Operational State Complexity under Parikh Equivalence

Giovanna Lavado ${ }^{1} \quad$ Giovanni Pighizzini ${ }^{1}$ Shinnosuke Seki ${ }^{2,3}$
(1) Dipartimento di Informatica, Università degli Studi di Milano
(2) Helsinki Institute for Information Technology (HIIT)
(3) Department of Information and Computer Science, Aalto University

ICTCS 2014
Università degli Studi di Perugia, Italy September 17-19, 2014

Standard equivalence: NFAs vs DFAs

Subset construction

[Rabin\&Scott '59]

NFA
n states

$L$$\quad \Longrightarrow \quad$| DFA |
| :---: |
| 2^{n} states |
| L |

Moreover, this state bound cannot be reduced [Meyer\&Fischer '71, Moore '71]

What happens if we do not care of the order of symbols in the strings?

This problem is related to the concept of Parikh equivalence

Standard equivalence: NFAs vs DFAs

Subset construction

[Rabin\&Scott '59]

NFA n states L	\Longrightarrow	DFA
2^{n} states		
L		

Moreover, this state bound cannot be reduced
[Meyer\&Fischer '71, Moore '71]
What happens if we do not care of the order of symbols in the strings?

This problem is related to the concept of Parikh equivalence [Parikh '66]

Parikh equivalence: preliminaries

- $\Sigma=\left\{a_{1}, \ldots, a_{m}\right\}$ alphabet of m symbols
- $|w|_{a}$ be the number of occurrences of a in $w \in \sum^{*}$

Parikh map

The Parikh map $\psi: \Sigma^{*} \rightarrow \mathbb{N}^{m}$ associates with a word $w \in \Sigma^{*}$ the m-dimensional nonnegative vector $\left(|w|_{a_{1}},|w|_{a_{2}}, \ldots,|w|_{a_{m}}\right)$.

Parikh image

The Parikh image of a language L is $\psi(L)=\{\psi(w) \mid w \in L\}$.

- $w_{1}={ }_{\pi} w_{2}$ iff $\psi\left(w_{1}\right)=\psi\left(w_{2}\right)$
- $L_{1}={ }_{\pi} L_{2}$ iff $\psi\left(L_{1}\right)=\psi\left(L_{2}\right)$

Parikh equivalence: Parikh's theorem

Theorem ([Parikh '66])
For each context-free language $L \subseteq \Sigma^{*}$, there exists a Parikh equivalent regular language $R \subseteq \Sigma^{*}$.

Example $\left(L={ }_{\pi} R\right)$

$$
L=\left\{a^{n} b^{n} \mid n \geq 0\right\} \quad \text { and } \quad R=(a b)^{*}
$$

have the same Parikh image, namely the set

$$
\{(n, n) \mid n \geq 0\}
$$

From NFAs to Parikh equivalent DFAs

We have the following Parikh equivalent conversion:
Theorem (NFA to DFA)

NFA
n states
L_{1}

Moreover, this cost is tight.

Quite surprisingly:
Dolynomial eonversion
If the given NFA accepts only nonunary strings then the cost reduces
a polynomial in n.

From NFAs to Parikh equivalent DFAs

We have the following Parikh equivalent conversion:
Theorem (NFA to DFA)
\(\substack{NFA

n states

L_{1}}\)$\quad \Longrightarrow_{\pi} \quad$| DFA |
| :---: |
| L_{2} |

Moreover, this cost is tight.

Quite surprisingly:

Polynomial conversion

If the given NFA accepts only nonunary strings then the cost reduces to
a polynomial in n.

Our Goal

We investigate, under Parikh equivalence, the state complexity of some language operations which preserve regularity $\left(\cup, \cap,{ }^{c}, \cdot,{ }^{*}, \amalg, R, P_{\Sigma_{0}}\right)$.

Problem (DFAs to DFA)

$$
\begin{array}{ccc}
A, B \text { DFAs } & & C \text { DFA } \\
n_{1}, n_{2} \text { states } \\
L(A), L(B) & \Longrightarrow_{\pi} & L(C)={ }_{\pi} L \\
\text { how many states? }
\end{array}
$$

where:

- $L=L(A) \cup L(B)$
- $L=L(A) \cap L(B)$
- $L=L(A) L(B)$
- ...

