Operational Troubleshooting-enabled
Coordination in Self-Organizing Networks

Christoph Frenzel'3, Tsvetko Tsvetkov?, Henning Sanneck®, Bernhard Bauer!,
and Georg Carle?

! Department of Computer Science, University of Augsburg, Germany
{frenzel,bauer}@informatik.uni-augsburg.de
2 Department of Computer Science, Technische Universitdt Miinchen, Germany
{tsvetko.tsvetkov, carle}@in.tum.de
3 Nokia Solutions and Networks Research, Munich, Germany
henning.sanneck@nsn.com

Summary. A Self-Organizing Network (SON) performs automated net-
work management through the coordinated execution of autonomous
functions, each aiming to achieve a specific objective like the optimization
of a network Key Performance Indicator (KPI) value. However, there are
situations in which a SON function cannot achieve its objective which can
lead to disturbed SON operation and inferior performance. We present a
SON Operational Troubleshooting (SONOT) SON function that is able
to detect such problematic situations and trigger respective countermea-
sures. Thereby, it can exploit regular SON functions as probes in order
to improve problem detection. Simulations show that the tight integra-
tion of the SONOT function with SON coordination provides means to
automatically overcome the problems and improve overall network per-
formance.

Key words: Self-Organizing Network, SON operation, SON coordina-
tion, troubleshooting

1 Introduction

The Self-Organizing Network (SON) paradigm is an automated network oper-
ations approach which provides self-configuration, self-optimization, and self-
healing capabilities for next generation mobile communication networks includ-
ing Long Term Evolution (LTE) [6]. This is achieved by a collection of au-
tonomous SON functions, each observing Performance Management (PM), Fault
Management (FM), and Configuration Management (CM) data and changing
network parameters in order to achieve a specific operator given objective or
target [2], e.g., the reduction of the number of Handover (HO) failures between
two network cells. However, the SON function objectives are connected and, so,
the SON functions can interfere with each other at run-time, e.g., by contrary
adjustments of the same network parameters. Such conflicts hamper seamless
SON operations and can lead to inferior performance, hence, they are prevented

2 Christoph Frenzel et al.

before or resolved after they happen by SON coordination [3]. Among the nu-
merous approaches for SON coordination, run-time action coordination [11] is
very common. It requires all SON functions to request for permission to change
some network parameter at a SON coordination function. This function then
determines conflicting requests, e.g., contrary changes of the same network con-
figuration parameter, computes a set of non-conflicting SON functions that can
be executed at the same time in the same area, and triggers their execution.
Thereby, the conflict resolution may be based on operator priorities [3].

There can be network conditions and situations in which a SON function
might not be able to achieve its targets [5]. Although, the reasons for this are
often outside of the objective scope of the particular SON function, the problems
that cause the function failure can often be resolved by another SON function.
For instance, on the one hand, an Mobility Robustness Optimization (MRO)
function running in an area with a coverage hole might not be able to reduce
HO failures, however, on the other hand, the coverage problem can be handled
by a Coverage and Capacity Optimization (CCO) function. The main problem
of an ineffective SON function is that it may affect other SON functions due
to the coordinated execution. An example for such an negative effect on other
SON functions is network monopolization: a high priority function is constantly
running because it encountered an unresolvable problem and, thereby, blocks the
execution of other functions leading to a deadlock. In such problem situations, a
SON function might need assistance by another SON function or the operator.
Currently, the operation of SON functions is usually not monitored, thus, leaving
such problems unnoticed and making the affected SON functions valueless.

In order to overcome these problems, we have sketched a preliminary concept
in [5] that is able to detect conditions in which a SON function cannot achieve
its objectives and mitigates this problem. Thereby, a SON function, namely
the SON Operational Troubleshooting (SONOT) function, is proposed that can
analyze the problem using a network-wide view and determine possible remedy
actions, e.g., blocking functions that cannot achieve their objectives as well as
triggering other functions that might resolve the problem.

In this paper, we present an approach for troubleshooting a SON that is based
on the concept presented in [5]. In contrast to the previous work, we discuss the
approach and its design aspects, especially the detection of ineffective functions,
in much more depth including a detailed evaluation of the approach using an
LTE network simulator. Additionally, we have extended the initial concept with
the ability to exploit SON functions as probes, thereby, increasing accuracy and
decreasing delay of problem detection. We present results of simulations which
show the positive impact of the approach on network performance.

