
Operational State Complexity under Parikh
Equivalence

Giovanna Lavado1 Giovanni Pighizzini1 Shinnosuke Seki2,3

1 Dipartimento di Informatica, Università degli Studi di Milano
2 Helsinki Institute for Information Technology (HIIT)
3 Department of Information and Computer Science, Aalto University

ICTCS 2014
Università degli Studi di Perugia, Italy

September 17-19, 2014

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Standard equivalence: nfas vs dfas

Subset construction [Rabin&Scott ’59]

nfa
n states

L
=⇒

dfa
2n states

L

Moreover, this state bound cannot be reduced
[Meyer&Fischer ’71, Moore ’71]

What happens if we do not care of the order of
symbols in the strings?

This problem is related to the concept of Parikh equivalence
[Parikh ’66]

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Standard equivalence: nfas vs dfas

Subset construction [Rabin&Scott ’59]

nfa
n states

L
=⇒

dfa
2n states

L

Moreover, this state bound cannot be reduced
[Meyer&Fischer ’71, Moore ’71]

What happens if we do not care of the order of
symbols in the strings?

This problem is related to the concept of Parikh equivalence
[Parikh ’66]

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Parikh equivalence: preliminaries

Σ = {a1, . . . , am} alphabet of m symbols
|w |a be the number of occurrences of a in w ∈ Σ∗

Parikh map
The Parikh map ψ : Σ∗ → Nm associates with a word w ∈ Σ∗ the
m-dimensional nonnegative vector (|w |a1 , |w |a2 , . . . , |w |am).

Parikh image
The Parikh image of a language L is ψ(L) = {ψ(w) | w ∈ L}.

w1 =πw2 iff ψ(w1) = ψ(w2)

L1 =π L2 iff ψ(L1) = ψ(L2)

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Parikh equivalence: Parikh’s theorem

Theorem ([Parikh ’66])
For each context-free language L ⊆ Σ∗, there exists a Parikh
equivalent regular language R ⊆ Σ∗.

Example (L =πR)

L = {anbn | n ≥ 0} and R = (ab)∗

have the same Parikh image, namely the set

{(n, n) | n ≥ 0}

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

From nfas to Parikh equivalent dfas

We have the following Parikh equivalent conversion:

Theorem (nfa to dfa)
nfa

n states
L1

=⇒π

dfa
eO(
√

n·ln n) states
L2

Moreover, this cost is tight.

Quite surprisingly:

Polynomial conversion
If the given nfa accepts only nonunary strings then the cost reduces

to
a polynomial in n.

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

From nfas to Parikh equivalent dfas

We have the following Parikh equivalent conversion:

Theorem (nfa to dfa)
nfa

n states
L1

=⇒π

dfa
eO(
√

n·ln n) states
L2

Moreover, this cost is tight.

Quite surprisingly:

Polynomial conversion
If the given nfa accepts only nonunary strings then the cost reduces

to
a polynomial in n.

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Our Goal

We investigate, under Parikh equivalence, the state complexity of
some language operations which preserve regularity
(∪,∩,c , ·,∗ ,�,R ,PΣ0).

Problem (dfas to dfa)
A, B dfas

n1, n2 states
L(A), L(B)

=⇒π

C dfa
L(C) =π L

how many states?

where:

L = L(A) ∪ L(B)

L = L(A) ∩ L(B)

L = L(A)L(B)

...

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Standard equivalence: concatenation

A, B dfas
n1, n2 states

L(A)L(B)
=⇒

C dfa
2n1+n2 states

L(C) = L(A)L(B)

In the worst case: (2n1 − 1)2n2−1 states
[Yu ’00]

Under Parikh equivalence we reduce this bound.

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Standard equivalence: concatenation

A, B dfas
n1, n2 states

L(A)L(B)
=⇒

C dfa
2n1+n2 states

L(C) = L(A)L(B)

In the worst case: (2n1 − 1)2n2−1 states
[Yu ’00]

Under Parikh equivalence we reduce this bound.

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Concatenation under Parikh equivalence

One of our contribution

Problem (dfas to dfa)
A, B dfas

n1, n2 states
L = L(A)L(B)

=⇒π

C dfa
L(C) =π L

how many states?

