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Abstract. In this work, an extension of the algebraic formulation of the operational Tau

method (OTM) for the numerical solution of the linear and nonlinear fractional integro-differ-

ential equations (FIDEs) is proposed. The main idea behind the OTM is to convert the fractional

differential and integral parts of the desired FIDE to some operational matrices. Then the FIDE

reduces to a set of algebraic equations. We demonstrate the Tau matrix representation for solving

FIDEs based on arbitrary orthogonal polynomials. Some advantages of using the method, error

estimation and computer algorithm are also presented. Illustrative linear and nonlinear experi-

ments are included to show the validity and applicability of the presented method.
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1 Introduction

The main object of this work is to solve the fractional integro-differential equa-
tion of the following form:

Dαu(x) = F(x, u(x))+
∫ x

0
G (x, t, u(t)) dt,

m − 1 < α ≤ m, m ∈ N, x > 0,
(1)

B j u(x) = λ j , λ j ∈ R, j = 0, 1, 2, . . . ,m − 1, (2)
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where F and G are given smooth functions, Dα is a fractional differential operator
of order α in the Caputo’s sense, B j ; j = 0, 1, . . . ,m − 1, are m supplementary
conditions and u(x) is a solution to be determined.

Differential and integral equations involving derivatives of non-integer order
have shown to be adequate models for various phenomena arising in damping
laws, diffusion processes, models of earthquake [1], fluid-dynamics traffic model
[2], mathematical physics and engineering [3], fluid and continuum mechanics
[4], chemistry, acoustics and psychology [5].

Some numerical methods for the solution of FIDEs are presented in the liter-
ature. We can point out to the collocation method [6], Adomian decomposition
method (ADM) [7]-[9], Spline collocation method [10], fractional differential
transform method [11] and the method of combination of forward and central
differences [12]. Out of the aforesaid methods, we desire to consider OTM for
solving FIDEs.

Spectral methods provide a computational approach which achieved substan-
tial popularity in the last three decades. Tau method is one of the most important
spectral methods which is extensively applied for numerical solution of many
problems. This method was invented by Lanczos [13] for solving ordinary dif-
ferential equations (ODEs) and then the expansion of the method were done for
many different problems such as partial differential equations (PDEs) [14]-[16],
integral equations (IEs) [17], integro-differential equations (IDEs) [18] and etc.
[19]-[22].

In this work, we are interested in solving FIDEs with an operational approach
of the Tau method. Because in the Tau method, we are dealing with a system of
equations wherein the matrix of unknown coefficients is sparse and can be easily
invertible. Also, the differential and integral parts appearing in the equation is
replaced by its operational Tau representation. Then, we obtain a system of
algebraic equations wherein its solution is easy.

This work has been organized as follows. In Section 2, we briefly state the
basic definitions of the fractional calculus. Section 3 is devoted to introduce the
OTM and its application on FIDEs. In Section 4, the Legendre and Laguerre
polynomials as base functions are considered. An efficient error estimation of
the proposed method is presented in Section 5. The accuracy and efficiency
of the scheme is investigated with three illustrative numerical experiments in
Section 6. Finally, Section 7 consists of some obtained conclusions.
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2 Basic definitions of the fractional calculus

In this section, we give some basic definitions and properties of the fractional
calculus theory, which are used in this work [3, 23].

Definition 1. A real function u(x), x > 0 is said to be in the space Cμ, μ ∈ R,
if there exists a real number p > μ, such that u(x) = x pv(x), where v(x) ∈
C[0,∞) and it is said to be in the space Cm

μ iff u(m)(x) ∈ Cμ, m ∈ N.

Definition 2. The Riemann-Liouville fractional integral operator of order

α ≥ 0, of a function u(x) ∈ Cμ, μ ≥ −1, is defined as:

J αu(x) =
1

0(α)

∫ x

0
(x − t)α−1u(t)dt, α > 0, x > 0,

J 0u(x) = u(x),

where 0 is the Gamma function. Some of the most important properties of

operator J α for u(x) ∈ Cμ, μ ≥ −1, α, β ≥ 0 and γ > −1, are as follows:

i) J α J βu(x) = J α+βu(x),

ii) J α J βu(x) = J β J αu(x),

iii) J αxγ =
0(γ + 1)

0(α + γ + 1)
xα+γ .