2 SON Operational Troubleshooting Approach

The SONOT approach presented in this paper consists of two steps, as depicted
in Figure 1. First, there is an alarm generation step which detects that a SON
function ran into some problematic state which it cannot handle by itself and

Operational Troubleshooting-enabled Coordination in SON 3

raises an alarm. Second, this alarm is evaluated and a corrective action is taken
in the alarm analysis and remedy step.

r

| Alarm | Alarm '

| Generation | | Analysis and

| : | Remedy |
N7 : Knowledge—t Operator HEscalation Actio

1
Poli | N u
oy f}' SON Operaltional Troubbshmti+g Function

— - N —
| Sl worm—3[Aam 1 | contet [Sorie
>\ 71| Component Resolver Data
\L I DB

. T
J | Management Actio Coordination Action

|
: v
|
SON 1| Alarming |' })|-Request>(SON Coordination
4 Function || Component : éTn'ggep— Function
——_——

|
PM/FM/CM Network
Data Parameters

Fig. 1. The SONOT function and its interaction with other SON functions

Alarms may be generated by two different sources: the normal SON functions
and the SONOT function. In the first case, each function is extended with an
alarming component which raises an alarm if it encounters a problem during
execution. In the second case, the SONOT function, more specifically its moni-
toring component, continuously analyses the network and generates an alarm if
it encounters undesired behavior, controlled by the operator through a policy.
The alarms trigger the analysis and remedy of the problem which produces a
corrective action, e.g., a coordination action, a management action, or an esca-
lation action. This process is based on a policy which captures the operational
experience of the operator and the SON vendor. During execution, the SONOT
function can access comprehensive contextual information about the operational
status of the network, e.g., the current date and time, CM data like the network
topology, PM data like Key Performance Indicators (KPIs), and FM data like
technical alarms from the Network Elements (NEs).

2.1 Alarm Generation

In this paper, an alarm is an indication that a SON function is not able to
achieve its objective, i.e., an alarm is not supposed to directly indicate hardware
or software failures of NEs. Before generating an alarm, the system has to detect
the problem that hinders a SON function from fulfilling its objective. There are
two general approaches for this: the state-based approach considers the current

4 Christoph Frenzel et al.

network state, whereas the history-based approach additionally considers previ-
ous network states and allows time series-based analyses of the system behavior.
Hence, the latter can monitor the impact of network parameters changes, ana-
lyze performance trend in the network, and make predictions about the ability
of a SON function to satisfy its objective. For instance, a history-based method
can detect SON functions that are continuously modifying parameters without
performance improvements, i.e., configuration oscillations.

Alarming Component The primary idea behind the alarm generation within
the SON functions is to reuse their existing sophisticated monitoring and analysis
capabilities, i.e., they are exploited as probes. On the one hand, this avoids the
collection and transfer of PM, FM, and CM data that is used by the SON
function anyway, thus, leading to less management overhead in the network and
less complex processing of the data. On the other hand, SON functions are
usually self-contained entities which are provided without any specification of
the internal algorithms, i.e., like black boxes. Hence, the function itself may be
the only entity which can directly detect a problem during the execution of the
algorithm.

Usually, a SON function is designed for the detection of a specific problem
based on KPIs from the network and the determination and execution of cor-
rective actions in form of changes of network parameters. Nevertheless, it is
often able to also detect problematic situations that it cannot correct by itself.
Thereby, state-based detection approaches should be preferred because they are
less complex. In that way, a SON function might detect a problem from anoma-
lous PM data from a NE that is not foreseen by the algorithm so that it runs
into an exception. An example for such an error state is when the MRO function
monitors a lot of too late and too early HOs or when it attempts to set the value
of an HO parameter outside a limit defined by the operator.

However, in some cases history-based detection methods may also be possible
to use. A SON function can learn the effects of network parameter changes on
network performance and, if the reaction differs significantly from the learned
behavior, it raises an alarm. The reason for a significant deviation from the
normal network behavior can be numerous, e.g., a severe hardware fault.

The alarming component extends a SON function by allowing it to inform
the SONOT function about an issue through an alarm. However, if an alarm is
raised, the SON function should try to continue its operation. This is because a
SON function typically has a limited view on the network and, therefore, is not
able to make informed decisions about the remedy of the problem.

