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Operational Semantics of Hybrid Systems

Edward A. Lee and Haiyang Zheng⋆

Center for Hybrid and Embedded Software Systems (CHESS)
University of California, Berkeley, 94720, USA

eal@eecs.berkeley.edu, hyzheng@eecs.berkeley.edu

Abstract. This paper discusses an interpretation of hybrid systems as
executable models. A specification of a hybrid system for this purpose
can be viewed as a program in a domain-specific programming language.
We describe the semantics of HyVisual, which is such a domain-specific
programming language. The semantic properties of such a language affect
our ability to understand, execute, and analyze a model. We discuss sev-
eral semantic issues that come in defining such a programming language,
such as the interpretation of discontinuities in continuous-time signals,
and the interpretation of discrete-event signals in hybrid systems, and
the consequences of numerical ODE solver techniques. We describe the
solution in HyVisual by giving its operational semantics.

1 Introduction

Hybrid systems are heterogeneous systems that include continuous-time sub-
systems interacting with discrete events. They are effective models for physical
systems interacting with software or undergoing discrete mode changes. Typi-
cally, the continuous subsystem is modeled by differential equations, while the
discrete events are modeled by finite state machines. Transitions between states
represent either discrete mode changes or actions taken by software subsystems.
Most of the major contributions in hybrid systems have been in the construction
of a systems theory, theories of control, and analysis and verification tools (see for
example [1,2,3,4,5,6]). A few software tools have been built to support such ana-
lytical methods, such as Charon [7], CheckMate [8], d/dt [9], HyTech [10], Kronos
[11], Uppaal [12], and a toolkit for level-set methods [13]. In addition, some soft-
ware tools provide simulation of hybrid systems, including Charon [7], Hysdel
[14], HyVisual [15], Modelica [16], Scicos [17], Shift [18], and Simulink/Stateflow
(from The MathWorks). An excellent analysis and comparison of these tools is
given by Carloni, et al. [19].

In this paper, we focus on the simulation tools, but take the perspective
that hybrid systems are not so much “simulated” as “executed.” We view the
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semantics of hybrid systems as a concurrent model of computation, and the
“simulation” tools as compilers and/or interpreters for programming languages
that happen to have a hybrid systems semantics. Although many of the issues
are closely related to those that arise in the design of simulators (see for example
[20]), the emphasis becomes one of modularity and predictable and understand-
able behavior, rather than one of accurate approximation of unachievable behav-
ior. Of the above tools, Shift and Modelica probably come closest to reflecting
this philosophy, since they are consistently presented as programming languages
more than as simulation tools.

The view of hybrid systems as executable computational artifacts was stim-
ulated by the DARPA MoBIES project (model-based integration of embedded
software), which undertook the challenging task of establishing an interchange
format for hybrid systems. The goal was to facilitate exchange of models and
techniques between tools. The effort was led by the key proponents of model-
integrated computing [21], the developers of Charon, CheckMate, and HyVisual,
and users of Simulink/Stateflow. The result of this work was a formalism called
HSIF (hybrid system interchange format) [22]. A proposal for the next genera-
tion of interchange format can be found in [19].

One of the key objectives of HSIF, that of model exchange among diverse
tools, was at odds with another of its key objectives, that of defining an exe-
cutable and complete hybrid systems semantics. The diverse tools represented
by the HSIF community have significant differences in their semantics, often re-
flecting their differing objectives (e.g. verification vs. simulation). In this paper,
we set aside the concern for interchange of models, and focus instead on defin-
ing a clean and complete hybrid systems semantics. The objective is to define
behaviors, including subtle corner cases, by giving a complete semantics for a
programming language. We have implemented the semantics in HyVisual [15] in
a version scheduled to be released (in open-source form, as usual) concurrently
with the publication of this paper.

2 Example Model

We start by considering a fairly typical hybrid system example shown in figure
1 that we can use to frame the discussion. The model is deliberately small and
simple, making it easier to discuss semantic issues without the distracting com-
plexity of a more “real-world” example. The figure shows the visual syntax of
HyVisual [15], which is implemented within the Ptolemy II software framework
[23]. The reader should not be misled by the visual syntax. While visual syntaxes
are commonly used for models that approximate real systems, they can also be
used as a programming language syntax, in which case the model is the real
system (the program), in the same sense that the text of a C program is the
program. We nonetheless call a visual program like that in figure 1 a “model”
because calling it a “program” would confuse too many readers who assume that
programs must have textual syntaxes.

2



Fig. 1. A hybrid system of two masses on springs.

The model in figure 1 is of a physical system consisting of two masses on
springs that oscillate.1 When the masses collide, they stick together with an
exponentially decaying stickiness. When the differential force of the springs ex-
ceeds the stickiness, the masses come apart. The three-dimensional rendition of
the physical system shown in the figure is a snapshot of an animation created
using the Ptolemy II graphics infrastructure [26]. The top-level of the hierarchy
in the figure shows a continuous-time model, where boxes represent actors and
connections between them represent continuous-time signals. The Masses block
encapsulates the spring-masses model. The other three blocks are plotters.

The next level of the hierarchy shows a finite-state machine with an (unim-
portant) initial state and two states representing the two modes of operation.
Since states of this state machine represent modes of operation, we use the
terms “state” and “mode” interchangeably for them. In the “Separate” mode,
the masses are separately oscillating, and in the “Together” mode, they are stuck

1 This model was studied by Liu [24] and was inspired by microelectromechanical
accelerometers [25].
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together. The behavior in each of these modes is specified at the third level of the
hierarchy shown in figure 2. Each mode is given by a signal-flow block diagram
representing the ordinary differential equations that model the dynamics.

