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Università degli Studi di Perugia, Italy

September 17-19, 2014

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence



Standard equivalence: nfas vs dfas

Subset construction [Rabin&Scott ’59]

nfa
n states

L
=⇒

dfa
2n states

L

Moreover, this state bound cannot be reduced
[Meyer&Fischer ’71, Moore ’71]

What happens if we do not care of the order of
symbols in the strings?

This problem is related to the concept of Parikh equivalence
[Parikh ’66]
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Parikh equivalence: preliminaries

Σ = {a1, . . . , am} alphabet of m symbols
|w |a be the number of occurrences of a in w ∈ Σ∗

Parikh map
The Parikh map ψ : Σ∗ → Nm associates with a word w ∈ Σ∗ the
m-dimensional nonnegative vector (|w |a1 , |w |a2 , . . . , |w |am ).

Parikh image
The Parikh image of a language L is ψ(L) = {ψ(w) | w ∈ L}.

w1 =πw2 iff ψ(w1) = ψ(w2)

L1 =π L2 iff ψ(L1) = ψ(L2)
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Parikh equivalence: Parikh’s theorem

Theorem ([Parikh ’66])
For each context-free language L ⊆ Σ∗, there exists a Parikh
equivalent regular language R ⊆ Σ∗.

Example (L =πR)

L = {anbn | n ≥ 0} and R = (ab)∗

have the same Parikh image, namely the set

{(n, n) | n ≥ 0}
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From nfas to Parikh equivalent dfas

We have the following Parikh equivalent conversion:

Theorem (nfa to dfa)
nfa

n states
L1

=⇒π

dfa
eO(
√

n·ln n) states
L2

Moreover, this cost is tight.

Quite surprisingly:

Polynomial conversion
If the given nfa accepts only nonunary strings then the cost reduces

to
a polynomial in n.
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Our Goal

We investigate, under Parikh equivalence, the state complexity of
some language operations which preserve regularity
(∪,∩,c , ·,∗ ,�,R ,PΣ0).

Problem (dfas to dfa)
A, B dfas

n1, n2 states
L(A), L(B)

=⇒π

C dfa
L(C) =π L

how many states?

where:

L = L(A) ∪ L(B)

L = L(A) ∩ L(B)

L = L(A)L(B)

...

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence



Standard equivalence: concatenation

A, B dfas
n1, n2 states

L(A)L(B)
=⇒

C dfa
2n1+n2 states

L(C) = L(A)L(B)

In the worst case: (2n1 − 1)2n2−1 states
[Yu ’00]

Under Parikh equivalence we reduce this bound.
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Concatenation under Parikh equivalence

One of our contribution

Problem (dfas to dfa)
A, B dfas

n1, n2 states
L = L(A)L(B)

=⇒π

C dfa
L(C) =π L

how many states?

Upper bound: e
√

n·ln n, where n = n1 + n2
by Parikh equivalent conversion
Lower bound: n1n2 states
by unary case [Yu ’00]
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Unary and nonunary parts of a language

q p

a2

a1

a2

a1

Unary parts:

q

a1

q p

a2

a2

Nonunary part:

q0

[p, 1]

[p, 2]

[q, 1]

[q, 2] q p

a1

a1

a2

a2
a2

a1

a2 a1

a2

a1

a2

a1

L(A) =
⋃m

i=0 L(Ai )
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Concatenation under Parikh equivalence: proof idea

dfas A,B
n1, n2 states

L = L(A)L(B)
Σ = {a1, . . . , am}

Theorem
Given two dfas A and B of n1 and n2 states, respectively, there
exists a dfa of polynomial number of states in n1 and n2 that is
Parikh equivalent to L(A)L(B). Moeover, this cost is tight.
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Projection under Parikh equivalence

Given a word w ∈ Σ∗, the projection of w over an alphabet Σ′ ⊆ Σ,
is the word PΣ′(w) obtained by removing from w all the symbols
which are not in Σ′. (see, e.g., [Jirásková & Masopust 12]).
Example:

