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Programming 

paradigms guide 
problem solving and 

provide frameworks for 

expressing solutions. 
This article categorizes 

paradigms according to 
their emphasis on 
stating procedures 

versus constraining 
the solution set. 
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A 
programming paradigm is a collection of conceptual patterns that to- 
gether mold the design process and ultimately determine a program’s 
structure. Such conceptual patterns structure thought in that they deter- 

mine the form of valid programs. They control how we think about and formulate 
solutions, and even whether we arrive at solutions at all. 

Once we can visualize a solution via a paradigm’s conceptual patterns, we must 

express it within a programming language. For this process to be effective, the 

language’s features must adequately reflect the paradigm’s conceptual patterns. A 

language that reflects a particular paradigm well is said to support that paradigm. 
In practice, a language that supports a paradigm well is often hard to distinguish 

from the paradigm itself. 

A language rarely supports just one paradigm. Typically, it will borrow liberally 
from many paradigms for its features and support more than one. In this article, we 

discuss various programming paradigms independent of supporting languages. 

In his 1978 Turing Award Lecture, R.W. Floyd’ stated his belief that 

the current state of the art of computer programming reflects inadequacies in our stock 
of paradigms, in our knowledge of existing paradigms, in the way we teach programming 
paradigms, and in the way our programming languages support, or fail to support, the 
paradigms of their user communities. 

Floyd described three categories of paradigms: those that support low-level 
programming techniques (for example, copying versus sharing data structures), 

those that support methods of algorithm design (divide and conquer, dynamic 
programming, etc.), and those that support high-level approaches to programming 

(such as functional and rule-based paradigms). Floyd showed how different 
programming languages support the paradigms in each of these categories. We 
focus here on paradigms that support high-level programming. 
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Further, we group them according to 

their approach to problem solving. The 
operational approach describes step-by- 
step how to construct a solution. The 

demonstrational approach is a variation 

on it that illustrates the solution opera- 

tionally for specific examples and lets 
the system generalize these example so- 

lutions for other cases. While the dem- 

onstrational approach is definitely op- 
erational, it produces some very different 

results and is reviewed here as a sepa- 

rate category. The definitional approach 
is different. It states properties about 
the solution to constrain it without de- 

scribing how to compute it. 
These three approaches can be viewed 

on a continuum from operational to 
definitional. We start our discussionwith 

the operational approaches, describing 

each paradigm in a separate section. A 
sidebar for each paradigm contains a 

“pure” language solution to the prob- 

lem of sorting a list into some linear 

order. This problem allows many differ- 
ent solutions and lets us illustrate dif- 

ferent conceptual patterns associated 
with each paradigm. 

In choosing an algorithm for illustrat- 
ing a particular paradigm, our objective 

is to best illustrate the natural style of 

the paradigm, not to find the most effi- 
cient solution. In most cases, propo- 

nents of these paradigms and the lan- 
guages supporting them can significantly 

improve the efficiency of our algorithms. 
We have written the solutions in hy- 

pothetical languages. In this way we 

avoid communicating solutions that 

depend on a particular language. Some 
of these “pure” languages may resem- 

ble real languages. While this resem- 
blance may improve understandability, 

we do not mean to imply association 
with any existing languages. We do, 

however, briefly describe real languag- 

es that typify support for the paradigm. 

Operational paradigms 

Step-by-step computational sequenc- 

es characterize operational paradigms. 

The most difficult aspect of program- 
ming within this approach is determin- 
ing if the operationally computed value 
set is, in fact, the solution value set. 

Debugging and verification techniques 

concentrate on these programmingprob- 
lems. The finer the operational control, 

the harder it is to define the computed 

value set and to verify it as identical 
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Imperative paradigm 

procedure swap (x, y) 
temp := x 

x := Y 
y := temp 

procedure bubblesort (list) 
for i := 1 to MAX-1 do 

for j := MAX downto i+l do 

if list[j-1] > listjj] then 
swap (list[j-11, list[j]) 

Procedure bubblesort repeatedly compares each of two neighboring el- 
ements and exchanges them if they are out of order. The final state of the 

list is the sorted list. Note that the original list is destroyed in the process. 

Many programming languages support this model; most also include 
extensions that support other paradigms to varying degrees. Today’s im- 

perative languages contain a variety of borrowed mechanisms, such as 
non-side-effecting functions, recursion, and dynamic allocation via point- 

ers. They nevertheless remain conceptually dominated by the machine 

model. 

with the solution value set. We must 

often settle for a computed value set 
that is “sufficiently close” to the solu- 

tion value set, where we interpret “suf- 

ficiently close” to mean that the two 
value sets are indistinguishable over the 

expected subclass of actual problems. 
Operational paradigms are of two 

basic types: those that proceed by re- 

peatedly modifying their data represen- 

tation (side-effecting) and those that 
proceed by continuously creating new 
data (non-side-effecting). Side-effect- 

ing paradigms use a model in which 

variables are bound to computer stor- 
age locations. As a computation pro- 

ceeds, these storage locations are re- 

peatedly revised (that is, the variables 
get multiple assignments). When a com- 
putation ends, the final values of speci- 

fied variables represent the results. 

There are two kinds of side-effecting 
paradigms: imperative and object-ori- 

ented. 

Non-side-effecting paradigms include 
those that were traditionally calledfunc- 
tional paradigms. Today, it is important 
to distinguish functional approaches that 

are operational from those that are def- 

initional. This is a fine line. Most at- 
tempts at general definitional approach- 

es to programming are eventually tainted 

by operational necessities that work their 

way back into the supported paradigm. 

Nevertheless, certain functional ap- 

proaches are clearly operational and 
will be discussed here, while others are 
less operational and will be discussed 

with the definitional approaches. 

Operational paradigms define se- 
quencing explicitly. Operational se- 

quencing is either serial or parallel. If 
parallel, it can be defined by cooperat- 

ing parallel processes (asynchronous par- 
allel) or single processes applied simul- 

taneously to many objects (synchronous 
parallel). Each operational paradigm 

includes corresponding asynchronous 
and synchronous parallel variants. We 
discuss some of these at the end of this 

section. 

Imperative. The imperative paradigm 

is characterized by an abstract model of 

a computer that consists of a large store. 
The computer stores an encoded repre- 
sentation of a computation and exe- 

cutes a sequence of commands that 

modify the store. This paradigm is best 
represented by von Neumann-style 
machine architectures. Although von 

Neumann machines underlie the imple- 

mentation of almost all the paradigms 
discussed in this article, the imperative 

paradigm uses this machine model for 

conceptualizing solutions. The other 
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paradigms, by contrast, use conceptual digm is dominated by determining what locations. and deriving a step-by-step 

models removed from this implementa- data values will be required for the com- sequence of transformations to the store 

tion model. putation, representing these data val- so that the final state represents the 

Programming in the imperative para- ues by associating them with storage correct result values. 

Object-oriented paradigm 

Class Sequence 

quicksort 

I pivot lowerPart middlePart upperPart I 

if ((self size) >= 2) then 
pivot := self selectPivot. 
lowerPart := 

((self class) new) addAll: (self select: [elt where elt < pivot]) 
middlePart := 

((self class) new) addAll: (self select: [elt where elt = pivot]) 
upperPart := 

((self class) new) addAll: (self select: [elt where elt > pivot]) 

lowerPart quicksort 

upperPart quickSort 

self updatefrom: lowerPart and: middlepart and: upperPart 

selectPivot 
return (self first) 

All computations are accomplished by sending messag- 
es to objects. The objects respond by following methods 
of the same names. For example, the method definition 

for quickSort says that when a sequence receives the 
message quicksort, it creates three new local objects, 

lowerPart, middlepart, and upperpart. The (built-in) meth- 
od select: is used to construct a new smaller sequence 

containing each element for which the predicate (con- 
tained within the block surrounded by []) evaluates to true. 

The reference to self refers to the object processing the 

message, and the construct new is used to dynamically 

create a new object of the specified class. Thus, a new 
sequence is created and all selected elements are added 
to it. Once the three subsequences have been created, 

lowerPart and upperPart are sent messages to sort them- 

selves. After these sorts are complete, the three sequenc- 
es are used via updateFrom:and:and: to update the origi- 

nal sequence in place. 