Definition 3. The fractional derivative of u(x) in the Caputo’s sense is defined

as:

Dαu(x) = J m−αDmu(x) =
1

0(m − α)

∫ x

0
(x − t)m−α−1u(m)(t)dt, (3)

when m − 1 < α ≤ m, m ∈ N, x > 0, u(x) ∈ Cm
−1.

3 Operational Tau method

In this section, we state the structure of OTM and its application on FIDEs. Also,
we present some preliminaries and notations using in this work.
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For any integrable functions ψ(x) and φ(x) on [a, b], we define the scalar
product 〈 , 〉 by

〈ψ(x), φ(x)〉w =
∫ b

a
ψ(x)φ(x)ω(x)dx,

where ‖ψ‖2
w = 〈ψ(x), ψ(x)〉ω and ω(x) is a weight function. Let L2

ω[a, b] be
the space of all functions f : [a, b] → R, with ‖ f ‖2

ω < ∞.
The main idea of the method is to seek a polynomial to approximate u(x) ∈

L2
ω[a, b]. Let φx = {φi (x)}∞i=0 = 8Xx be a set of arbitrary orthogonal poly-

nomial bases defined by a lower triangular matrix 8 and Xx =
[
1, x, x2, . . .

]T
.

Lemma 1. Suppose that u(x) is a polynomial as u(x) =
∑∞

i=0 ui xi = uXx ,

then we have:

Dr (x) =
dr

dxr
u(x) = uMr Xx , r = 0, 1, 2, . . . , (4)

xsu(x) = uNsXx , s = 0, 1, 2, . . . , (5)

and ∫ x

a
u(t)dt = uPXx − uPXa, (6)

where u = [u0, u1, . . . , un, . . .], Xa =
[
1, a, a2, . . .

]T
, a ∈ R and M,N and

P are infinite matrices with only nonzero elements Mi+1,i = i + 1, Ni,i+1 = 1,
Pi,i+1 = 1

i+1 , i = 0, 1, 2, . . . .

Proof. See [24]. �

Let us consider

u(x) =
∞∑

i=0

uiφi (x) = u8Xx , (7)

to be an orthogonal series expansion of the exact solution of equations (1)
and (2), where u = {ui }∞i=0 is a vector of unknown coefficients, 8Xx is an
orthogonal basis for polynomials in R.

In the Tau method, the aim is to convert equations (1) and (2) to an algebraic
system using some operational matrices. First of all, we intend to describe an
operational form of Dαu(x). In order to do this, we assert the process as follows.
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Using equations (3), (4) and (7); we get:

Dαu(x) = J m−αDm(u8Xx) = J m−α(u8MmXx) = u8Mm J m−α(Xx). (8)

Using property iii) of Definition 2, we have:

J m−α(Xx ) =
[
J m−α(1), J m−α(x), . . . , J m−α(xγ ), . . .

]T

=
[

0(1)xm−α

0(m − α + 1)
,
0(2)xm−α+1

0(m − α + 2)
, . . . ,

0(γ + 1)xm−α+γ

0(m − α + γ + 1)
, . . .

]T

= 05,

(9)

where 0 is an infinite diagonal matrix with elements

0i,i =
0(i + 1)

0(m − α + i + 1)
, i = 0, 1, . . . ,

and
5 =

[
xm−α, xm−α+1, . . . , xm−α+γ , . . .

]T
.

By approximating xm−α+γ , γ = 0, 1, . . . ; as follows:

xm−α+γ =
∞∑

i=0

aγ,iφi (x) = aγ8Xx , aγ =
[
aγ,0, aγ,1, aγ,2, . . .

]
,

we obtain:

5 =
[
a08Xx , a18Xx , . . . , aγ8Xx , . . .

]T
= A8Xx ,

A = [a0, a1, . . . , aγ , . . .]T .
(10)

Substituting equation (10) in equation (9) and using equation (8); we obtain:

Dαu(x) = u8Mm05 = u8Mm0A8Xx = uV8Xx , V = 8Mm0A. (11)

In next step, the aim is to linearize analytic functions F(x, u(x)) and G(x,
t, u(t)). These functions can be written as:

F(x, u(x)) =
∞∑

r=0

∞∑

p=0

frpxr u p(x), (12)

and

G(x, t, u(t)) =
∞∑

r=0

∞∑

s=0

∞∑

p=0

grspxr t su p(t). (13)
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Now, we state the following lemma and corollary.