SON Operational Troubleshooting It is not reasonable to assume that all
SON functions in a mobile network will have an alarming component. It is more
likely that there will always be a mixture of alarming-enabled and traditional
SON functions in a real network. Hence, the SONOT function needs to monitor
and analyze the behavior of all SON functions as well.

The monitoring component in the SONOT function has an advantage over
the alarming components in the SON functions: a broad view on the network

Operational Troubleshooting-enabled Coordination in SON 5

regarding PM, FM, and CM data. SON functions often focus on single NEs and
solely monitor data that is necessary for their task due to time and memory con-
straints. In contrast, the SONOT function can collect and accumulate a broad
range of data that is not accessible to regular SON functions, e.g., the perfor-
mance of a group of NEs in a specific area, system-level KPIs or Minimization
of Drive Test (MDT) [6] data.

The disadvantage of external monitoring is that the SONOT usually has no
information about the algorithm or the internal status of the SON function.
Hence, its analysis must always be based on assumptions about the logic of the
functions. If these are not correct then this can lead to false inferences and,
consequently, false alarms or unnoticed problems. For instance, a continuously
running CCO function might indicate a coverage hole produced by a broken NE.
Conversely, if an Mobility Load Balancing (MLB) function is often executed, this
does not necessarily indicate a problem because MLB is heavily dependent on
user behavior which might change often. Therefore, the monitoring component
needs to be configured for a concrete SON. As depicted in Figure 1, this config-
uration is given in form of a policy.

The SONOT function should employ complex, history-based approaches
since the indirect identification of problems requires sophisticated, knowledge-
based inference mechanisms. In this way, the monitoring component can detect
oscillations produced by an ineffective SON function through a statistical, time-
series analysis. However, notice that even complex detection approaches need to
be configured for a specific SON. For example, oscillations can also be caused by
a SON function that attempts to find an optimal value for a network parameter
using some hill climbing algorithm.

2.2 Alarm Analysis and Remedy

The alarm resolver component performs an analysis of the alarms and determines
suitable countermeasures. For example, the analysis of an CCO function alarm
that indicates an unrecoverable coverage hole by the alarm resolver can produce
an equipment failure as the root cause. As a result, the SONOT function blocks
the execution of the CCO and triggers a self-healing Cell Outage Compensa-
tion (COC) function. For a comprehensive analysis and well-informed decision
making, the SONOT function can draw on contextual information about the
current status of the network. Thereby, it is possible to employ simple reason-
ing approaches like production or fuzzy rule systems, or sophisticated Artificial
Intelligence (AI) systems like influence diagrams or planners [10].

Remedy Actions The actions that the alarm resolver might execute can be
classified into three categories:

— SON coordination actions are directly interfering with the execution of SON
functions. Examples are the blocking or preempting of the execution of a SON
function, or the active requesting of the execution of a SON function. Thereby,
it is also imaginable to not just request the execution of a single function but
to carry out a complex workflow with several functions.

6 Christoph Frenzel et al.

— SON management actions are changing the configuration of the SON system
itself, e.g., by changing the configuration of the SON functions such that their
objectives change.

— FEscalation actions are triggered if the SON troubleshooting function cannot
or should not perform an action. For instance, an alarm can be escalated to a
human operator as a trouble ticket for further inspection. Then, the operator
can decide for a remedy. By utilizing machine learning techniques, it is possible
to extend the expert knowledge of the SON troubleshooting function based
on the operator response.

Interaction with Coordination If the SONOT function requests the exe-
cution of a SON function, this request needs to be coordinated against other
SON function requests [3]. Consequently, these requests need to by prioritized.
A simple option is to give the SONOT requests maximum priority. However,
this can result in unintended behavior. For instance, consider that the MRO
function detects some coverage hole and sends an alarm to the alarm resolver
which requests the execution of the CCO function. In parallel, a Cell Outage
Detection (COD) function detects a severe outage of an NE and request the
execution of a self-healing function. It is obvious that, in this case, the operator
prefers the execution of the self-healing function.

