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Operational flare forecasting aims at providing predictions that can be used to

make decisions, typically on a daily scale, about the space weather impacts

of flare occurrence. This study shows that video-based deep learning can

be used for operational purposes when the training and validation sets used

for network optimization are generated while accounting for the periodicity

of the solar cycle. Specifically, this article describes an algorithm that can

be applied to build up sets of active regions that are balanced according

to the flare class rates associated to a specific cycle phase. These sets are

used to train and validate a long-term recurrent convolutional network made

of a combination of a convolutional neural network and a long short-term

memory network. The reliability of this approach is assessed in the case of two

predictionwindows containing the solar storms ofMarch 2015, June 2015, and

September 2017.
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1 Introduction

Solar flare prediction is an important task in the context of space weather research
as it addresses open problems in both solar physics and operational forecasting
(Schwenn, 2006; McAteer et al., 2010). Although it is well established that solar flares are
a consequence of reconnection and reconfiguration of magnetic field lines high in the
solar corona (Shibata, 1996; Sui et al., 2004; Su et al., 2013), there is still no agreement
about the physical model that better explains the sudden magnetic energy release and
the resulting accelerationmechanisms (Shibata, 1996; Sui et al., 2004;Aschwanden, 2008;
Su et al., 2013). Furthermore, solar flares are the main trigger of other space weather
phenomena, and it is a challenging forecasting issue to predict the chain of events leading
from solar flares to possible significant impacts on both in-orbit and on-Earth assets
(Crown, 2012; Murray et al., 2017).

Flare forecasting relies on both statistical (Song et al., 2009; Mason and
Hoeksema, 2010; Bloomfield et al., 2012; Barnes et al., 2016) and deterministic
(Strugarek and Charbonneau, 2014; Petrakou, 2018) methods. In the last
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decade, interest in machine and deep learning algorithms
has grown, thanks to flexible algorithms that can take
as input the point-in-time feature sets extracted from
magnetograms, time series of features, point-in-time images
of active regions, and videos whose frames are made of
magnetograms (Bobra and Couvidat, 2015; Liu et al., 2017;
Florios et al., 2018; Nishizuka et al., 2018; Campi et al., 2019;
Liu et al., 2019; Li et al., 2020; Nishizuka et al., 2020,
2021; Georgoulis et al., 2021; Guastavino et al., 2022a;
Pandey et al., 2022; Sun et al., 2022). However, Guastavino et al.
(2022a) have pointed out that the prediction performances of
these supervised approaches are characterized by a notable
degree of heterogeneity, which is probably related to significant
differences in the way data sets are generated for training and
validation. This study introduced an original procedure for the
generation of well-balanced training and validation sets and
discussed its performances by means of a video-based deep
learning approach that combined a convolutional neural network
(CNN) with a long short-term memory (LSTM) network
(Hochreiter and Schmidhuber, 1997).

The aim of our study is to show how that procedure
can be used to build up an operational flare forecasting
system that accounts for the periodicity of the solar activity.
Specifically, applications are concerned with two temporal
windows of the descent phase of Solar Cycle 24, comprising
the “San Patrick’s Storm” that occurred in March 2015
(Astafyeva et al., 2015; Nayak et al., 2016; Wu et al., 2016), the
storm in June 2015 (Joshi et al., 2018; Vemareddy, 2017), and the
September 2017 storm (Guastavino et al., 2019; Qian et al., 2019;
Benvenuto et al., 2020). Furthermore, we assessed the prediction
accuracy by using both standard skill scores like the true skill
statistic (TSS), the Heidke Skill Score (HSS), and the value-
weighted skill scores introduced by Guastavino et al. (2022b),
which better account for the intrinsic dynamic nature of
forecasting problems (Guastavino et al., 2021; Hu et al., 2022).
The results indicate that

• the construction of training and validation data sets whose
composition reflects the flare occurrence rates of the test
temporal windowbrings somebenefits in terms of predictive
accuracy, and
• the use of the value-weighted version of the TSS leads to

predictionswhose accuracy is comparable or higher than the
ones provided by the standard TSS.