Lemma 2. Let Xx =
[
1, x, x2, . . .

]T
, u = [u0, u1, u2, . . .] be infinite vectors

and 8 = [φ0|φ1|φ2| . . .], φi are infinite columns of matrix 8. Then, we have:

Xx u8Xx = UXx , (14)

where U is an upper triangular matrix as:

Ui, j =






∞∑

k=0

ukφk, j−i , j ≥ i, i, j = 0, 1, . . . ,

0, j < i, i, j = 0, 1, . . . .

(15)

In addition, if we suppose that u(x) = u8Xx represents a polynomial, then for

any positive integer p, the relation

u p(x) = u8Up−1Xx , (16)

is valid.

Proof. We have:

Xx u8 =
[
1, x, x2, . . .

]T [
uφ0|uφ1|uφ2| . . .

]

=









uφ0 uφ1 uφ2 ∙ ∙ ∙
uφ0x uφ1x uφ2x ∙ ∙ ∙
uφ0x2 uφ1x2 uφ2x2 ∙ ∙ ∙
...

...
...

. . .








,

therefore

Xx u8Xx =









uφ0 uφ1 uφ2 ∙ ∙ ∙
uφ0x uφ1x uφ2x ∙ ∙ ∙
uφ0x2 uφ1x2 uφ2x2 ∙ ∙ ∙
...

...
...

. . .









[
1, x, x2, . . .

]T

=










∑∞
i=0 uφi x i+0

∑∞
i=0 uφi x i+1

∑∞
i=0 uφi x i+2

...










=









uφ0 uφ1 uφ2 ∙ ∙ ∙
0 uφ0 uφ1 ∙ ∙ ∙
0 0 uφ0 ∙ ∙ ∙
...

...
...

. . .

















1
x
x2

...








,
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if we call the last upper triangular coefficient matrix as U, then we have:

Ui, j =





uφ j−i , j ≥ i, i, j = 0, 1, . . . ,

0, j < i, i, j = 0, 1, . . . ,

=






∞∑

k=0

ukφk, j−i , j ≥ i, i, j = 0, 1, . . . ,

0, j < i, i, j = 0, 1, . . . .

Now, in order to prove equation (16), we apply induction. For p = 1, it is
obvious that u(x) = u8Xx . For p = 2, we rewrite u2(x) = u8Xx u8Xx =
u8 (Xx u8Xx) and using equation (14), we have:

u2(x) = u8UXx ,

therefore, equation (16) is hold for p = 2. Now, suppose that equation (16) is
hold for p = k, then we must prove that the relation is valid for s = k + 1.
Thus,

uk+1(x) = uk(x)u(x) = (u8Uk−1Xx)(u8 Xx)

= u8Uk−1 (Xx u8 Xx) = u8UkXx ,

So, equation (16) is proved.
We rewrite equation (12) as:

F(x, u(x)) =
∞∑

r=0

∞∑

p=0

frpxr u p(x) =
∞∑

r=0

fr0xr +
∞∑

r=0

∞∑

p=1

frpxr u p(x),

The first summation can be considered as:
∞∑

r=0

fr0xr = fXx , f = [ f00, f10, f20, . . .]. (17)

For the second summation, using equations (5) and (16) yields:

∞∑

r=0

∞∑

p=1

fr pxr u p(x) =
∞∑

r=0

∞∑

p=1

frpxr u8Up−1Xx = u8

∞∑

r=0

∞∑

p=1

frpxr Up−1Xx

= u8

∞∑

r=0

∞∑

p=1

fr pUp−1Nr Xx = u8FXx , F =




∞∑

r=0

∞∑

p=1

frpUp−1Nr



 .

(18)
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Therefore, we have:

F(x, u(x)) = fXx + u8FXx =
(
f8−1 + u8F8−1

)
8Xx . (19)

In the same manner, we rewrite:

G(x, t, u(t)) =
∞∑

r=0

∞∑

s=0

∞∑

p=0

grspxr t su p(t)

=
∞∑

r=0

∞∑

s=0

grs0xr t s +
∞∑

r=0

∞∑

s=0

∞∑

p=1

grspxr t su p(t).