In the following, an advantageous prioritization scheme proposal is derived.
Therefore, consider an CCO(RET) function instance Iggr which performs CCO
by adapting the Remote Electrical Tilt (RET). This instance has a priority
Prer and raises an alarm Argr—Txp. The alarm leads to the execution of
a CCO(TXP) function instance Itxp which performs CCO by adjusting the
Transmission Power (TXP). It has the priority Prxp and requests an adapta-
tion of the TXP Rrxp. Since Igrgr continues to run after raising the alarm (cf.
Section 2.1), Ixgr also requests a new RET value Rrgr at the SON coordina-
tion function. Furthermore, imagine that an MRO function instance Iyjro with
priority Pyro requests an adjustment of the HO parameters Ryro. The prior-
ities are PRt > Pyvro > Prxp, i.e., IrgT has the highest and Itxp the lowest
priority. In summary, there are three action request, Rrrr, RTxp, and Ryro,
and one alarm, AgRgT_TXP-

A first simple approach is to prioritize the alarm-triggered requests like reg-
ular ones, i.e., Rpxp has priority Prxp. This does not require an adaptation
of the SON coordination function. In this case, the coordination function trig-
gers Rrpr and blocks Rrxp since Prgr > Prxp, though, it is obvious that it
should be the other way around because Irgr is actually in a problematic state.
Therefore, the coordination function additionally needs to block the requests by
alarming functions, i.e., Rrgr would not be considered for coordination. Con-
sequently, the request Ryiro would be triggered since Pyro > Prxp. However,
since the highly important Iggr encountered a problem which blocked it from
satisfying its objective, it seems reasonable that the solution to this problem,
Rrxp, should actually be executed. So, it is furthermore required to adapt the
priority of the request by alarm-triggered functions such that their priority is
the maximum of the priority of the alarming and the alarm-triggered function,

Operational Troubleshooting-enabled Coordination in SON 7

i.e., Rpxp gets the priority max(Prxp, Prer). As a result, Rrxp would be
triggered since Prxp > Pyro. This finally leads to the desired behavior.

3 Evaluation

In order to evaluate the behavior of the SONOT concept, an extended simulation
environment based on [14] has been developed. It consists of a state-of-the-art
LTE network simulator which simulates an LTE macro cell network with an area
of 50 km? and 1500 uniformly distributed mobile users moving randomly around
at 6 km/h. The simulation is performed in periodic time-slices, called rounds, of
approximately 100 minutes in real time.

The following three SON functions are considered:

— MRO function: Its objective is to minimize HO problems, e.g., too late and
too early HOs [6], by altering the HO offset parameter between a pair of cells.

— CCO(RET) function: As a CCO function, it aims to maximize a cell’s coverage
and capacity. It adapts the antenna tilt in order to minimize interference.

— CCO(TXP) function: It is also a CCO function which adapts the transmission
power.

3.1 SON Coordination

The SON coordination function implements an adaptation of the pre-action
batch coordination concept with dynamic priorities [9]. In this concept, the pri-
orities represent the importance of a SON function for the overall system perfor-
mance, i.e., the higher the priority of a function, the more important it is. Every
SON function instance, i.e., a running SON function in a concrete area, has an
assigned bucket and dynamic priority. The bucket initially contains a number of
tokens which are reduced every time a request by the function instance is trig-
gered and increased if a request is rejected. If the bucket gets empty, the priority
is set to minimum. However, the priority can be increased again if a request is
rejected. In sum, the SON coordination function collects all requests by SON
functions with non-empty buckets in a round, and computes and resolves the
conflicts between them by accepting the requests with the highest priority. For
simplicity, the SON coordination function has been configured to consider all
requested actions concerning the same cell as conflicting. In other words, only
one network parameter per cell can be changed in each simulation round.

3.2 SON Operational Troubleshooting Implementation

Alarm Generation The alarming component of each SON function employs
a network parameter limit check which generates an alarm if the SON function
algorithm wants to cross it. This state-based problem detection is motivated by
the fact that the function attempts to achieve it objective but is prevented by
its configuration. However, notice that the reason for this might not be a wrong

1

8 Christoph Frenzel et al.

rule "RETAlarm+TXPAlarm—>Reset”

when

$alarm: RETAlarm()

$txp: SonFunclnst() from new SonFunclnst(TXP(), $alarm.targetCell)
eval(context.isAlarmInCurrentRound ($txp))

$neighbor: Cell () from context.getNeighborsOfCell($alarm.targetCell)
$reset: SonFunclnst() from new SonFunclnst(SonFunction.RESET(), $neighbor)
then

sfe.requestSonFunction($reset);

sonco.addAlarm($alarm, S$reset);

end

Listing 1. Exemplary rule of the policy for the alarm resolver

configuration but an environmental problem. For instance, the CCO(RET) func-
tion is configured with some upper and lower limit on the tilt of the antenna
within which it tries to find an optimal value.