The quickSort is highly polymorphic. It is defined here 
for the class Sequence. All subclasses of this class (for 

example, lists, arrays, and files) will inherit the quickSort 

method. Through methods of their own or through inherit- 

ance, the subclasses can interpret the messages size, 
first, addAll:, updateFrom:and:and:, and select:. The con- 

tents of these sequences can be any type of object as 

long as the object understands the messages <, =, and >. 
Thus, one definition suffices for sorting files of numbers, 

arrays of names, lists of personnel records, etc. This com- 
bination of polymorphic methods and inheritance provides 
much of the power of the object-oriented paradigm. 

Smalltalk’ is the preeminent object-oriented language, 

both historically and in the extent of its compatibility with 
the paradigm. It fully supports encapsulation, inheritance, 

and message-passing. Everything in the language is mod- 

eled as an object. In addition to the basic language, the 
Smalltalk environment includes a large library of pre- 

defined objects for basic data structures like lists, arrays, 

and collections. 

Although most object-oriented languages support the 
class-based model presented here, an alternative ap- 

proach supports a bottom-up view of objects. In this view, 

an object’s characteristics and capabilities are determined 
not by the class of which it is a member, but rather by the 
object it most closely resembles (termed the prototype). 

The Self language is an example of this prototype-based 

approach.’ 
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In its pure form, the imperative para- ‘. ..@ vocations determined by examining the 

digm supports only simple commands .’ types of the parameter objects. While 

that modify the store and carry out con- 
ditional and unconditional branching. 

Even when a simple form of procedural 
abstraction is added, this model remains 

basically unchanged. Parameters are 

aliases for a portion of the store, no 

Object orientation 

encourages thinking 

about individual 

concepts rather than a 

the message-passing mechanism of the 

object-oriented paradigm is computa- 

tionally equivalent to the procedure- 
call approach of these extended lan- 

guages, it leads to a very different way 

of looking at problem solutions. There 

values are returned, and a procedure 
alters the store through its parameters 

and/or direct global references. 

single global concept. is a conceptual difference between 
searching through procedures - all of 

the same name - for a match of the 

particular parameter types and sending 
Object-oriented. With the imperative a message to a particular object that 

paradigm, the conceptual model is a knows only one such method. In the 

single store into which abstract data former case, the main program controls 

values are represented and on which object is conceived and implemented as all the work, while in the latter, each 
one or more procedures are applied. self-contained. object has full responsibility for cor- 

Each procedure deals directly with the We have thus far described only en- rectly handling requests made directly 

stored representation. The object-ori- capsulation - the mechanism for en- to it. 
ented paradigm retains much of this forcing data abstraction. Inheritance is 
model, but procedures operate on ab- a second characteristic associated with Functional (operational). The func- 

stract values, called objects, rather than object-oriented paradigms. It is based tional paradigm is based on the mathe- 

on stored representations. As a result, on the concept of object classes. A class matical model of functional composi- 

this paradigm requires the capabilities is the definition of an object from which tion. In this model, the result of one 

of defining new objects composed of instances of the definition are created. computation is input to the next, and so 

existing objects and of manipulating Inheritance allows rapid definition of a on until some composition yields the 

them by defined procedures (called new object class from the concrete rep- desired result. There is no concept of a 

methods). Object-oriented program- resentation and methods of an existing location that is assigned or modified. 

ming first defines suitable objects for class. The new class includes all of the Rather, there are only intermediate 

the problem at hand, then uses these methods defined on the inherited rep- values, which are the results of prior 

objects to describe step-by-step opera- resentation, as well as any new concrete computations and the inputs to subse- 
tional sequences. representations and new or revised quent computations. For convenience, 

Manipulation of abstract values rather methods added to it. these intermediate values can be given 

than concrete representations requires The sidebar example defines sorting names. There is no form of command, 

respect for the encapsulated state of for all sequences in such a way that and all functions are referentially trans- 
objects (that is, the right of objects to specific subclasses, such as lists, inherit parent. 

define their concrete representations the sorting method. Under inheritance, Functional programming includes the 

and to perform all manipulations subsequent modifications to the origi- concept of functions as first-class ob- 

upon such representations). This is nal class (called the superclass) are re- jects. This means that functions can be 

accomplished by sending messages fleeted in the new subclasses. treated as data (that is, they can be 

that describe the desired manipula- A third characteristic of object-ori- passed as parameters, constructed and 

tions and leaving it to the objects to ented paradigms is message-passing. We returned as values, and composed with 
perform them. Objects, which are come to think of objects as active enti- other forms of data). 
implemented via other subobjects, use ties that send messages to one another. Application developers conceive the 

operational sequences to alter their This view encourages us to think of solution as compositions of functions. 

internal representations. Such sequences decomposing problems into players who For instance, to sort a list, we might 

include sending messages to their accomplish a task cooperatively. The conceive the solution as a concatena- 

subobjects. specification of any one player should tion of some smaller lists, each of which 

This process recurses until at some be relatively uncomplicated, with play- is already sorted. This reduces the prob- 

level the objects and the methods de- ers organized into teams for more com- lem to selecting the smaller lists. 

fined on them are primitive. Thus, sort- plex tasks. Several languages have ex- The way functions are specified can 
ing involves sending an object a mes- plicitly modeled this player concept.’ vary. In particular, we can specify them 

sage to sort itself. The message sender Some languages that support the ob- operationally, or mathematically with- 

does not care how the object sorts itself, ject-oriented paradigm are extensions out control sequencing. Here we ad- 

only that it gets sorted. of languages that tend to be primarily dress only the operational case. The 

While the-distinction between direct- imperative. These extensions do not sup- mathematical case will be discussed 

ly manipulating concrete representations port objects as active entities that re- under “Definitional paradigms.” 
and applying methods to objects may ceive messages. Rather, they continue The operational approach explicitly 
seem subtle, the impact on program- to invoke procedures or functions that controls the order in which computa- 

ming is not. Object orientation encour- pass objects. To support this model, tions occur. For instance, in sorting a 

ages thinking about individual concepts procedures must be polymorphic- that list. we might first determine if the list is 

rather than a single global concept. Each is, multiply defined with particular in- empty and proceed only if it is not. This 
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explicit ordering of computations caus- 
es an overspecification that character- 

izes operational approaches and leads 
to the discussion of parallel versus se- 

quential control in the next subsection. 

reliance on side effects and their lack of 
functions as first-class objects prevent 

them from fully supporting functional 

programming. 

In practice, languages supporting this Sequential versus parallel control 
operational form of the functional par- flow. Constructing parallel operational 
adigm often include imperative con- programs requires extending the con- 
structs such as multiple assignment, ceptual models presented thus far. This 
which destroy the non-side-effecting extension is required to handle the over- 
nature of the paradigm and force fur- specification forced by explicit control 
ther sequencing considerations into the sequencing. For example, in each of the 
construction of programs. Such com- two quicksort examples we have de- 
promises are in part historical. They scribed, the two sublists are sorted se- 
date back to a time when creating effi- quentially and in a specified order, 
cient solutions required modeling a when theymight besortedsimultaneous- 
machine’s store. Also, most imperative ly, or at least in any order. The problem 
and object-oriented languages have is that once we define a rigorous order- 
adopted some form of function, but their ing, the system must follow it. When 

Functional paradigm (operational) 

define function quicksort (1st) 

if 1st is null then 
nil 

programmers realize that they are over- 
stating control, they may desire a means 

of telling the system when it is safe to 

violate this ordering. This leads to the 

extended models discussed here. 
While parallel considerations extend 

the paradigms we have discussed, the 

efficient use of these extensions often 

leads to algorithms that are more than 
relaxed sequential algorithms. In par- 

ticular, the neighborhood-sort algorithm 
developed in the sidebar on asynchro- 

nous paradigms assumes parallel evalu- 
ation from its very conception. Without 

these extensions to our paradigm mode, 
we would not likely derive the solution 
simply by eliminating sequential con- 

trol from an algorithm that was previ- 
ously stated sequentially. Thus, we con- 

sider these parallel-extended paradigms 
to be paradigms themselves. 