(20)

Using equation (5), the second summation is as:

∞∑

r=0

∞∑

s=0

∞∑

p=1

grspxr t su p(t) =
∞∑

r=0

∞∑

s=0

∞∑

p=1

grspxr t su8Up−1Xt

= u8

∞∑

r=0

∞∑

s=0

∞∑

p=1

grspxr t sUp−1Xt = u8

∞∑

r=0

∞∑

s=0

∞∑

p=1

grspxr Up−1NsXt .

(21)

Therefore,

∫ x

0
G (x, t, u(t)) dt =

∞∑

r=0

∞∑

s=0

grs0xr
∫ x

0
t sdt

+ u8

∞∑

r=0

∞∑

s=0

∞∑

p=1

grspxr Up−1Ns
∫ x

0
Xt dt.

(22)

The first part easily can be written as follows:

∞∑

r=0

∞∑

s=0

grs0xr
∫ x

0
t sdt =

∞∑

r=0

∞∑

s=0

grs0
xr+s+1

s + 1
= gXx , (23)

where

[
g
]

i =






0, i = 0,
i−1∑

j=0

1

i − j
g j (i−1− j)0, i ≥ 1.

(24)
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Using equations (5) and (6), the second part of equation (22) is written as
follows:

u8

∞∑

r=0

∞∑

s=0

∞∑

p=1

grspxr Up−1NsPXx = u8

∞∑

r=0

∞∑

s=0

∞∑

p=1

grspUp−1NsPMr Xx (25)

= u8GXx , G =




∞∑

r=0

∞∑

s=0

∞∑

p=1

grspUp−1NsPMr



 . (26)

Thus, we have:
∫ x

0
G (x, t, u(t)) dt = (g + u8G)Xx =

(
g8−1 + u8G8−1

)
8Xx . (27)

In addition, suppose that the supplementary conditions are generally as:

B j u(x) =
l∑

i=0

q∑

k=0

b jiku(i)(xk) = λ j , 0 ≤ xk ≤ x, j = 0, . . . ,m − 1.

Therefore, using equation (4) we have:

B j u(x) =
l∑

i=0

q∑

k=0

b jiku8Mi Xxk = ub j = λ j ,

b j =
l∑

i=0

q∑

k=0

b jik8Mi Xxk .

(28)

Using equations (11), (18) and (27) we replace equation (1) by the following
operational form:

uV8Xx =
(
f8−1 + u8F8−1 + g8−1 + u8G8−1

)
8Xx .

So, the residual R(x) of equation (1), can be written as:

R(x) =
[
(f + g)8−1 + u

(
8(F + G)8−1 − V

)]
8Xx = R8Xx , (29)

where
R =

[
(f + g)8−1 + u

(
8 (F + G)8−1 − V

)]
.
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Now, we set the residual matrix R = 0 or we use the following inner products,

〈R(x), φk(x)〉w = 0, k = 0, 1, . . . . (30)

Therefore an infinite system of algebraic equations is obtained. Since, some-
where we require finite terms of approximation, then we must truncate the series
to finite number of terms. Thus, we choose n + 1 − m of the first equations in
R and the following system is obtained:

Ri = 0, i = 0, 1, . . . , n − m,
ub j = λ j , j = 0, . . . ,m − 1,

or

〈R(x), φk(x)〉w = 0, k = 0, 1, . . . , n − m,
ub j = λ j , j = 0, . . . ,m − 1.

Solving the aforesaid system yields the unknown vector u = [u0, u1, . . . , un].
This is the so-called operational Tau method which is applicable for finite,
infinite, regular and irregular domains.

We summarize OTM in the following algorithm.

Algorithm of the method:

Step 1: Choose suitable orthogonal bases φ(x) = {φi (x)}n
i=0 and find non-

singular coefficient matrix 8 and the compute 8−1.

Step 2: Consider u(x) = u8Xx as the series expansion of exact solution.

Step 3: Use equations (4) through (11) to evaluate matrix V.

Step 4: Use equations (18) and (27) to obtain vectors f, g and matrices F,G.

Step 5: Compute matrix R from residual term R(x, t) and set R = 0.

Step 6: Impose m supplementary conditions ub j = λ j and solve the obtained

system.