The SONOT function’s monitoring component performs oscillation detection
of a SON function’s behavior. This history-based approach observes whether a
function monopolizes the network by continuously adjusting network parame-
ters. Furthermore, it applies exponential smoothing on the KPI data. With this
history-based problem detection, they can make a prediction about the effective-
ness of their proposed network parameter change: if a SON function does not
manage to improve a KPI within a specific number of rounds, it generates an
alarm.

Alarm Analysis and Remedy The alarm resolver is controlled by a policy
which is a set of rules mapping an alarm in a specific operational context to
a request for a SON function. Listing 1 shows a complex rule taken from the
Scenario “Sleeping Cells” in Section 3.3 encoded in the Drools rule language [7]:
if there are two alarms, one by the CCO(RET) function (Line 3) and one by
the CCO(TXP) function(Line 5), then all neighbors of the cell are determined
(Line 6) and the reset function is triggered for each of them (Line 9). Addi-
tionally, the SON coordination function is informed about the alarm (Line 10)
in order to block the CCO(RET) function and set the priorities of the reset
requests.

The definition of such rules needs to be well thought through. On the one
hand, the system may face a deadlock if the mapping in the policy is circular. On
the other hand, in case a function in a cell is triggered because of an alarm, its
impact area [3] needs to be taken into account. More precisely, all other functions
on neighboring cells which have an impact area overlapping with the impact area
of the triggered function have to be blocked.

3.3 Simulation Results

The presented results in this section include the evaluation of three simulation
scenarios. For each of them, the SONOT concept is compared with the batch
SON coordination with dynamic priorities (cf. Section 3.1). In the former case,

Operational Troubleshooting-enabled Coordination in SON 9

the priority adaptation of the coordination mechanism is disabled, i.e., the re-
quest having the highest initial priority will be always triggered and the SONOT
function has to block the execution of SON functions. In the latter setup, the
SONOT function is disabled and, so, the SON coordination performs coordina-
tion with dynamic priorities.

Scenario “Inability of CCO(RET)” In the first scenario, it can be observed
that the CCO(RET) function detects a coverage hole, tries to close it and, due
to its inability to achieve its objective, an alarm is generated which triggers the
execution of the CCO(TXP) function. Such unexpected changes in coverage may
occur due to several reasons [6], e.g., the demolition or construction of buildings,
the insertion or deletion of base stations, or the misconfiguration of a cell during
network planning.

In order to reproduce such a scenario, a coverage hole is manually created
before the start of the simulation. Furthermore, the order of the SON functions
regarding their priority P is PrgT > Prxp > Puro, i.e., CCO(RET) is the most
important function and MRO the least important one. Regarding the resolution
policy, an CCO(RET) alarm is mapped to a request for CCO(TXP) function
execution and a CCO(TXP) alarm is mapped to a request for MRO function
execution.

Figure 2(a) and Fig. 2(b) depict the changes in the network parameters and
the interesting KPIs of a cell that has been affected by the coverage problem for
both the SONOT approach and the coordination with dynamic priorities. In the
former case, the CCO(RET) function first performs several adjustments to the
antenna tilt (up to round 4) which do not lead to a significant improvement of the
Radio Link Failures (RLFs) throughput, though. As soon as the SONOT func-
tions detects this it sends an alarm that leads to the trigger of the CCO(TXP)
function. As a result, the transmission power is increased twice which improves
the RLF's by a factor of 1.5 and the throughput by a factor of 1.1.

However, in round 7 the CCO(RET) function reaches the antenna tilt limit.
This results in the generation of an alarm by the function itself which results
in triggering CCO(TXP) This final parameter change improves the cell perfor-
mance such that the objectives of both functions are achieved and they stay
inactive until the end of the experiment. Hence, the MRO function gets its turn
to adapt the HO parameters which is not shown.