The plan of the article is as follows: Section 2 describes
the data used for the analysis, the design of the neural
network applied for the prediction, and the way operational flare
forecasting is realized to account for solar cyclicity. Section 3
shows the results of the study. Our conclusions are offered in
Section 4.

2 Material and methods

2.1 The data set

The archive of the Helioseismic and Magnetic Imager
(HMI) (Scherrer et al., 2012) on board the Solar Dynamics
Observatory (SDO) (Pesnell et al., 2011) contains two-
dimensional magnetograms of continuous intensity, of the full
three-component magnetic field vector and of the line-of-sight
magnetic field. In our study, we considered the near-real-time
Space Weather HMI Archive Patch (SHARP) data products that
Bobra et al. (2014) associated to the line-of-sight components.
Regarding an active region (AR), a sample associated to its
history is a 24-hour-long video made of 40 SHARP images of
an AR, with 36 min cadence and where each image has been
resized to a 128× 128 pixel dimension following a similar
procedure used in Huang et al. (2018), Li et al. (2020), and
Guastavino et al. (2022a) based on bilinear interpolation.

As in Guastavino et al. (2022a), we defined seven different
types of videos. Denoting the X1+, M1+, and C1+, the classes
of flares with class X1 or above, M1 or above, and C1 or above,
respectively, we have that

• X-class samples are made of videos of ARs that originated
from X1+ flares in the 24 h after the sample time.
• M-class samples are made of videos of ARs that, in the 24 h

after the sample time, generated flares with M1+-class but
below X-class.
• C-class samples are made of videos of ARs that, in the 24 h

after the sample time, generate flares with C1+-class but
below M-class.
• NO1 class samples are made of videos of ARs that never

originated from a C1+ flare.
• NO2-class samples contain videos of ARs that originated a

C1+ flare neither in the past nor in the 24 h after the sample
time, but did originate in the future.
• NO3-class samples contain videos of ARs that did not

originate a C1+ flare in the 24 h after the sample time, but
originated a C1+ flare in the 48 h before the sample time
[this definition accounts for the fact that relevant features
like the flare index and flare past refer to the past 24 h
window (Campi et al., 2019)].
• NO4-class samples contain videos of ARs that originated

neither a C1+ flare in the 24 h after the sample nor a C1+
flare in the 48 h before the sample time, but originate a C1+
flare prior to 48 h before the sample time.

The first three types of samples describe the ability of ARs to
generate flares of a given intensity in the following 24 h (which is
the prediction time interval), whereas the last four types of videos
are associated to ARs that did not generate significant flares in
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TABLE 1 Details of the LRCN architecture. The parameters of each layer, i.e., the number of filters, kernel size, height and width strides, and activation
functions are shown.

Layer Number of nodes Kernel size Stride Activation function

Convolution 32 7× 7 2× 2 ReLU

Batch normalization — — — —

Max pooling — 2× 2 2× 2 —

Convolution 32 5× 5 2× 2 ReLU

Batch normalization — — — —

Max pooling — 2× 2 2× 2 —

Convolution 32 3× 3 2× 2 ReLU

Batch normalization — — — —

Max pooling — 2× 2 2× 2 —

Convolution 32 3× 3 2× 2 ReLU

Batch normalization — — — —

Max pooling — 2× 2 2× 2 —

Fully connected 64 — — ReLU

LSTM 50 — — —

Fully connected 1 — — Sigmoid

the same prediction interval. However, samples labeled with 0
may not represent a quiescent situation: for instance, NO3-class
samples are associated toARs that generated intense flares during
the observation period. Therefore, it is considerably difficult to
distinguish these types of NO samples from positive samples,
which motivates the fact that they are often excluded from the
analysis (Sun et al., 2022).