4 Some orthogonal polynomials

Orthogonal functions have received considerable attention in dealing with several
problems. Their most important characteristic is reducing the computations and
converting the problem to a system of algebraic equations. In this work, we
use Legendre polynomials for finite domain [0, h] and Laguerre polynomials for
infinite domain [0,∞].
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4.1 Legendre polynomials

The well-known Legendre polynomials are defined as follows:

P0(x) = 1, P1(x) = x, x ∈ [−1, 1],

Pi (x) =
(

2 −
1

i

)
x Pi−1(x)−

(
1 −

1

i

)
Pi−2(x), i ≥ 2.

They are orthogonal on the interval [−1, 1] with respect to the weight function
w(x) = 1 and satisfy:

∫ 1

−1
w(x)Pm(x)Pn(x)dx =






2

2n + 1
, m = n,

0, m 6= n.

Since the interval of orthogonality of these polynomials may differ with the
domain of the problem, we must shift the polynomial to the desired interval.
Thus, to construct the shifted Legendre polynomials on arbitrary interval [0, h],
it is sufficient to do the change of variable: x → 2x−h

h . So, the shifted Legendre
polynomials are defined as follows:

P0(x) = 1, P1(x) =
2x − h

h
, x ∈ [0, h],

Pi (x) =
(

2 −
1

i

)(
2x − h

h

)
Pi−1(x)−

(
1 −

1

i

)
Pi−2(x), i ≥ 2,

and satisfy:

∫ h

0
w(x)Pm(x)Pn(x)dx =






h

2n + 1
, m = n,

0, m 6= n.

4.2 Laguerre polynomials

Laguerre polynomials are defined as follows:

L0(x) = 1, L1(x) = 1 − x, x ∈ [0,∞),

Li (x) =
(

2i − 1 − x

i

)
Li−1(x)−

(
i − 1

i

)
Li−2(x), i ≥ 2.
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They are orthogonal on the interval [0,∞) with respect to the weight function
w(x) = e−x and satisfy:

∫ ∞

0
w(x)Lm(x)Ln(x)dx =





1, m = n,

0, m 6= n.

5 Error estimation

In this section, an error estimation for the approximate solution of equation (1)
with supplementary conditions (2) is obtained. Let us call en(x) = u(x)−un(x)
as the error function of the approximate solution un(x) to u(x)where u(x) is the
exact solution of equation (1). Hence, un(x) satisfies the following equations:

Dαun(x) = F(x, un(x))+
∫ x

0
G (x, t, un(t)) dt + Hn(x),

m − 1 < α ≤ m,
(31)

B j un(x) = λ j , λ j ∈ R, j = 0, 1, 2, . . . ,m − 1. (32)

The perturbation term Hn(x) can be obtained by substituting the computed
solution un(x) into the equation:

Hn(x) = Dαun(x)− F(x, un(x))−
∫ x

0
G (x, t, un(t)) dt .

We proceed to find an approximation en,N (x) to the error function en(x) in the
same way as we did before for the solution of equation (1). Note that N is the
degree of approximation of un(x). By subtracting equations (31) and (32) from
equations (1) and (2), respectively we have:

Dα(u(x)− un(x)) = F(x, u(x)− un(x))

+
∫ x

0
G (x, t, u(t)− un(t)) dt − Hn(x),

B j (u(x)− un(x)) = 0,

or

Dα(en(x)) = F(x, en(x))+
∫ x

0
G (x, t, en(t)) dt − Hn(x),

B j (en(x)) = 0.
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It should be noted that in order to construct the approximate en,N (x) to en(x), only
the related equations like as equations (7) through (31) needs to be recomputed
and the structure of the method remains the same.

6 Illustrative numerical experiments with some comments

In this section, four experiments of linear and nonlinear FIDEs are given to illus-
trate the results. In all experiments, we consider the shifted Legendre polyno-
mials as basis functions for finite domains and Laguerre polynomials for infinite
domains. The computations associated with the experiments discussed above
were performed in Maple 13 on a PC with a CPU of 2.4 GHz.

Experiment 6.1. Consider the following FIDE [6, 7]:

D0.75u(x) = −
(

x2ex

5

)
u(x)+

x2.25

0(3.25)
+

∫ x

0
tex u(t)dt, x > 0, (33)

with the initial condition: u(0) = 0
The exact solution is: u(x) = x3.
We have solved this experiment using OTM with Laguerre polynomials and

some approximations are obtained as follows:

n = 0 : u = [0], u0(x) = 0,

n = 1 : u = [−1.536502, 1.536502], u1(x) = −1.536502x ,

n = 2 : u = [−0.701605, 1.413861,−0.712256], u2(x) = 0.010651x − 0.356128x2,

n = 3 : u = [6,−18, 18,−6], u4(x) = x3,

n = 4 : u = [6,−18, 18,−6, 0], u4(x) = x3,

n = 5 : u = [6,−18, 18,−6, 0, 0], u5(x) = x3,
...