In contrast to that, the coordination mechanism with dynamic priorities is
not able to improve the performance of the cell in such a manner. This is mainly
caused by the coordination mechanism itself. Each SON function is allowed to try
to improve the performance on its own for 6 rounds until the bucket is empty: first
the CCO(RET), then the CCO(TXP), and finally the MRO function caused by
the priorities. As can be seen, this coordination does not allow blocking a function
if it is not doing any good leading to the case that the function actually decreases
performance. This trend can be also be seen in the performance measurements
from all cells affected by the coverage hole as shown in Figure 3(a).

10 Christoph Frenzel et al.

3 47

N
N
M
M
M
M
M
M
M
2
M
@
M
)
IS
>

&
3 4572
] c
g 5
a 44 g
£ £
= 01qt ; ; ; ; ; ; ; ; ; ; } } } } } }
F 1 2 3:4/ 5 6 7 8 9 10 11 12 13 14 15 16 /17 18 19 20 | 43 5
VA 2
€ 4 | =
2 £
] F42 @
< s
-2 L a1 -
=@-Antenna Tilt (with SONOT) Antenna Tilt (without SONOT)
~e=TX Power (with SONOT) TX Power (without SONOT)
3 40

Simulation Round

(a) Single cell’s network parameters

1600 25
mmRLFs (with SONOT) RLFs (without SONOT)
1400 —e—Throughput (with SONOT) Throughput (without SONOT)

%]

= 1200 ~ "
& 1000 e - 1 15O
3 \/»\,/ £
£ 800 v H
&‘ £
%5 600 — 10 %’
e °
3 F
2 400 s

=]

4

N
=]
S

o
o

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Simulation Round

1 2

(b) Single cell’s performance

Fig. 2. Comparison between SONOT function and SON coordination with dynamic
priorities for scenario “Inability of CCO(RET)”

Scenario “Inability of MRO” In the second scenario, the MRO function
spots a coverage problem and sends an alarm so that one of the other two
functions can resolve it. In this scenario, the same coverage problem as before is
induced, but the priority P of the SON functions is set to Pyiro > Prxp > PreT-
The resolution policy describes that an MRO alarm is mapped to a request for
CCO(TXP) function execution and a CCO(TXP) alarm is mapped to a request
for CCO(RET) function execution.

Figure 3(b) depicts the performance of the cell around the coverage hole for
of the SONOT-enabled coordination and the SON coordination with dynamic
priorities. In the first three simulation rounds, the RLF's and the throughput stay
constant and do not improve although the MRO function is always changing the
HO offsets. In the SONOT case, however, the SONOT function detects in round
4 that the performance drop is not related to mobility and generates an alarm.

Operational Troubleshooting-enabled Coordination in SON 11

12000 - - 100
mmRLFs (with SONOT) RLFs (without SONOT)
—e—Throughput (with SONOT) Throughput (without SONOT) 90
2 10000 80
2 0
& 70 B
L= 8000 / - 2
[
5 ~- o0 £
o -
S 6000 50
K] 2
[E-
x 40 ©
S 4000 3
5 30 £
s IS
20
= i 1 1 1 1 1
10
ALEEE Eeninnnnennns;
1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Simulation Round
(a) Scenario “Inability of CCO(RET)”
12000 100
mmRLFs (with SONOT) RLFs (without SONOT)
—e—Throughput (with SONOT) Throughput (without SONOT) 0
("]
$ 10000 &
5 W ®
K 70 =
w b1
8000 o
< ~
< N 60 ©
- £
] -
2 6000 50
K] 3
o £
40 ©
5 4000 8
e 30 £
g S
20
2 2000 —_— 0 — — —
11 1111 ;
. Irnirnlrelnen,
1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Simulation Round
(b) Scenario “Inability of MRO”
12000 100
mmRLFs (with SONOT) RLFs (without SONOT)
—e—Throughput (with SONOT) Throughput (without SONOT) 90
10000

80
/\Q/N'—‘h‘v‘—o—._/ 70
8000
/ 60
6000 e

|]
|
|
)/
|
8
Throughput in GBit/S

Number of Radio Link Failures

40
4000 - —
30
2
2000 - & % N R BB BN NN ERRRD

fenllrrnnnrn,

9 10 11 12 13 14 15 16 17 18 19 20
Simulation Round

o

(¢) Scenario “Sleeping Cells”

Fig. 3. Overall performance with the SONOT function and SON coordination with
dynamic priorities

12 Christoph Frenzel et al.

This triggers the CCO(TXP) function which changes the transmission power
similar to the previous scenario, leading to a significant decrease of the RLF's
and an increase of the throughput. In contrast to that, the coordination with
dynamic priorities behaves very similar to the previous scenario and produces a
non-optimal situation.