2.2 Neural network architecture

We used a deep neural network (DNN) which is appropriate
for video classification. The DNN is called Long-term Recurrent
Convolutional Network (LRCN) (Donahue et al., 2017); it is
the combination of a convolutional neural network (CNN)
and a recurrent neural network known as long short-term
memory (LSTM) network. The architecture is the same as
that used in Guastavino et al. (2022a) and is summarized in
Table 1. Specifically, the CNN is characterized by the first four
convolutional blocks with the number of nodes, kernel size,
height and width strides, and activation function as the input
parameters. Each convolutional layer is L2 regularized with the
regularization level equal to 0.1. The output of the last max-
pooling layer is flattened and given as the input to a fully
connected layer of 64 units, where the dropout is applied with
a fraction of 0.1 input units dropped. Therefore, the output of
the CNNs is a time series of 64 features, which are then passed
to the LSTM which consists of 50 units and where the dropout

is applied with a fraction of 0.5 active units. Finally, the output
of the LSTM layer is fed into the last fully connected layer,
and the sigmoid activation function is applied to generate the
probability distribution of the positive class in order to perform
binary classification. The LRCN is trained over 100 epochs using
the AdamOptimizer (Kingma and Ba, 2015), and themini-batch
size is equal to 128.

2.3 Loss functions and skill scores

Loss functions and skill scores are intertwined concepts. On
the one hand, in the training phase, loss functions should be
chosen according to the learning task (Rosasco et al., 2004); on
the other hand, in the validation/testing phase, skill scores should
account for the properties of the training set and the overall
nature of the learning problem. In the classification setting, skill
scores are usually derived from the elements of the so-called
confusion matrix (CM)

CM =(
TN FP

FN TP
), (1)

where the entries are the classical True Negative (TN), True
Positive (TP), False Positive (FP), and False Negative (FN)
elements. Score-Oriented Loss (SOL) functionswere proposed in
Marchetti et al. (2022) and applied in Guastavino et al. (2022a)
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TABLE 2 Results on test window A for the prediction of C1+ flares. The epochsmaximizing TSS and wTSS in the validation set are the same. The
predictive model is defined with respect to this epoch.

Confusion matrix Same phase rates Different phase rates

Best epoch (TSS/wTSS) Best epoch (TSS/wTSS)

TP = 144 FN = 30 TP = 139 FN = 35

FP = 136 TN = 434 FP = 146 TN = 424

TSS 0.589 0.5427

HSS 0.4861 0.4443

wTSS 0.5486 0.478

wHSS 0.4381 0.3728

The bold values are the best scores.

TABLE 3 Results on test window A for the prediction of M1+ flares. The epochsmaximizing TSS and wTSS in the validation set are not the same in the
different phase case.

Confusion matrix Same phase rates Different phase rates

Best epoch (TSS/wTSS) Best epoch (TSS) Best epoch (wTSS)

TP = 30 FN = 10 TP = 28 FN = 12 TP = 22 FN = 18

FP = 74 TN = 630 FP = 89 TN = 615 FP = 36 TN = 668

TSS 0.6449 0.5736 0.4989

HSS 0.3676 0.3006 0.4115

wTSS 0.5349 0.4441 0.3902

wHSS 0.2722 0.2032 0.3176

The bold values are the best scores.

TABLE 4 Results on test window B for the prediction of C1+ flares. In this case, the epochsmaximizing TSS and wTSS in the validation set are different.
The predictivemodels are defined with respect to these epochs, separately.

Confusion matrix Same phase rates Different phase rates

Best epoch (TSS) Best epoch (wTSS) Best epoch (TSS) Best epoch (wTSS)

TP = 25 FN = 15 TP = 35 FN = 5 TP = 37 FN = 3 TP = 31 FN = 9

FP = 18 TN = 231 FP = 39 TN = 210 FP = 48 TN = 201 FP = 19 TN = 230

TSS 0.5527 0.7184 0.7322 0.6987

HSS 0.5358 0.5295 0.4974 0.6323

wTSS 0.4728 0.6285 0.6188 0.6884

wHSS 0.4485 0.4182 0.3708 0.6036

The bold values are the best scores.

for flare classification tasks. The concept at the basis of
an SOL function is that it is defined starting from the
definition of a skill score in such a way that the network
optimization realized by means of that SOL function
leads to the maximization of the corresponding skill
score.

