Operational State Complexity under Parikh Equivalence

Giovanna Lavado¹ Giovanni Pighizzini¹ Shinnosuke Seki^{2,3}

- 💶 Dipartimento di Informatica, Università degli Studi di Milano
- e Helsinki Institute for Information Technology (HIIT)
- Oppartment of Information and Computer Science, Aalto University

ICTCS 2014 Università degli Studi di Perugia, Italy September 17-19, 2014

UNIVERSITÀ DEGLI STUDI DI MILANO

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Moreover, this state bound cannot be reduced [Meyer&Fischer '71, Moore '71]

What happens if we do not care of the order of symbols in the strings?

This problem is related to the concept of *Parikh equivalence* [Parikh '66

• • = = • • = =

Moreover, this state bound cannot be reduced [Meyer&Fischer '71, Moore '71]

What happens if we do not care of the order of symbols in the strings?

This problem is related to the concept of *Parikh equivalence* [Parikh '66]

Parikh equivalence: preliminaries

- $\Sigma = \{a_1, \ldots, a_m\}$ alphabet of *m* symbols
- $|w|_a$ be the number of occurrences of a in $w\in \Sigma^*$

Parikh map

The Parikh map $\psi : \Sigma^* \to \mathbb{N}^m$ associates with a word $w \in \Sigma^*$ the *m*-dimensional nonnegative vector $(|w|_{a_1}, |w|_{a_2}, \dots, |w|_{a_m})$.

Parikh image

The Parikh image of a language L is $\psi(L) = \{\psi(w) \mid w \in L\}$.

•
$$w_1 =_{\pi} w_2$$
 iff $\psi(w_1) = \psi(w_2)$

•
$$L_1 =_{\pi} L_2$$
 iff $\psi(L_1) = \psi(L_2)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem ([Parikh '66])

For each context-free language $L \subseteq \Sigma^*$, there exists a Parikh equivalent regular language $R \subseteq \Sigma^*$.

Example $(L =_{\pi} R)$ $L = \{a^n b^n \mid n \ge 0\}$ and $R = (ab)^*$ have the same Parikh image, namely the set $\{(n, n) \mid n \ge 0\}$

From NFAs to Parikh equivalent DFAs

We have the following Parikh equivalent conversion:

G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

From NFAs to Parikh equivalent DFAs

We have the following Parikh equivalent conversion:

Quite surprisingly:

Polynomial conversion

If the given $\ensuremath{\operatorname{NFA}}$ accepts only nonunary strings then the cost reduces to

a polynomial in n.

Our Goal

We investigate, under Parikh equivalence, the state complexity of some language operations which preserve regularity $(\cup, \cap, {}^{c}, \cdot, {}^{*}, \sqcup, {}^{R}, P_{\Sigma_{0}}).$

where:

L = L(A) ∪ L(B)
L = L(A) ∩ L(B)
L = L(A)L(B)
...

伺 ト イヨト イヨト

In the worst case: $(2n_1 - 1)2^{n_2-1}$ states

[Yu '00]

/□ ▶ ▲ 글 ▶ ▲ 글

Under Parikh equivalence we reduce this bound.

In the worst case: $(2n_1 - 1)2^{n_2-1}$ states

[Yu '00]

Under Parikh equivalence we reduce this bound.

Concatenation under Parikh equivalence

One of our contribution

- Upper bound: $e^{\sqrt{n \cdot \ln n}}$, where $n = n_1 + n_2$ by Parikh equivalent conversion
- Lower bound: $n_1 n_2$ states by unary case

[Yu '00]

Unary and nonunary parts of a language

$$L(A) = \bigcup_{i=0}^m L(A_i)$$

DFAS A, B n_1, n_2 states L = L(A)L(B) $\Sigma = \{a_1, \dots, a_m\}$

3 🔺 🖌 🖻

Theorem

Given two DFAs A and B of n_1 and n_2 states, respectively, there exists a DFA of polynomial number of states in n_1 and n_2 that is Parikh equivalent to L(A)L(B). Moeover, this cost is tight.

・ 同 ト ・ ヨ ト ・ ヨ

Projection under Parikh equivalence

Given a word $w \in \Sigma^*$, the *projection* of w over an alphabet $\Sigma' \subseteq \Sigma$, is the word $P_{\Sigma'}(w)$ obtained by removing from w all the symbols which are not in Σ' . (see, e.g., [Jirásková & Masopust 12]). Example:

$$P_{\{a,b\}}(a^n b^n c^n) = a^n b^n$$

Projection under Parikh equivalence

Under Parikh equivalence, $e^{O(\sqrt{n \cdot \ln n})}$ is enough and this is tight.