The traces of an execution are shown in figure 3, where it can be seen that
the masses start with separated positions, come together and collide, oscillate
together for a short time, come apart, then again collide and come apart. The
three plots, produced by the three plotter blocks at the top level in figure 1, rep-
resent the positions, velocities, and accelerations of the two masses as a function
of time. The Masses block in figure 1 produces as outputs the positions of the
two masses (p1 and p2 ), their velocities (v1 and v2 ), and their accelerations (a1
and a2 ). The state machine diagram at the bottom of figure 1 shows the mode
logic. The state machine starts in the Init state, which has a single outgoing
transition with guard expression true.2 This guard expression evaluates to true,
so the transition is taken immediately, and the action expression (immediately
below the guard expression) is executed. This action expression initializes the
positions and velocities in the destination mode, Separate.

The state machine remains in the Separate mode until the guard on its out-
going transition becomes true. The guard expression is “(p1 == p2) && (v1

- v2) > 0”, which becomes true when the two masses collide. At that point,
the state machine transitions to the Together mode. The action (shown in the
figure immediately below the guard) sets the position and velocity of the (now
joined) masses in the destination mode, and also initializes the stickiness. The
velocity in the destination mode is set to “(v1 + v2)/2”, which, assuming the
two masses are the same, implements the law of conservation of momentum.

The state machine will remain in the Together mode until the guard on its
outgoing transition becomes true. That guard expression is

stickiness < abs(force)

which becomes true when the force pulling the masses apart exceeds the stick-
iness. The action on the transition again initializes the positions and velocities
of the masses in the destination mode.

In HyVisual, when a guard expression becomes true, the transition must
be taken immediately. This is consistent with the physics being modeled in this
spring-masses example. Many hybrid system formalisms, however, define a guard
expression on a transition as an enabler. Rather than requiring that the tran-
sition be taken, it simply permits the transition to be taken. In a simulator,
however, this typically results in the transition to be taken at an arbitrary time
after the guard becomes true. In simulation, the time at which the transition
is taken is typically dependent on the step-size control algorithm of the ODE
(ordinary differential equation) solver. For this example, that behavior would
be inappropriate. Such hybrid system formalisms associate with each state an

2 In the HyVisual syntax, each mode transition is annotated with two lines of text,
where the first line is the guard, a predicate that determines when the transition
is taken, and the second line is the action, a set of statements executed when the
transition is taken.
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Fig. 2. The refinements of the modes of the hybrid system in figure 1.
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invariant, which like a guard is a predicate. When the invariant becomes false,
a transition out of the state must be taken. In such a formalism, the spring-
masses example would be expressed by a combination of invariants and guard
expressions that would achieve the same effect.

p
1
(t)

p
2
(t)

Fig. 4. A schematic illustration of the system that is modeled in figure 1.

The system is depicted schematically in figure 4. The physics of this problem
is quite simple if we assume idealized springs. Let p1(t) denote the right edge of
the left mass at time t, and p2(t) denote the left edge of the right mass at time
t, as shown in figure 4. Let n1 and n2 denote the neutral positions of the two
masses, i.e. when the springs are neither extended nor compressed, so the force
is zero. For an ideal spring, the force at time t on the mass is proportional to
n1 − p1(t) (for the left mass) and n2 − p2(t) (for the right mass). The force is
positive to the right and negative to the left.

Let the spring constants be k1 and k2, respectively. Then the force on the
left spring is k1(n1 − p1(t)), and the force on the right spring is k2(n2 − p2(t)).
Let the masses be m1 and m2 respectively. Now we can use Newton’s law, which
relates force, mass, and acceleration, f = ma. The acceleration is the second
derivative of the position with respect to time, which we write p̈1(t) and p̈2(t)
respectively. Thus, as long as the masses are separate, their dynamics are given
by

p̈1(t) = k1(n1 − p1(t))/m1 (1)

p̈2(t) = k2(n2 − p2(t))/m2. (2)

If we integrate both sides twice, we get

p1(t) =

∫ t

t0

(
∫ α

t0

k1

m1

(n1 − p1(τ))dτ + v1(t0)

)

dα + p1(t0) (3)

p2(t) =

∫ t

t0

(
∫ α

t0

k2

m2

(n2 − p2(τ))dτ + v2(t0)

)

dα + p2(t0) (4)

Figure 2 shows the hierarchical models contained by the two modes, Separate
and Together. These models are called refinements of the modes. They give the

7



behavior of the modal component when the component is in the corresponding
mode. The two equations above are depicted by the state refinements in figure
2, where it is assumed that k1 = 1, m1 = 1, n1 = 1, and k2 = 2, m2 = 1, n2 = 2.
The initial values p1(t0), p2(t0), v1(t0) and v2(t0) are the initial states of the
integrators in the figures, which are set by the actions upon entering the mode.

When the masses collide, the situation changes. With the masses stuck to-
gether, they behave as a single object with mass m1 + m2 and positions p1(t) =
p2(t). This single object is pulled in opposite directions by two springs. Let

p(t) = p1(t) = p2(t).

The dynamics are then given by

p̈(t) =
k1n1 + k2n2 − (k1 + k2)p(t)

m1 + m2

. (5)

Again we can integrate both sides twice to get the relation represented by the
mode refinement at the top of figure 2.

3 Discussion of the Example

The most notable feature of our example, and the one which distinguishes it
most from other “programs,” is the continuous-time evolution of its “variables.”
In the visual syntax of HyVisual, the lines connecting blocks (sometimes called
“wires” in analogy with circuit diagrams) represent variables of the program.
In a corresponding textual syntax, these variables would be given names and
referred to by name. In a visual syntax, however, there is usually no need to name
them, since their users can simply connect to them. Whereas in a textual syntax
“scoping rules” would limit the visibility of such variables, in a visual syntax
like HyVisual, visibility is limited by the constraints on wiring in the diagram,
for example that the wires cannot cross levels of the hierarchy. In HyVisual, to
make variables visible across levels of the hierarchy, we use named “ports.” In
figure 2, the ports labeled p1, p2, v1, v2, a1, a2, force, and stickiness are
the inside view of the same ports with the same names in figure 1. These ports
represent the continuously evolving variables representing position, velocity, and
acceleration of the masses, plus the force pulling them apart and the stickiness
holding them together.3

The continuous evolution of the values of such variables, of course, is what
presents the greatest challenge to a programming language designer, since contin-
uous evolution of variables is outside the domain of discourse of today’s comput-
ers. Thus, while a denotational semantics for a hybrid systems language might
embrace continuous evolution of the variable values, an operational semantics
can only define values at discrete points in time. It is the relationship between

3 We use the term “continuously evolving” for signals whose values evolve continuously
rather than in discrete steps. We do not require continuously evolving signals to be
continuous. We will make this more precise below.
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such a denotational semantics and operational semantics that is the principal
topic of this paper.