SOL functions are constructed by considering a probabilistic
version CM of the classical confusion matrix, which depends
on a chosen cumulative density function (cdf) on [0,1] (in this

application, the cdf is chosen as the one related to the uniform
distribution). If ( f (xi),yi), i = 1,…,n are prediction–label couples
of the classification task, where f (xi) ∈ (0,1) is the probability
outcome of theDNN f on the sample xi and yi ∈ {0,1} is the actual
label associated to the sample xi, the CM entries are defined as

TP =∑n
i=1

yi f (xi) , TN =∑n
i=1
(1− yi)(1− f (xi))

FP =∑n
i=1
(1− yi) f (xi) , FN =∑n

i=1
yi (1− f (xi)) .

(2)
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TABLE 5 Results on test window B for the prediction of M1+ flares. In this case, the epochsmaximizing TSS and wTSS in the validation set are
different. The predictive models are defined with respect to these epochs, separately.

Confusion matrix Same phase rates Different phase rates

Best epoch (TSS) Best epoch (wTSS) Best epoch (TSS) Best epoch (wTSS)

TP = 6 FN = 3 TP = 8 FN = 1 TP = 8 FN = 1 TP = 8 FN = 1

FP = 20 TN = 260 FP = 25 TN = 255 FP = 60 TN = 220 FP = 29 TN = 251

TSS 0.5952 0.7996 0.6746 0.7853

HSS 0.3111 0.3491 0.1617 0.3134

wTSS 0.5573 0.7463 0.5547 0.7272

wHSS 0.218 0.231 0.0802 0.2045

The bold values are the best scores.

FIGURE 1
Predictions enrolled over time for the solar storm generated by AR 12297. The actual flaring events recorded by GOES, together with the
corresponding GOES flare classes, are reported. The gray regions correspond to temporal windows out of the field of view of the HMI. (A)
Warnings of C1+ flares are in green. (B) Warnings of M1+ flares are in red.

TABLE 6 Predictions of the solar storm associated to AR 12297. The first prediction wasmade on 3March 2015, and the last one was on 19March 2015.

Predictions (C1+ flares) Predictions (M1+ flares)

Confusion matrix TP = 11 FN = 0 TP = 9 FN = 0

FP = 0 TN = 0 FP = 1 TN = 1
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FIGURE 2
Predictions enrolled over time for the solar storm generated by AR 12371. The actual flaring events recorded by GOES, together with the
corresponding GOES flare classes, are reported. The gray regions correspond to temporal windows out of the field of view of the HMI. (A)
Warnings of C1+ flares are in green. (B) Warnings of M1+ flares are in red.

TABLE 7 Predictions of the solar storm associated to AR 12371. The first prediction wasmade on 18 June 2015, and the last one was on 26 June 2015.

Predictions (C1+ flares) Predictions (M1+ flares)

Confusion matrix TP = 9 FN = 0 TP = 5 FN = 0

FP = 0 TN = 0 FP = 4 TN = 0

In the space weather community, true skill statistics (TSS) is
a relevant score, which is defined as

TSS (CM) = TP
TP+ FN

+ TN
TN+ FP

− 1, (3)

and is appropriate in classifying problems characterized by
class imbalance (TSS ranges in [−1,1] and is optimal when it is
equal to 1). The SOL function associated to TSS is defined as

ℓTSS ≔ −TSS(CM) , (4)

which is a differentiable function with respect to the weights of
the network and is therefore eligible for use in the training phase.

In the applications considered in this study, the prediction
accuracy has been assessed bymeans of both TSS and the Heidke

Skill Score (HSS)

HSS =
2 (TP ⋅TN− FN ⋅ FP)

P ⋅ (FN+TN) +N ⋅ (TP+ FP)
, (5)

where P = TP+ FN and N = TN+ FP. The HSS measures the
improvement of forecast over random forecast, ranges in
(−∞,1], and is optimal when it is equal to 1. Furthermore,
we considered the value-weighted skill scores introduced in
Guastavino et al. (2022b). These scores are based on a definition
of the confusion matrix that assigns different weights to FPs
(denoted by wFPs) and FNs (denoted by wFNs) in such a way
that it accounts for the distribution of predictions along time
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FIGURE 3
Predictions enrolled over time for the solar storm generated by AR 12673. The actual flaring events recorded by GOES, together with the
corresponding GOES flare classes, are reported. The gray regions correspond to temporal windows out of the field of view of the HMI. (A)
Warnings of C1+ flares are in green. (B) Warnings of M1+ flares are in red.