Parallel programming languages his- 

torically have followed one of three 

approaches: 

(1) automatically detect parallelism 

in an otherwise sequential lan- 

guage, 

otherwise 

append (quicksort (choose-members (function (i), pivot (Ist), Ist)), 
choose-members (function (=), pivot (Ist), Ist), 

quicksort (choose-members (function (>), pivot (1st). 1st))) 

define function pivot (1st) 

first (1st) 

(2) add mechanisms that directly mim- 
ic the parallel operations of a par- 

ticular machine, or 

(3) add general mechanisms for ex- 

pressing the parallelism in the 

problem.’ 

define function choose-members (function, val, 1st) 

if 1st is null then 
nil 

otherwise 

if function-call (function, first (Ist), val) then 
append (list (first (Ist)), 

choose-members (function, val, rest (1st))) 

otherwise 

choose-members (function, val, rest (1st)) 

In this operational-style functional rendition of quicksort, the sequence of 

the conditions given is important. For example, if the test for the null list in 
choose-members were not first, the program would either fail to terminate or 
end in error, depending upon the implementation of the functions <, =, and >. 

“Pure” Lisp’ represents this paradigm best. However, the numerous en- 

hanced versions of Lisp in use today, including Common Lisp, might equally 
well support imperative programming. These languages include side-effect- 
ing destructive modification, fixed storage data types (such as arrays and ob- 
jects that are manipulated primarily by side-effect), and control-flow con- 

structs (for example, iteration and exception handling). 

Reference 

With the first option, the compiler 

determines what parts of the applica- 
tion can be executed in parallel. If par- 
allelism was not a paradigm, this might 

end up the most reasonable approach to 
parallel programming. With the second 
option, the language provides data and 

program structures that directly reflect 

the architecture of the machine. The 
resulting software is finely tuned for a 
particular machine and may not be suit- 

able for any other architecture. With 

the third option, the language provides 
data and program structures that let the 

software developer express the paral- 

lelism inherent in a problem without 

reference to the hardware. For exam- 
ple, the language will provide the most 

basic operations - ones that allow for 

fine-grained parallelism. Such language 
constructs encourage thinking of the 
solution in terms of the parallelism in- 

herent in the problem. 

1. J. McCarthy, “Recursive Functions of Symbolic Expressions and Their Computation by 
Machine, Part I ,” Comm. ACM, Vol. 3, No. 4, Apr. 1960, pp. 164-195. 

Parallel processes are either interfer- 

ing or noninterfering. Interfering pro- 

cesses have at least some potential for 
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affecting the computation of each oth- 

er. The primary problem associated with 
interfering processes is restricting their 
interference in controlled ways so that 

they compute predictably. Interfering 
processes tend to be coarse-grained (that 

is, larger) processes and are often heter- 
ogeneous due to the complexities of 
coordinating interference. 

Noninterfering processes are simpler 
to specify, but usually much more fine 
grained. For instance, adding two n x m 

matrices requires II * m additions. Each 

of these additions is noninterfering, but 
perhaps just this one addition operation 
is to be executed in parallel and the 
execution is then to be sequentialized 

again. Because of this fine-grained as- 
pect, noninterfering processes tend to 

resequentialize often, behaving in a rath- 
er synchronous manner. 

We will refer to these two approaches 
as asynchronous and synchronous par- 

allelism. 

Asynchronous parallelism. A simple 
algorithm for sorting in parallel divides 

the list into N sublists, sorts each in 

parallel, then merges the results. The 
individual sorts can either use a sequen- 

tial algorithm or recursively subdivide 

again into N sublists, sort and merge, 

etc. To handle the merge, we might 
have each process repeatedly attempt 

to access a common merged list, where 

access is granted to only one process at 
a time. Once the process gains access, it 

merges its sorted list into the already 

merged list (which is initially empty), 

generating a modified merged list. The 
process then releases control of the 
merged list and terminates. 

This sort has the properties of an 
asynchronous approach: Each process 

operates asynchronously on some pos- 
sibly sizeable, probably heterogeneous 

task during which it explicitly coordi- 
nates its interactions with other pro- 

cesses to prevent interference. This al- 

gorithm is conceptually distinct from 

any of the previous algorithms; it does 
not result from a simple substitution of 

parallel for serial control sequencing in 

those algorithms. Carrier0 and Gelern- 
ter4 discuss asynchronous parallel pro- 

gramming in detail. 

Synchronous parallel. A straightfor- 
ward approach to a synchronous paral- 
lel sort would be to use the quicksort 

algorithms and simply extend the mod- 
el to allow the three sublists to be pro- 

cessed in parallel. However, freed of 

the constraints of sequentiality, we might 
imagine other approaches, such as com- 

paring simultaneously all adjacent pairs 
and reversing all pairs that are out of 

order. By alternating between odd and 
even pairs, the list will eventually sort. 
At each step where adjacent pairs are 

processed in parallel, such processing is 
noninterfering. The regularity of the 

data enables the same operations to be 

applied in parallel with all processes 
acting in unison. 

Definitional paradigms 

In definitional paradigms, a program 

is constructed by stating facts, rules, 

constraints, equations, transformations, 
or other properties about the solution 
value set. From this information, the 

system must derive a scheme including 
an evaluation ordering for computing a 

solution. There is no step-by-step de- 
scription of how to reach the solution. 

These paradigms allow variables, but 

Asynchronous paradigm 

sort (list) 

if ( length (list) <= 1 ) 

list 
otherwise 

sublist-size := length (list) / NUM-PROCESSES 

forall i <= NUM-PROCESSES 
fork (sort~process(THIS~PROCESS~ID, 

sublist (i, sublist-size, list))) 
list := [] 

repeat 
receive (sorted-list) 

merge (list, sorted-list) 

send (parent-process-id, list) 

sort-process (parent-process-id, list) 

sort (list) 
send (parent-process-id, list) 

In this example, sort divides the sorting task by creating child processes 

and splitting the initial list among them. Each child process operates in par- 
allel with the parent as a separate entity, ultimately returning the sorted sub- 

list to the parent via a message. The actual sort used to accomplish this task 

could be any sort algorithm, or each child process might further delegate 

and make use of other asynchronous processes to accomplish this task. 
Send sends a message to a process specified by the sender of the mes- 

sage. The message is sent without blocking subsequent processing on the 

sender’s part. Receive receives a message. If no message is waiting, the re- 

ceiver process is suspended until a message arrives. A process can only 
service one message at a time. The system queues up any additional mes- 

sages that may arrive. Thus, as the individual sort-processes accomplish 

their individual tasks, only one list at a time will be received and merged into 
the final list. 

Many approaches have been developed to facilitate cooperation, synchro- 

nization, and/or communication between asynchronous processes. These 

mechanisms are designed with course-grained parallelism in mind. Linda’ is 
an example of a language that adds such facilities to base languages like C 
and Fortran. 
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not as repositories of state information 
- rather, as convenient names for in- 
termediate values. They usually include 

variations of single assignment. 

Since definitional paradigms attempt 

to specify the solution value set without 
necessarily specifying how to compute 
a solution, in principle this approach 

eliminates the need to prove that the 

computed value set is the solution value 
set. In practice, the situation is often 

more complex. While many of the par- 

adigms have no control sequencing and 
no side effects that require a notion of 

state, solutions are still often stated as 

constructions rather than specifications. 
This raises the question of whether or 
not these constructions produce the 

desired solutions. In addition, some 

definitional paradigms have difficulties 
that are resolved by working operation- 
al techniques back into these paradigms. 