Standard equivalence: concatenation

$$
\begin{array}{clc}
A, B \text { DFAs } \\
n_{1}, n_{2} \text { states } \\
L(A) L(B)
\end{array} \quad \Longrightarrow \quad \begin{gathered}
C \text { DFA } \\
2^{n_{1}+n_{2}} \text { states } \\
L(C)=L(A) L(B)
\end{gathered}
$$

In the worst case: $\left(2 n_{1}-1\right) 2^{n_{2}-1}$ states

Under Parikh equivalence we reduce this bound.

Standard equivalence: concatenation

$$
\begin{array}{clc}
A, B \text { DFAs } \\
n_{1}, n_{2} \text { states } \\
L(A) L(B)
\end{array} \quad \Longrightarrow \quad \begin{gathered}
C \text { DFA } \\
2^{n_{1}+n_{2}} \text { states } \\
L(C)=L(A) L(B)
\end{gathered}
$$

In the worst case: $\left(2 n_{1}-1\right) 2^{n_{2}-1}$ states

Under Parikh equivalence we reduce this bound.

Concatenation under Parikh equivalence

One of our contribution
Problem (DFAs to DFA)

$$
\begin{gathered}
A, B \text { DFAs } \\
n_{1}, n_{2} \text { states } \\
L=L(A) L(B)
\end{gathered}
$$

$$
\begin{gathered}
C \text { DFA } \\
L(C)={ }_{\pi} L \\
\text { how many states? }
\end{gathered}
$$

- Upper bound: $e^{\sqrt{n \cdot \ln n}}$, where $n=n_{1}+n_{2}$ by Parikh equivalent conversion
- Lower bound: $n_{1} n_{2}$ states by unary case

Unary and nonunary parts of a language

Unary parts:

Nonunary part:

$$
L(A)=\bigcup_{i=0}^{m} L\left(A_{i}\right)
$$

Concatenation under Parikh equivalence: proof idea

$$
\begin{gathered}
\text { DFAs } A, B \\
n_{1}, n_{2} \text { states } \\
L=L(A) L(B) \\
\Sigma=\left\{a_{1}, \ldots, a_{m}\right\}
\end{gathered}
$$

Concatenation under Parikh equivalence: proof idea

$$
\begin{gathered}
\qquad i=1 \ldots m \\
\\
\\
A_{i}, O\left(n_{1}\right) \text { states } \\
B_{i}, O\left(n_{2}\right) \text { states } \\
\text { unary } \\
\text { DFAs } A, B \\
n_{1}, n_{2} \text { states } \\
L=L(A) L(B) \\
\Sigma=\left\{a_{1}, \ldots, a_{m}\right\}
\end{gathered}
$$

Concatenation under Parikh equivalence: proof idea

$$
\begin{aligned}
& \forall i=1 \ldots m \quad \forall i=1 \ldots m \\
& A_{i}, O\left(n_{1}\right) \text { states } \longrightarrow \text { DFA } M_{i} \\
& B_{i}, O\left(n_{2}\right) \text { states } \quad L\left(M_{i}\right)=L\left(A_{i}\right) L\left(B_{i}\right) \\
& \text { unary } \\
& \text { [Yu '00] } O\left(n_{1} n_{2}\right) \text { states } \\
& \text { DFAs } A, B \\
& n_{1}, n_{2} \text { states } \\
& L=L(A) L(B) \\
& \Sigma=\left\{a_{1}, \ldots, a_{m}\right\}
\end{aligned}
$$

Concatenation under Parikh equivalence: proof idea

$$
\begin{aligned}
& \begin{array}{ccc}
\begin{array}{c}
\forall i=1 \\
A_{i}, O\left(n_{1}\right) \text { states } \\
B_{i}, O\left(n_{2}\right) \text { states }
\end{array} & \Longrightarrow \begin{array}{c}
\forall i=1 \ldots m \\
\text { DFA } M_{i} \\
L\left(M_{i}\right)=L\left(A_{i}\right) L\left(B_{i}\right)
\end{array} & \\
O\left(n_{1} n_{2}\right) \text { states } & & \text { DFA } M^{\prime} \\
L\left(M^{\prime}\right)=\bigcup_{i=1}^{m} L\left(M_{i}\right)
\end{array} \\
& \text { DFAs } A, B \\
& n_{1}, n_{2} \text { states } \\
& L=L(A) L(B) \\
& \Sigma=\left\{a_{1}, \ldots, a_{m}\right\}
\end{aligned}
$$