Scenario “Sleeping Cells” The third scenario investigates the case where
both the CCO(RET) function and the CCO(TXP) function are not able to
close a coverage hole caused by a sleeping cell and, therefore, an alarm is gen-
erated which triggers a reset function. Sleeping cells are a serious problem in
mobile networks since they are performing poorly without generating any fail-
ure alarms [11]. Hence, they often remain undetected for hours or even days.
Sleeping cells can be caused by software failures, in which case the remedy can
be the reset of the cell’s software configuration. In this scenario, two sleeping
cells, cause by a software upgrade, produce a coverage hole. Moreover, the SON
function priorities P are set as follows: Prgr > Prxp > Pymro. The resolution
policy triggers a reset function, i.e., the restoration of a previous software version,
if an CCO(RET) alarm and a CCO(TXP) alarm occur together (cf. List. 1).

The results of this experiment are shown in Figure 3(c). In case the SONOT
function is employed, the same positive impact on the performance as shown
in the previous two scenarios can be observed. Since the CCO(RET) and the
CCO(TXP) functions are not able to achieve their objective, an alarm is gener-
ated in round 3 which leads to the execution of the reset function that restores the
sleeping cells. In the coordination with dynamic priorities case, the CCO(RET)
and CCO(TXP) functions are continuously adapting the tilts and transmission
powers of the neighbors of the two sleeping cells which does not lead to the
desired effect.

4 Related Work

Within SON research, troubleshooting is traditionally considered in the self-
healing area, i.e., the automatic detection, diagnosis, and recovery of faults of
NEs [1]. Although self-healing approaches combine alarms from NEs with other
fault indicators like abnormal KPI values in order to diagnose the root cause
of a problem [12], they usually do not analyze the operational state of SON
functions. However, there is some related work which identified the problem of
troubleshooting a SON as a part of SON coordination.

In [9], the authors present a batch coordination approach with dynamic pri-
orities which prevents the monopolization of the network by a SON function,
i.e., that a SON function with a high priority permanently issues requests which
block other functions. However, the reason for this abnormal behavior of the
function is not particularly analyzed. Furthermore, it does not allow to distin-
guish between different problems one SON function might encounter and it does
not allow triggering another SON function to solve a problem.

Operational Troubleshooting-enabled Coordination in SON 13

The Self-NET project provides a framework for the self-management of cog-
nitive NEs by introducing a hierarchical architecture of cognitive managers [8].
Thereby, a low-level cognitive manager can delegate a problem to a higher-level
manager if it does not match its local resolution rules. The UniverSelf project
aims in a similar direction [13]. Thereby, the SON functions are able to alert a co-
ordination block about a “situation where they are not able to fulfil the specified
goals” [13]. If the problem cannot be solved by coordination, it is escalated to the
human operator. The SOCRATES project developed, among others, an extensive
SON coordination concept introducing several functions which together perform
coordination [11]. Thereby, the concept describes a Guard function which de-
tects undesired performance and behavior in the SON and, hence, compares to
the monitoring component of the SONOT function. The authors particularly
mention the detection of oscillations and poor absolute performance of the net-
work, i.e., not achieved objectives. The Guard function notifies the Alignment
function about detected problems, which determines suitable countermeasures,
e.g., undo previous changes of network parameters, blocking of SON functions,
or adapting the configuration of SON functions, by analyzing the cause of the
problem. The three projects consider operational troubleshooting as a side note
and, thus, do not provide further details, e.g., an implementation or case study.

The SEMAFOUR project aims at a unified self-management system and
extensively works on a SON coordination concept [4]. Its SON coordination
function is able to detect oscillations and frequent requests by functions which
the authors infer to be due to a misconfiguration of the functions. Hence, the
coordination can trigger a management component to adapt the configuration.
However, due to its recent start, there are currently no further details.

