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Although scholars have provided advice regarding how to conceptualize multidimensional constructs, less attention 
has been directed on how to evaluate structural equation models that include multidimensional constructs. Further, 
the extant information systems literature has provided little, and sometimes contradictory, direction on how to 
operationalize multidimensional constructs. This gap in how we approach multidimensional constructs merits 
attention because: (1) establishing construct validity is critical to testing theory and (2) recent advances in software 
enable testing models with multidimensional constructs more readily. Therefore, this tutorial (1) describes different 
forms of multidimensional constructs and (2) illustrates how to integrate superordinate and aggregate 
multidimensional constructs in structural equation models. In doing so, we offer guidelines and examples for how to 
conduct and evaluate research using multidimensional constructs. 
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I. INTRODUCTION 

A multidimensional construct is a single theoretical concept that is measured by several related constructs [Law et 
al., 1998]. This conceptualization of multidimensional constructs has been used to relay complex ideas about 
individuals’ perception of trust toward information technology (IT) [McKnight et al., 2002], firms’ IT-enabled 
capabilities [Zhu, 2004], and users’ computer-self-efficacy [Marakas et al., 2007; Hardin et al., 2008; Marakas et al., 
2008]. For example, to properly examine the effects of trust, McKnight et al. [2002] argue that one must understand 
the differing factors that compose trust. As a result, trust is modeled as a function of three factors: (1) benevolence—
the extent to which a trustee is believed to want to do good on the other’s behalf, (2) ability—the skills and 
competencies of the party, and (3) integrity—the perception that the trustee adheres to a set of norms. Using 
multidimensional constructs to operationalize such ideas is useful because they allow researchers to develop 
theories about relationships between complex multipart concepts within broader nomological networks [Law et al., 
1998; Wong et al., 2008]. 

Recently, multidimensional constructs have received a great deal of attention within top information systems (IS) 
journals. Papers have suggested that researchers should “consider whether each construct, based on theory, is 
better represented as a first-order or as second-order construct” [Gefen et al., 2011, p. xi], offered in-depth guidance 
for how multidimensional constructs should be conceptualized [Polites et al., 2012], and critically assessed the 
implications of their use in empirical research [Shin and Kim, 2011]. This growing discourse on multidimensional 
constructs reflects the ease with which they may be modeled in recent releases of structural equation modeling 
(SEM) software such as AMOS, EQS, and SmartPLS. We anticipate that as theory using multidimensional 
constructs grows more pervasive, and tools more readily permit their inclusion in models, that many different forms 
of multidimensional constructs will appear with greater frequency in applied IS research. 

While IS researchers have both suggested that multidimensional constructs are important and criticized their use, 
scant direction is available for scholars interested in the mechanics of how to test models that incorporate 
multidimensional constructs. To the best of our knowledge, there is a curious absence of “how-to” or “applied” 
examples of how to use SEM techniques to evaluate multidimensional constructs. Such guidance is important, 
because, while researchers may understand the theoretical concepts tied to modeling multidimensional constructs, 
they may lack the technical knowledge necessary to properly evaluate them. Moreover, absent practical guidance on 
how to operationalize multidimensional constructs, reviewers face challenges to evaluating models with 
multidimensional constructs that are theoretically and operationally consistent. Such practical barriers to 
multidimensional constructs’ use in IS research include: 

1. The misperceptions that multidimensional constructs are not supported by software, due to difficulties in 
modeling them in early versions of SEM software [Gefen and Straub, 2005; Gefen et al., 2011] 

2. The absence of shared and consistent standards for assessing psychometric properties of such constructs 
[Edwards, 2001; Straub et al., 2004] 

3. The challenges due to inadequate time, energy, or requisite knowledge to analyze and assess the research 
model (both measurement and structural) 

To overcome these barriers to using multidimensional constructs, this tutorial’s objective is to illustrate how to 
conceptualize and operationalize commonly used multidimensional constructs within the specific context of SEM. In 
doing so, we make these basic assumptions: 

1. Researchers have appropriately defined multidimensional constructs based on theory [Polites et al., 2012]. 
This tutorial is meant as a companion piece to past publications on theorizing and conceptualizing about 
multidimensional constructs. For guidance on conceptualization, see [Law et al., 1998; Edwards and 
Bagozzi, 2000; Polites et al., 2012]. 

2. Researchers have taken care to adhere to well-established heuristics when selecting an SEM technique 
(see Gefen et al., 2011). 

3. Measures used to operationalize the dimensions of a higher-order construct have been validated according 
to prescriptions found in the research methods literature (see MacKenzie et al., 2011; Shin and Kim, 2011). 
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We begin our tutorial by examining past IS research that has operationalized multidimensional constructs. Next, we 
describe commonly occurring types of multidimensional constructs (e.g., superordinate, aggregate, and other less 
common types). The next section provides an illustration of how to establish the validity of multidimensional 
constructs and how to include them in structural equation models. In doing so, we provide an example using 
cognitive absorption, an established multidimensional construct in the IS literature [Agarwal and Karahanna, 2000]. 
We also offer practical guidelines that help IS researchers to either conduct or evaluate research using 
multidimensional constructs. Finally, we provide a step-by-step guide on how to conduct multidimensional constructs 
in the appendices. Overall, this article complements prior IS research on multidimensional constructs [Kim et al., 
2010; Polites et al., 2012] by providing scholars with guidance for how to implement common forms of 
multidimensional constructs in widely used SEM techniques. 

II. USE OF MULTIDIMENSIONAL CONSTRUCTS IN INFORMATION SYSTEMS RESEARCH 

Although many recent IS research papers have employed multidimensional constructs (see Table 1), there is a lack 
of consistency in the way in which multidimensional constructs have been empirically examined. Most organizational 
and behavioral IS research on multidimensional constructs draws on Law et al. [1998] or Edwards [2001] for 
guidance on conceptualization issues. Despite this shared foundation, there has been little convergence in the IS 
literature about appropriate ways to operationalize higher-order constructs [Kim et al., 2010; Polites et al., 2012]. For 
a complete review of how to theorize using multidimensional constructs, see Polites et al., 2012. Although many of 
these papers separately test first- and second-order models, recent advances in research methods enable 
researchers to test higher-order models that include all levels of multidimensional constructs (i.e., integrated, as 
opposed to separate, structural models). In the following section, we review differences in how some IS researchers 
have conceptualized and operationalized multidimensional constructs. 

Differential Treatments of Construct Dimensionality 

The IS literature contains several examples of conflict or disagreement among scholars about how multidimensional 
constructs should be conceptualized and operationalized. One example of such deliberation is the computer self-
efficacy (CSE) literature. Originally, CSE was conceptualized as a unidimensional (i.e., single factor) construct with 
reflective measures [Compeau and Higgins, 1995]. More recently, CSE was conceived as a higher-order factor, but 
operationalized with formative indicators [Marakas et al., 2007]. This research spawned two related response 
publications that argued both sides of the reflective vs. formative item level debate for this multidimensional 
construct [Hardin et al., 2008; Marakas et al., 2008]. Interestingly, neither side of this specific exchange has 
operationalized CSE as a higher-order factor. Although these authors have not done so, other authors have explicitly 
argued that CSE is a higher-order construct that is “formed from the first-order factors” [Wang et al., 2008, p. 7] or 
hinted that a higher-order CSE construct exists. These papers reflect the view that “from a more distant perspective 
… each of the CSE percepts contribute to the formation of a perception of GCSE” [Marakas et al., 1998, p. 152]. 
Although conceptualized as multidimensional, much of the published research continues to operationalize CSE as a 
unidimensional construct. This lack of consistency between conceptualization and operationalization can create 
questions for researchers seeking to understand the implications of complex constructs in applied settings. For 
example, the following quote suggests a weak empirical linkage: “Four factor [model] found a better fit [i.e.,] 
beginning skills, file and s/w skills, advanced skills, & mainframe skills. [These] eight items showed r-squared, 0.50, 
and hinted of a multidimensional factor” [Marakas et al., 1998, p. 140]. To advance the CSE literature, scholars may 
need to revisit the conceptual framework that guides how to analyze and evaluate multidimensional constructs. 

The Trust literature illustrates a second set of differences in how the IS literature theorizes about and operationalizes 
constructs. Since Trust’s introduction to the IS literature, it has been conceived as a higher-order factor [McKnight et 
al., 2002]. While conceived as multidimensional, Trust has been evaluated in many different ways. For example, 
Klein states, “Additionally, trust beliefs constructs, [for the] provider and vendor, are specified as second-order 
formative constructs based on three reflective first-order dimensions [Jarvis et al., 2003], namely, ability, 
benevolence, and integrity” [Klein, 2006, p. 38].  Li et al. operationalized the same scale by, “the mean response for 
each dimension was calculated and then treated as a direct observation, thus the dimensions are listed in Table 2 
instead of the individual items” [Li et al., 2008, p. 53]. Interestingly, Li et al. [2008] argue that, “there has been great 
variation in the operationalization and representation of these trust bases (e.g., one component vs. two components; 
second-order vs. first-order constructs; exclusion of one or more belief dimensions; and so on)” (p. 53). While Li et 
al.’s operationalization is not consistent with Klein’s, they do sound a note of caution about the measurement of 
Trust, arguing that, “given the findings of our study, conclusions relating to the institutional base [of trust] when all 
dimensions are not measured, or the measurement representation is not consistent, may not be reliable” [Li et al., 
2008, p. 53]. CSE and trust are just two of the many possible constructs that have been conceived and 
operationalized differentially. 
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It is important to note that there are many reasons for differences in how researchers conceptualize and 
operationalize multidimensional constructs. For example, differences may exist because the focus of studies may 
differ. In one case, a construct could be correctly operationalized as a first-order factor, whereas in another study it 
may be correctly operationalized as a higher-order factor. Polites and colleagues summarize Mackenzie [2005] by 
arguing that “if a complex concept is the focus of the study, it is generally best to create a measurement model with 
all the critical conceptual distinctions, because it is important to thoroughly test and evaluate the construct. However, 
when such a construct is not central to the research or ‘part of a complex system of relationships being investigated’ 
(p. 715), then it is generally acceptable to substitute a simpler first-order construct, or a second-order construct with 
only a single measure per dimension” [Polites et al., 2012, p. 18]. Also, differences may exist because the research 
context differs. Burton-Jones and Straub [2006] suggest that constructs be operationalized with specific regard to 
the particular hypotheses being tested, and we should be wary of “omnibus” (general purpose) constructs. While 
retaining the conceptual meaning of the construct, they seem to imply that a construct’s operationalization must be 
focused on the specific context, much more than has been the case historically in IS research. Finally, differences 
may exist because, as fields and methods evolve, the best tools and practices available to test sophisticated models 
may differ. For example, it is difficult to integrate first- and second-order models in omnibus tests if one is 
constrained to using regression. Consequently, rather than criticizing prior work, we believe it is important that IS 
researchers direct attention on how to (a) build on extant work using multidimensional constructs and (b) take care 
not to rely on simpler techniques that underutilize or lack the power of more advanced methods found in the 
literature. 