One solution to this conundrum is to simply disallow continuous evolution.
We can invoke sampling theory to assert that any continuously evolving signal
(with finite bandwidth) can be sampled uniformly at a sufficiently high rate
without loss of information. Indeed, some of the tools mentioned above (notably
Hysdel [14] and Shift [18]) operate only on models that have been discretized
by sampling by the programmer. This greatly simplifies the programming lan-
guage semantics, since now the semantics of the model easily matches well-known
techniques for synchronous concurrent programming languages such as the syn-
chronous/reactive languages [27]. The problem is that even an example as simple
as our spring masses violates the finite bandwidth assumption. As shown in figure
3, the velocities and accelerations both have discontinuities that imply infinite
bandwidth. In hybrid system modeling, these discontinuities are the principle
subject of study, so a failure to properly represent them is a serious omission.

We can do better than uniform sampling with non-uniform sampling, where
we include the points of discontinuity in the samples. However, this is not quite
enough. Non-uniform sampling, by itself, is not sufficient to unambiguously rep-
resent discontinuities. We examine this issue next.

4 Discontinuities in Continuously Evolving Signals

Continuous signals exhibit an intrinsic robustness under discretization. Mathe-
matically, the continuously evolving variables of figure 3 are typically represented
as functions of the form

x : T → Rn,

where T (called the time line) is a connected subset of the reals, R, and Rn is
a normed vector space consisting of n-tuples of real numbers with some norm.
This function is continuous at t ∈ T if for all ǫ > 0, there exists a δ > 0 such
that for all τ in the open neighborhood (t − δ, t + δ) ⊂ R

||x(t) − x(τ)|| < ǫ.

This means that if we examine the value of the signal at a point in time, if the
signal is continuous at that point in time, then small errors in the time at which
we examine it result in small errors in the value.

In a computational setting, signal values may have data types significantly
different from Rn, in which case, if the set of data values form a topological
space, then the topological form of continuity provides similar robustness.

However, signals in hybrid systems are not typically continuous at all points
in time. Specifically, let D ⊂ T be a discrete subset4 of T . A signal is piecewise
continuous if it is continuous at all points in T\D, where D is some discrete

4 A discrete subset is a subset for which there exists an order embedding to the integers
[28]. Note that “discrete” is a stronger condition than “countable.”
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subset of T , and where the backslash represents set subtraction. However, this
leaves open the question in an operational semantics about how to represent the
signal at or near points in D.

A typical approach in mathematical modeling of hybrid systems is to define
signals to be continuous on the right at points in D. A function x : T → Rn is
continuous on the right at t ∈ T if for all ǫ > 0, there exists a δ > 0 such that
for all τ in the interval [t, t + δ)

||x(t) − x(τ)|| < ǫ.

This makes explicit the non-robustness of piecewise continuous signals. It is
straightforward to generalize this to topological spaces rather than normed vector
spaces, so that the same argument may be applied to other data types than Rn.

An operational semantics must somehow represent that a signal value in-
finitesimally before some t ∈ D is significantly different from the value at t.
Unfortunately, no discretized rendition can properly represent this.

To make this concrete, assume that we seek an operational semantics for
an execution of a hybrid system on a computer. This semantics can represent
continuously evolving signals only on a discrete subset of real-valued times. Let
D′ ⊂ T be the discrete subset of the reals where it will explicitly represent sig-
nal values. We can require that the points of discontinuity D be in this set, or
D ⊂ D′. However, how can we choose D′ to represent the discontinuity? Suppose
t ∈ D. Then, since D′ is discrete,5 there is a t′ ∈ D′ where t′ < t and there is no
τ ∈ D′ such that t′ < τ < t. We say that t′ immediately precedes t. Since t′ < t,
there is a non-zero interval between the samples that span the discontinuity.
Given only the discrete samples, therefore, the discontinuous signal is fundamen-
tally indistinguishable from a continuous signal that simply changes sufficiently
rapidly. This is not splitting hairs. It means that an operational semantics based
on discrete samples cannot unambiguously represent discontinuities. In addition
to semantic difficulties, this ambiguity creates practical problems for numerical
ODE solvers. Variable step solvers typically adjust the spacing between sample
points to be smaller where signals are varying rapidly and larger where they
are varying more smoothly. With this ambiguity, such solvers must be made
explicitly aware of the discontinuities or they will be forced to reduce step sizes
down to resolution tolerances before giving up and deciding that the variability
represents a discontinuity.

The key problem here is the form of the function

x : T → Rn.

Whereas this form works well in a mathematics that embraces the continuum
of R, it fails in the formal framework of computing, where continuums are not
directly manageable. Figure 5 shows a portion of the velocities plot from figure
3 where at time approximately 9.965 the masses collide. The plot shows a dot

5 The existence of an order embedding to the integers is essential to this argument
[28]. Countable sets would not be sufficient.
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for each computed value of the velocities, showing the discretization that is not
evident in figure 3. At time 9.965, the two velocity signals have more than one
value. They have both the value just prior to the collision and the value just
after the collision. Having two values at one time is semantically unambiguously
distinct from having two distinct values closely spaced in time. But it requires
augmenting the mathematical model for signals. We do that next.