DFA A NFA A' DFA M

$$L(A) \longrightarrow L(A') = P_{\Sigma'}(L(A)) \longrightarrow_{\pi} L(M) =_{\pi} L(A')$$

n states *n* states $e^{O(\sqrt{n \cdot \ln n})}$ states

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Operation	Standard equivalence	Parikh equivalence
$L_1 \cup L_2$	<i>n</i> ₁ <i>n</i> ₂	<i>n</i> ₁ <i>n</i> ₂
$L_1 \cap L_2$	<i>n</i> ₁ <i>n</i> ₂	<i>n</i> ₁ <i>n</i> ₂
L_1^c	n ₁	<i>n</i> ₁
L_1L_2	$(2n_1-1)2^{n_2-1}$	$poly(n_1, n_2)$
L_1^*	$2^{n_1-1}+2^{n_1-2}$	$poly(n_1)$
$L_1 \sqcup L_2$	$2^{n_1n_2}-1$	$poly(n_1, n_2)$
L_1^R	2 ^{<i>n</i>1}	<i>n</i> ₁
$P_{\Sigma_0}(L_1)$	$3 \cdot 2^{n_1-2} - 1$	$e^{O(\sqrt{n_1 \cdot \ln n_1})}$

[Yu '00, Campeanu&Salomaa&Yu '02, Yu&Zhuang&Salomaa '94, Jiraskova&Masopust '12]

Intersection does not commute with Parikh mapping $\psi(a^+b^+ \cap b^+a^+) \neq \psi(a^+b^+) \cap \psi(b^+a^+) \text{ holds; in fact,}$ $\psi(a^+b^+ \cap b^+a^+) = \emptyset$ $\psi(a^+b^+) \cap \psi(b^+a^+) = \{(i,j) \mid i,j \ge 1\}.$

Complement does not commute with Parikh mapping $\psi((a^*b^*)^c) \neq (\psi(a^*b^*))^c$ holds; in fact, $\psi((a^*b^*)^c) = \{(i,j) \mid i,j \ge 1\}$ $(\psi(a^*b^*))^c = \emptyset.$

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ● ● ● ● ● ●

Intersection: revisited

We use a modification of the following result:

Theorem ([Kopczyński&To '10])

There is a polynomial p such that for each n-state NFA A over $\Sigma = \{a_1, \ldots, a_m\}$,

$$\psi(L(A)) = \bigcup_{i \in I} Z_i$$

where:

- I is a set of at most p(n) indices
- for $i \in I$, $Z_i \subseteq \mathbb{N}^m$ is a linear set of the form:

 $Z_i = \{\alpha_0 + n_1\alpha_1 + \cdots + n_k\alpha_k \mid n_1, \ldots, n_k \in \mathbb{N}\}$

with

- $0 \le k \le m$
- the components of α_0 are bounded by p(n)
- $\alpha_1, \ldots, \alpha_k$ are linearly independent vectors from $\{0, 1, \ldots, n\}^m$

-

Intersection: revisited

Theorem

Let A, B be DFAs with respectively n_1, n_2 states over $\Sigma = \{a_1, \ldots, a_m\}$. There exists a DFA M whose Parikh map is equal to $\psi(L(A)) \cap \psi(L(B))$ and which contains

$$O(n^{(2m-1)(3m^3+6m^2)+2}p(n)^{2(3m^3+6m^2)+m})$$

states, where:

•
$$n = \max\{n_1, n_2\}(m+1) + 1$$

•
$$p(n) = O(n^{3m^2}m^{m^2/2+2})$$

Proof.

Revisiting the Ginsburg and Spanier's proof [Ginsburg&Spanier'64] of the closure property of semilinear sets under intersection.

Under Parikh equivalence:

- For ∪, ·, *, ^c, ∩, □, and ^R, we obtain a polynomial state complexity, in contrast to the intrinsic exponential state complexity in the classical equivalence.
- For P_{Σ_0} we prove a superpolynomial state complexity, which is lower than the exponential one of the corresponding classical operation.
- For each two deterministic automata A and B, it is possible to obtain a deterministic automaton with a polynomial number of states, whose accepted language has as Parikh image ψ(L(A)) ∩ ψ(L(B)).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Under Parikh equivalence:

- For ∪, ·, *, ^c, ∩, □, and ^R, we obtain a polynomial state complexity, in contrast to the intrinsic exponential state complexity in the classical equivalence.
- For P_{Σ0} we prove a superpolynomial state complexity, which is lower than the exponential one of the corresponding classical operation.
- For each two deterministic automata A and B, it is possible to obtain a deterministic automaton with a polynomial number of states, whose accepted language has as Parikh image ψ(L(A)) ∩ ψ(L(B)).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Under Parikh equivalence:

- For ∪, ·, *, ^c, ∩, □, and ^R, we obtain a polynomial state complexity, in contrast to the intrinsic exponential state complexity in the classical equivalence.
- For P_{Σ0} we prove a superpolynomial state complexity, which is lower than the exponential one of the corresponding classical operation.
- For each two deterministic automata A and B, it is possible to obtain a deterministic automaton with a polynomial number of states, whose accepted language has as Parikh image ψ(L(A)) ∩ ψ(L(B)).

< 同 > < 三 > < 三 >

Thank you for your attention