with respect to the actual occurrences. By denoting the value-
weighted confusion matrix as

wCM =(
TN wFP

wFN TP
), (6)

predictions are assessed by computing the value-weighted TSS
(wTSS) and value-weighted HSS (wHSS) defined as

wTSS = TSS (wCM) , wHSS =HSS (wCM) . (7)

The weights in the definitions of wFPs and wFNs allow
mitigating errors such as false positives that precede the
occurrence of an actual positive event and false negatives that are
preceded by positive predictions.

They are defined as follows: let n be the number of samples,
ordered on time, which are associated to a given AR. Moreover,
let T ∈ ℕ>0 be a time-shift parameter and w = ( 1

2
, 1
3
,…, 1

T+1
) be

a vector of T weights. We also define a weight function ω:ℝT ×

ℝT→ℝ as

ω (s, t) =
{{{
{{{
{

2 if s, t ≡ 0

1−max (w ◦ t) otherwise
(8)

where w ◦ t indicates the element-wise product. Then, wFP and
wFN are defined as (cf. 2)

wFP =
n

∑
i=1

ω(z−i ,z
+
i )(1− yi) ŷi, (9)

wFN =
n

∑
i=1

ω( ̂z+i , ̂z
−
i )yi (1− ŷi) . (10)

where ŷi ∈ {0,1} is the predicted label obtained from the network
output f (xi), and the vectors z−i ,z

+
i , ̂z
+
i , ̂z
−
i are constructed as

follows. Given that the label is yi at the sampled time i,
then z−i = (yi−1,yi−2,…,yi−T) is the sequence of the T elements
before yi and z+i = (yi+1,yi+2,…,yi+T) is the sequence of the T
elements after yi. The vectors ̂z−i = (ŷi−1, ŷi−2,…, ŷi−T) and ̂z

+
i =

(ŷi+1, ŷi+2,…, ŷi+T) are defined analogously from the predicted
label ŷi. The weight function ω is indeed constructed in such a

Frontiers in Astronomy and Space Sciences 07 frontiersin.org

https://doi.org/10.3389/fspas.2022.1039805
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Guastavino et al. 10.3389/fspas.2022.1039805

TABLE 8 Predictions of the solar storm associated to AR 12673. The first prediction wasmade on 30 August 2017, and the last one was on 9 September
2017.

Predictions (C1+ flares) Predictions (M1+ flares)

Confusion matrix TP = 6 FN = 1 TP = 6 FN = 1

FP = 0 TN = 3 FP = 0 TN = 3

way to emphasize false positives associatedwith alarms predicted
in the middle of 2T+ 1 long-time windows when no actual
event occurs and false negatives associated with missed events
in the middle of 2T+ 1 long-time windows in which no alarm is
raised.

2.4 Operational flare forecasting

Machine learning theory (Vapnik, 1998) points out that
training, validation, and test sets should be generated with
samples drawn by means of the same probability distribution.
However, in the case of flare forecasting, this requirement should
account for the fact that solar periodicity introduces a bias
in chronological splitting. Guastavino et al. (2022a) introduced
an algorithm for the generation of training and validation sets
based on proportionality (i.e., training set, validation set, and
test set must have the same rate of samples for each sample
type described in Section 2.1) and parsimony (i.e., each subset
of samples must be provided by as few ARs as possible). This
algorithm can be exploited in an operational setting if utilized,
for example, as follows:

1) The current solar cycle is divided into three phases, in
which the solar activity increases, reaches its maximum, and
decreases, in that order.

2) Given a time point in the current solar cycle, the
corresponding phase is identified.

3) For the same phase in the previous solar cycle, the algorithm
computes the rates of the different sample types.

4) The training and validation sets are generated according to
the sample rates from the whole data archive at disposal.