5 The Semantics of Signals

To unambiguously represent discontinuities, we define a continuously evolving

signal to be a function
x : T ×N → V, (6)

where T ⊂ R is a connected subset (the time line), N is the non-negative
integers, and V is some set of values (the data type of the signal, such as Rn

for signals whose values are n-tuples of reals). In the terminology of the tagged
signal model [29], T ×N is the tag set. A particular tag is a member of T ×N ,
a tuple with a time value and an index. This models that at each time t ∈ T ,
the signal x can have finitely many values. To ensure that the number of values
at a time is finite, we require that for all t ∈ T , there exist an m ∈ N such that

∀n > m, x(t, n) = x(t,m). (7)

This constraint prevents what is sometimes called chattering Zeno conditions,
where a signal takes on infinitely many values at a particular time. Such condi-
tions would prevent an execution from progressing beyond that point in time,
assuming the execution is constrained to produce values in chronological order.

Assuming x has no chattering Zeno condition, then there is a least m satis-
fying (7). We call this least value of m the final index and x(t,m) the final value

of x at t. We call x(t, 0) the initial value at time t. If m = 0, then we say that
x has only one value at time t. Note that the values at time t are well ordered
using the ordinary ordering of integers.

Define the initial value function xi : T → V by

∀ t ∈ T, xi(t) = x(t, 0).

Define the final value function xf : T → V by

∀ t ∈ T, xf (t) = x(t,m),

where m is final index. Note that xi and xf are conventional continuous-time
functions.

A piecewise continuous signal is a function x of the above form satisfying
three conditions:

1. the initial value function xi is continuous on the left;
2. the final value function xf is continuous on the right; and
3. x has only one value at all t ∈ T\D, where D is a discrete subset of T .

It is easy to see that if D = ∅, then xi = xf is a continuous function. Otherwise
each of these functions is piecewise continuous.
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6 Ideal Solver Semantics

In this section, we consider the semantics of a discrete representation of a hy-
brid system under a simple idealization, which is that over time intervals that are
sufficiently small, the differential equations giving the dynamics can be solved
exactly. This finesses the issue of approximate executions based on numerical so-
lutions, which we will address below. This ideal solver semantics was introduced
in [30]. Note that it is not as far-fetched as it might sound. Many of the dif-
ferential equations in hybrid systems can be solved exactly (including those for
the spring masses example) by finding a closed form expression for the solution
over the intervals of continuous behavior. Even when we don’t have closed form
solutions, for many special cases numerical solutions yield exact answers (using
appropriate solvers). But even in cases where the solution must be approximated,
we would like to separate the issue of approximate ODE solutions from the other
semantic issues in hybrid systems. Hence, the idealization remains useful.

In general, a hybrid systems model is a set of piecewise continuous signals
and a set of actors that establish relations between these signals. Examining
figures 1 and 2 we see that while the state machine is in any state, the actors
relating signals are integrators and Expression actors. For Expression actors,
the output is a memoryless function of the inputs. More general actors are al-
lowable, as we will discuss below, but for now, let’s assume that the actors are
either integrators or memoryless functions. In this case, a hybrid system can be
restructured to have the form shown in figure 6, which has two components: a
vector integrator and a function g giving the input to the integrator as a function
of its output and the current time.

The function g encapsulates the effects of all actors that are not integrators in
the model. Notice that in order for this abstraction to work, every directed cycle
in the model must have at least one integrator. The abstraction also requires
that data precedences be satisfied. That is, the two paths shown in figure 7 must
be semantically equivalent. This requires that the run-time execution engine
analyze the data dependencies and invoke actors in the order implied by those
data dependencies. Specifically, at each tag (t, n) ∈ T ×N , actor Expression1

must be invoked before actor Expression2. This point might seem obvious, but
some hybrid systems simulators have assumed the order of invocation of these
actors to be nondeterministic at a particular time.

The framework in figure 6 ignores the index portion of the tag. Indeed, this
conceptual framework is only valid over time intervals where signals have only
one value. Over these regions of the time line, x is differentiable, so the framework
in the figure is equivalent to the vector differential equation

ẋ(t) = g(x(t), t), (8)

with some initial condition x(t0).
Let D ⊂ T be a discrete set that includes the times at which signals have

more than one value. Let D′ be a superset that includes D and the initial time,
t0. A discrete trace of the hybrid system is the set

{x(t, n) | t ∈ D′, and n ∈ N}. (9)
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Fig. 5. A portion of the plot of velocities in figure 3, showing multiple values at
one time.
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Fig. 6. Schematic of the ODE solver problem.

Fig. 7. The abstraction of figure 6 requires that these two paths be semantically
equivalent.
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The discrete trace includes the values at each discontinuity plus the values at
the initial time and (possibly) some additional values. To be a valid trace, we
require that for each interval between times in D′, that (8) have a unique and
continuous solution, and that the endpoints of the solution in this interval be in
the trace. Notice that as long as there is no chattering Zeno condition, a trace
can be fully represented by a discrete subset of (9).

Specifically, consider the interval [ti, ti+1) where ti, ti+1 ∈ D and ti immedi-
ately precedes ti+1. Assume xf (ti) is known (our induction starts, obviously, with
xf (t0), which we assume we can obtain). We take this to be the initial condition
for x in figure 6, and we require that (8) have a unique solution over the interval
[ti, ti+1). Such a unique solution is assured if the interval is “sufficiently small”
and the function the function g : Rn ×T → Rn is continuous in the interval and
satisfies a local Lipschitz condition (see [31] or [32], for example). The details of
these conditions are not important for our purposes here. It is sufficient to know
that there are such conditions and that the conditions are checkable. The value
at the end of the interval will be taken to be the initial value x(ti+1, 0) at time
ti+1.