Synchronous paradigm 

neighborhood-sort (list) 

index 
ODD = { the set of odd array indices } 

EVEN = { the set of even array indices } 
var 

temp : parallel indexed array [l ..MAX] 
n : integer 

for n := 1 to (MAX div 2) do 
if list[ODD] > list[ODD + l] then 

temp[#] := list[#] 

list[#] := list[# + l] 
list[# + l] := temp[#] 

if list[EVEN] > list[EVEN + l] then 
temp[#] := list[#] 
list[#] := list[# + l] 

list(# + l] := temp[#] 

This synchronous sort algorithm’ has several characteristics that are typi- 

cal of synchronous languages. The list parameter passed into the routine is 

an array that can be accessed in parallel. The index references, EVEN and 

ODD, describe a subset of the array range. 
The if-then can operate in parallel on every element in the array or on 

some subset of them. The first comparison in this algorithm is the simulta- 

neous comparison of the ODD array elements with the corresponding ODD + 

1 elements. The # symbol within the body of the if-then statement represents 
the set of indices for which the comparison is true. The operations within the 

body of the if-then statement are then performed in parallel for the set of indi- 
ces that passed the comparison. 

The end of the body of the if-then statement becomes a synchronization 

point. A similar process then takes place for the EVEN array indices. 

Most languages designed to support synchronous parallelism are exten- 
sions to an existing language base. Many of these extended languages are 
designed around a specific machine architecture. Others provide data and 

program structures that allow the programmer to express the parallelism in- 

herent in the problem without exploiting a particular architecture. For exam- 

ple, Actus’ and Paralation Lisp2 provide architecture-independent constructs. 
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The resulting paradigms and support- 
ing languages are not truly definitional. 

We refer to these tainted approaches as 
pseudodefinitional. The pseudodefini- 

tional approaches discussed in this sec- 

tion arefunctional, transformational, and 

logic. 
Some paradigms do not have the dif- 

ficulties that require reintroducing con- 

trol sequencing. These areform-based, 
dataflow, and constraint-programming. 
The form-based and dataflow paradigms 

avoid these difficulties primarily through 

restrictions on the form of equations 
allowed and the dependency-driven 

evaluation models employed. The con- 

straint programming paradigm avoids 
the difficulties by making no restric- 

tions; however, its generality also limits 

the use of this paradigm. 
In principle, definitional paradigms 

are not inherently serial or parallel be- 

cause they do not address control se- 
quencing and thus do not alter the nat- 

ural parallelism of algorithms. However, 
the pseudodefinitional paradigms re- 

quire at least a limited degree of se- 

quencing and thus have parallel and 
serial versions. The techniques associ- 
ated with these parallel approaches and 

their impact on the corresponding par- 

adigms are similar to those already dis- 
cussed for operational paradigms. 

Functional (definitional). The func- 

tional paradigm attempts to match the 
mathematicalmodel byexpressingfunc- 
tions as mathematicians do. For instance, 

given the mathematical definition 

expr Sx), cod, (2) 
expr,(x), cond, (n) 

f(x)= ,,. 

I expr,(x), cond,(x) 

a function f is interpreted as expr,(x), if 
exactly one guard condition cond,(x) 
holds; otherwise, it is not well defined. 

As long as exactly one of the conditions 
is valid for any particular value of the 

input domain, we need not specify the 
order of evaluation of the guards. 

The distinction between the functional 

paradigm as discussed in the operation- 
al section and here hinges on whether 

or not sequencing is explicitly specified. 
With the operational style, the software 

developer is responsible for the com- 
plete sequencing of instructions, includ- 

ing proper termination. By contrast, the 
definitional style provides for termina- 
tion without requiring explicit control 
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sequencing. The differences, while sub- 

tle, are significant in framing our con- 

ceptual model of programming. In the 

operational style, we approach the prob- 
lem as a construction in which we de- 

scribe a sequence of steps that will use 

functional composition to compute the 
desired result. In the definitional style, 
we approach the problem as a collec- 

tion of disjoint transformations that, 
taken collectively, define a computa- 

tional function. 
Often this mathematical definitional 

model utilizes lazy evaluation (also called 

nonstrict evaluation). Simply stated, in 
lazy evaluation the arguments to a func- 
tion are not evaluated until and unless 

they are individually needed. This is in 

contrast to conventional evaluation, 
called eager evaluation, which evalu- 
ates all arguments prior to invoking the 
function call. Besides making it possi- 

ble to evaluate arguments selectively, a 
feat otherwise accomplished only via 
special primitives, lazy evaluation also 

provides a natural means of dealing with 
infinite structures. Since evaluation is 
performed only when there is a need for 

a particular value, and then only to ob- 
tain that one value, definitions of func- 

tions that generate infinite sequences 
can be used in place of the actual se- 
quence as long as only a finite number 

of the sequence’s values are ever actu- 

ally required. 
If we in any way relax the require- 

ment that exactly one guard holds, then 

the order of evaluation is again impor- 

tant. It is this last point that leads to the 
designation “pseudodefinitional.” It is 

statically undecidable whether or not 

any particular set of guards is disjoint; 
thus, most functional paradigms define 

the evaluation order and leave it to the 

programmer to ensure either that the 

guards are disjoint or that the condi- 
tions are properly ordered. 

Hudak5 presents an excellent in-depth 

discussion of functional languages. 

Transformational. Transformational 

paradigms employ pattern-matching and 

term-rewriting techniques. Evaluation 
proceeds by repeatedly applying trans- 

formation rules to derive from an initial 

input token sequence a series of trans- 
formed token sequences leading to the 
solution token sequence. For instance, 
beginning with the word Jelly and trans- 

formation rules that replace J by H and 
y by o, the system might construct either 
the derivation Jelly + Helly + Hello or 

the derivation Jelly + Jello -+ Hello. 

The programming task specifies the 

necessary transformation rules, leaving 
the system to choose and apply them. 

A transformation rule consists of a 
guard and an action. If the guard is true 

(applicable) given a particular token 
sequence, then the action can be ap- 
plied to yield a new token sequence. At 

each step in the derivation, a single trans- 
formation rule is selected from those 
whose guards are true. A derivation 

continues until no rule is applicable. 

To preserve correctness, the program- 
mer must ensure at each step either that 
only a single rule is applicable or that if 

more than one rule is applicable, the 

final solution does not depend on which 
rule is chosen. For instance, in the der- 
ivation from Jelly, both rules can be 

applied to the initial token sequence. 

Regardless of which rule is chosen first, 
the other will be applied later and the 
resulting token sequence will be the 

same. 
An alternative to forcing the program- 

mer to guarantee order independence is 
to concede an order for purposes of 

determining the applicability of rules. 
For instance, allowing that the rules will 

be searched for applicability in a known 
order and that the first applicable rule 

will be used lets the programmer order 

the rules such that when more than one 
rule might apply, the desired rule will 
be encountered first. This rule simpli- 

fies the programming problem, but if 

order is given significance in this way, 
the paradigm is no longer completely 
definitional. 

Functional paradigm (definitional) 

qsort ([XIXS]) 
= qsort (sublist (<, X, Xs)) 

II sublist (=, X, [XIXs]) 

II qsort (sublist (>, X, Xs)) 

WJfl HII= [I 

sublist (f, val, [XIXs]) 

= [Xlsublist (f, val, Xs)] if f (X, val) 
= sublist (f, val, Xs) otherwise 

sublist (f, val, [I) = [] 

This definitional-style version of quicksort shows two ways of expressing 

alternative interpretations of a function. First, where simple matching of pa- 
rameters is possible, as in the treatment of the null list, separate formula- 

tions of the function can be used. Second, where such parameter matching 

fails, guards are employed to distinguish alternative expressions. 
The first statement says that the result of qsort, when given a list of ele- 

ment X and sublist Xs, is the result of appending (II) the sorted sublist of el- 

ements less than X to the sublist of elements equal to X and to the sorted 

sublist of elements greater than X. 
The example demonstrates the equational and pattern-matching aspects 

of definitional functional languages. These aspects allow the function defini- 

tions in the algorithm to be stated in any order. However, there is an evalua- 

tion ordering assumption associated with the use of the otherwise statement 
in sublist. This assumption could be removed by restating the previous 

guard condition in the negative. 

A good example of a modern functional language is Haskell,’ which repre- 
sents an effort by the functional programming language community to reach 

a consensus and thereby encourage wider use of functional languages. 