Upper bound: e
√

n·ln n, where n = n1 + n2
by Parikh equivalent conversion
Lower bound: n1n2 states
by unary case [Yu ’00]

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Unary and nonunary parts of a language

q p

a2

a1

a2

a1

Unary parts:

q

a1

q p

a2

a2

Nonunary part:

q0

[p, 1]

[p, 2]

[q, 1]

[q, 2] q p

a1

a1

a2

a2
a2

a1

a2 a1

a2

a1

a2

a1

L(A) =
⋃m

i=0 L(Ai)

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Concatenation under Parikh equivalence: proof idea

dfas A,B
n1, n2 states

L = L(A)L(B)
Σ = {a1, . . . , am}

Theorem
Given two dfas A and B of n1 and n2 states, respectively, there
exists a dfa of polynomial number of states in n1 and n2 that is
Parikh equivalent to L(A)L(B). Moeover, this cost is tight.

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Concatenation under Parikh equivalence: proof idea

dfas A,B
n1, n2 states

L = L(A)L(B)
Σ = {a1, . . . , am}

unary

�
�
�

∀i = 1 . . .m
Ai ,O(n1) states
Bi ,O(n2) states

Theorem
Given two dfas A and B of n1 and n2 states, respectively, there
exists a dfa of polynomial number of states in n1 and n2 that is
Parikh equivalent to L(A)L(B). Moeover, this cost is tight.

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Concatenation under Parikh equivalence: proof idea

dfas A,B
n1, n2 states

L = L(A)L(B)
Σ = {a1, . . . , am}

unary

�
�
�

∀i = 1 . . .m
Ai ,O(n1) states
Bi ,O(n2) states

=⇒

[Yu ’00]

∀i = 1 . . .m
dfa Mi

L(Mi) = L(Ai)L(Bi)

O(n1n2) states

Theorem
Given two dfas A and B of n1 and n2 states, respectively, there
exists a dfa of polynomial number of states in n1 and n2 that is
Parikh equivalent to L(A)L(B). Moeover, this cost is tight.

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Concatenation under Parikh equivalence: proof idea

dfas A,B
n1, n2 states

L = L(A)L(B)
Σ = {a1, . . . , am}

unary

�
�
�

∀i = 1 . . .m
Ai ,O(n1) states
Bi ,O(n2) states

=⇒

[Yu ’00]

∀i = 1 . . .m
dfa Mi

L(Mi) = L(Ai)L(Bi)

O(n1n2) states

=⇒ dfa M′

L(M′) =
⋃m

i=1 L(Mi)

poly(n1, n2) states

Theorem
Given two dfas A and B of n1 and n2 states, respectively, there
exists a dfa of polynomial number of states in n1 and n2 that is
Parikh equivalent to L(A)L(B). Moeover, this cost is tight.

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Concatenation under Parikh equivalence: proof idea

dfas A,B
n1, n2 states

L = L(A)L(B)
Σ = {a1, . . . , am}

unary

�
�
�

∀i = 1 . . .m
Ai ,O(n1) states
Bi ,O(n2) states

=⇒

[Yu ’00]

∀i = 1 . . .m
dfa Mi

L(Mi) = L(Ai)L(Bi)

O(n1n2) states

=⇒ dfa M′

L(M′) =
⋃m

i=1 L(Mi)

poly(n1, n2) states

nonunary

@
@
@

nfa M
L(M) = L

n1+n2 states

Theorem
Given two dfas A and B of n1 and n2 states, respectively, there
exists a dfa of polynomial number of states in n1 and n2 that is
Parikh equivalent to L(A)L(B). Moeover, this cost is tight.

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Concatenation under Parikh equivalence: proof idea

dfas A,B
n1, n2 states

L = L(A)L(B)
Σ = {a1, . . . , am}

unary

�
�
�

∀i = 1 . . .m
Ai ,O(n1) states
Bi ,O(n2) states

=⇒

[Yu ’00]

∀i = 1 . . .m
dfa Mi

L(Mi) = L(Ai)L(Bi)

O(n1n2) states

=⇒ dfa M′

L(M′) =
⋃m

i=1 L(Mi)

poly(n1, n2) states

nonunary

@
@
@

nfa M
L(M) = L

n1+n2 states

=⇒ nfa M0
L \ L(M′)

(n1+n2)(m+1)+1
states

Theorem
Given two dfas A and B of n1 and n2 states, respectively, there
exists a dfa of polynomial number of states in n1 and n2 that is
Parikh equivalent to L(A)L(B). Moeover, this cost is tight.