We now can begin to give an operational semantics under the ideal solver
assumption. Begin with the initial condition x(t0, 0), which we assume is given
(in figure 2 it is a parameter of the integrators). We then execute the model
until the final index at t0 (we discuss the semantics of this execution, which
we call the discrete phase of execution, below in section 8.3). The final value
of xf (t0) is the initial value x(t0) for the differential equation (8). We identify
a t1 such that the continuity and local Lipschitz condition of g is satisfied over
[t0, t1) (this is assured of not traversing a discontinuity, and therefore will not
miss any points in time where the signal has multiple values). We then solve the
differential equation to determine xi(t1) = x(t1, 0). We then perform a discrete
phase execution at t1 to get xf (t1) and repeat the process.

In this description of the ideal solver semantics, there are two key issues
that we have not fully resolved. The first is the semantics of the discrete phase
execution. The second is how to determine the step size, which takes us from
one time ti ∈ D′ to the next time ti+1 ∈ D′. We address these issues next, in
turn.

7 Discrete Events

Hybrid systems mix continuous and discrete phenomena. The discontinuities in
the spring-masses example are the result of discrete mode transitions in system
that evolves in the time continuum. At these mode transitions, the behavior
of a system may be considerably more complex than in the spring-masses ex-
ample. In systems that mix software with physical systems, sequences of mode
transitions can be used to model the software. The events in such sequences
are ordered but not timed. This fits the realities of software, where timing is
not part of the semantics, and is consistent with abstractions for software that
are increasingly used for embedded software such as synchronous languages [27]

14



and time-triggered languages [33]. Then we take a step further, and introduce
intrinsically discrete signals within the semantics.

7.1 Transient States

The piecewise continuous signals in our semantics are continuous at all points
on the time line T except for a discrete subset D. At these discontinuities, a
signal may take on a finite sequence of values. An operational semantics needs
to define the construction of these sequences of values.

Fig. 8. Variation of the model in figure 1 that has a transient state.

The first mechanism we will consider is transient states. Consider the modi-
fication of the spring-masses example that is shown in figure 8. In that example,
an additional state has been added (called “Time”) that has a refinement that
produces on one of the output ports the current time. The transition coming out
of the Time state has a guard expression “true”, which of course is always true.
Since in HyVisual semantics, when guard is true the transition must be taken,
the time spent in the state is zero. Such a state is called a transient state.6

6 Many hybrid system simulators will remain in a transient state for at least one time
step of the ODE solver. This effectively results in nondeterministic behavior, since

15



A plot of the signal v1 with the additional output is shown in figure 9. At
any time t that the masses collide, there are three distinct values of the signal
v1, each in a well-defined order. Moreover, since this value is held for zero time,
it has no impact on the signal p1, which is the integral of v1. The zero-width
pulse integrates to zero.

Although the example in figure 8 has no particular usefulness, it is easy to
imagine using this capability to model a sequence of software-based actions,
which could, for example, be used to model software-based controllers.

7.2 Discrete Signals

So far, we have considered only continuously-evolving signals, which have a value
for all (t, n) ∈ T×N . In mixed hardware/software systems, however, some signals
are intrinsically discrete, and it makes little sense to talk about their values at
all points in time. HyVisual semantics supports such signals by augmenting the
set of possible values to

Vd = V ∪ {ε},

where ε represents “absent” (equivalently, we could define signals to be partial
functions from T ×N to V ).

A discrete signal is a function x : T×N → Vd, where x(t, n) = ε for all n ∈ N
and t /∈ D, where D ⊂ T is a discrete set. Moreover, as with continuously-
evolving signals, discrete signals are constrained to have no chattering Zeno
condition, but in this case, the final value is required to be ε. Hence, the tags
where a discrete signal is not absent are a discrete subset of T ×N .

In HyVisual, a discrete signal is indicated by annotating a port that pro-
duces or consumes it with an attribute named DISCRETE. HyVisual performs a
simple consistency check to ensure that ports that produce discrete signals are
connected only to ports that consume discrete signals. A port that requires a
continuously-evolving signal (such the integrator input or output) is annotated
with an attribute named CONTINUOUS. If there is no annotation, then HyVisual
assumes the port is agnostic, in which case HyVisual will infer whether it is
operating on a discrete or continuous signal. The ports of the Expression actor
used in figure 2, for example, are agnostic.

In the operational semantics, discrete signals are involved only in the discrete
phases of execution. If all the ports of an actor are discrete, then the actor
itself is called discrete. Discrete actors are invoked only in the discrete phases of
execution. Of course, as with continuous actors, we require that data precedences
be satisfied. As discussed in section 6, the actors in figure 7, if provided with
discrete inputs, must react to those inputs in data-precedence order. Again, some
hybrid systems simulators assume this order to be nondeterministic.

the programmer is typically unaware of the mechanisms that is used to define the
time steps. In our semantics, this would be incorrect behavior. Moreover, it is a poor
model for the behavior of software, since it neither models the actual time taken by
software nor provides a usable abstraction, such as the synchrony hypothesis [27].
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It is possible in HyVisual to create models that have directed cycles that
consist entirely of discrete signals. Such cycles are required to have a delay. The
delay is detected by a dependence analysis. Each actor that introduces delay de-
clares as part of its interface definition that the value at a particular output port
does not depend on the value at a particular input port at a particular tag. The
scheduler uses this dependence information to determine the data precedences,
and hence determine the order in which actors must be invoked.

Recall from section 6 that directed cycles with continuous signals require
at least one integrator. We can now state the overall requirement on a model
precisely. Every directed cycle must have either a delay on a discrete signal or
an integrator on a continuous signal. Thus, mixed signal cycles are supported.

Note that we have left unsaid how an execution engine decides when a discrete
phase is complete. Recall that each signal can have any number of values at a
particular time, but it is required to have a final value after some finite number
of values. We will explain this below in section 8.3.