Reference 
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Transformational paradigm 
expressions to express conditional 
ositions such as 

prop- 

qsofi ([I) I [I I 
qsort ([PIXs]) { qsort (small (Xs, P)) II [PI qsort (big (Xs, P))] ) 

small ([I3 fJ) I [I 1 
small ([XIXs], P) { X < P; small-aux (X, Xs, P) ) 

true; small-aux (X, Xs, P) { [XI small (Xs, P)] ) 
false; small-aux (X, Xs, P) {small (Xs, P) ) 

big ([I, P) i iI I 
big ([XIXs], P) { X >= P; big-aux (X, Xs, P) ) 

true; big-aux (X, Xs, P) { [Xl big (Xs, P)] ) 
false; big-aux (X, Xs, P) { big (Xs, P) ) 

A transformational system consists of a set of transformation rules. Each 

rule is made up of a head followed by a body written in braces {). The system 

finds a subexpression that matches the head of a rule. That subexpression is 

then rewritten by substituting the body of the rule in place of the subexpres- 
sion’s head. 

Heads may contain variables that are capable of binding portions of the 

matched subexpression. Such bound variables can then be used in expand- 

ing the body of the rule. Expanding the body of a rule consists of either re- 
placing variables with their bound values or replacing them with the result of 

some computation on their bound values, such as the sum of two bound vari- 

ables. The process is repeated until the subject expression contains no re- 
ducible subexpressions. 

Beginning with an original expression, qsort ([5, 6, 4, 1, 3, 9]), the system 

will search for a rule whose head matches. initially, only the second rule will 

match, resulting in a transformed expression qsort (small ([6, 4, 1, 3, 91, 5)) II 
[5 I qsort (big ([6, 4, 1, 3, 91, 5))]. Using this expression, the system will then 
look for yet another applicable transformation rule; for instance, it might apply 

the eighth rule, yielding qsort (small ([6, 4, 1, 3, 91, 5)) II [5 I qsort (6 >= 5; 

big-aux (6, [4, 1, 3, 91, 5))]. This expression reduces to qsort (small ([6, 4, 1, 
3, 91, 5)) II [5 I qsort (true; big-aux (6, [4, 1, 3, 91, 5))]. Then we can apply the 
ninth rule to get qsort (small ([6, 4, 1, 3, 91, 5)) II [5 I qsort ([6 I big ([4, 1, 3, 

91, 5)])] and so on until only [l, 3, 4, 5, 6, 91 remains and no rule applies. 
Bertrand’ is a transformational programming language based on augment- 

ed term rewriting. Augmented term rewriting is an extension to term rewriting; 

it supports bindings, objects, and types. Because much of Leler’s work in- 

volves the use of these transformational techniques to build constraint-satis- 
faction systems, Bertrand is often associated with constraint programming as 
well. 

Reference 

1. W. Leler. Constraint Programming Languages, 
son-Wesley, Reading, Mass., 1988. 

Logic. The logic paradigm assumes 

that we begin with a set of known facts, 

such as “Tom is a father,” and a set of 
rules that allow deduction of other facts. 
For example, “For all X, if X is a father, 

then X is male” allows us to deduce that 
Tom is male. Thus, logic programming 

from the programmer’s perspective is a 
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matter of correctly stating all necessary 
facts and rules. 

Kowalski6 pioneered the logic para- 

digm. To date, most logic programming 

languages have been based on Horn 

clauses, a subset of first-order predicate 
logic. The clausal notation of predicate 

logic combines variables, constants, and 

Grandparent (x, z) t Parent (x, y), 

Parent (y, z) 

which states that x is the grandparent of 

z ifx is the parent of y and y is the parent 
of z. Horn clauses are a restricted form 
of predicate logic with exactly one con- 

clusion in any one clause. 

Logic programming then is a state- 
ment of only the logic component of an 
algorithm. The system derives the con- 

trol sequencing component. By sepa- 
rating logic from control, the program 

becomes merely a formal statement of 

its specifications. Hence, its correctness 

should be easily provable. In fact, since 
logic programming can be viewed as 

automated theorem proving, all logic 
programs are “correct” by definition. 

Of course, even if the programs are 
correct when compared to their written 

specifications (facts and rules), the ques- 

tion still remains of whether or not the 
specifications correctly reflect the true 

problem. 
Evaluation starts with a goal and at- 

tempts to prove it by either matching it 
with a fact or deducing it from some 

rule. A goal is deduced from a rule if 

bindings can be found for all free vari- 
ables such that, once substituted, all 
antecedents can be proved. These ante- 

cedents become new subgoals that must 
be matched with facts or proved via 

other rules. The process terminates suc- 
cessfully when all subgoals have been 
proved. The final solution is determined 

by applying the bindings developed along 
the way to any free variables in the 

initial goal. 
Evaluation as just described is purely 

definitional. It assumes that whenever 
a rule is selected, either there is only 
one possibility or the one needed to 

derive the solution is somehow select- 

ed. A solution is found if a suitable set 
of rules and substitutions exists such 

that applying the substitutions to the 

rules produces a set of grounded rules 
(that is, a set with no free variables) 

sufficient to deduce the goal from 

known facts. 

A process known as unification de- 
terministically develops substitutions for 
free variables; however, there is no sim- 

ilarly deterministic algorithm for select- 
ing rules. This leads to difficulties. Im- 
plementations must approach evaluation 

with a breadth-first search, where each 
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rule selection point initiates separate 

independent computations, one for each 
possible applicable rule. If a solution 

exists, the evaluation algorithm will 
eventually terminate, but this approach 

can be very inefficient. 
This inefficiency has led to the devel- 

opment of many variants of logic pro- 

gramming, each with different evalua- 

tion algorithms. Popular among these 
variants is to impose an order on the 

selection of rules and to employ a depth- 
first search with a backtracking algo- 

rithm. When a rule must be selected, 
this algorithm selects the “first” one. If 

it eventually leads to a dead end, the 

“next” one is selected, and so on until 
all possibilities have been tried. At each 

failure, backtracking is performed for 
the most recent decision. If this fails 

because there are no more possibilities 
to try, then further backtracking occurs. 

When all possibilities fail, no solution 

exists. 
By careful ordering of facts and rules, 

a programmer can greatly impact per- 

formance, as well as termination. Of 

course, this changes the paradigm to 
pseudodefinitional. Logicprogramming 
is often used to refer to the pure form 

discussed, while the pseudodefinitional 

version is referred to by the name of the 
language, for example, Prologprogram- 

ming. 

There are other nondefinitional fea- 
tures found in most implementations of 
logic-programming variants, most no- 

tably cuts. The cut is an extra-logical 

device that creates a barrier inhibiting 
the backtracking mechanism of the the- 

orem prover. Cuts were introduced to 

improve efficiency. They prevent re- 

evaluation of rules during backtrack- 
ing. In addition, they are often used to 

specify logic. 

The logic paradigm is intended for 
general-purpose programming. Indeed, 
pseudodefinitional logic is used for pro- 

duction programming in industry, where 

it is very well-suited to certain types of 
problems. These include backtracking 

search problems that may require mul- 

tiple solutions; problems that are natu- 

rally expressed in terms of production 
rules, such as natural-language transla- 
tion; and executable specifications for 

rapid prototyping. 

Form-based. The form-based para- 

digm, as well as the dataflow paradigm 
in the next subsection, defines a compu- 
tation via a collection of equations. These 
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Logic paradigm 

sort (Xs,Ys) t permutation (Xs,Ys), ordered (Ys) 

permutation ([I, [I) 
permutation (Xs, [ZIZs]) t select (Z,Xs,Ys), permutation (Ys,Zs) 

ordered ([Xl) 
ordered ([X, YIYs]) t X I Y, ordered ([YIYs]) 

The permutation sort’ states two facts (lines 2 and 4) and three rules. 