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Concatenation under Parikh equivalence: proof idea

dfas A,B
n1, n2 states

L = L(A)L(B)
Σ = {a1, . . . , am}

unary

�
�
�

∀i = 1 . . .m
Ai ,O(n1) states
Bi ,O(n2) states

=⇒

[Yu ’00]

∀i = 1 . . .m
dfa Mi

L(Mi) = L(Ai)L(Bi)

O(n1n2) states

=⇒ dfa M′

L(M′) =
⋃m

i=1 L(Mi)

poly(n1, n2) states

nonunary

@
@
@

nfa M
L(M) = L

n1+n2 states

=⇒ nfa M0
L \ L(M′)

(n1+n2)(m+1)+1
states

=⇒π

Parikh equivalent conversion

dfa M′
0

poly(n1, n2)
states

Theorem
Given two dfas A and B of n1 and n2 states, respectively, there
exists a dfa of polynomial number of states in n1 and n2 that is
Parikh equivalent to L(A)L(B). Moeover, this cost is tight.

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Concatenation under Parikh equivalence: proof idea

dfas A,B
n1, n2 states

L = L(A)L(B)
Σ = {a1, . . . , am}

unary

�
�
�

∀i = 1 . . .m
Ai ,O(n1) states
Bi ,O(n2) states

=⇒

[Yu ’00]

∀i = 1 . . .m
dfa Mi

L(Mi) = L(Ai)L(Bi)

O(n1n2) states

=⇒ dfa M′

L(M′) =
⋃m

i=1 L(Mi)

poly(n1, n2) states

nonunary

@
@
@

nfa M
L(M) = L

n1+n2 states

=⇒ nfa M0
L \ L(M′)

(n1+n2)(m+1)+1
states

=⇒π

Parikh equivalent conversion

dfa M′
0

poly(n1, n2)
states

�
�
�

@
@
@

dfa C
poly(n1, n2)

states

Theorem
Given two dfas A and B of n1 and n2 states, respectively, there
exists a dfa of polynomial number of states in n1 and n2 that is
Parikh equivalent to L(A)L(B). Moeover, this cost is tight.

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Concatenation under Parikh equivalence: proof idea

dfas A,B
n1, n2 states

L = L(A)L(B)
Σ = {a1, . . . , am}

unary

�
�
�

∀i = 1 . . .m
Ai ,O(n1) states
Bi ,O(n2) states

=⇒

[Yu ’00]

∀i = 1 . . .m
dfa Mi

L(Mi) = L(Ai)L(Bi)

O(n1n2) states

=⇒ dfa M′

L(M′) =
⋃m

i=1 L(Mi)

poly(n1, n2) states

nonunary

@
@
@

nfa M
L(M) = L

n1+n2 states

=⇒ nfa M0
L \ L(M′)

(n1+n2)(m+1)+1
states

=⇒π

Parikh equivalent conversion

dfa M′
0

poly(n1, n2)
states

�
�
�

@
@
@

dfa C
poly(n1, n2)

states

Theorem
Given two dfas A and B of n1 and n2 states, respectively, there
exists a dfa of polynomial number of states in n1 and n2 that is
Parikh equivalent to L(A)L(B). Moeover, this cost is tight.

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Projection under Parikh equivalence

Given a word w ∈ Σ∗, the projection of w over an alphabet Σ′ ⊆ Σ,
is the word PΣ′(w) obtained by removing from w all the symbols
which are not in Σ′. (see, e.g., [Jirásková & Masopust 12]).
Example:

P{a,b}(anbncn) = anbn

Projection under Parikh equivalence

Under Parikh equivalence, eO(
√

n·ln n) is enough and this is tight.
dfa A
L(A)

n states
=⇒

nfa A′

L(A′) = PΣ′(L(A))

n states
=⇒π

dfa M
L(M) =π L(A′)

eO(
√

n·ln n) states

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Regular operations under Parikh equivalence
Summary table

Operation Standard equivalence Parikh equivalence
L1 ∪ L2 n1n2 n1n2
L1 ∩ L2 n1n2 n1n2
Lc

1 n1 n1
L1L2 (2n1 − 1)2n2−1 poly(n1, n2)