HyVisual provides a small library of actors to create discrete signals from
continuously-evolving ones, and vice versa. Some of these are shown in figure 10.
The EventSource actor produces one or more discrete events at specified (possi-
bly periodic) times. The LevelCrossingDetector produces a discrete event on
the output when the continuous-evolving input crosses a specified threshold. The
PeriodicSampler produces discrete events whose values are the initial values of
the continuously-evolving input signal at multiples of a specified sampling pe-
riod. Note that the HyVisual semantics give this actor an unambiguous semantics
even for samples at discontinuities. The TriggeredSampler actor uses a discrete
input signal to specify when to take samples of a continuously-evolving input
signal. Whereas the PeriodicSampler uses the initial value of the input, the
TriggeredSampler uses whatever value has the same tag as the trigger event.

The example in figure 11 illustrates the use of a LevelCrossingDetector

actor combined with transient states. The result of an execution is shown in
figure 12. Note that although outputs produced by transient states integrate to
nothing, they nonetheless trigger level-crossing detectors. This predictable and
understandable behavior is a result of the clean semantics.

The FirstOrderHold and ZeroOrderHold actor take discrete input signals
and produce continuously-evolving output signals. In the case of ZeroOrderHold,
the output signal value in the interval t ∈ [ti, ti+1) is equal to the final value of
the input signal at ti, where ti and ti+1 are discrete times when the input is not
absent and ti immediately precedes ti+1. The FirstOrderHold actor linearly
extrapolates from the final value xf (ti) given its derivative ẋf (ti).

Notice that the tagged signal model semantics of HyVisual, which unam-
biguously defines initial and final values, makes it easy to give predictable and
understandable behaviors for these actors.

Note that some hybrid system simulators, such as Simulink/Stateflow, do not
have discrete signals. Instead, discrete signals are approximated as piecewise-
constant signals. This is adequate for many purposes, but we believe that gen-
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Fig. 9. Plot of the output of the model in figure 8.

Fig. 10. A portion of the HyVisual library of conversions between discrete and
continuously-evolving signals.

18



Fig. 11. A simple model that illustrates discrete signals.
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Fig. 12. A simple model that illustrates discrete signals.
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uinely discrete signals are a better model for the externally visible actions of
software.

7.3 Zeno Conditions

We have already discussed chattering Zeno conditions, where a signal fails to
reach a final value at some t ∈ T . It is also possible to get Zeno conditions where
a discrete signal has infinitely many events at distinct times within a finite time
interval. A classic example is the bouncing ball model, shown in figure 13.

In the idealized bouncing ball example, there are infinitely many events in
a finite amount of time. An event is a collision of the ball with the surface on
which it bounces. Let D ⊂ T be the times at which the ball collides with the
surface. Notice that even though this is a Zeno system, the set D is discrete.
That is, there is an order embedding from D to the integers.

However, “discreteness” of sets is not a compositional property. In particular,
let D′ = N , the non-negative integers. Then D∪D′ is not a discrete set. We say
that a model is non-Zeno if it is free of chattering Zeno conditions and if D∪D′

is discrete, where D ⊂ T is the times at which the model has discrete events.
A sufficient condition for a model to be non-Zeno is that there is a lower

bound δ > 0 on the time between events, and that there be no chattering Zeno
conditions. Although this statement is rather obvious, the classical approach to
proving it leverages some fairly sophisticated mathematics, constructing a metric
space of signals using the so-called Cantor metric, and then invoking the Banach
fixed point theorem [28].

8 Actor Semantics

So far, our examples have included a limited library of actors consisting of in-
tegrators, state machines to represent modal behavior, Expression actors, and
a library of actors for converting between discrete and continuously-evolving
signals. In principle one could define a primitive library set that is sufficiently
expressive to represent many useful hybrid systems. But this would not be suf-
ficient. Modern software systems require both (1) user-defined components and
(2) compositionality. To support user-defined components, we need to define ex-
actly what is required of an actor for it to be usable in a hybrid system model.
To support compositionality, we need to define how a hybrid system model itself
can become an actor within another hybrid system model. We address both of
these problems by defining what we call an abstract semantics for actors. It is
abstract in that it omits details of execution that are not relevant, such as how
the actor actually performs computation. It strives for maximal “information
hiding,” imposing just enough constraints on actor designers to enable our two
objectives, and no more.

First, we leverage our ideal-solver semantics to observe that actors in model
will be required to react to inputs only at a discrete subset D′ of the time line
T . The memoryless actors (like the Expression actor), need only to provide a
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Fig. 13. A classic example of a Zeno system, the bouncing ball.

22



function that can be evaluated where, given the values of the inputs and the
current time, the actor asserts the values of the outputs.

Some actors, however, need to be able to affect what times are present in
D′. The LevelCrossingDetector and PeriodicSampler in figure 10 are two
examples. So is the modal actor Masses in figure 1, and in fact any modal model
constructed hierarchically in HyVisual.

Discrete events are either predictable or unpredictable. For predictable events,
the time of the event is known before the execution has advanced to that time. To
support both of these, HyVisual uses the mechanism developed by Liu [24]. First,
an actor provides a function that, given the state of the actor and the current
time, returns a “suggested” step size. The step size taken by the execution engine
is guaranteed to not exceed this suggestion. So an actor with predictable events
simply has to implement this function return appropriate suggestions. Second, an
actor provides a predicate that given the state of the actor and the current time,
returns true if the step taken to reach this current time was sufficiently small.
Actors with unpredictable events will return false if the execution has missed
an event. The execution engine is then required to backtrack and re-execute the
model with a smaller step size. Note that exactly the same mechanism is used
to implement variable step-size ODE solvers.

There are two consequences to this strategy. First, events may be missed.
Consider for example a guard on a mode transition that fails to become true
only because the step size was too large. Second, every actor must be able to
backtrack. We deal with these two issues next, in turn.