These facts and rules characterize a fully sorted list, thus illustrating the de- 
clarative nature of the logic paradigm. Collectively, they state: 

l The list Ys is a sorted version of the list Xs if Ys is a permutation of XS 

and Y is ordered (line 1); 
l An empty list is a permutation of itself (line 2); 
l Given a list Xs and a list consisting of an element Z followed by a sublist 

Zs, if Z can be selected from Xs leaving a remainder Ys that is a permuta- 

tion of Zs, then Xs is a permutation of [ZIZs] (line 3); 
l A list with only one element is ordered (line 4); and 
l Given a list that starts with the elements X and Y, followed by the list Ys, 

if X 5 Y and [YIYs] is ordered, then the original list is ordered (line 5). 

The supporting code for select requires only one additional fact and one 

additional rule: 

select (X, [XIXs], Xs) 
select (X, [YIYs], [YIZs]) t select (X, Ys, Zs) 

Although the Prolog language I.* has become synonymous with logic pro- 

gramming, it actually includes a specific problem-solving strategy and a 

number of features not true to the logic paradigm. While its pure logic fea- 

tures provide the advantages of the logic paradigm, Prolog can be used in 
an entirely different way that resembles an operational paradigm. 
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2. W.F. Clocksin and C.S. Mellish, Programming in Prolog, Third Revised and Extended 
Edition, Springer-Verlag, Berlin, 1987. 

equations avoid any expression of con- 

trol sequencing, but a restriction placed 
on the form of these equations guaran- 
tees that the system can easily derive an 

evaluation order sufficient to compute 

a solution. For the form-based para- 

digm, this restriction is that all equa- 
tions are of form X =f(Y,, Y2. , Y,,) 

where all of the Y,‘s must be comput- 
able independently from X. 

In the form-based paradigm, the pro- 
grammer designs a form including for- 
mulas that ultimately compute values. 
Each formula corresponds to the right- 

T 

hand side of an equation, that is, f(Y,, 

Y,, . 3 Y,,). Typically, we associate a 

description of the visual display of the 
formula’s value with each formula. A 

cell is a formula and its associated dis- 

play description. In constructing for- 
mulas, cell references to other cell val- 
ues can be formed by pointing at the 

corresponding cells. 
The use of forms in this manner is 

analogous to the way we use familiar 
forms, such as tax forms. Designing a 
form implies a two-dimensional syntax. 

In practice, the form-based paradigm is 
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Form-based paradigm 

I 

To Sort: 40 

= MIN (above, rightAbove) 1 = MAX (above, leftAbove) ! = MIN (above, rightAbove) = MAX (above, leftAbove) 

1 = above 1 = MIN (above, rightAbove) 1 = MAX (above, leftAbove) / = above 

1 = MIN (above, rightAbove) ii = MAX (above, leftAbove) ! = MIN (above, rightAbove) 1 = MAX (above, leftAbove) 

Sorted: ! = above 1 = MIN (above, rightAbove) ( = MAX (above, leftAbove) 1 = above 

i 10 
r , 8 

Sorted: f 10 ! 20 1 30 E 40 

The top form displays each cell’s formula, and the bot- 

tom form displays the values obtained from evaluating 
these formulas. The value of each cell is defined by its 
own formula. Only two distinct formulas are needed to fill 

in the form: the minimum of a pair of elements and the 
maximum of that pair. The n elements are initially select- 
ed pairwise and the minimum of each pair is placed be- 

fore the maximum. Next, the elements are paired with the 

neighbor on the other side, and the process is repeated. 
This continues until the sequence is sorted. 

based paradigm does not necessarily restrict the form 
size to a fixed number of cells. One common approach 
defines an infinite number of rows, relying on lazy evalu- 

ation to ensure that only cells with actual values are 
evaluated. Examples of form-based languages include 
Farms/31,2 and Plane Lucid.3 
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In practice, the programmer merely specifies the first 
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porting languages. Some languages provide a replication 

facility, while others let a formula serve as a general defi- 
nition for a group of cells. 
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Univ., Houghton, Mich., 1991. 

2. G. Viehstaedt and A. Ambler, “Visual Representation and Ma- 
nipulation of Matrices,” J. lkual Language and Computing, Vol 
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Although it appears that this solution may only apply to 3. W. Du and W. Wadge, “A 3D Spreadsheet Based on Intensional 
a fixed number of cells, this is not the case. The form- Logic,” //FE Software, Vol. 7, No. 3, May 1990, pp. 78-89. 

supported only by visual programming 
languages. Further, the distinction be- 

tween the user and the programmer 
tends to blur under this paradigm, be- 

cause the concept of defining the form 

as well as filling one in are comfortable 
tasks for users. Supporting languages 

tend to be highly interactive, fostering 
an “experimental” approach to program- 

ming. 
A natural practice of the form-based 

paradigm is the collection of partial re- 

sults or values down and across the form, 

approaching a solution at the bottom 
and right zf it. The neighborhood sort in 
the sidebar shows an example of this 

two-dimensional approach. It builds up 
the intermediate results on successively 
lower rows of the form, until eventually 

the final result is achieved on the bot- 

tom row. 

Because a form is a collection of for- 
mulas that are functional expressions, 

the form-based paradigm has a lot in 

common with the functional paradigm. 
However, the collection of formulas in 
the form-based paradigm allows for for- 

mula dependencies whose graph is any 

directed graph, not just the hierarchical 
graphs of pure functions. 

Dataflow. In the dataflow paradigm, 
streams of data flow like fluids through 
a network of nodes, each of which per- 

forms a computation that consumes the 

data flowing into the node and produc- 
es new data that flows out of the node. 

The programmer specifies only the node 

equations. The evaluation order is im- 

plied by data dependencies in the node 

equations. The system schedules com- 
putations whenever all the input data to 

a node is available. 

Dataflow programming can be dem- 
onstrated graphically with dataflow di- 
agrams such as the one in Figure 1. In 

the figure, data elements, called tokens, 

enter a node representing addition. The 
computation consumes these input to- 
kens and produces the sum as a new 

token. 

Computations are composed by us- 
ing node outputs as inputs to new nodes. 

Like the form-based paradigm, the data- 

flow paradigm requires equations to be 

expressed in the form X =f( Y,, Y2, . . . , 
Y,,); however, the codependency restric- 
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tion is loosened. In the dataflow para- 

digm, evaluation is viewed as a continu- 

ous process in which each equation is 

computed each time a new set of input 
values is available. Thus, a variable rep- 

resents a stream of values, one for each 

time its formula equation is evaluated. 
Given this model, if X represents the 
ith value in the stream for X, then the 

dataflow restriction is that X can de- 

pend on x/, directly or indirectly, only 
as long as i > j. This prevents circular 

dependencies of the type that would 

inhibit computation. (Note that if we 

reduce all streams to length one, the 
dataflow restriction is equivalent to the 

form-based restriction.) 

Dataflow paradigm 

We can view the notion of dataflow 
streams that flow into and out of nodes 

as sequences of values along a time di- 
mension. Conceptually, this allows a 

node’s output arc to bend around and 
serve as an input stream to the same 
node (that is, it allows feedback in the 

dataflow graph). This time dimension 

notion is readily captured in graphical 
dataflow languages because the rela- 

tions between input and output sequenc- 

es are explicitly shown via the arcs be- 
tween the nodes. Some of the textual 

dataflow languages deal with these re- 
lations implicitly rather than explicitly, 

requiring special constructs to access 
specific previous values in a controlled 

way. 

(b) 

QSort expects a stream of unsorted vectors and produces a stream of 
sorted vectors. The definition of the QSort node (a) consists mainly of an 
If node. Whenever a result flowing out of Empty? is true, then the corre- 

sponding original vector of values is produced by If and thus by QSort. 

Otherwise, the result of node NonEmptyQSort is produced. In NonEmp- 
tyQSort (b), unsorted vectors are routed through a node Split, yielding 
three separate vectors of values respectively less than, equal to, and 

greater than the first (pivot) element. Once split, two of these streams flow 

into QSort nodes for sorting. The resulting streams and the third stream 
from Split are then appended to generate the final stream of sorted vec- 
tors. 

The emphasis on dataflow relations rather than control flow is easily 
seen in visual representations. This has led to the development of visual 
dataflow languages such as Show and Tell.’ 