While a recent IS paper has forwarded extensive guidance on how to conceptualize higher-order constructs [Polites 
et al., 2012], we would be remiss if we did not note at least two practical areas tied to multidimensional constructs in 
the IS literature that make a tutorial on the topic necessary. First, some researchers have offered first-order 
formative measures in their initial work on multidimensional constructs. For example, while Sun and Fang [2010] 
define IT mindfulness as being comprised of four dimensions, they suggest measuring each dimension with a single 
item and operationalizing the dimensions as a single construct. Such measurement is problematic, because it may 
oversimplify how we conceptually develop a construct and, therefore, might limit future understanding of how a 
higher-order construct operates within complex nomological networks [Polites et al., 2012]. Second, terms are often 
used inappropriately or inconsistently in research (e.g., a higher-order construct being referred to as reflective, when 
in fact it is superordinate). There is a great deal of research that appears to use the term dimension in different ways 
and represent this term as a first-order construct (see Bhattacherjee’s [2001] description of Continuance, Fichman’s 
[2001] conceptualization of IT-Related Innovation). For this reason, in the next section we will provide a standard set 
of terms that will define the types of multidimensional constructs. 

These examples highlight the need for further understanding of multidimensional constructs and more resources 
regarding the application of that understanding (e.g., tutorials). Such understanding should be applied in conceptual 
development and guide our operationalization of new constructs. This view is consistent with classical and more 
recent research that has reemphasized the need for robust content analysis in construct development processes 
[Campbell and Fiske, 1959; Gefen et al., 2000; Straub et al., 2004; Gefen and Straub, 2005; Lewis et al., 2005; 
MacKenzie et al., 2011]. For example, Lewis et. al. [2005] and McKenzie et. al. [2011] highlight this need in their 
frameworks. In this work, MacKenzie et al. [2011] provide a ten-step overview of scale development which includes 
the major areas of conceptualization, development of measures, model specification, scale evaluation and 
refinement, validation, and norm development. Hence, our discussion turns to providing a concise guide to major 
forms of multidimensional constructs, as well as the operationalization and analysis of such constructs. 

III. TYPES OF MULTIDIMENSIONAL CONSTRUCTS 

Constructs are often conceptualized as multidimensional; yet, they are operationalized as unidimensional [Law et al., 
1998]. Conceptually, a construct is multidimensional when a single theoretical concept refers to “a number of 
interrelated attributes or dimensions and exists in multidimensional domains” [Law et al., 1998, p. 741]. For instance, 
readiness to adopt electronic data interchange technology consists of interrelated dimensions such as financial 
resources, IT sophistication, and trading partner readiness that refer to distinct attributes [Chwelos et al., 2001]. 
Multidimensional constructs are distinguished from interrelated unidimensional constructs by one’s ability to 
conceptualize the distinct dimensions under a “theoretically meaningful and parsimonious” overall abstraction. In the 
following pages, we provide examples of how the major types of multidimensional constructs (i.e., superordinate 
constructs and aggregate constructs) have been used in the IS literature. 

When examining multidimensional constructs, it is important to distinguish between levels of abstraction. At a 
minimum, one must distinguish between the first level of abstraction, which relates distinct indicators to each 
dimension (first-order), and the second level of abstraction, which relates dimensions to the construct (second-order) 
[Edwards, 2001]. At the first-order level of abstraction, one may conceptualize the dimensions as reflective or 
formative (for a review of unidimensional reflective and formative constructs see Petter et al., 2007). Recent 
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literature provides strong evidence that formative indicators may cause stability problems for the construct [Kim et 
al., 2010; Edwards, 2011]; therefore, we caution the use of formative indicators without reviewing the issues and 
concerns. Because past literature has already illustrated, in detail, how to model first-order formative and reflective 
constructs (see Roberts and Thatcher, 2009), we focus on second-order constructs. 

At the second-order level, multidimensional constructs are primarily distinguished by the relationship between the 
construct and its dimensions [Ones and Viswesvaran, 1996; Law and Wong, 1999; Edwards, 2001]. If the 
relationships flow from the construct to its dimensions, the construct is termed superordinate because it represents a 
general concept that occupies the domain of specific dimensions. If the relationships flow from the dimensions to the 
construct, the construct is aggregate because it combines or aggregates specific dimensions into a general concept. 
In either case, effectively measuring a multidimensional construct requires capturing each theoretical dimension. 

It is important to use precise language to identify the relationship between a multidimensional construct and its 
dimensions. Not unlike first-order constructs, one often sees multidimensional constructs called reflective or 
formative. For example, Jarvis et al. identify four types of second-order constructs: (1) first-order reflective—second-
order reflective, (2) first-order reflective—second-order formative, (3) first-order formative—second-order reflective, 
and (4) first-order formative—second-order formative [Jarvis et al., 2003]. However, conceptualizing 
multidimensional constructs as reflective or formative can be problematic, because at the second-order level the 
construct does not exist separately from its dimensions. Where reflective and formative imply causality, i.e., the 
overarching construct creates or is a function of its indicators, a multidimensional construct represents the 
association between a general concept and its dimensions [Law et al., 1998; Wong et al., 2008]. Thus, unlike a 
reflective first-order construct, one cannot drop a dimension of a superordinate second-order construct and retain its 
conceptual meaning. The relationship of causality remains important with multidimensional constructs. However, 
unlike a formative first-order construct, an aggregate second-order construct’s value is conceptualized as either the 
additive or multiplicative value of its dimensions (i.e., all dimensions must be present to estimate its value) [Law et 
al., 1998; Wong et al., 2008]. Hence, the relationship between a multidimensional construct and its dimensions 
should not be confused with causality [MacCallum and Browne, 1993]; rather, it should be conceptualized as 
referring to the association between an overarching idea and its dimensions. In the following sections, we describe 
popular types of multidimensional constructs. Further, although the use of formative indicators is explicitly cautioned 
against [Kim et al., 2010], the use of formative relationships in the scope of construct associations, such as 
multidimensionality, is appropriate [Law et al., 1998; Wong et al., 2008; Kim et al., 2010]. Recent research does 
propose an alternative type of analysis to minimize these effects [Treiblmaier, 2011]. This technique is reviewed later 
in this article. 

Other research has used the molar and molecular terminology to describe higher-order constructs [Chin and Gopal, 
1995]. These terms have roots in psychology [Bagozzi, 1985, 1988], specifically in describing the construct attitude 
where, “a molar attitude is a global or macro presentation of a person’s affective response to an object or actions” 
[Bagozzi, 1985]. A molecular approach to describe attitude is, “each belief represents a separate attitudinal 
dimension, which reflects an existing overall attitude” [Chin and Gopal, 1995]. There are several variations for the 
higher-order terminology throughout the extant literature. For the purposes of our illustrations on the 
conceptualization of higher-order factors, we will define the two type of higher-order constructs as superordinate and 
aggregate. This follows contemporary thought [Bollen and Lennox, 1991; Edwards, 2001, 2009]. 

Superordinate Construct 

A superordinate construct is a general concept that is manifested in its dimensions. Not unlike indicators of a first-
order reflective construct, a superordinate construct’s dimensions are expected to covary [Bollen and Lennox, 1991]. 
Yet, whereas reflective measures are observed variables, the dimensions of a superordinate construct are 
themselves constructs that function as specific manifestations of a more general construct. This is an important 
distinction from a unidimensional reflective construct, where one may use indicators interchangeably to capture the 
construct’s domain space. For example, IT relatedness is defined as the extent to which a multi-business firm uses 
common IT resources and common IT management processes across its business units [Tanriverdi, 2006]. 
Resource complementarity is a major aspect of IT relatedness. These resources are distinct, yet they are also 
interdependent. Moreover, they mutually support and reinforce each other. Following this, IT relatedness is 
conceptualized as a superordinate construct with four dimensions: IT Strategy Making, IT Vendor Management, IT 
HR Management, and IT Infrastructure. If one dimension is absent from IT relatedness, then it does not capture the 
overarching meaning of the superordinate construct (i.e., insufficient content validity). Hence, the domain space of IT 
relatedness may be represented as comprised of its dimensions (see Figure 1). 
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Management

 
Figure 1. Domain Space of IT Relatedness 

In some research, superordinate constructs have been operationalized by summing the factor scores of their first-
order dimensions [Edwards, 2001]. However, this approach ignores measurement error and fails to capture 
differences in the relationships between the construct and its dimensions. To remedy these problems, 
methodologists initially recommended modeling the superordinate construct as a first-order factor (i.e., simply using 
dimensions as observed variables or indicators of the overarching construct) [Hanisch and Hulin, 1991]. However, 
this approach is problematic for two reasons: (1) it confounds random measurement error with dimension specificity, 
and (2) it disregards the relationships between each dimension and its measures. As a result, this approach 
introduces additional sources of error into estimating a structural model. Contemporary methodologists suggest 
modeling multidimensional constructs as second-order factor models. To do so, one models the superordinate 
construct as a second-order factor, its dimensions as first-order factors, and measures of the dimensions as 
observed variables [Hunter and Gerbing, 1982; Bagozzi and Edwards, 1998]. Figure 2 uses IT relatedness, a 
superordinate construct with four underlying dimensions, to illustrate the contemporary approach. 
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Figure 2. IT Relatedness as Superordinate Construct 

Aggregate Construct 

In contrast to a superordinate construct, an aggregate construct is a composite of its dimensions, meaning the 
dimensions combine to produce the construct. The dimensions of an aggregate construct are similar to formative 
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measures in that the dimensions do not necessarily covary [Bollen and Lennox, 1991]. Formative measures are 
observed variables; the dimensions of an aggregate construct are themselves constructs conceptualized as specific 
components of the general construct they collectively constitute. For example, supply chain process integration is 
defined as the degree to which a firm has integrated the flow of information, materials, and finances with its supply 
chain partners [Rai et al., 2006]. Following this, supply chain process integration is conceptualized as an aggregate 
construct with three dimensions: information flow integration, physical flow integration, and financial flow integration. 
The domain space of supply chain integration may look something like Figure 3. 