8.1 Event Detection

Considering the first consequence, the event detection problem for differential-
algebraic models (of which hybrid systems are examples) is studied in [34]. Meth-
ods specifically for hybrid systems are considered in [35], where a method is
proposed that under certain assumptions that are often satisfied, an event is
guaranteed to be detected. Moreover, the method guarantees that the boundary
is not crossed in the process of detecting it (which could result in attempting
to evaluate the function g in a region where it is undefined). This method is
implemented in Charon [7]. However, this mechanism requires that the solver be
able to identify and support the mechanisms that create the events. For exam-
ple, when guards on mode transitions are threshold checks on linear functions of
the continuously-evolving variables, the methods work well. At a minimum, the
technique requires that the guard expressions have a finite Taylor series expan-
sion, or that they be closely approximated by a finite Taylor series expansion.
This makes it more difficult to support user-defined actors that detect events. It
also makes compositionality more difficult, and the computational cost is high.

The method for event detection used in HyVisual allows for implementation
of such techniques because components can provide constraints on step sizes. As
discussed above, every actor can implement a function that suggests the next
step size, and that step size will not be exceeded by the solver. Note that this
mechanism would be implemented by an actor, not by the core infrastructure,
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so its expensive computation would only be incurred when the model designer
chooses to use an actor that implements it. Although we agree that such methods
could be useful, we have not implemented the mechanism suggested in [35] in
any actor in HyVisual, and most particularly we have not implemented it in the
modal model actor, which defines the semantics of the state machines like that
shown in figure 1. The mechanism we have implemented for event detection in
the state machines is more computationally lightweight, but it does not offer any
assurance that the model will not be evaluated in regions where the guard has
been crossed. However, it is adequate for many applications.

8.2 Backtracking

Since any actor can implement a predicate that rejects the last executed step
size, all actors must be able to backtrack after having provided outputs at a
specified time. To accomplish this, we require that actors follow a stateful abstract

semantics, which we now define.

An actor with a stateful abstract semantics provides two functions f and g,
where f is an output function and g is a state update function. For an actor
with n input ports and m output ports, these functions have the form

f : V n
d × T × Σ → V m

d (10)

g : V n
d × T × Σ → Σ, (11)

where Vd is the set of possible values at the input ports (including, possibly,
the absent value ε), T is the time line, and Σ is the state space of the actor.
Given these two functions, the execution engine controls the state of the actor,
and does not commit an actor to a new state until all actors have “approved”
the step size. In the Ptolemy II infrastructure, on which HyVisual is based, this
mechanism is implemented by actor by providing two distinct methods, fire()
and postfire(), the first of which reacts to inputs by providing outputs, and
the second of which commits the state changes (if any) of the actor. However,
as we will see below in section 10, this mechanism is not rich enough to fully
support compositionality.

8.3 Fixed Point Iteration

Making the state of an actor explicit also helps us solve the problem raised in
section 7.2, which is to determine when signals have reached their final value at
a time stamp. Suppose that an actor is defined by functions f and g of the forms
given by (10) and (11). Let the input be x : T × N → V n

d and the output be
y : T ×N → V m

d . Let the state of the actor at each tag be given by a function
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σ : T ×N → Σ. Then at time t ∈ T , execution proceeds as follows:

y(t, 0) = f(σ(t, 0), t, x(t, 0))

σ(t, 1) = g(σ(t, 0), t, x(t, 0))

y(t, 1) = f(σ(t, 1), t, x(t, 1))

σ(t, 2) = g(σ(t, 1), t, x(t, 1))

· · ·

When all actors in the model have reached a point where their state no longer
changes, then the final values have been reached for all signals and the execution
at the time t is complete.

9 ODE Solvers

So far, we have assumed an ideal ODE solver. Fortunately, the semantic frame-
work we have developed under this assumption accomodates, with some care,
practical numerical ODE solvers. These solvers typically include algorithms for
dynamically adjusting the step sizes. These step size adjustments typically re-
quire backtracking because they try a step size and then estimate the error. If
the error is too large, they reduce the step size and redo the calculation. The
abstract semantics for actors given in the previous section supports such back-
tracking. The key desired properties of an ODE solver are consistency (the error
divided by the integration step size goes to zero as the step size goes to zero)
and stability (errors do not accumulate as integration steps increase).

We consider two popular classes of ODE solvers, linear multistep methods

(LMS) and Runge-Kutta methods (RK). Assume a model of the form given by
figure 6, where again we ignore the index, assuming that the solver is applied over
regions of time where the signals involved have only one value. LMS methods
require solving the following equation at each time step tn,

k−1
∑

i=0

αix(tn−i) + hn

k−1
∑

i=0

βiẋ(tn−i) = 0, (12)

where hn = tn − tn−1, and k, αi, and βi are parameters of the particular LMS
method being used. For example, the well-known trapezoidal rule is a two-step
(k = 2) LMS method with the form

x(tn) − x(tn−1) −
hn

2
(ẋ(tn) + ẋ(tn−1)) = 0. (13)

This method has been proved stable and the most accurate among two-step LMS
methods.

Notice that in order to compute the output of an integrator at time tn, an
LMS method generally needs to have access to the input of the integrator ẋ(tn)
at that same time. In a model with no directed cycles, this poses no difficulty.
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However, in a model of the form given in figure 6, the input to the integrator
cannot generally be known until its output is known. Such methods are called
implicit methods because the solution depends on itself. One possible solution
to this self-referential conundrum is to use iterative solution techniques like the
Newton-Raphson method [36]. A second problem with LMS methods is that
when there are more than two steps, past values of the signal x and its derivative
must be known. At the start time of a model and after any discontinuity, these
values are not known in any useful way.