Then, themachine/deep learningmethod is trained bymeans
of the generated training set, and the optimal epochs are chosen
by means of the generated validation set. When the data set
corresponding to the given time point is fed into the trained and
validated neural network, flare prediction is performed for the
following time point.

3 Results

3.1 Prediction for a test window

We considered two experiments, both concerning events
occurred during Solar Cycle 24, involving

• the test window A: March–December 2015
(Nayak et al., 2016) and
• the test window B: January–September 2017

(Qian et al., 2019).

Both test windows are in the descent phase of Solar Cycle
24, therefore the approach discussed inSection 2.4 suggests
computing the sample rates on a suitable window in the descent
phase of the solar cycle. In order to comment on the effectiveness
of the proposed setting, we compared such an approach with a
different strategy where the sample rates were computed on a
different phase of the solar cycle.

3.1.1 Same phase
The sample rates are computed on a tailored window in the

descent phase of the solar cycle and before the test window was
considered. Specifically,

• for the test window A, the rates of the video samples
refer to the period from 30-04-2014 to 28-02-2015 and
are pX ≈ 0.35%, pM ≈ 2.81%, pC ≈ 20.53%, pNO1 ≈ 33.25%,
pNO2 ≈ 4.56%, pNO3 ≈ 17.89%, and pNO4 ≈ 20.61% (where pX
denotes the rate of the X-class samples, pM denotes the rate
of the M-class samples, and so on);
• for the test window B, the rates of the video samples

refer to the period from 30-04-2014 to 28-12-2016 and
are pX ≈ 0.16%, pM ≈ 3.18%, pC ≈ 16.82%, pNO1 ≈ 38.35%,
pNO2 ≈ 5.49%, pNO3 ≈ 15.82%, and pNO4 ≈ 20.19%.

3.1.2 Different phases
Thesample rates are computed on awindow in themaximum

phase of the solar cycle. Since the maximum phase is before both
the two test windows A and B, we used the following unique
period for the computation of sample rates: the rates of the
video samples refer to the period from 30-04-2012 to 28-02-2015
and are pX ≈ 0.43%, pM ≈ 3.71%, pC ≈ 20.1%, pNO1 ≈ 30.55%,
pNO2 ≈ 7.6%, pNO3 ≈ 16.77%, and pNO4 ≈ 20.86%.

The training and validation sets are generated as shown
in Guastavino et al. (2022a) by randomly selecting ARs in a
temporal training interval before the test window and by
accounting for the rates computed in the previous step. In detail,

• for test windowA, theARs in the training and validation sets
are taken from 14-09-2012 to 28-02-2015;
• for test windowB, the ARs in the training and validation sets

are taken from 14-09-2012 to 28-12-2016.
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In the case of prediction of C1+ flares, we labeled the X-
class, M-class, and C-class samples with 1 and the other ones
with 0; in the case of prediction of M1+ flares, we labeled the X-
class and M-class samples with 1 and the other ones with 0. The
validation step was realized by selecting the epochs that provided
the highest TSS andwTSS values. In the case of test windowA,we
found that the maximization of the two scores was obtained with
the same epochwhen the rateswere computed on the samephase,
leading to the same confusion matrix and the same skill score
values on the test window (see column “Same phase rates” of
Tables 2, 3). On the other hand, with regard to test windowB, the
epochs corresponding to the highest TSS and wTSS values were
different, and the skill score values on the test window obtained
by considering the wTSS were significantly higher (see column
“Same phase rates” of Tables 4, 5). Furthermore, we noticed that
for the test window A, the TSS and wTSS were higher when the
sample rates were computed, referring to the same phase (see
Tables 2, 3), whereas for the test window B, both skill scores and
value-weighted skill scores were particularly high, independently
of the chosen phase.Thismay be due to the fact that the year 2017
was characterized by a high percentage of X-class samples and
NO1 samples, which are the easiest classes to be distinguished by
a forecastingmethod. To facilitate the interpretation of the results
at a glance, in each line of all tables, the best score is given in bold
and the second-best score is underlined.