Information Flow 
Integration

Physical Flow 
Integration

Financial Flow 
Integration

 

Figure 3. Domain Space of Supply Chain Integration 

Aggregate constructs are usually operationalized by summing the scores of their first-order factors, such that the 
factors (i.e., dimensions) are assigned equal weight. In some cases, dimensions are assigned empirically derived 
weights obtained from principal components analysis or other types of exploratory factor analysis, which calculate 
weights based on correlations among the dimensions [Harman, 1976]. In other instances, dimension weights are 
determined by specifying the dimensions as formative indicators of the construct in a structural equation model 
[Bollen and Lennox, 1991]. To identify the structural model, the second-order construct must be specified as a direct 
or indirect cause of at least two observed variables [MacCallum and Browne, 1993]. Thus, the dimension weights 
are influenced not only by the correlations among the dimensions, but also by the relationships between the 
dimensions and the variables caused by the construct [Howell et al., 2007]. A residual term may be added to the 
model, such that the construct becomes a weighted composite of its dimensions plus random error and other 
unspecified variables [Bollen and Lennox, 1991]. Each of these approaches treats the dimensions of the aggregate 
construct as observed variables, thereby ignoring error in the dimension measures. This is done by specifying the 
dimensions as latent variables and their measures as manifest variables (i.e., a second-order factor model), as 
depicted in Figure 4 (an aggregate construct with three underlying dimensions). 
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Figure 4. Supply Chain Process Integration as Aggregate Construct 

Other Types of Multidimensional Constructs 

Although most multidimensional constructs are either superordinate or aggregate [Law et al., 1998; Edwards, 2001], 
other types of multidimensional constructs exist. Some multidimensional constructs exist at the same level as their 
dimensions but are not defined as algebraic functions of their dimensions. This alternative approach to 
multidimensional conceptualization recognizes that multiple dimensions collectively provide insight into the global 
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construct, but are distinct enough to comprise individual constructs. In this approach, the multidimensional construct 
is modeled as a multivariate structural model where the dimensions are treated as separate yet related constructs. 
For example, Karahanna et al. [2006] employ a multivariate structural model to conceptualize and test compatibility 
in technology as an “overarching” multidimensional construct with distinct yet related dimensions (compatibility with 
preferred work style, existing work practices, prior experience, and values). This alternative approach acknowledges 
that not all multidimensional constructs have dimensions that would be positively correlated in all instances (i.e., 
superordinate construct), yet they may also not have dimensions that algebraically combine to form a 
multidimensional construct (i.e., aggregate construct). 

Multidimensional constructs may also be derived from specific levels of their various dimensions. Also known as 
profile constructs [Becker and Billings, 1993], the dimensions of these multidimensional constructs cannot be 
combined algebraically. As a result, researchers usually identify various levels of their dimensions and interpret the 
construct by profiling the levels [Law et al., 1998]. For example, organizational environment has been 
conceptualized as a two-dimensional construct; specifically, the simple-complex and the static-dynamic dimensions 
[Duncan, 1972]. These two dimensions are combined to create four profiles of organizational environment. In turn, 
these profiles are theorized to have different impacts on various organizational structures and processes [Duncan, 
1972]. 

Some multidimensional constructs combine features of superordinate and aggregate constructs. For example, a 
multidimensional construct may consist of both reflective and formative dimensions, similar to multiple indicator / 
multiple cause models in structural equation modeling [Joreskog and Goldberger, 1975]. Other multidimensional 
constructs have nonlinear relationships with their dimensions. For example, business–IT alignment has been defined 
as the absolute or squared difference between business strategy and IT strategy constructs [Chan et al., 1997]. 
While theoretically possible, these constructs appear infrequently in all literatures because of issues related to 
identifying the model or practical issues—i.e., statistical tools do not readily permit running such models 
[Diamantopoulos and Winklhofer, 2001; Jarvis et al., 2003; Wetzels et al., 2009]. For a complete review of these 
types of constructs, see Jarvis et al. [2003] and Diamantopoulos et al. [2008]. As a result, we focus on superordinate 
and aggregate constructs because they are prevalent in IS research and “provide a foundation for understanding 
other multidimensional constructs that relate to their dimensions in more complex ways” [Edwards, 2001, p. 148]. 
Table 1 presents a representative sample of IS studies that have conceptualized different forms of multidimensional 
constructs. 

 

Table 1: Illustrative Multidimensional Constructs in IS Research 
Construct Construct Type Dimensions Reference 
Cognitive Absorption Superordinate  Temporal Dissociation 

 Focused Immersion 
 Heightened Enjoyment 
 Control 
 Curiosity 

Agarwal and 
Karahanna, 
2000 

E-Commerce 
Capability 

Superordinate  Information 
 Transaction 
 Customization 
 Back-end Integration 

Zhu, 2004 

IT Relatedness Superordinate  IT Strategy Making 
 IT Vendor Management 
 IT Human Resource Management 
 IT Infrastructure 

Tanriverdi, 2006 

Knowledge Process 
Capability 

Aggregate  Acquisition 
 Conversion 
 Application 
 Protection 

Gold et al., 2001 

Mimetic Pressures Aggregate  Extent of Adoption Among Competitors 
 Perceived Success of Competitor Adopters 

Teo et al., 2003 

Supply Chain Process 
Integration Capability 

Aggregate  Information Flow Integration 
 Physical Flow Integration 
 Financial Flow Integration 

Rai et al., 2006 
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IV. GUIDELINES FOR SPECIFYING AND ANALYZING MULTIDIMENSIONAL CONSTRUCTS 

Tables 2 and 3 provide summaries of the process to follow when running analysis using covariance-based and 
component-based approaches to estimate models incorporating multidimensional constructs. For testing validity of 
models Chin suggests, “Tests of validity for a second order model should, by analogy, follow the same process that  
is used to examine the validity of first order models” [Chin, 2010]. To this end, Wetzels et al. [2009] provide a clear 
path for reflective indicators in determining discriminant and convergent validity for higher order constructs. To test 
for validity in formative indicators (see Roberts and Thatcher, 2009), who provide a three-step guideline. The steps 
for model estimation below assume the use of Chin [2010], Wetzels et al. [2009], or Roberts and Thatcher [2009] to 
determine that the test for discriminant and convergent validity of the higher order constructs with either formative or 
reflective indicators. 

There are two methods for specifying higher-order constructs in PLS. One is the block method, where first-order 
variables are constructed. Then the second-order variable can be constructed by also relating the same items in the 
underlying first-order items. This method was based on the work of Wold [Lohmöller, 1989] and is outlined by 
Wetzels et al. [2009] in detail. “This procedure works best with equal number of indicators for each construct” [Chin 
2010, p. 665]. We present an alternative method for operationalizing high-order factors in SEM that can be used 
generally for a variety of situations in PLS (e.g., different number of indicators) and in covariance-based SEM. We 
offer a step-by-step tutorial using screenshots from both SmartPLS and EQS in the Appendices. Also, we have 
made the data for this tutorial available at www.usf-research.org/CAIS-Wright. 

Table 2: Process Steps for Covariance-Based Model Estimation 

Step 1 Step 2 Step 3 Step 4 Step 5 
Run Model 1: First-
order Factor Model 

Run Model 2: Freely 
Correlated first-order 
Factors 

Run Model 3: Tests 
of Discriminant 
Validity 

(a) Run Model 4: 
Parallel Model 

(b) Run Model 5: 
Tau Equivalent 
Model 

(c) Run Model 6: 
Congeneric 
Model 

Run Full Structural 
Model 

Evaluate Fit 
Statistics:  
Fit should be poor 

(a) Evaluate Fit 
Statistics: 
Improved Fit 
over Model 1 
supports 
dimensionality 

(b) Evaluate Factor 
Loadings: 
Significant 
loadings support 
convergent 
validity 

(a) Run two freely-
correlated 
factors then 
constrain the 
correlation 

(b) Evaluate Fit 
Statistics: 
Significant X2 
change supports 
discriminant 
validity 

(c) Repeat for each 
pair of first-order 
factors 

Compare Models 4, 
5, and 6 to select the 
best fitting model. 

 

 
Table 3: Process Steps for Component-Based Model Estimation 

(1) Run first-order 
Measurement Model 

(2) Evaluate Reliability 
using Internal 
Composite Reliability 

(3) Evaluate Convergent 
Validity using Average 
Variance Extracted 

(4) Evaluate Discriminant 
Validity using 
Construct Correlations 
and Item Loadings 

(5) Create a new data file 
with the latent 
variable scores 

(6) Construct second-
order factor with the 
latent variable scores 
as indicators 

(7) Run Full Structural 
Model 

(8) Evaluate Structural 
Model Results 

 
Note that these process maps focus on the steps of model specification, estimation, and analysis in scale 
development. These maps assume that the steps of conceptualization, item generation, content validity, and scale 
purification have already been conducted [Gefen et al., 2000, 2011; MacKenzie et al., 2011]. We highly recommend 
Appendix A in MacKenzie et al. [2011] for recommendations on scale purification and refinement in the case of 
multidimensional scales. Before illustrating the steps proposed in Tables 2 and 3 in an example, we believe it would 

http://www.usf-research.org/CAIS-Wright
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be useful for researchers to consider the following guidelines as they approach data analysis. These guidelines are 
focused on second-order constructs, not levels of abstraction higher. By doing so, problems in reporting or 
estimating models incorporating multidimensional constructs may be avoided. 