Another common solution is to use an RK method. RK methods perform
interpolation at each integration step to approximate the derivative. An explicit
k stage RK method has the form

x(tn) = x(tn−1) +

k−1
∑

i=0

ciKi, (14)

where

K0 = hng(x(tn−1), tn−1),

Ki = hng(x(tn−1) +

i−1
∑

j=0

Ai,jKj , tn−1 + hbi), i ∈ {1, · · · , k − 1}

and Ai,j , bi and ci are algorithm parameters calculated by comparing the form
of a Taylor expansion of x with (14). The first order RK method, also called the
forward Euler method, has the (much simpler) form

x(tn) = x(tn−1) + hnẋ(tn−1). (15)

Notice that there is no difficulty with self referentiality here, and the only past
information required is ẋ(tn−1), which can always be computed from x(tn−1),
which is known, even at the execution start time and after a discontinuity.

The so-called RK2-3 ODE solver is a k = 3 step method used by default in
HyVisual and given by

x(tn) = x(tn−1) +
2

9
K0 +

3

9
K1 +

4

9
K2, (16)

where

K0 = hng(x(tn−1), tn−1)

K1 = hng(x(tn−1) + 0.5hnK0, tn−1 + 0.5hn)

K2 = hng(x(tn−1) + 0.75hnK1, tn−1 + 0.75hn).

Notice that this method requires evaluation of the function g in figure 6 at
intermediate times tn−1 + 0.5hn and tn−1 + 0.75hn, in addition to the times
tn−1. This fact has significant consequences for compositionality of this method,
considered below in section 10.

In summary, the RK2-3 ODE solver performs the following steps:
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1. Evaluate g(x(tn−1), tn−1) to get ẋ(tn−1).
2. Evaluate g again to get an estimate of ẋ(tn−1 + 0.5hn).
3. Evaluate g a third time to get an estimate of ẋ(tn−1 + 0.75hn).
4. Combine these estimates to get an estimate of x(tn).

In addition, after these steps are complete, the RK2-3 method estimates the
local truncation error as follows,

K3 = g(x(tn), tn)

ε = hn

−5

72
K0 +

1

12
K1 +

1

9
K2 +

−1

8
K3.

This estimate will be larger when the derivative of the signal varies more over
the interval [tn−1, tn). If the error estimate exceeds some specified threshold,
then the whole process needs to be repeated with a smaller step size.

A key consequence is that since g in figure 6 is a function representing the
combined effect of a composition of actors, it is necessary to be able to repeat-
edly execute these actors without altering the state of the actors. The abstract
actor semantics in section 8.2 supports this. However, this has unfortunate con-
sequences for compositionality, discussed next.

10 Compositionality

Compositionality is property of programming languages where compositions of
language primitives can themselves be treated as a language primitive. Given a
composition of actors, if that composition conforms with the abstract semantics
that we have outlined, then the composition itself is an actor, and can be used in
a model like any other actor. The hierarchy we have seen in the various HyVisual
examples exploits this fact.

However, when considering ODE solvers, there is a more subtle issue. Notice
in figures 1 and 2 that each level of the hierarchy has its own director (the
director is not shown explicitly in the FSM levels, but it is there). A director
implements the ODE solver, so this fact means that we can use diverse ODE
solvers at different levels of the hierarchy. This can be very useful, since different
solvers are better for different models.

The subtle issue, however, is that intuition dictates that if we use the same
solver, then the behavior of a model should be the same whether we use hierarchy
or not. So, for example, in figures 1 and 2, if we eliminated the FSM level and
constructed a flat model (no hierarchy) that only included the behavior of the
masses when they are separate, then an execution should yield exactly the same
result as the hierarchical model during the times that the masses are separate.
In other words, hierarchy alone should not change behavior.

This seeming simple objective turns out to be hard to achieve. In particular,
the RK2-3 solver described in the previous section requires that actors be eval-
uated not just at the discrete times in the trace, but also at intermediate times
that play a role in the approximation. With hierarchical solvers, when we ask
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for an evaluation at time tn−1 + 0.5h, for example, the inner solver will treat
this as the desired step, and will therefore evaluate the inner model at addi-
tional intermediate times tn−1 +0.5 · 0.5h and tn−1 +0.5 · 0.75h. In a flat model,
these evaluations will not occur. As a consequence, the numerical results of the
hierarchical model will differ from the results of the flat model. This is neither
expected nor desirable.

The solution that we have come up with violates information hiding across
levels of the hierarchy, but only in a disciplined way. When the same kind of
solver is being used across levels of the hierarchy, the solvers coordinate their
actions to behave as if the hierarchy were flat. This yields the invariant that
hierarchy does not change behavior as long as the same kind of solver is used.
But it leaves open the possibility of using multiple solvers.

11 Nondeterminism

All the examples here are all determinate systems. A key design objective in
HyVisual is to give deterministic execution to determinate models. We have
achieved that. Sometimes, however, useful models are nondeterministic.

One possible form of nondeterminsm is when a state machine has two or more
enabled transitions at some time. A key question, however, is how to assign
an execution to such a model. It is incorrect to choose an arbitrary enabled
transition because this could result in a model producing misleading traces.
They appear determinate, but are in fact nondeterminate.

A better solution is Monte Carlo execution, where probabilities are assigned
to the outcomes and the execution uses random numbers to make the choices.
However, this requires that the probabilities be assigned as part of the modeling
process. In fact, HyVisual fully supports Monte Carlo execution of nondetermi-
nate models, where the probabilities are explicitly included in the model.

An intriguing possibility, not yet implemented in HyVisual, is to use model
checking to simultaneously explore all traces of a nondeterministic model. As
with many applications of model checking, scalability will be a key issue.

12 Conclusions

We have approached hybrid systems as a model of computation, and have pre-
sented HyVisual as a domain-specific programming language with hybrid sys-
tems semantics. We have introduced a tagged signal model for hybrid systems
that embraces discontinuities and discrete events along with the usual piecewise
continuous signals, and we have given a clear and simple executable semantics.
The semantics separates concerns for the accuracy of numerical approximation
techniques from other semantic issues. The result is a predictable, understand-
able, and composable semantics for executable models of hybrid systems.
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