Concatenation under Parikh equivalence: proof idea

$$
\begin{aligned}
& \text { DFAs } A, B \\
& n_{1}, n_{2} \text { states } \\
& L=L(A) L(B) \\
& \Sigma=\left\{a_{1}, \ldots, a_{m}\right\} \\
& \text { nonunary } \\
& \text { NFA M } \\
& L(M)=L \\
& n_{1}+n_{2} \text { states }
\end{aligned}
$$

Concatenation under Parikh equivalence: proof idea

$$
\begin{aligned}
& \begin{array}{c}
\forall i=1 \ldots m \\
A_{i}, O\left(n_{1}\right) \text { states } \\
B_{i}, O\left(n_{2}\right) \text { states }
\end{array} \longrightarrow \begin{array}{c}
\forall i=1 \ldots m \\
\text { DFA } M_{i}
\end{array} \Longrightarrow \begin{array}{c}
\text { DFA } M^{\prime} \\
L\left(M_{i}\right)=L\left(A_{i}\right) L\left(B_{i}\right)
\end{array}>\begin{array}{c}
L\left(M^{\prime}\right)=\bigcup_{i=1}^{m} L\left(M_{i}\right) \\
\\
\end{array} \\
& \text { DFAs } A, B \\
& n_{1}, n_{2} \text { states } \\
& L=L(A) L(B) \\
& \Sigma=\left\{a_{1}, \ldots, a_{m}\right\} \\
& \text { nonunary } \\
& \text { NFA } M \quad \begin{array}{l}
\text { NFA } M_{0}
\end{array} \\
& L(M)=L \\
& n_{1}+n_{2} \text { states } \\
& \begin{array}{c}
\left(n_{1}+n_{2}\right)(m+1)+1 \\
\text { states }
\end{array}
\end{aligned}
$$

Concatenation under Parikh equivalence: proof idea

$$
\begin{aligned}
& \text { DFAs } A, B \\
& n_{1}, n_{2} \text { states } \\
& L=L(A) L(B) \\
& \Sigma=\left\{a_{1}, \ldots, a_{m}\right\} \\
& \text { nonunary } \\
& \text { NFA } M_{0} \\
& L \backslash L\left(M^{\prime}\right) \\
& \left(n_{1}+n_{2}\right)(m+1)+1 \\
& \text { states } \\
& \text { DFA } M_{0}^{\prime} \\
& \operatorname{poly}\left(n_{1}, n_{2}\right) \\
& \text { states }
\end{aligned}
$$

Concatenation under Parikh equivalence: proof idea

$$
\begin{aligned}
& \begin{array}{c}
\forall i=1 \ldots m \\
A_{i}, O\left(n_{1}\right) \text { states } \\
B_{i}, O\left(n_{2}\right) \text { states }
\end{array} \Longrightarrow \begin{array}{c}
\forall i=1 \ldots m \\
\text { DFA } M_{i} \\
L\left(M_{i}\right)=L\left(A_{i}\right) L\left(B_{i}\right)
\end{array} \Longrightarrow \begin{array}{c}
\text { DFA } M^{\prime} \\
L\left(M^{\prime}\right)=\bigcup_{i=1}^{m} L\left(M_{i}\right) \\
\end{array} \\
& \begin{array}{c}
\text { unary } \\
\begin{array}{c}
\text { DFAs } A, B \\
n_{1}, n_{2} \text { states } \\
L=L(A) L(B) \\
\Sigma=\left\{a_{1}, \ldots, a_{m}\right\}
\end{array} \\
\text { Parikh equivalent conversion }
\end{array} \\
& \text { nonunary }
\end{aligned}
$$