General Guidelines 

The following guidelines represent suggestions one should consider when using either covariance- or component–
based SEM techniques. 

General Guideline 1: Researchers should take care to follow generally accepted procedures for scale development 
and validation. 

There have been and undoubtedly will continue to be research in the area of psychometric evaluation of scales. 
Here we highlight a few of these accepted practices as pertains to multidimensional constructs. 

First, researchers must outline the conceptualization and construct definition clearly [Gefen and Straub, 2005; Gefen 
et al., 2011]. This entails identifying all relevant dimensions, aggregate vs. superordinate conceptualization at both 
the first and second-order, and relevant relationships and distinctions with other constructs. Poorly conceptualized 
constructs or ill-defined constructs will always lead to problems of operationalization and specification. 

Second, one should avoid under-identifying a model with one or more multidimensional constructs. Since they have 
the same basic structure, aggregate cause models and superordinate effect models raise similar identification issues 
[Edwards, 2001]. For both types of models, the multidimensional construct must have paths leading to at least two 
endogenous variables [MacCallum and Browne, 1993]. This condition is satisfied if a superordinate effect has at 
least two dimensions or an aggregate cause has at least two effects. This is an application of a procedure called a 
MIMIC (multiple indicators, multiple causes) model structure for multidimensional constructs that has been widely 
proposed (see MacKenzie et al., 2011) for details on first-order operationalization). 

Third, researchers should use caution when modeling aggregate constructs. Research has shown instability in 
model estimation depending on endogenous variables used in first-order formative constructs [Kim et al., 2010]. 
Similar instability is expected with aggregate constructs. Therefore, researchers should use caution in their claims 
when endogenous variables are needed to estimate downstream model characteristics. 

Finally, we would like to highlight that while theory should drive the decision to model a construct as 
multidimensional, covariance-based SEM analysis should include multiple criterion that compares first and second-
order models. In our example application, we identify five criterion employed in prior IS research that help to 
evaluate whether a construct is multidimensional. With the exception of the goodness of fit, the criteria related to 
construct correlations, second-order loadings, target T-statistics, and structural relationships constitute a useful set 
of heuristics for authors and reviewers to employ when assessing the appropriateness of modeling multidimensional 
constructs. 

General Guideline 2: When modeling aggregate constructs, researchers should be aware of the strengths and 
weaknesses of various methods of analyses. 

When using covariance-based SEM incorporating an aggregate construct as a cause in a causal model, one must 
take into account model identification issues [Kim et al., 2010]. Specifically, the aggregate construct (modeled as a 
cause) must have paths leading to at least two endogenous variables [MacCallum and Browne, 1993]. However, 
recent research has provided an alternative to the multiple indicator multiple causes (MIMIC) method to analyzing 
formative and aggregate constructs. This method divides indicators into separate composites and models a 
formative dimension as an aggregate construct with reflective first-order factors [Treiblmaier, 2011]. This removes 
the identity problem associated with the MIMIC method. MIMIC (multiple indicators and multiple causes analysis) is 
a less common method of examining invariance in multiple groups [Brown, 2006]. To estimate a model including 
aggregate constructs in component-based SEM, researchers should model the relationship arrows as going from the 
first-order dimensions to the second-order construct (i.e., in a manner similar to modeling formative constructs). 
Understanding which of these analyses is most appropriate for the circumstances is the researcher’s responsibility. 

General Guideline 3: When possible, researchers should assess the validity of multidimensional constructs using 
theorized antecedents or consequences in the nomological network. 

This guideline is most applicable in the pretesting stages of scale purification and refinement. MacKenzie et al. 
[2011] illustrate four types of relationships multidimensional constructs which can be used to guide validity (see pp. 
322–323). In sum, by testing the direct relationship of the dimensions with their antecedents or consequences, 
depending on the type of relationship, the relevance of the dimensions can be inferred. 
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Covariance-Based SEM Guidelines 

The following guidelines represent suggestions when executing covariance-based structural equation models. 

Covariance-based SEM Guideline 1: Researchers should set a scale for the multidimensional construct by fixing its 
variance to 1.0. 

To conduct statistical tests involving the multidimensional construct, one must obtain standard errors for paths 
leading to and from the construct, and these standard errors cannot be calculated for fixed paths [Bollen, 1989]. 
Hence, it is preferable to set the scale of the multidimensional construct by fixing its variance [Edwards, 2001]. This 
avoids setting the metric of the construct to a single item, which has been shown to create problems of validity [Kim 
et al., 2010]. 

Covariance-based SEM Guideline 2: Researchers should assess model fit in conjunction with comparisons of 
alternative models. 

Although this guideline is not specific to multidimensional constructs, its relevance is accentuated in these cases. 
Model fit should be assessed using indices recommended in the SEM literature, such as the comparative fit index 
(CFI) and the root mean square error of approximation (RMSEA) [Bentler, 1990; Boomsma, 2000; Gefen et al., 
2000]. Assessments of model fit should be supplemented by comparisons with alternative models [Anderson and 
Gerbing, 1988]. For a superordinate construct, the parallel, tau equivalent, and congeneric models may be 
compared with one another. For an aggregate construct, models with equal or principal component dimension 
loadings may be compared with models that freely estimate these loadings. 

Component-based SEM Guideline: Researchers should assess the first-order measurement model separately from 
the second-order structural model. 

When reporting the results of a superordinate multidimensional construct, researchers should take care to follow 
guidelines for establishing convergent and discriminant validity identified in Straub et al. [2004]. In assessing an 
aggregate multidimensional construct, researchers should take care to follow guidelines offered by Roberts and 
Thatcher [2009]. When assessing the second-order structural model, researchers should adhere to heuristics 
provided by Gefen et al. [2000]. 

V. AN APPLICATION OF THE GUIDELINES FOR EVALUATING MULTIDIMENSIONAL 
CONSTRUCTS 

In this section, we step through two different scenarios of how to empirically test multidimensional constructs within 
an SEM model based on the guidelines provided above. We use cognitive absorption (CA), a superordinate 
multidimensional construct, to illustrate how to execute a model utilizing EQS, a covariance-based SEM (CB-SEM) 
software application. Next, we again use CA but this time utilizing SmartPLS, a component-based software 
application. In order to choose the appropriate technique, review Gefen et al., 2000, 2011. First, we will explain the 
details of the research model, which is common for both techniques. 

The Referent Study 

CA refers to a state of deep involvement with software that influences two critical beliefs about technology use: 
perceived usefulness and perceived ease of use [Agarwal and Karahanna, 2000]. CA is comprised of five 
dimensions: temporal dissociation, focused immersion, heightened enjoyment, control, and curiosity. Figure 5 
depicts our research model. In the following section, we describe our research design, study context, and construct 
measures. This is followed by data analysis with both covariance-based and component-based SEM for a 
superordinate construct. Finally, we compare the results of our analyses, propose guidelines in the use of these 
analyses, and elaborate on the modeling of aggregate constructs. 

We used a research design similar to that of Agarwal and Karahanna [2000] to estimate and evalute the original CA 
model. We collected data from student subjects enrolled at a large state university. Given the nature of the sample, 
we chose Internet Applications as the target technology. Internet Applications consist of the World Wide Web, E-
mail, and Instant Messenger. Students were instructed to respond to the survey as candidly as possible, that there 
were no right or wrong answers, and that we were primarily interested in their use of Internet Applications. 

A total of 318 surveys were returned. Approximately 10 percent of our data was missing. We performed Little’s 
MCAR test [Little and Rubin, 1987] and found that these values were missing completely at random (p > .05). This 
test suggested that the missing values were not based on a hidden systematic pattern. Thus, any imputation method 
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Figure 5. Research Model 

 
could be applied to replace them [Hair et al., 1998]. We imputed missing data using the direct maximum likelihood 
imputation method in EQS 6.1 [Byrne, 2006]. Direct ML imputation methods have been found to be more favorable 
and robust than traditional methods of handling missing data, such as listwise or pairwise deletion [Allison, 2003]. 
Our final data set included 318 respondents. 

Construct measures were adapted from previously validated multi-item scales (see Appendix D). Behavioral 
intention to use Internet Applications was measured using a three-item scale adapted from Davis et al. [1989]. 
Indicators for perceived usefulness and perceived ease of use were based on Davis [1989]. Finally, cognitive 
absorption was measured using the full twenty-item scale adapted from Agarwal and Karahanna [2000]. 

Data Analysis Using Covariance-Based SEM 

We used EQS 6.1 to analyze our data with covariance-based SEM. The step-by-step instructions for utilizing EQS 
can be found in Appendix A. The EQS code used in this example can be found in Appendix B. To determine support 
that CA is a multidimensional construct, we statistically compare the fit of two distinct conceptualizations of the 
construct. The first model depicts CA as a single first-order factor. The second model depicts CA as a 
multidimensional second-order construct. 

Next we execute Model 1 and Model 2 to address General Guideline 1: Researchers should take care to follow 
generally accepted procedures for scale development and validation. 

Model 1: First-Order Factor Model 
Our first measurement model tests for the multidimensionality of cognitive absorption. Specifically, we hypothesize 
that a unidimensional first-order factor model accounts for the variance among all twenty indicators (see Figure 6).To 
assign a measurement scale to each factor, we must fix a single indicator path for each factor to be 1.0 [Kline, 
2005]. We note that a traditional assumption in covariance-based SEM is that the relationship between the observed 
variables and their constructs and between one construct and another is linear [Gefen et al., 2000; Qureshi and 
Compeau, 2009]. Additionally, EQS 6.1 provides statistics (e.g., model fit, parameter estimates) which are robust to 
non-normality [Byrne, 2006]. Please note that WarpPLS is a component-based approach that provides estimates 
using the assumption that constructs are nonlinearly related. Bentler [2005] suggests that kurtosis (absolute) values 
greater than 5.00 are indicative of data that are non-normally distributed. The normalized estimate in our data 
(64.62) exceeds the recommended cutoff values, thereby suggesting that the data is not normally distributed. 
Therefore, we use the Satorra-Bentler scaled χ2 statistic [Satorra and Bentler, 1988], as well as robust fit estimates 
used in prior IS research [Swanson and Dans, 2000], which are reported to be highly reliable for estimation 
purposes [Hu et al., 1992]. 