P{a,b}(anbncn) = anbn

Projection under Parikh equivalence

Under Parikh equivalence, eO(
√

n·ln n) is enough and this is tight.
dfa A
L(A)

n states
=⇒

nfa A′

L(A′) = PΣ′(L(A))

n states
=⇒π

dfa M
L(M) =π L(A′)

eO(
√

n·ln n) states
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Regular operations under Parikh equivalence
Summary table

Operation Standard equivalence Parikh equivalence
L1 ∪ L2 n1n2 n1n2
L1 ∩ L2 n1n2 n1n2
Lc

1 n1 n1
L1L2 (2n1 − 1)2n2−1 poly(n1, n2)

L∗1 2n1−1 + 2n1−2 poly(n1)

L1 � L2 2n1n2 − 1 poly(n1, n2)

LR
1 2n1 n1

PΣ0(L1) 3 · 2n1−2 − 1 eO(
√

n1·ln n1)

[Yu ’00, Campeanu&Salomaa&Yu ’02, Yu&Zhuang&Salomaa ’94,
Jiraskova&Masopust ’12]
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Intersection and complement: revisited
Non-commutativity with Parikh mapping

Intersection does not commute with Parikh mapping
ψ(a+b+ ∩ b+a+) 6= ψ(a+b+) ∩ ψ(b+a+) holds; in fact,

ψ(a+b+ ∩ b+a+) = ∅
ψ(a+b+) ∩ ψ(b+a+) = {(i , j) | i , j ≥ 1}.

Complement does not commute with Parikh mapping
ψ((a∗b∗)c) 6= (ψ(a∗b∗))c holds; in fact,

ψ((a∗b∗)c) = {(i , j) | i , j ≥ 1}
(ψ(a∗b∗))c = ∅.
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Intersection and complement: revisited
Problem setting

Problem: intersection
A,B dfas M dfa

n1, n2 states =⇒ ψ(L(M)) = ψ(L(A)) ∩ ψ(L(B))
How many states needed?

Problem: complement (left open!)
A dfa M dfa

n states =⇒ ψ(L(M)) = (ψ(L(A)))c

How many states needed?
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Intersection: revisited

We use a modification of the following result:

Theorem ([Kopczyński&To ’10])
There is a polynomial p such that for each n-state nfa A
over Σ = {a1, . . . , am},

ψ(L(A)) =
⋃
i∈I

Zi

where:
I is a set of at most p(n) indices
for i ∈ I, Zi ⊆ Nm is a linear set of the form:

Zi = {α0 + n1α1 + · · ·+ nkαk | n1, . . . , nk ∈ N}
with

0 ≤ k ≤ m
the components of α0 are bounded by p(n)
α1, . . . , αk are linearly independent vectors from {0, 1, . . . , n}m
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Intersection: revisited

Theorem
Let A,B be dfas with respectively n1, n2 states over
Σ = {a1, . . . , am}. There exists a dfa M whose Parikh map is
equal to ψ(L(A)) ∩ ψ(L(B)) and which contains

O(n(2m−1)(3m3+6m2)+2p(n)2(3m3+6m2)+m)

states, where:
n = max{n1, n2}(m + 1) + 1
p(n) = O(n3m2mm2/2+2)

Proof.
Revisiting the Ginsburg and Spanier’s proof [Ginsburg&Spanier ’64] of
the closure property of semilinear sets under intersection.
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Conclusion

Under Parikh equivalence:

For ∪, ·, ∗, c , ∩, �, and R , we obtain a polynomial state
complexity, in contrast to the intrinsic exponential state
complexity in the classical equivalence.

For PΣ0 we prove a superpolynomial state complexity, which is
lower than the exponential one of the corresponding classical
operation.

For each two deterministic automata A and B, it is possible to
obtain a deterministic automaton with a polynomial number of
states, whose accepted language has as Parikh image
ψ(L(A)) ∩ ψ(L(B)).
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Thank you for your attention
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