Concatenation under Parikh equivalence: proof idea

$$
\begin{aligned}
& \text { unary } \\
& \begin{array}{ccc}
\begin{array}{c}
\forall i=1 \ldots m \\
A_{i}, O\left(n_{1}\right) \text { states } \\
B_{i}, O\left(n_{2}\right) \text { states }
\end{array} & \Longrightarrow \begin{array}{c}
\forall i=1 \ldots m \\
\mathrm{DFA} M_{i} \\
L\left(M_{i}\right)=L\left(A_{i}\right) L\left(B_{i}\right)
\end{array} & \Longrightarrow
\end{array} \begin{array}{c}
\text { DFA } M^{\prime} \\
L\left(M^{\prime}\right)=\bigcup_{i=1}^{m} L\left(M_{i}\right)
\end{array} \\
& \text { DFAs } A, B \\
& n_{1}, n_{2} \text { states } \\
& L=L(A) L(B) \\
& \Sigma=\left\{a_{1}, \ldots, a_{m}\right\} \\
& \text { nonunary } \\
& \begin{array}{c}
\text { NFA } M \\
\begin{array}{c}
L(M)=L \\
n_{1}+n_{2} \text { states }
\end{array}
\end{array} \Longrightarrow \begin{array}{c}
\begin{array}{c}
\text { NFA } M_{0} \\
L \backslash L\left(M^{\prime}\right) \\
\left(n_{1}+n_{2}\right)(m+1)+1 \\
\text { states }
\end{array}
\end{array} \Longrightarrow \pi \begin{array}{c}
\text { DFA } M_{0}^{\prime} \\
\text { poly }\left(n_{1}, n_{2}\right) \\
\text { states }
\end{array}
\end{aligned}
$$

Theorem

Given two DFAs A and B of n_{1} and n_{2} states, respectively, there exists a DFA of polynomial number of states in n_{1} and n_{2} that is Parikh equivalent to $L(A) L(B)$. Moeover, this cost is tight.

Projection under Parikh equivalence

Given a word $w \in \Sigma^{*}$, the projection of w over an alphabet $\Sigma^{\prime} \subseteq \Sigma$, is the word $P_{\Sigma^{\prime}}(w)$ obtained by removing from w all the symbols which are not in Σ^{\prime}. (see, e.g., [Jirásková \& Masopust 12]).
Example:

$$
P_{\{a, b\}}\left(a^{n} b^{n} c^{n}\right)=a^{n} b^{n}
$$

Projection under Parikh equivalence

Under Parikh equivalence, $e^{O(\sqrt{n \cdot \ln n})}$ is enough and this is tight.
DFA A
NFA A^{\prime}
DFA M
$L(A) \Longrightarrow L\left(A^{\prime}\right)=P_{\Sigma^{\prime}}(L(A)) \Longrightarrow_{\pi}$
$L(M)={ }_{\pi} L\left(A^{\prime}\right)$
n states
n states
$e^{O(\sqrt{n \cdot \ln n})}$ states

Regular operations under Parikh equivalence Summary table

Operation	Standard equivalence	Parikh equivalence
$L_{1} \cup L_{2}$	$n_{1} n_{2}$	$n_{1} n_{2}$
$L_{1} \cap L_{2}$	$n_{1} n_{2}$	$n_{1} n_{2}$
L_{1}^{c}	n_{1}	n_{1}
$L_{1} L_{2}$	$\left(2 n_{1}-1\right) 2^{n_{2}-1}$	$p o l y\left(n_{1}, n_{2}\right)$
L_{1}^{*}	$2^{n_{1}-1}+2^{n_{1}-2}$	poly $\left(n_{1}\right)$
$L_{1} \amalg L_{2}$	$2^{n_{1} n_{2}}-1$	$p o l y\left(n_{1}, n_{2}\right)$
L_{1}^{R}	$2^{n_{1}}$	n_{1}
$P_{\Sigma_{0}}\left(L_{1}\right)$	$3 \cdot 2^{n_{1}-2}-1$	$e^{O\left(\sqrt{n_{1} \cdot \ln n_{1}}\right)}$

[Yu '00, Campeanu\&Salomaa\&Yu '02, Yu\&Zhuang\&Salomaa '94, Jiraskova\&Masopust '12]

Intersection does not commute with Parikh mapping
$\psi\left(a^{+} b^{+} \cap b^{+} a^{+}\right) \neq \psi\left(a^{+} b^{+}\right) \cap \psi\left(b^{+} a^{+}\right)$holds; in fact,

$$
\begin{aligned}
\psi\left(a^{+} b^{+} \cap b^{+} a^{+}\right) & =\emptyset \\
\psi\left(a^{+} b^{+}\right) \cap \psi\left(b^{+} a^{+}\right) & =\{(i, j) \mid i, j \geq 1\} .
\end{aligned}
$$