Our confirmatory factor analysis provides evidence of poor model fit (χ2 = 1738.32, d.f. = 170; CFI = 0.55; RMSEA = 
0.171). The poor model fit suggests that the indicators do not load on a single factor. We compare these model fit 
indices with a multidimensional model in the next section. 
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Model 2: Dimensionality and Convergent Validity 
In the second model, we respecify the model to represent first-order factors for each dimension of cognitive 
absorption. We aim to provide evidence of multidimensionality and convergent validity. Specifically, in this model we 
hypothesize that the twenty indicators indicate five freely correlated first-order factors (see Figure 6). Comparison of 
Model 1 (χ2 = 1738.32, d.f. = 170; CFI = 0.55; RMSEA = 0.171) and Model 2 (χ2 = 418.06, d.f. = 160; CFI = 0.93; 
RMSEA = 0.071) shows that Model 2 is a better-fitting model (lower chi-square for the same degrees of freedom and 
improved fit indices), showing that a multidimensional model comprised of five freely correlated first-order factors is 
superior to a unidimensional first-order factor model. Thus, we obtain support for the multidimensionality of cognitive 
absorption. Furthermore, standardized factor loadings of indicators on their respective factors are all highly 
significant (p < 0.001), providing support for convergent validity. We recognize that the standardized loadings are 
below a widely accepted threshold of .70. Considering the use of established measures, and the result that these 
loadings remain significant [Tippins and Sohi, 2003], we continued the analysis to demonstrate the proposed method 
for modeling multidimensional constructs. 

 

Figure 6. Modeling Cognitive Absorption as a Unidimensional Factor 

Model 3 addresses Covariance-based SEM Guideline 1: Researchers should set a scale for the multidimensional 
construct by fixing its variance to 1.0. 

Model 3: Discriminant Validity 
In the third model, we establish that each first-order factor is discriminant from the other first-order factors. We do 
this by creating a model with just two first-order factors. First, we run a confirmatory factor analysis (CFA) with a pair 
of factors allowed to freely covary. Next, we constrain the covariance to 1.0. We then evaluate the change in χ2 

across the models. If constraining the covariance to 1.0 significantly hampers the χ2 statistic, then we have evidence 
of discriminant validity [Venkatraman, 1989]. In other words, the two first-order factors represent two distinctly 
different factors and do not perfectly covary. However, if constraining the covariance does not significantly hamper 
model fit, then the two first-order factors may not be significantly different. To provide evidence of discriminant 
validity among all factors, we repeat this process for each pair of factors. The results are summarized in Table 4. In 
order to move forward, we will assume that the scales have been vetted in accordance to General Guideline 1: 
Researchers should assess the validity of multidimensional constructs using theorized antecedents or 
consequences in the nomological network. 

Then, the final two models enable us to follow Covariance-based SEM Guideline 2: Researchers should assess 
model fit in conjunction with comparisons of alternative models. 
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Model 4: Parallel Model 
The remainder of our covariance-based models includes a second-order factor. Edwards [2001] suggests that three 
alternative models (parallel, tau equivalent, and congeneric) should be tested when modeling a superordinate 
second-order factor. Table 5 describes and defines these measurement models and guidelines for their assessment. 
Using the three alternative models is common in psychology [Kline, 2005; Brown, 2006] when one needs to identify 
the path model (parallel) and measure internal consistency (tau-equivalent) and reliability (congeneric) in longitudinal 
and higher-order models. By starting with a model that restricts loadings and variances, we are able to determine the 
item scores given that the true score is the same for all items. A parallel model is the most restrictive; specifically, 
the dimensions are treated as parallel, meaning they have equal loadings and equal residual variances. Parallel 
models are used to identify the SEM path diagrams [Graham, 2006]. A tau equivalent model is less restrictive in that 
it models dimensions with equal loadings yet different residual variances. The tau equivalent measurement model is 
commonly used to measure internal consistency. Finally, the least restrictive model treats the dimensions as 
congeneric, meaning their loadings and residual variances are allowed to freely vary. This model is most generally 
used for reliability estimates [Graham, 2006]. 
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Figure 7. Standardized Solution for Model 2 
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 Table 4: Assessment of Discriminant Validity* 

Dimensions Unconstrained Model χ2 (df) Constrained Model χ2 (df) Δ χ2* 
Temporal Dissociation with 
Focused Immersion 286.37 (34) 305.32 (35) 18.95 
Heightened Enjoyment 272.52 (26) 279.38 (27) 6.86 
Control 219.72 (19) 233.05 (20) 13.33 
Curiosity 222.28 (19) 253.74 (20) 31.46 
Perceived Ease of Use 238.05 (26) 260.07 (27) 22.02 
Perceived Usefulness 217.98 (26) 261.62 (27) 43.64 
Intention to Use 243.49 (19) 253.91 (20) 10.42 
Focused Immersion with 
Heightened Enjoyment 118.24 (26) 141.76 (27) 23.52 
Control 100.93 (19) 124.63 (20) 23.70 
Curiosity 85.10 (19) 112.68 (21) 27.58 
Perceived Ease of Use 71.93 (26) 106.79 (27) 34.86 
Perceived Usefulness 81.09 (26) 109.68 (27) 28.59 
Intention to Use 79.43 (19) 124.20 (20) 44.77 
Heightened Enjoyment with 
Control 129.22 (13) 141.84 (14) 12.62 
Curiosity 28.79 (13) 40.12 (14) 11.33 
Perceived Ease of Use 42.12 (19) 72.28 (20) 30.16 
Perceived Usefulness 54.18 (19) 73.28 (20) 19.10 
Intention to Use 43.16 (13) 69.34 (14) 26.18 
Control with 
Curiosity 35.98 (8) 51.84 (9) 15.86 
Perceived Ease of Use 38.20 (13) 45.54 (14) 7.34 
Perceived Usefulness 38.29 (13) 48.11 (14) 9.82 
Intention to Use 27.91 (8) 42.23 (9) 14.32 
Curiosity with    
Perceived Ease of Use 26.61 (13) 68.50 (14) 41.89 
Perceived Usefulness 25.27 (13) 53.29 (14) 28.02 
Intention to Use 5.80 (8) 57.13 (9) 51.33 
Perceived Ease of Use with 
Perceived Usefulness 64.52 (19) 71.89 (20) 7.37 
Intention to Use 26.13 (13) 44.26 (14) 18.13 
Perceived Usefulness with 
Intention to Use 58.26 (13) 66.81 (14) 8.55 
* All change in χ2 are significant at p < .01 

 
We test the parallel model first. The parallel model is a superordinate model (see Figure 8) which constrains the 
factor loadings and residual variances to be equal. The parallel model suggests that each first-order factor equally 
represents the superordinate (second-order) construct, so that changes in the superordinate construct result in equal 
changes among all first-order dimensions [Edwards, 2001]. Also, the parallel model assumes that each first-order 
construct is of equal accuracy in representing the superordinate construct. 

Figure 8 depicts our initial second-order model. Our confirmatory factor analysis provides evidence of acceptable 
model fit (χ2 = 483.48, d.f. = 173; CFI = 0.91; RMSEA = 0.075, 90% C.I. = 0.067, 0.083). We compare results from 
the parallel model to the tau equivalent and congeneric models to understand the relative accuracy and equality of 
each first-order factor. 

Model 5: Tau Equivalent 
The tau equivalent model is less restrictive than the parallel model. The tau equivalent model constrains the factor 
loadings to be equal, but allows the residual variances to freely vary. This model suggests that the first-order factors 
represent the superordinate construct equally such that changes in the superordinate construct result in equal 
changes among first-order factors. However, since the residual variances are allowed to freely vary, the first-order 
factors represent the superordinate construct with varying levels of appropriateness. Our confirmatory factor analysis 
provides evidence of good model fit (χ2 = 449.99, d.f. = 169; CFI = 0.92; RMSEA = 0.072, 90% C.I. = 0.064, 0.080). 
We compare these results to the parallel and congeneric models. 
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Table 5: Measurement Models 

Model Description Assessment  
First-order Factor 
Model  
(Model 1) 

The first-order factor is a 
baseline model, which 
suggests that the indicators 
represent a single factor. 

If fit statistics are good, the construct may not be 
accurately modeled as multidimensional. 

If fit statistics are poor, the fit may improve when 
the construct is modeled as multidimensional. 

Freely correlated 
first-order Factors 
Model  
(Model 2) 

This model accounts for 
potential multidimensionality in 
the construct. 

Significant indicator loadings 
support convergent validity. 

Poor fit may suggest little support for 
multidimensionality. 

Indicators that are not significant may not be 
converging on the factor. 

Tests of Discriminant 
Validity  
(Model 3) 

By comparing constrained and 
freely-correlated pairs of 
factors, this set of tests 
identifies whether factors are 
distinct from each other. 

Significant χ2 change supports discriminant validity. 

Non-significant χ2 change suggests the two first-
order factors may not be significantly distinct from 
each other. 

Parallel Model  
(Model 4) 

The parallel model assumes 
that the first-order dimensions 
are equal representations of 
the superordinate construct, 
and are also all equally reliable 
representations. 

Poor fit suggests that the first-order dimensions 
may not be equal representations of the 
superordinate construct, may not be equally 
reliable representations, or may not be well-
modeled as a superordinate construct. 

Tau Equivalent Model 
(Model 5) 

The tau equivalent model 
assumes that the first-order 
dimensions are equal 
representations of the 
superordinate construct, but 
are not all equally reliable 
representations: some 
dimensions are more accurate 
representations than others. 

Poor fit suggests that the first-order dimensions 
may not be equal representations of the 
superordinate construct, or may not be well-
modeled as a superordinate construct. 

Congeneric Model 
(Model 6) 

The congeneric model 
assumes that the first-order 
dimensions are not equal 
representations of the 
superordinate construct and 
are not equally reliable 
representations. 

Poor fit suggests that the construct may not be 
well-modeled as a superordinate construct. 