While this restriction allows for feed- 

back, and thus iteration, programmers 
usually employ recursion. This is com- 
pletely in keeping with the dataflow 

concept of routing data between nodes, 

where each recursive invocation is log- 
ically another node in the dataflow graph. 

Reference 
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Two execution models are used in 

dataflow programming. Both are strict- 
ly dependency driven. In the data-driv- 
en model, a node may execute as soon 

as all required input is available. This 

model encourages parallelism, but it can 
cause overproduction of data. In the 

demand-driven model, a node does not 

execute unless all required input is avail- 

able and its output is requested. While 
overproduction of data cannot occur 

using demand-driven evaluation, paral- 

lelism may be impaired because nodes 
that could be computing will wait until a 
demand for their output occurs. 

based on functional languages. Howev- 
er, from a paradigm perspective, there 
are significant differences. A functional 

program is represented by a single equa- 

tion; a dataflow program is a collection 
of equations. Dataflow nodes operate 
on streams of data; thus, they do not 

obey either eager or lazy evaluation. 

Dataflow does not treat functions as 
first-class objects (that is, nodes do not 
construct and produce new functions). 

Dataflow equations require continuous 
evaluation, producing a stream of out- 

put values rather than just a single val- 
ue. As with the form-based paradigm, 

dataflow dependency graphs include all 

directed graphs, not just hierarchically 
structured graphs. Philosophically, the 

dataflow approach defines a program in 
terms of data flowing through nodes, 

each of which consumes its input data 
and produces new output data. 

The dataflow paradigm has some sim- 
ilarities to the functional paradigm. 
Much of the literature discusses it as a 

variant of functional programming and 
many textual dataflow languages are 

I I 

Figure 1. Addition consumes pairs of 

input tokens and outputs a new token 
for each sum. 

The dataflow paradigm supports par- 
allelism. The data dependencies are only 

those that are natural to the algorithm. 
The paradigm makes these dependen- 
cies explicit automatically. There is no 
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Constraint programming 

[ xi where x, <= xi+1 for all xi ] 

A group of elements x is sorted if the above constraint is met. A constraint 

specifies a relation that must be maintained. The programmer is responsible 

for specifying the relation, and the system is responsible for maintaining it. 
If the constraint is not already satisfied, the system is responsible for tak- 

ing appropriate action to satisfy the constraint. Currently, general con- 

straint-solving techniques are weak, and thus constraint systems tend to be 
application-domain specific. An example constraint system is the visual lan- 
guage ThingLab.’ Within its specific problem domain (simulations), Thing- 
Lab implements the constraint paradigm in a manner that, while not strictly 

definitional, successfully encourages a definitional problem-solving ap- 

proach. 
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explicit control sequencing; the order 
of computation can be determined strict- 

ly from the interdependencies in the 

data. This paradigm is often used to 
research parallel computing, and paral- 

lel machines based on dataflow archi- 

tectures have been proposed.’ In addi- 

tion, the dataflow paradigm is naturally 
expressed visually, making it popular 

for use in visual programming. 

Constraint programming. The cen- 
tral idea of the constraint-programming 
paradigm is to sufficiently constrain the 

solution value set such that only the 
desired solution or solutions are possi- 

ble. Then, ideally, an intelligent system 

will employ some means to realize what 

the solution must be. 
To illustrate constraint programming, 

consider the following program to con- 

vert centigrade temperatures to Fahr- 
enheit: 

F=32+915xC 

This program appears to be an equation 
much like one we might write in other 
paradigms. However, in other para- 

digms, such a program can only be used 
to produce Fahrenheit values from cen- 

tigrade values. In constraint program- 

ming, if the value of C is known, it can 

be used to compute F. Likewise, if the 
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value of F is known, it can be used to 

compute C. Thus, this program is not a 
statement of some computation to be 

performed, but a true equation express- 
ing a relationship between F and C. 
Furthermore, it is entirely equivalent to 

the following program: 

C = 5/9 x (F - 32) 

This ability to solve for any variable, 
given the rest, is also present to some 
degree in logic programming and to a 

lesser extent in pseudologic program- 

ming if the rules are carefully defined 
for multiple uses. 

A program is specified by a collection 

of such constraining equations, called 
constraints. Given a collection of such 

constraints, it is up to the underlying 

system to find a solution that satisfies 
them. Constraints are not limited as 
equations are in form-based and data- 

flow paradigms. Instead, the problem 
for constraint-satisfaction systems is how 

to find a solution. 
One approach, called equation solv- 

ing, employs algebraic manipulation. 
This approach has been used to solve 

complex equations. For instance, equa- 
tion-solving techniques can be used when 

constraints are expressed as a system of 
simultaneous linear equations. 

The most common equation-solving 

method is based on Gaussian elimina- 

tion. This method has also been extend- 
ed to include “slightly nonlinear” si- 

multaneous equations, in which most of 

the equations are linear. The solutions 
of the linear equations provide enough 

information to transform the nonlinear 

equations into linear ones. 
Linear programming is another equa- 

tion-solving technique that is sometimes 
used to find an optimal solution to a 

group of simultaneous linear equations. 

However, in general, equation solving 
is limited and can only be applied to 

specific problem domains. 
Another approach is constraint satis- 

faction. Prominent techniques include 
local propagation of known states, re- 

laxation, and local propagation of de- 

grees of freedom. The first technique 

propagates known values to other equa- 
tions (that is, if we can solve for A, then 
we propagate A’s value by substituting 

the value of A for A in all equations). 
The relaxation technique is often 

employed in situations involving circu- 

larity. A guess is substituted for some 

variable that is circularly dependent and 
the computation is continued until the 

circularity causes the computation of a 
new value for the variable. The system 

then interpolates between the initial 
guess and the computed value, obtains a 

new guess, and repeats the process. If 

the difference converges to zero, a solu- 
tion is reached. 

The third technique, propagation of 

degrees of freedom, temporarily re- 

moves parts of a graph to try to solve the 
remaining graph. The parts chosen for 
removal are based on their degrees of 

freedom from dependencies. Once the 

remaining graph is solved. the removed 
parts are returned and solved. 

The combination of these three con- 

straint-satisfaction techniques is again 
sufficient for slightly nonlinear equa- 

tions. For truly arbitrary sets of equa- 

tions, general constraint-satisfaction 

techniques are inadequate. 
Constraint programming is highly in- 

dependent of order. Although this fact 

should make it a good candidate for 
parallel applications, little research has 
been done in that area. The most im- 

portant deficiency of the paradigm re- 

sults from the weakness of general con- 
straint satisfaction techniques. This 
keeps it from being used in general- 

purpose programming. However, do- 

main-specific languages have been suc- 
cessful. 
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Demonstrational 
paradigms 

When programming under the dem- 
onstrational paradigm (also called by- 
example or by-demonstration program- 

ming), programmers neither specify 
operationally how to compute a value 

set nor constrain the solution value set. 
Rather, they demonstrate solutions to 

specific instances of similar problems 
and let the system generalize an opera- 

tional solution from these demonstra- 

tions. Individual schemes for generaliz- 

ing such solutions range from mimicking 
an operational sequence to inferring 

intentions. How and what a by-example 

system should generalize is the major 
issue for this paradigm and the active 
area of research. Approaches can be 
categorized by whether or not inferenc- 

ing is involved. 
Inferential systems attempt to gener- 

alize using knowledge-based reasoning. 

For instance, given the sorting example 
in the sidebar, the main question to 
answer is why the particular selections 

were made at each step. Possible guess- 

es include positional order or value. 

Given such possibilities, the system may 
proceed in a number of ways. It might 

simply pick the guess it weighs most 
likely. It might maintain all possibili- 
ties, asking for further examples that 
would help to discriminate further. It 

might ask the user which is meant. The 

very real possibility remains, of course, 
that none of the deduced reasons is 

correct. In this case, the only possibility 

is for the user to override the system to 

describe the correct intentions. 
One inference-based approach at- 

tempts to determine ways in which a 
given group of data objects are similar, 
drawing generalizations from these sim- 

ilarities. Another approach is program- 
mer assisted: The system observes ac- 

tions that the programmer performs; if 
they are similar to past actions, it at- 
tempts to infer what the programmer 

will do next. Myers8 discusses the issues 

of demonstrational systems using infer- 
ence. 