...
...

and so on.
Thus, we have u(x) = x3 which is the exact solution of the problem.

Experiment 6.2. Consider the following nonlinear FIDE [8]:

Dαu(x) = 1 +
∫ x

0
e−t u2(t)dt, 0 ≤ x ≤ 1, 3 < α ≤ 4, (34)
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with the boundary conditions:

u(0) = u′(0) = 1,

u(1) = u′(1) = e.

The only case which we know the exact solution for α = 4 is: u(x) = ex .
We have solved this experiment for n = 7 with different α and have compared

it with the closed form series solutions of the exact solution obtained by ADM
[8]. The comparison is shown in Table 1.

α = 3.25 α = 3.5 α = 3.75
x uADM uOTM uADM uOTM uADM uOTM

0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 1.106551 1.107575 1.106750 1.106693 1.106151 1.105930
0.2 1.223931 1.225838 1.224323 1.224220 1.223227 1.222813
0.3 1.353200 1.355724 1.353755 1.353600 1.352308 1.351741
0.4 1.495600 1.498421 1.496270 1.496050 1.494635 1.493962
0.5 1.652553 1.655348 1.653273 1.652982 1.651615 1.650890
0.6 1.825654 1.828146 1.826354 1.826006 1.824823 1.824110
0.7 2.016687 2.018671 2.017294 2.016931 2.016023 2.015390
0.8 2.227634 2.228987 2.228084 2.227770 2.227176 2.226696
0.9 2.460690 2.461367 2.460931 2.460744 2.460458 2.460196
1.0 2.718281 2.718281 2.718281 2.718281 2.718281 2.718281

Table 1 – Comparison of the solutions of ADM and OTM for different α of Experiment 6.2.

From the numerical results in Table 1, it is easy to conclude that obtained
results by OTM are in good agreement with those obtained using the ADM. In
this experiment, the exact solution is not known, so a main question arises that
which method is more accurate. We conclude that OTM is more accurate by
considering the following notation and discussion.

Note 1. In the theory of fractional calculus, it is obvious that when the frac-
tional derivative α (m − 1 < α ≤ m) tends to positive integer number m, then
the approximate solution continuously tends to the exact solution of the problem
with derivation m.

A closer look at the values obtained by ADM in Table 1 do not have this
characteristic. The values for α = 3.25 are less than the values for α = 3.5,
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so the values for α = 3.5 must be less than the values for α = 3.75. But this
fact have not occurred for ADM solutions but for OTM solutions, we have the
reduction in the results. Therefore OTM is more reliable than ADM.

Moreover, for α = 4, using Legendre polynomials, the following sequences
of approximate solution is obtained:

n = 4 : u =
[

103

60
,

101

120
,

23

168
,

1

80
,

1

1680

]
,

u4(x) = 1 + x +
x2

2
+

x3

6
+

x4

24
,

n = 5 : u =
[

1237

720
,

473

560
,

281

2016
,

59

4320
,

1

1120
,

1

30240

]
,

u5(x) = 1 + x +
x2

2
+

x3

6
+

x4

24
+

x5

120
,

n = 6 : u =
[

433

252
,

1893

2240
,

1691

12096
,

1

72
,

3

3080
,

1

20160
,

1

665280

]
,

u6(x) = 1 + x +
x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720
,

...
...

and so on.
Thus, we obtain:

un(x) = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ ∙ ∙ ∙ +

xn

n!
.

This has the closed form u(x) = ex , which is the exact solution of the problem.
Thus, for positive integer derivatives, if the exact solution exists, then OTM
produces its series solution.

Experiment 6.3. Consider the following nonlinear FIDE:

Dαu(x) = x3
(
−1 + esin x

)
− sin x −

∫ x

0
x3 cos t eu(t)dt,

x > 0, 1 < α ≤ 2,
(35)
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with the initial conditions:

u(0) = 0, u′(0) = 1.