Model 6: Congeneric Model 
The congeneric model is the same as the parallel and tau equivalent models with one exception: all constraints are 
removed. We simply build and run the superordinate model without any constraints imposed. Moreover, the 
congeneric model represents a standard second-order factor model [Rindskopf and Rose, 1988]. Our confirmatory 
factor analysis for the congeneric model provides evidence of good model fit (χ2 = 434.77, d.f. = 165; CFI = 0.92; 
RMSEA = 0.072, 90% C.I. = 0.064, 0.080). We compare model fit indices for the parallel, tau equivalent and 
congeneric models in Table 6. 

The parallel, tau equivalent and congeneric models are nested models; thus, we can compare them using χ2 
difference tests. First, the difference between the parallel and tau equivalent model (Δχ2 = 33.49, d.f. = 4, p < .01) 
suggests that the first-order factors vary in quality as representations of the superordinate construct. Second, the 
difference between the tau equivalent and congeneric model (Δχ2 = 15.22, d.f. = 4, p < .01) suggests that the first-
order factors are influenced in a differential manner by the superordinate construct. Therefore, we conclude that the 
congeneric model is the most accurate representation of the superordinate construct cognitive absorption. 
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Figure 8. Initial Parallel Model 

 
Table 6: Superordinate Models for Cognitive Absorption 

 Χ2 d.f. CFI RMSEA RMSEA 90% C.I. 
Parallel Model 483.48 173 0.91 0.075 0.067, 0.083 
Tau Equivalent Model 449.99 169 0.92 0.072 0.064, 0.080 
Congeneric Model 434.77 165 0.92 0.072 0.064, 0.080 

Structural Model 

Having assessed the dimensionality, convergent validity, and discriminant validity of our superordinate construct, we 
can proceed to an analysis of the structural model that integrates measurement and structural relationships 
suggested by Agarwal and Karahanna [2000]. Figure 9 depicts our structural model. 

Since the normalized estimate of Mardia’s coefficient in our data (89.56) exceeds the recommended cutoff values, 
we assume that our data is not normally distributed. Therefore, we use the robust statistics, which are designed to 
be used for non-normal data. Covariance-based SEM is not robust to high levels of multivariate kurtosis or non-
normality [West et al., 1995; Curran et al., 1996; Bentler, 2005; Byrne, 2006]. Unfortunately, data collected via 
survey instruments assessing the same stimuli commonly have high levels of multivariate kurtosis. This sample 
proved to be no exception. Evaluation using the Chi-square (χ2) statistic (or variants of the χ2 statistic) may not be 
adequate under these conditions [Hu et al., 1992]. Therefore, corrected fit statistics have been found to be more 
appropriate [Hu et al., 1992]. Satorra and Bentler [1988] developed a scaling correction for the χ2 statistic which has 
been shown to be most reliable [Satorra and Bentler, 1988; Hu et al., 1992]. This article evaluates a model’s fit 
based on the Satorra-Bentler scaled (S-B χ2) fit indices. 
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Figure 9. Structural Model 

The structural model exhibits good model fit (χ2 = 866.94, d.f. = 424; CFI = 0.93; RMSEA = 0.057, 90% C.I. = 0.052, 
0.063). Robust parameter estimates for the structural paths are also reported here. Our results suggest that 
cognitive absorption is positively related to perceived usefulness (β = 0.44, p < .001) and perceived ease of use (β = 
0.65, p < .001). Perceived ease of use is positively related to perceived usefulness (β = .42, p < .001) and intention 
to use (β = 0.21, p < .01). Finally, perceived usefulness is positively related to intention to use (β = .49, p < .001). 
The model explains 61.3 percent of the variance in perceived usefulness, 42.7 percent of the variance in perceived 
ease of use, and 43.0 percent of the variance in intention to use. Table 7 provides inter-construct correlations and 
reliability estimates. In the next section, we use component-based SEM to test the same research model. 

Table 7: Inter-Construct Correlations and Reliability Estimates 

Construct* 
Composite 
Reliabilities 

Cronbach’s 
alpha 1 2 3 4 5 6 7 8 9 

(1) Temporal Dissociation 0.96 .95          
(2) Focused Immersion 0.87 .81 .44         
(3) Heightened Enjoyment 0.90 .84 .59 .55        
(4) Control 0.82 .65 .51 .47 .63       
(5) Curiosity 0.97 .95 .46 .42 .57 .49      
(6) Cognitive Absorption 0.89 - .69 .64 .86 .74 .67     
(7) Perceived Usefulness 0.93 .94 .49 .46 .61 .53 .47 .72    
(8) Perceived Ease of Use 0.96 .90 .45 .42 .56 .48 .44 .65 .70   
(9) Intention to Use 0.98 .97 .34 .31 .42 .36 .32 .49 .64 .56  

Appropriateness of Second-Order Model 

To assess the appropriateness of our second-order model, we used five criteria to compare first-order and second-
order factor models: (1) inter-construct correlations at the first-order level; (2) goodness of fit statistics for the two 
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models; (3) significance of the second-order factor loadings; (4) target coefficient (T) statistics; (5) significance of the 
structural relationships that connect measurement models to a criterion variable of interest; and (6) the theoretical 
support for the conceptualization of the construct. We illustrate the application of these criteria as follows. 

1. Construct correlations—We first ensured that the first-order factors for cognitive absorption are significantly 
correlated and of moderate to high magnitude [Segars, 1997]. We find the correlations within cognitive 
absorption (r = .42 to .63; see Table 7) are all statistically significant at p < 0.01 and of moderate to high 
magnitude. 

2. Goodness of Fit—Model statistics of the first-order factor model (χ2 = 418.06, d.f. = 160; CFI = 0.93; RMSEA 
= 0.071) and the second-order factor model (χ2 = 434.77, d.f. = 165; CFI = 0.92; RMSEA = 0.072) both meet 
acceptable thresholds. The second-order factor model should be accepted because it is a more 
parsimonious model with fewer parameters to be estimated and more degrees of freedom [Grover et al., 
2002], and it is conceptually consistent with established theory. It is important to realize that the higher-order 
factors are simply trying to explain the covariation among the first-order factors in a more parsimonious way 
(i.e., one that requires fewer degrees of freedom). Consequently, even when the higher-order model is able 
to effectively explain the factor covariations, the goodness-of-fit of the higher-order model can never be 
better than the corresponding first-order model. Hence, the basic first-order factor model provides a target or 
optimum fit for the higher-order model, and we refer to it as the target model. See point 4—target 
coefficient—for more on how the target coefficient captures the relation between the fit of a first-order 
structure and the corresponding fit of a nested, more restrictive model (e.g., a higher-order factor structure). 

3. Second-order loadings—All second-order factor loadings are highly significant (p < 0.001), further providing 
justification for the second-order factor model [Tippins and Sohi, 2003]. 

4. Target coefficient—the target coefficient (T) is the ratio of the chi-square of the first-order model to the chi 
square of the more restrictive model [Marsh and Hocevar, 1985]. The target coefficient has an upper limit of 
1, which would only be possible if the relations among the first-order factors could be completely accounted 
for in terms of the more restrictive model. Our target coefficient value is 0.96, indicating that the second-
order factor accounts for 96 percent of the relations among the first-order factors. This finding provides 
further support for the second-order factor model [Marsh and Hocevar, 1985]. 

5. Structural relationships—A first-order factor structural model (where each first-order factor of cognitive 
absorption is structurally linked to both perceived usefulness and perceived ease of use) explains 59.3 
percent of the variance in perceived usefulness and 40.2 percent of the variance in perceived ease of use. 
The second-order factor model explains 61.3 percent of the variance in perceived usefulness and 42.7 
percent of the variance in perceived ease of use (see more structural results below). This comparison, 
without a significance test, supports that the second-order factor model displays a higher variance 
explained, which indicates a more robust measurement of the construct compared to the first-order factor 
model. 

6. Theoretical support—when interpreting the statistical comparison of these different models, researchers 
should remember that in the absence of a significance test or accepted de facto standards, conceptual 
frameworks should be used to inform the comparison. This is especially the case when differences may not 
support significance. 

Aggregate Models in Covariance-Based SEM 

We detail two ways to estimate a model including aggregate constructs in covariance-based SEM. For both 
methods, in contrast to superordinate constructs, researchers should not compare congeneric, tau equivalent, and 
parallel measurement models. The first method is the MIMIC method, and the second is the common factors 
method. Constraints for aggregate constructs represent different approaches to combine dimensions to form the 
construct. Researchers can assign the dimensions equal weights or principal component weights. When 
incorporating an aggregate construct as a cause in a causal model, one must take into account model identification 
issues. Specifically, the aggregate construct (modeled as a cause) must have paths leading to at least two 
endogenous variables [MacCallum and Browne, 1993]. However, research shows that results can vary, depending 
on the endogenous variables used [Kim et al., 2010]. To overcome that limitation, the common factors method has 
recently been proposed [Treiblmaier, 2011; Chin et al., 2012]. In this method the index is split into different 
composites and modeled as a reflective construct. Then those composites are used to form an aggregate construct, 
and the path weights are then fixed. There are three methods for fixing these path weights: using original weights, 
using replicated weights, and forcing a maximal correlation (see Treiblaier et al., 2011). This is in line with General 
Guideline 2: When modeling aggregate constructs, researchers should be aware of the strengths and weaknesses 
of various methods of analyses. 
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Data Analysis Using Component-Based SEM 

We used SmartPLS 2.0 software to analyze our data. The step-by-step instructions for utilizing SmartPLS can be 
found in Appendix C. Unlike EQS, this software required calculating two measurement models, as well as a 
structural model. This is in line with Component-based SEM Guideline 1: Researchers should assess the first-order 
measurement model separately from the second-order structural model. 