There are two major criticisms of in- 
ferential systems. First, if unchecked 

they may produce erroneous programs 
that appear to work on the test exam- 
ples but fail later on other examples. 

Second, their inferential abilities are so 

limited that the user must either guide 
the process by working at a very low 
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Demonstrational paradigm 

Using the sorting example, a user might proceed as follows. Given a vec- 

tor with unsorted numbers shown in (a), the user first creates an empty vec- 
tor of equal size and then begins to copy numbers from the unsorted vector 

into the new vector. At each step the user selects a number from the unsort- 

ed vector and places it in a location in the new vector. In particular, as 
shown in (b), the user selects unsorted element 3 with value 1 and copies it 
to new element 1, then unsorted element 1 to new element 2, and so on. 

At issue is what knowledge the system was able to extract from this dem- 

onstration. On the surface, all we know absolutely is that an operation the 
user calls “sorting” rearranges vectors of length 5 into a new order corre- 

sponding to the third, first, fourth, second, and fifth elements of the original 
vector. Some approaches to generalizing from this demonstration rely solely 

on user demonstrations and expect the users to demonstrate algorithms 
with sufficient generality. Others expect to generalize using inference. An 
example of a demonstrational language without inference is PT’ and one 

with inference is Metamouse.’ 
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level or edit the result at a level that 
amounts to designing the program. The 

most successful inferential systems have 

been in limited areas where the system 

has application-specific semantic knowl- 

edge. 
Without inferencing, the problem of 

how and what to generalize is really the 
problem of how the user should instruct 

the system to generalize from concrete 

examples. There are several approach- 
es for doing this. (For a more complete 
discussion, see Ambler and Hsia.9) 

One approach is to work with ab- 

stract data rather than specific data. 

This prevents the user from picking a 
particular value and operating on it. 

The user must express constraints on 
the abstract data (such as, “PickXwhere 

X is the largest element of the unsorted 
vector”). Such constraints provide se- 
lection criteria. Once a case is suitably 

constrained, the programmer demon- 

strates the desired action. In this exam- 
ple, Xis copied to the new vector (into 

a constrained position Y). This process 

is repeated for each possible set of con- 
strained values. See Rubin”’ for an ex- 

ample of this abstract data approach. 
Working with abstract data has cer- 

tain limitations. Users tend to work more 

accurately on a specific example than 

they do in the general case.8 The rea- 

sons are clear: In the general case, the 
human must think of every possible sit- 

uation that could arise, while on a spe- 
cific example, only the situation at hand 

must be considered. 
One approach to working with con- 

crete data requires the user to demon- 
strate selections as well as actions. For 

example, in demonstrating the sort al- 
gorithm, the user is required to demon- 

strate a procedure for making the first 
selection of an element from the unsort- 

ed vector. For instance, the user might 
indicate that the value is selected by 
satisfying a predicate that tests for the 

minimum value of a vector. 
A major problem with demonstra- 
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Figure 2. The operational-definitional continuum. 

tional systems is knowing when a pro- 

gram is correct. For operational sys- 
tems, this decision is made by studying 
the algorithm representation as well as 

the results of sufficient test cases. For 
demonstrational systems, the algorithm 

representation is maintained in some 

internal representation. Studying this 
internal representation would somewhat 
defeat the purpose of these systems. 

Yet without some representation of the 

generated algorithm, the correctness de- 
cision must be made based solely on the 
algorithm’s performance on specific test 

cases. 
Is demonstrational programming re- 

ally a paradigm? It does affect the me- 
chanics of programming, but does it 

encourage a different way of thinking 
about problems or only a different way 

of communicating the operational de- 
tails to the computer? If we look at the 

most successful approaches (that is, 

nontrivial programming using concrete 
examples), we can say that demonstra- 
tional programming is generally a con- 

crete bottom-up approach, and as such 
takes advantage of our natural ability to 
think concretely. This is opposite to pro- 

gramming in most other paradigms, 
which tend to encourage a top-down 

abstract way of thinking about a prob- 
lem. Thus, we include demonstrational 

programming as a separate paradigm. 

Operational- 
definitional continuum 

We can view the programming para- 
digms discussed here on a continuum 

based on the relative degree to which 
control sequencing is expressed. While 
this continuum is not the only perspec- 

tive on programming paradigms, we feel 
that it helps clarify the relations be- 
tween various paradigms. 

Figure 2 shows the continuum. At the 

far left is the state-oriented approach to 

operational paradigms. This approach 
explicitly controls evaluation ordering. 

Further, because of side effects and the 
lack of any form of encapsulated ab- 

straction, it is difficult to remove unnec- 
essary ordering by means of analysis. 

With encapsulated abstraction, at least 

some measure of module independence 
is achievable, allowing some elimina- 
tion of evaluation ordering. On the oth- 

er end of the continuum is a totally 

abstract specification of the solution 
using arbitrary constraints. For this ex- 
treme definitional-paradigm approach, 

it is difficult to derive any evaluation 

ordering. A more practical approach 
involves using computable equations for 
which evaluation ordering can be readi- 

ly derived. The middle position denotes 

the crossover between explicit evalua- 
tion ordering and derived evaluation 

ordering. 

P 
rogramming paradigms affect our 

thought processes for solving 
problems. They provide a frame- 

work and determine the form in which 

we express solutions. A number of pro- 

gramming languages have evolved based 
on particular programming paradigms. 
We feel that stepping back from these 
languages to understand the underlying 

programming paradigms independent- 

ly can broaden our programming skills, 

develop new perspectives on how to use 
particular programming languages and 
styles, and perhaps stimulate curiosity 

about alternatives to our favorite pro- 

gramming paradigms. n 
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Great Work. Great living. 
IBM Burlington, Vermont.- 

One of the world’s most advanced semiconductor operations is what 
you’ll find at IBM’s major development and manufacturing facility in 
Burlington, where continued business growth is matched by a superb 
living environment. We now have outstanding career opportunities for 
engineers with the specialized computer skills to make significant impact 
on RISC microprocessor development. 
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Responsible for definition, logic design and verification of high perfor- 
mance RISC microprocessors. To qualify, you must possess a BSEE or 
higher, with an emphasis on Computer Engineering, and be capable of 
carrying logic design through to physical chip design stage. Minimum of 
3 years in logic/chip, CMOS and VLSI design required. RISC experience 
is key. Background in microprocessor and multiprocessor design desirable. 

Circuit Design 
Will design CMOS circuitry for RISC-based microprocessor functions. 
Includes custom SRAM cache design, complex logic dataflow circuitry, 
random logic, IO, clocking and other circuitry in custom microprocessor 
layoutsRequires BSEE or higherwith emphasis on Computer Engineer- 
ing or Circuit Design. Ability to design complex CMOS or Bi CMOS 
circuits and perform circuit analysis and verification is essential, along 
with minimum of 3 years circuit design experience in industry. CMOS, 
VLSI, digital circuit design is a prerequisite. 

Physical Design 
Responsible for CMOS VLSI chip physical design of RISC microproces- 
sor in advanced CMOS technology. Includes using state-of-the-art CAD 
tools to perform chip layout, wiring and chip timing analysis. A BSEE or 
higher, with emphasis on Computer Engineering or Circuit Design, is 
essential, along with at least 3 years of physical design experience in 
industry. RISC and CMOS, VLSI design experience (chip layout/wiring) 
necessary. Background in microprocessor design desirable. 

Located between Lake Champlain and Vermont’s Green Mountains, 
Burlington offers year round recreation and open space. Unspoiled 
beauty, affordable housing and a sense of community come together 
here. This is life at its most enjoyable; technology at its best. 

IBM offers salaries commensurate with qualifications and a comprehen- 
sive benefit package. For confidential consideration, please send your 
resume, indicating area of interest, to: IBM Corporation, Professional 
Recruiting, 1000 River Street, Essex Junction, VT 05452. 

An equal opportunity employer. 
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