could reduce
personal faults (prohibited form muscle and joint pressures) and hence improving the reliability.

Moreover, the reliability of hydraulic-pneumatic circuit components including, vacuum pump, valves
and PCS set tend to reach zero earlier after 3000 and 7000 and 5000 h of operation, receptively(Figure 7
(b)). The majority of failures affecting the vacuum pump are related to fatigue and strain of spring, and
filter failure due to its frequently use. Also, the reliability for the electrical circuit components such as ABS,
starter and sensors tend to reach zero earlier after 2000 and 5000 and 6000 h of operation, receptively
(Figure 7 (c)). Given the computed reliability, the suitablemaintenance intervals should be initially focused
on filling head set, followed by electrical circuit to improve the reliability of the whole fluid-filling system.

If the three subsystems and their components of the fluid-filling system considered as a series
configuration (the failure of any component causes the downtime of entire fluid-filling system), a
comparison can be made between the results of simulation and statistical methods for evaluating
the reliability (Figure 8). The result of analytical model reveals the reliability decreases approxi-
mately to zero after 1200 h of operation. Moreover, regarding the distributed function, gained by
statistical method, the reliability has been simulated by Monte Carlo method. The reliability
simulations were performed with 1000, 2000 and 3000 iterations and the results were 4.53%,
3.73% and 1.59% of errors, respectively. It can be seen that the Monte Carlo method with good
enough iterations acquires a higher accuracy of reliability prediction with the lowest errors. In
other words, the results of Monte Carlo method are very close to statistical model. Hence, the
main advantage of this procedure is more accurate prediction of reliability for future failure data.
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Figure 7. Reliability function: (a) filling head set, (b) hydraulic-pneumatic circuit and (c) electrical circuit.
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3.3. Maintenance optimization result

Figure 9 shows the maintenance intervals in particular focusing only on different proposed
reliability levels for the critical components of fluid-filling system. If the assumption is 85% of
reliability, these results are expected:

(a) The proposed maintenance intervals for the hydraulic-pneumatic circuit including the
valves, PCS and vacuum pump were calculated as 1000, 750, and 716 h, respectively. (b) The
optimal maintenance intervals for electrical circuit including the starter, ABS set and sensors were
estimated as 230, 98, and 204 h, respectively. (c) The suitable maintenance intervals for the filling
head set including the mini-valves, coupling, and O-rings & seals were achieved as 460, 550, and
105 h, respectively. In order to achieve a high level of reliability (90%), the proposed maintenance
interval for the critical components such as vacuum pump with 483 h, ABS with 65 h, and O-rings
& seals with 75 h are recommended.

In addition to reliability decision levels, maintenance costs play a critical role to suggest
optimal maintenance intervals. Also, total expected cost model through computed reliability to
optimize maintenance intervals are shown in Figure 10. Thus, the main results of optimal
maintenance interval in supposed finite period (short term planning), e.g. 2000 h of operation
subject to total expected cost, can be suggested as follows:
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Figure 8. Comparison of the results of reliability estimation between simulations and analytical methods.
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(a) For the hydraulic-pneumatic circuit, two maintenance intervals for valves with $23.43 and three
maintenance intervals for PCS with $42.70 and vacuum pump with $62.81 were obtained. (b) The
optimal maintenance intervals for electrical circuit including the starter and sensors were estimated as
two and four maintenance intervals with $63.91 and $51.56, respectively. Further, (c) The suitable
intervals for the filling head set including the mini-valves, coupling, and O-rings & seals were obtained
as four, three and 10 maintenance intervals with $52.09, $42.70 and $40.42 in 2000 h, respectively.

4. Conclusion

The study aimed to propose a reliability-based maintenance planning for critical equipment in
automotive production process. In this regard, the operational data, such as failure data named as
time between failures were acquired from the computerized maintenance management system for the
fluid-filling system in an automotive assembly line. Reliability was evaluated using the statistical
structure and Monte Carlo simulation. In proposed statistical model, the validation of the assumption
of independent and identically distributed nature for the failure data were examined based on trend
and the serial correlation tests. The results of statistical model appointed that to achieve the high level
of reliability, the critical subsystems (e.g. filing head set) as main bottleneck needs to be considered as a
priority. In addition, the Monte Carlo simulations with different iterations were performed and the
result of which shows a high prediction accuracy of reliability with the lowest errors. Therefore, it has
a great potential to simulate and predict reliability for future failures data. To suggest the optimal
maintenance intervals, a cost-based model including reliability function were applied. The proposed
maintenance model could be useful to predict the systems’ behavior trend and to provide a sustainable
continuity of automotive production process. Furthermore, in the current study, the operational data
by focusing on failure data has been used for reliability and maintenance modeling. As a future
perspective, due to the rare operation management studies in automotive sector, the big data (sensor-
based) acquisition and monitoring regarding big data techniques and intelligent algorithms can be
suggested for evaluating system performance leading towards automotive 4.0 objectives.
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