First, consistent with Agarwal and Karahanna [2000] we estimated a confirmatory factor analysis to confirm the 
dimensionality of the first-order constructs. Then, using the factor scores of CA’s dimensions, we simultaneously 
estimated the measurement and structural model. Hence, our first step involved constructing a first-order 
measurement model (see Figure 10). 
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Figure 10. Component-Based Model 

We evaluated the reliability, discriminant, and convergent validity of the first-order measurement model for cognitive 
absorption. Each dimension was modeled as reflective. Using the item loadings, we calculated the internal 
composite reliability (ICR) to evaluate the measure’s reliability. All multi-item dimensions exceeded the .70 threshold 
for the ICR (see Table 8). Also, to estimate convergent validity, we evaluated each dimension’s average variance 
extracted (AVE). Because each dimension’s AVE exceeded .50, our analysis suggests that our measures satisfy 
heuristics required to support convergent validity [Barclay et al., 1995]. 

Further, to evaluate discriminant validity we examined the correlations between the dimensions as well as the items. 
Because the square root of each AVE exceeded the correlation between each dimension and all other dimensions, 
we were comfortable with the discriminant validity of the measures (see Table 9). 
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Table 8: First-Order Reliability and AVEs 

Construct ICR AVE Cronbach’s α 
Intent to Use 0.98 0.94 0.97 
Perceived Usefulness 0.96 0.84 0.94 
Perceived Ease of Use 0.93 0.76 0.90 
CA: Temporal Dissociation 0.96 0.83 0.83 
CA: Focused Immersion 0.87 0.60 0.60 
CA: Heightened Enjoyment 0.90 0.71 0.71 
CA: Control 0.82 0.62 0.62 
CA: Curiosity 0.97 0.90 0.90 

 
Table 9: First-Order Correlations of Constructs

a 
Construct label IU PU PEU TD FI HE CTL CRT 
Intent to Use (IU) .97        
Perceived Usefulness (PU) .61 .92       
Perceived Ease of Use (PEU) .53 .66 .87      
CA: Temporal Dissociation (TD) .50 .51 .41 .91     
CA: Focused Immersion (FI) .27 .40 .40 .38 .77    
CA: Heightened Enjoyment (HE) .49 .55 .48 .60 .46 .84   
CA: Control (CTL) .51 .56 .60 .41 .36 .54 .78  
CA: Curiosity (CRT) .25 .42 .33 .31 .41 .60 .42 .95 
a The diagonal element is the square root of the average variance extracted. To be 
discriminant, the diagonal elements should be larger than all corresponding off-
diagonal elements to show discriminant validity.  

As a final step, we compared the item loadings and cross-loadings. We found that all items loaded highest on the 
construct of interest (see Table 10). Hence, for the first-order measurement model, our analysis provides evidence 
that the measures are reliable as well as demonstrates adequate convergent and discriminant validity. 

Having established discriminant validity in our measurement model, we turned to evaluating the structural model. 
We used the standardized latent variable scores for each of cognitive absorption’s dimensions as indicators of the 
second-order construct. We then constructed a new model using the latent variable scores as indicators of the 
multidimensional construct (see Figure 11). 
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Figure 11. Second-Order Factor Model 

We executed the PLS algorithm again (see Figure 11 above) to generate results for our second-order factor model 
(see Figure 12). 

Our results show that cognitive absorption is significantly related to perceived usefulness (β = 0.41, p < .001) and 
perceived ease of use (β = 0.61, p < .001). Perceived ease of use is positively related to perceived usefulness (β = 
0.41, p < .001). Finally, both perceived usefulness (β = 0.46, p < .001) and perceived ease of use (β = 0.22, p < .01) 
are positively related to intent to use. R2 values for the endogenous variables are as follows: perceived usefulness 
(R2 = 0.54), perceived ease of use (R2 = 0.37), and intent to use (R2 = 0.40). 
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Table 10: Item Loadings and Cross-Loadings 
a 

 ITU PU PEOU CA: TD CA: FI CA: HE CA: CO CA: CU 
ITU1 0.97 0.59 0.52 0.50 0.27 0.48 0.50 0.24 
ITU2 0.97 0.60 0.52 0.47 0.26 0.48 0.49 0.24 
ITU3 0.98 0.59 0.50 0.49 0.26 0.47 0.50 0.25 
PU1 0.60 0.92 0.66 0.52 0.37 0.57 0.53 0.41 
PU2 0.58 0.93 0.57 0.48 0.35 0.53 0.52 0.38 
PU3 0.52 0.93 0.58 0.45 0.41 0.46 0.51 0.39 
PU4 0.52 0.90 0.60 0.41 0.36 0.47 0.49 0.36 
PEOU1 0.51 0.61 0.88 0.39 0.31 0.43 0.59 0.31 
PEOU2 0.33 0.41 0.78 0.20 0.34 0.26 0.41 0.17 
PEOU3 0.51 0.63 0.92 0.41 0.36 0.49 0.55 0.31 
PEOU4 0.45 0.61 0.91 0.39 0.38 0.45 0.52 0.33 
CATD1 0.51 0.50 0.40 0.92 0.36 0.60 0.44 0.33 
CATD2 0.50 0.49 0.37 0.93 0.36 0.58 0.39 0.29 
CATD3 0.41 0.46 0.40 0.91 0.38 0.55 0.42 0.32 
CATD4 0.46 0.44 0.36 0.90 0.31 0.51 0.32 0.24 
CATD5 0.39 0.42 0.34 0.90 0.32 0.51 0.31 0.21 
CAFI1 0.22 0.32 0.33 0.28 0.85 0.34 0.34 0.29 
CAFI2 0.32 0.43 0.38 0.46 0.92 0.49 0.37 0.41 
CAFI3 0.27 0.39 0.37 0.41 0.92 0.45 0.33 0.42 
CAFI4 0.09 0.10 0.10 0.00 0.34 0.11 0.13 -0.02 
CAFI5 0.04 0.20 0.24 0.07 0.68 0.23 0.14 0.30 
CAHE1 0.45 0.49 0.43 0.60 0.44 0.89 0.50 0.57 
CAHE2 0.43 0.52 0.42 0.57 0.49 0.93 0.49 0.60 
CAHE3 0.42 0.45 0.42 0.51 0.41 0.90 0.46 0.55 
CAHE4 0.34 0.39 0.33 0.32 0.15 0.62 0.36 0.25 
CACO1 0.46 0.52 0.59 0.40 0.39 0.52 0.91 0.44 
CACO2 0.33 0.32 0.33 0.15 0.06 0.31 0.54 0.05 
CACO3 0.41 0.45 0.46 0.38 0.34 0.43 0.85 0.42 
CACU1 0.26 0.39 0.35 0.32 0.41 0.59 0.45 0.95 
CACU2 0.22 0.38 0.27 0.29 0.39 0.55 0.40 0.95 
CACU3 0.24 0.41 0.31 0.27 0.36 0.56 0.35 0.94 
a ITU= Intention to Use; PU = Perceived Usefulness; PEOU = Perceived Ease of Use; CA:TD = 
Cognitive Absorption: Temporal Dissociation; CA:FI = Cognitive Absorption: Focused Immersion; 
CA: HE = Cognitive Absorption: Heightened Enjoyment; CA:CO = Cognitive Absorption: Control; 
CA:CU = Cognitive Absorption: Curiosity 

 

FI

TD

HE

CO

CU

CA

0.000
ITU

0.396

PEOU

0.369

PU

0.541

0.413

0.808

0.408

0.459

0.223

0.702

0.770

0.863

0.669

0.729

 
Figure 12. Results for Second-Order Factor Model 
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Figure 13. Results of Bootstrapped Model 

Aggregate Models in Component-Based SEM 

To estimate a model including aggregate constructs in component-based SEM, researchers should model the 
relationship arrows as going from the first-order dimensions to the second-order construct (i.e., in a manner similar 
to modeling formative constructs). When reporting such analyses, one should be sure to include the dimension 
weights and their significance. By doing so, readers will be able to understand the relative association of each 
dimension to the multidimensional construct. 

Comparing Covariance-Based SEM and Component-Based SEM 

Table 11 details a comparison of how to report and interpret results generated from covariance-based and 
component-based SEM that incorporate multidimensional constructs. It must be noted that much has been written 
concerning the use of formative measures in covariance-based SEM. Gefen et al. [2011] summarize the issue by 
stating this method “presents challenges” [Gefen et al., 2011, p. vi], and several argue that formative measures are 
problematic when using covariance-based SEM [Edwards, 2011; Treiblmaier, 2011]. On the other hand, formative 
scales are easily assessed using PLS. Due to the recent literature that provides strong evidence formative indicators 
may cause stability problems for the construct [Kim et al., 2010; Edwards, 2011], we caution the use of formative 
indicators without reviewing the issues and concerns. If deemed necessary, a tutorial which outlines how to vet 
formative indicators has been published [Roberts and Thatcher, 2009]. 

VI. CONCLUSION 

This article was motivated by a desire to “prime the pump” such that IS researchers had access to information on 
how to conceptually develop and evaluate structural equation models that integrate multidimensional constructs. 
While such extensive information is available on how to think about all types of multidimensional constructs [Polites 
et al., 2012], such information is less readily available about how to operationalize these constructs in structural 
equation models. Additionally, while researchers have provided guidance on how to evaluate the psychometric 
properties of first-order constructs, a robust understanding of what is necessary for evaluating multidimensional 
constructs is just beginning to emerge in the IS and research methods literature (see Lewis et al., 2005; Gefen et al., 
2011; MacKenzie et al., 2011). In this tutorial, we have taken a step toward providing prerequisite knowledge for 
using multidimensional constructs in IS research: the practical “how to” in applying these concepts using the specific 
tools available in today’s standard practices. We would like to stress that in doing this we use a specific example 
which cannot detail every possible type of analyses or construct (e.g., we did not give specific examples of 
multidimensional constructs beyond the superordinate or aggregate, nor did we illustrate a method other than 
structural equation modeling). Researchers would be mistaken to apply our guidelines to all forms of 
multidimensional constructs. Therefore, we suggest that there is a need for additional work that offers guidelines for 
how to operationalize multidimensional constructs in additional methods as well as different forms of such 
constructs. 