5 Conclusion

This paper presented the details of a new operational troubleshooting approach
for a Self-Organizing Network (SON). It allows the detection of situations in
which a SON function is not able to achieve its objectives. This monitoring is
performed by the SON functions themselves as well as the monitoring component
of the SON Operational Troubleshooting (SONOT). This approach allows, on the
one hand, the exploitation of the sophisticated detection methods employed by
the SON functions and, on the other hand, the utilization of complex algorithms
and network-wide data in the SONOT function. Based on the detected problems,
the alarm resolver can determines possible countermeasures like the preemption
and triggering of SON functions. In simulations it has been shown that the
presented approach remarkably improves the network performance in terms of
Key Performance Indicators (KPIs) like Radio Link Failures (RLFs) and cell
throughput, and outperforms traditional coordination approaches like a batch-
based coordination scheme with dynamic priorities.

In the future, further research is necessary for the development of improved
methods for the detection of problematic situations, the diagnosis of problems,

14

Christoph Frenzel et al.

and the determination of countermeasures. Particularly, it seems promising to
make use of machine learning in order to enable a high degree of automation.

References

10.

11.

12.

13.

14.

3GPP: Telecommunication management; Fault Management; Part 1: 3G fault man-
agement requirements. Technical specification 32.111-1 v12.0.0, 3rd Generation
Partnership Project (3GPP) (Jun 2013)

. 3GPP: Telecommunication management; Self-Organizing Networks (SON) Policy

Network Resource Model (NRM) Integration Reference Point (IRP); Information
Service (IS). Technical specification 32.522 v11.7.0, 3rd Generation Partnership
Project (3GPP) (Sep 2013)

Bandh, T.: Coordination of autonomic function execution in Self-Organizing Net-
works. Phd thesis, Technische Universitdt Miinchen (Apr 2013)

Ben Jemaa, S., Frenzel, C., Dario, G., et al.: Integrated SON Management - Re-
quirements and Basic Concepts. Deliverable d5.1, SEMAFOUR Project (Dec 2013)
Frenzel, C., Tsvetkov, T., Sanneck, H., Bauer, B., Carle, G.: Detection and Reso-
lution of Ineffective Function Behavior in Self-Organizing Networks. In: Proc. 15th
IEEE International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM 2014). Sydney, Australia (Jun 2014)

Hamaéldinen, S., Sanneck, H., Sartori, C. (eds.): LTE Self-Organising Networks
(SON): Network Management Automation for Operational Efficiency. John Wiley
& Sons, Chichester, UK (Dec 2011)

JBoss Community: Drools Expert, http://wuw.jboss.org/drools/
drools-expert

Kousaridas, A., Nguengang, G.: Final Report on Self-Management Artefacts. De-
liverable d2.3, Self-NET Project (Apr 2010)

Romeikat, R., Sanneck, H., Bandh, T.: Efficient, Dynamic Coordination of Request
Batches in C-SON Systems. In: Proc. IEEE 77th Vehicular Technology Conference
(VTC Spring 2013). pp. 1-6. Dresden, Germany (Jun 2013)

Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall,
Upper Saddle River, NJ, USA, 2 edn. (2003)

Schmelz, L.C., Amirijoo, M., Eisenblaetter, A., et al.: A Coordination Framework
for Self-Organisation in LTE Networks. In: Proc. 12th IFIP/IEEE International
Symposium on Integrated Network Management (IM 2011) and Workshops. pp.
193-200. Dublin, Ireland (May 2011)

Szilagyi, P., Novaczki, S.: An Automatic Detection and Diagnosis Framework for
Mobile Communication Systems. IEEE Transactions on Network and Service Man-
agement 9(2), 184-197 (Jun 2012)

Tsagkaris, K., Galani, A., Koutsouris, N., et al.: Unified Management Framework
(UMF) Specifications Release 3. Deliverable d2.4, UniverSelf Project (Nov 2013)

Tsvetkov, T., Novéczki, S., Sanneck, H., Carle, G.: A Post-Action Verification Ap-
proach for Automatic Configuration Parameter Changes in Self-Organizing Net-
works. In: 6th International Conference on Mobile Networks and Management
(MONAMI 2014). Wuerzburg, Germany (Sep 2014)