L∗1 2n1−1 + 2n1−2 poly(n1)

L1 � L2 2n1n2 − 1 poly(n1, n2)

LR
1 2n1 n1

PΣ0(L1) 3 · 2n1−2 − 1 eO(
√

n1·ln n1)

[Yu ’00, Campeanu&Salomaa&Yu ’02, Yu&Zhuang&Salomaa ’94,
Jiraskova&Masopust ’12]

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Intersection and complement: revisited
Non-commutativity with Parikh mapping

Intersection does not commute with Parikh mapping
ψ(a+b+ ∩ b+a+) 6= ψ(a+b+) ∩ ψ(b+a+) holds; in fact,

ψ(a+b+ ∩ b+a+) = ∅
ψ(a+b+) ∩ ψ(b+a+) = {(i , j) | i , j ≥ 1}.

Complement does not commute with Parikh mapping
ψ((a∗b∗)c) 6= (ψ(a∗b∗))c holds; in fact,

ψ((a∗b∗)c) = {(i , j) | i , j ≥ 1}
(ψ(a∗b∗))c = ∅.

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Intersection and complement: revisited
Problem setting

Problem: intersection
A,B dfas M dfa

n1, n2 states =⇒ ψ(L(M)) = ψ(L(A)) ∩ ψ(L(B))
How many states needed?

Problem: complement (left open!)
A dfa M dfa

n states =⇒ ψ(L(M)) = (ψ(L(A)))c

How many states needed?

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Intersection: revisited

We use a modification of the following result:

Theorem ([Kopczyński&To ’10])
There is a polynomial p such that for each n-state nfa A
over Σ = {a1, . . . , am},

ψ(L(A)) =
⋃
i∈I

Zi

where:
I is a set of at most p(n) indices
for i ∈ I, Zi ⊆ Nm is a linear set of the form:

Zi = {α0 + n1α1 + · · ·+ nkαk | n1, . . . , nk ∈ N}
with

0 ≤ k ≤ m
the components of α0 are bounded by p(n)
α1, . . . , αk are linearly independent vectors from {0, 1, . . . , n}m

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Intersection: revisited

Theorem
Let A,B be dfas with respectively n1, n2 states over
Σ = {a1, . . . , am}. There exists a dfa M whose Parikh map is
equal to ψ(L(A)) ∩ ψ(L(B)) and which contains

O(n(2m−1)(3m3+6m2)+2p(n)2(3m3+6m2)+m)

states, where:
n = max{n1, n2}(m + 1) + 1
p(n) = O(n3m2mm2/2+2)

Proof.
Revisiting the Ginsburg and Spanier’s proof [Ginsburg&Spanier ’64] of
the closure property of semilinear sets under intersection.

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Conclusion

Under Parikh equivalence:

For ∪, ·, ∗, c , ∩, �, and R , we obtain a polynomial state
complexity, in contrast to the intrinsic exponential state
complexity in the classical equivalence.

For PΣ0 we prove a superpolynomial state complexity, which is
lower than the exponential one of the corresponding classical
operation.

For each two deterministic automata A and B, it is possible to
obtain a deterministic automaton with a polynomial number of
states, whose accepted language has as Parikh image
ψ(L(A)) ∩ ψ(L(B)).

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Conclusion

Under Parikh equivalence:

For ∪, ·, ∗, c , ∩, �, and R , we obtain a polynomial state
complexity, in contrast to the intrinsic exponential state
complexity in the classical equivalence.

For PΣ0 we prove a superpolynomial state complexity, which is
lower than the exponential one of the corresponding classical
operation.

For each two deterministic automata A and B, it is possible to
obtain a deterministic automaton with a polynomial number of
states, whose accepted language has as Parikh image
ψ(L(A)) ∩ ψ(L(B)).

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Conclusion

Under Parikh equivalence:

For ∪, ·, ∗, c , ∩, �, and R , we obtain a polynomial state
complexity, in contrast to the intrinsic exponential state
complexity in the classical equivalence.

For PΣ0 we prove a superpolynomial state complexity, which is
lower than the exponential one of the corresponding classical
operation.

For each two deterministic automata A and B, it is possible to
obtain a deterministic automaton with a polynomial number of
states, whose accepted language has as Parikh image
ψ(L(A)) ∩ ψ(L(B)).

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Thank you for your attention

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