3.2 A focus on storms

We consider three solar storms that occurred during test
windows A and B. As far as the former is concerned, two storms
associated to AR 12297 and AR 12371 occurred in March and
June 2015, respectively (Astafyeva et al., 2015). Regarding test
window B, in September 2017, a storm was linked to AR 12673
(Benvenuto et al., 2020). We finally focused on the prediction of
these events by employing the same model constructed in the
same phase case for the previous experiments. In all cases, the
epochs corresponding to the highest TSS and wTSS lead to the
same predictions.

Figure 1 shows the prediction enrolled over time associated
to AR 12297.When the AR started generating C1+ flares, it is out
from the field of view of the HMI, so the first prediction is made
on 09-03-2015 00:00 for the next 24 h and the last prediction is
made on 19-03-2015 for the next 24 h (after that date, the AR
was out of the field of view of the HMI). The samples to predict
associated to this AR are 1 X-, 8 M-, and 2 C-class samples. The
algorithm correctly sent warnings of the C1+ flares from 09-03-
2015 to 19-03-2015 and of the M1+ flares from 09-03-2015 to
17-03-2015. The M1+ flare warning given on 18-03-2015 is a
false positive, but as the figure shows, a M1-class flare had just
occurred (the peak time was on 17 March 2015, at 23:34). In
Table 6, the confusion matrices are reported for C1+ and M1+
flare prediction.

Figure 2 shows the prediction enrolled over time associated
to AR 12371.When the AR started generating C1+ flares, it is out
from the field of view of the HMI, so the first prediction is made
on 18-06-2015 00:00 for the next 24 h and the last prediction is
made on 26-06-2015 for the next 24 h (after that date, the ARwas
out the field of view of the HMI). The samples to predict that are
associated to this AR are 5 M-class and 9°C-class samples. The
algorithm correctly predicted all the C-class samples, whereas we
observed some false positives forM1+ flare predictions; we point
out that such misclassifications belong to NO3-class samples. In
Table 7, the confusion matrices are reported for the C1+ and
M1+ flare prediction.

Figure 3 shows the prediction enrolled over time associated
to AR 12673. The first prediction is made on 31-08-2017 00:00
for the next 24 h and the last prediction is made on 09-09-
2017 for the next 24 h, since after that date, the AR was out
from the field of view of the HMI. The samples to predict are
2 X-, 4 M-, 1 C-, and 3 NO2-class samples. The first 3 NO2-
class samples are correctly predicted as negative samples. The
algorithm correctly sent warnings of C1+ flares from 04-09-2017
to 20-03-2015, but it missed the C-class sample associated to the
time range between 03-09-2017 00:00 UT and 03-09-2017 23:59
UT (the figure shows that this C-class sample is associated to the
occurrence of a C1.1-class flarewhich has the peak time at 20:50).
For the prediction of M1+ flares, the algorithm missed the first
M-class sample associated to the time range between 04-08-09-
2017 00:00 and 04-09-2017 23:59 UT, and then from 05-09-2017
00:00 UT, it correctly sent warnings until 10-09-2017. InTable 8,
the confusion matrices are reported for the C1+ and M1+ flare
predictions.

4 Conclusion

This study shows that the video-based deep learning strategy
for flare forecasting introduced in Guastavino et al. (2022a) can
be exploited in an operational setting. This approach populates
the training and validation sets for supervised algorithm
accounting for the rates of the flare types associated to the specific
temporal window of the solar cycle. The effectiveness of the
proposed setting is proved by comparing the results obtained,
considering both the same and a different solar phase with
respect to the test window. The prediction algorithm is an LRCN
that takes videos of line-of-sight magnetograms as input and
provides a binary prediction of the flare occurrence as output.
The innovative flavor of this approach is strengthened by the use
of SOL functions in the optimization step and of value-weighted
skill scores in the validation and test phases.Moreover, the results
concerning the three solar storms show that this approach can be
used as an operational warning machine for flare forecasting on
a daily scale. As far as future work is concerned, the proposed
approach for the construction of training and validation data
sets may be further improved by taking into account additional
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features, trends, and recurrences that affect the behavior of solar
cycles on an extended timescale.
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