Complement does not commute with Parikh mapping $\psi\left(\left(a^{*} b^{*}\right)^{c}\right) \neq\left(\psi\left(a^{*} b^{*}\right)\right)^{c}$ holds; in fact,

$$
\begin{aligned}
\psi\left(\left(a^{*} b^{*}\right)^{c}\right) & =\{(i, j) \mid i, j \geq 1\} \\
\left(\psi\left(a^{*} b^{*}\right)\right)^{c} & =\emptyset
\end{aligned}
$$

Intersection and complement: revisited

 Problem settingProblem: intersection

$$
\begin{aligned}
& A, B \text { DFAs } \quad M \text { DFA } \\
& n_{1}, n_{2} \text { states } \quad \Longrightarrow \quad \psi(L(M))=\psi(L(A)) \cap \psi(L(B)) \\
& \text { How many states needed? }
\end{aligned}
$$

Problem: complement (left open!)

A DFA
n states
:---:
How many states needed?

Intersection: revisited

We use a modification of the following result:

Theorem ([Kopczyński\&To '10])

There is a polynomial p such that for each n-state NFA A over $\Sigma=\left\{a_{1}, \ldots, a_{m}\right\}$,

$$
\psi(L(A))=\bigcup_{i \in I} Z_{i}
$$

where:

- I is a set of at most $p(n)$ indices
- for $i \in I, Z_{i} \subseteq \mathbb{N}^{m}$ is a linear set of the form:

$$
Z_{i}=\left\{\alpha_{0}+n_{1} \alpha_{1}+\cdots+n_{k} \alpha_{k} \mid n_{1}, \ldots, n_{k} \in \mathbb{N}\right\}
$$

with

- $0 \leq k \leq m$
- the components of α_{0} are bounded by $p(n)$
- $\alpha_{1}, \ldots, \alpha_{k}$ are linearly independent vectors from $\{0,1, \ldots, n\}^{m}$

Intersection: revisited

Theorem

Let A, B be DFAs with respectively n_{1}, n_{2} states over $\Sigma=\left\{a_{1}, \ldots, a_{m}\right\}$. There exists a DFA M whose Parikh map is equal to $\psi(L(A)) \cap \psi(L(B))$ and which contains

$$
O\left(n^{(2 m-1)\left(3 m^{3}+6 m^{2}\right)+2} p(n)^{2\left(3 m^{3}+6 m^{2}\right)+m}\right)
$$

states, where:

- $n=\max \left\{n_{1}, n_{2}\right\}(m+1)+1$
- $p(n)=O\left(n^{3 m^{2}} m^{m^{2} / 2+2}\right)$

Proof.

Revisiting the Ginsburg and Spanier's proof [Ginsburg\&Spanier'64] of the closure property of semilinear sets under intersection.

Conclusion

Under Parikh equivalence:

- For $\cup, \cdot,^{*},{ }^{c}, \cap$, \amalg, and ${ }^{R}$, we obtain a polynomial state complexity, in contrast to the intrinsic exponential state complexity in the classical equivalence.
- For $P_{\Sigma_{0}}$ we prove a superpolynomial state complexity, which is lower than the exponential one of the corresponding classical operation.
- For each two deterministic automata A and B, it is possible to obtain a deterministic automaton with a polynomial number of states, whose accepted language has as Parikh image $\psi(L(A)) \cap \psi(L(B))$.

Conclusion

Under Parikh equivalence:

- For $\cup, \cdot,^{*},{ }^{c}, \cap$, \amalg, and ${ }^{R}$, we obtain a polynomial state complexity, in contrast to the intrinsic exponential state complexity in the classical equivalence.
- For $P_{\Sigma_{0}}$ we prove a superpolynomial state complexity, which is lower than the exponential one of the corresponding classical operation.
- For each two deterministic automata A and B, it is possible to obtain a deterministic automaton with a polynomial number of states, whose accepted language has as Parikh image $\psi(L(A)) \cap \psi(L(B))$.

Conclusion

Under Parikh equivalence:

- For $\cup, \cdot,{ }^{*},{ }^{c}, \cap, \amalg$, and ${ }^{R}$, we obtain a polynomial state complexity, in contrast to the intrinsic exponential state complexity in the classical equivalence.
- For $P_{\Sigma_{0}}$ we prove a superpolynomial state complexity, which is lower than the exponential one of the corresponding classical operation.
- For each two deterministic automata A and B, it is possible to obtain a deterministic automaton with a polynomial number of states, whose accepted language has as Parikh image $\psi(L(A)) \cap \psi(L(B))$.

Thank you for your attention