The only case which we know the exact solution for α = 2 is u(x) = sin x .
We have solved this experiment for n = 5 with different α and have used

Laguerre polynomials as basis functions. The results are given in Table 2.

x α = 1.25 α = 1.5 α = 1.75 α = 2 uExact

0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.097355 0.098677 0.099419 0.099833 0.099833
0.2 0.188547 0.193716 0.196812 0.198669 0.198669
0.3 0.272375 0.283807 0.290975 0.295520 0.295520
0.4 0.347526 0.367799 0.380815 0.389418 0.389418
0.5 0.412246 0.444601 0.465333 0.479427 0.479425
0.6 0.464013 0.513081 0.543605 0.564648 0.564642
0.7 0.499207 0.571968 0.614770 0.644233 0.644217
0.8 0.512786 0.619749 0.678009 0.717397 0.717356
0.9 0.497956 0.654568 0.732528 0.783420 0.783326
1.0 0.445845 0.674130 0.777544 0.841666 0.841470

Table 2 – OTM solutions for n = 5 with different α of Experiment 6.3.

For α = 2, using Laguerre polynomials, the following sequence of approxi-
mate solution is obtained:

n = 0 : u = [0], u0(x) = 0,

n = 1 : u = [1,−1], u1(x) = x ,

n = 2 : u = [1,−1, 0], u2(x) = x ,

n = 3 : u = [0, 2,−3, 1], u3(x) = x −
x3

6
,

n = 4 : u = [0, 2,−3, 1, 0], u4(x) = x −
x3

6
,

n = 5 : u = [1,−3, 7,−9, 5,−1], u5(x) = x −
x3

6
+

x5

120
,

n = 6 : u = [1,−3, 7,−9, 5,−1, 0], u6(x) = x −
x3

6
+

x5

120
,

...
...

...

and so on.
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Thus, we obtain:

u2n+1(x) = x −
x3

3!
+

x5

5!
+ ∙ ∙ ∙ + (−1)n

x2n+1

(2n + 1)!
.

This has the closed form u(x) = sin x , which is the exact solution of the problem.

Experiment 6.4. Consider the following nonlinear FIDE:

Dαu(x) = e−x +
2

3

(
e− 3

2 x − 1
)

+
∫ x

0
e−t

√
u(t)dt,

0 ≤ x ≤ 1, 1 < α ≤ 2,
(36)

with the initial conditions:

u(0) = 1, u′(0) = −1.

The only case which we know the exact solution for α = 2 is: u(x) = e−x .
We have solved this experiment for n = 4 with different α and used shifted

Legendre polynomials as basis functions. Figure 1 shows the approximate solu-
tions and illustrates the aforesaid fact given by note 1.

The following figure illustrates the convergency of the method and the fact
that the method tends continuously to the exact solution if fractional derivations
tend to an integer order.

For α = 2, using shifted Legendre polynomials, the following sequence of
approximate solution is obtained:

n = 0 : u = [1], u0(x) = 1,

n = 1 : u =
[

1

2
,−

1

2

]
, u1(x) = 1 − x ,

n = 2 : u =
[

2

3
,−

1

12
,

1

2

]
, u2(x) = 1 − x +

x2

2
,

n = 3 : u =
[

5

8
,−

13

40
,

1

24
,−

1

120

]
, u3(x) = 1 − x +

x2

2
−

x3

6
,

...
...

...

and so on.
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Figure 1 – The graphs of the approximate solutions for n = 4 with different α of

Experiment 6.4.

Thus, we obtain:

un(x) = 1 − x +
x2

2!
−

x3

3!
+ ∙ ∙ ∙ + (−1)n

xn

n!
.

This has the closed form u(x) = e−x , which is the exact solution of the
problem.

7 Conclusion

In this work, operational Tau method is employed successfully to solve the
FIDEs. Arbitrary orthogonal polynomial bases were applied as basis functions.
Reducing the FIDEs to algebraic equations is the first characteristics of the
proposed method. The applications of OTM on some problems including lin-
ear and nonlinear terms are considered and some useful results are obtained.
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The most important ones are the simplicity of the method, reducing the com-
putations using orthogonal polynomials and having low run time of its algo-
rithm. Furthermore, this method yields the desired accuracy only in a few terms
in a series form of the exact solution. All of these advantages of the OTM
to solve nonlinear problems assert the method as a convenient, reliable and
powerful tool.
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