When developing multidimensional constructs, authors should be guided by how theory suggests the form and 
interrelationship among their dimensions [Law et al., 1998; Edwards, 2001]. This article extends this thought to 
advance IS research by providing an overview of major types of multidimensional constructs (e.g., superordinate, 
aggregate, and others). A standard set of terms is outlined that can be used in the IS literature when describing  
  



 

 

390 
Volume 30 Article 23 

Table 11. Comparison of Covariance-Based and Component-Based SEM 

 Covariance-based SEM Component-based SEM Related Citations1 
Measurement Model Results (For a complete guide to instrument vetting see MacKenzie et al., 2011.) 
Reliability Assess using Cronbach’s Alpha or 

Internal Composite Reliability 
Assess using Cronbach’s Alpha 
or Internal Composite Reliability 

Component—
see Gefen and 
Straub, 2005, p. 
93–94. 

 

Covariance—
see Brown, 
2006, p. 113–
126. 

 

Dimensionality of 
the first-order 
measurement 
model 

A significant improvement in chi-square 
fit between Model 2 (freely-correlated 
first-order factors model) and Model 1 
(all indicators load on one factor) 
provides evidence of 
multidimensionality. 

Assess by comparing the item 
loadings and cross-loadings on 
each dimension. Not unlike a 
standard factor analysis, the 
dimensions’ indicators should be 
discriminant and convergent (cf. 
Gefen and Straub, 2005). 

Convergent 
Validity 

Supported by significant standardized 
factor loadings of indicators 

Supported by the average 
variance extracted (AVE) of 
each dimension exceeding 0.50 

Discriminant 
Validity 

Supported by comparing a freely 
estimated correlation against a 
constrained correlation between all pairs 
of first-order factors 

Supported by the square root of 
the AVE of each factor 
exceeding cross-construct 
correlations 

Supported by indicators loading 
highest on the dimension of 
interest 

Second-order 
Construct 

Model fit should be compared among 
parallel, tau equivalent, and congeneric 
models. Acceptable model fit are 
suggested by CFI > .9 and RMSEA < 
.08 [Kline, 2005]. Second-order 
construct is supported by significant 
standardized factor loadings of first-
order dimensions. 

Each dimension’s weight and 
loading on the second-order 
construct should be reported. 
Even if weights and loadings are 
not significant, they should be 
retained in order to appropriately 
operationalize the theoretical 
meaning of the construct. 

Component—
see Wetzels et 
al., 2009, p. 
184–185. 

Covariance—
see Brown, 
2006, p. 322–
325. 

Structural Model Results  

CA with PE Cognitive absorption is significantly 
related to perceived usefulness (β = 
0.44, p < .001). 

Cognitive absorption is 
significantly related to perceived 
usefulness (β = 0.41, p < .001). 

 

CA with PEOU Cognitive absorption is significantly 
related to perceived ease of use (β = 
0.65, p < .001). 

Cognitive absorption is 
significantly related to perceived 
ease of use (β = 0.61, p < .001). 

1 The related citation column is introduced for two purposes. First, it give the reader an understanding of the 
literature behind each of the measures. Second, it provides a reference so that important statistics (e.g., cut-off 
values, assumptions) can be easily found. 
 
multidimensional constructs within a nomological network, which should help resolve conceptual inconsistencies in 
the literature. Further, drawing upon these terms, we illustrate how to use standard procedures to model these 
complex nomological relationships using contemporary SEM tools. This is important, because, contrary to a popular 
belief that PLS is the best-suited tool for evaluating multidimensional models [Wetzels et al., 2009], we illustrate that 
covariance-based and component-based SEM may be used to examine superordinate and aggregate 
multidimensional constructs. While this belief may have been true in earlier versions of covariance-based SEM, this 
tutorial illustrates how to estimate such models using EQS, a contemporary covariance-based SEM software 
application. 

While our tutorial demonstrates that covariance-based SEM may be more cumbersome than component-based SEM 
(e.g., it requires more steps to estimate such multidimensional models), it also permits estimating first- and second-
order measurement models in a single structural model. This contrasts with component-based SEM, which requires 
one to estimate separate models in order to evaluate multidimensional constructs. We do not recommend that 
authors consider this difference when selecting a technique to estimate a model. Issues such as the state of 
development of theory, distribution of the data, and sample size should also drive the choice between SEM 
techniques, not whether the model incorporates a multidimensional construct [Gefen et al., 2000]. By illustrating how 
to incorporate multidimensional constructs in covariance-based or component-based analysis, this article will 
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hopefully result in authors being able to select the tool best suited for the objectives of their research (e.g., theory 
testing vs. theory development; see Chin, 1998). By doing so, we believe that researchers will be able to develop 
richer explanations for technology’s implications for individuals and organizations. 

REFERENCES 

Agarwal, R., and E. Karahanna (2000) “Time Flies When You’re Having Fun: Cognitive Absorption and Beliefs About 
Information Technology Usage,” MIS Quarterly (24)4, pp. 665–695. 

Allison, P.D. (2003) “Missing Data Techniques for Structural Equation Modeling,” Journal of Abnormal Psychology 
(112)4, pp. 545–557. 

Anderson, J.C., and D.W. Gerbing (1988) “Structural Equation Modeling in Practice: A Review and Recommended 
Two-Step Approach,” Psychological Bulletin (103)3, pp. 411–423. 

Bagozzi, R.P. (1985) “Expectancy-Value Attitude Models: An Analysis of Critical Theoretical Issues,” International 
Journal of Research Marketing (2), pp. 43–60. 

Bagozzi, R.P. (1988) “The Rebirth of Attitude Research in Marketing,” Journal of the Market Research Society (30)2, 
pp. 163–195. 

Bagozzi, R.P., and J.R. Edwards (1998) “A General Approach for Representing Constructs in Organizational 
Research,” Organizational Research Methods (1)1, pp. 45–87. 

Barclay, D., C. Higgins, and R. Thomson (1995) “The Partial Least Squares Approach (PLS) to Causal Modeling, 
Personal Computer Adoption and Use as an Illustration,” Technology Studies (2)2, pp. 285–309. 

Becker, T.E., and R.S. Billings (1993) “Profiles of Commitment: An Empirical Test,” Journal of Organizational 
Behavior (14)2, pp. 177–190. 

Bentler, P.M. (1990) “Comparative Fit Indexes in Structural Models,” Psychological Bulletin (107)2, pp. 238–246. 

Bentler, P.M. (2005) EQS 6 Structural Equations Program Manual, Encino, CA: Multivariate Software. 

Bollen, K., and R. Lennox (1991) “Conventional Wisdom on Measurement: A Structural Equation Perspective,” 
Psychological Bulletin (110)2, pp. 305–314. 

Bollen, K.L. (1989) Structural Equations with Latent Variables, New York, NY: John Wiley. 

Boomsma, A. (2000) “Reporting Analyses of Covariance Structures,” Structural Equation Modeling (7)3, pp. 461–
483. 

Brown, T.A. (2006) Confirmatory Factory Analysis for Applied Research, New York, NY: The Guilford Press. 

Byrne, B.M. (2006) Structural Equation Modeling with EQS: Basic Concepts, Applications, and Programming, 
Mahwah, NJ: Lawrence Erlbaum Associates. 

Campbell, D.T., and D.W. Fiske (1959) “Convergent and Discriminant Validation by the Multitrait-multimethod 
Matrix,” Psychological Bulletin (56), pp. 81–105. 

Chan, Y.E., S.L. Huff, D.W. Barclay, and D.G. Copeland (1997) “Business Strategic Orientation, Information 
Systems Strategic Orientation, and Strategic Alignment,” Information Systems Research (8)2, pp. 125–150. 

Chin, W., J.B. Thatcher, and R.T. Wright (2012) “Assessing Common Method Variance: Assessing the UMLC 
Approach,” MIS Quarterly, forthcoming. 

Chin, W.W. (1998) “Issues and Opinion on Structural Equation Modeling,” Management Information Systems 
Quarterly (22)1, pp. vii-xvi. 

Chin, W.W. (2010) “How to Write Up and Report PLS Analyses,” in Vinzi, V.E., W.W. Chin, and J. Henseler, 
Handbook of Partial Least Squares: Concepts, Methods and Applications,” New York, NY: Springer. 

Chin, W.W., and A. Gopal (1995) “Adoption Intention in GSS: Relative Importance of Beliefs,” Data Base (26)2/3, pp. 
42–64. 

Chwelos, P., I. Benbasat, and A.S. Dexter (2001) “Research Report: Empirical Test of an EDI Adoption Model,” 
Information Systems Research (12)3, pp. 304–321. 

Compeau, D.R., and C.A. Higgins (1995) “Computer Self-efficacy: Development of a Measure and Initial Test,” MIS 
Quarterly (19)2, pp. 189–211. 

Curran, P.J., S.G. West, and J.F. Finch (1996) “The Robustness of Test Statistics to Non-normality and Specification 
Error in Confirmatory Factor Analysis,” Psychological Methods (1), pp. 16–29. 



 

 

392 
Volume 30 Article 23 

Davis, F.D. (1989) “Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information 
Technology,” MIS Quarterly (13)3, pp. 319–340. 

Davis, F.D., R.P. Bagozzi, and P.R. Warshaw (1989) “User Acceptance of Computer Technology: A Comparison of 
Two Theoretical Models,” Management Science (35)8, pp. 982–1003. 

Diamantopoulos, A., and H. Winklhofer (2001) “Index Construction with Formative Indicators: An Alternative to Scale 
Development,” Journal of Marketing Research (38)2, pp. 269–277. 

Duncan, R.B. (1972) “Characteristics of Organizational Environments and Perceived Environmental Uncertainty,” 
Administrative Science Quarterly (17)3, pp. 313–327. 

Edwards, J.R. (2001) “Multidimensional Constructs in Organizational Behavior Research: An Integrative Analytical 
Framework,” Organizational Research Methods (4)2, pp. 144–192. 

Edwards, J.R. (2009) “Latent Variable Modeling in Congruence Research: Current Problems and Future Directions,” 
Organizational Research Methods (12)1, pp. 34–62. 

Edwards, J.R. (2011) “The Fallacy of Formative Measurement,” Organization Research Methods (14)2, pp. 370–
388. 

Edwards, J.R., and R.P. Bagozzi (2000) “On the Nature and Direction of the Relationship Between Constructs and 
Measures,” Psychological Methods (5)2, pp. 155–174. 

Gefen, D., E.E. Rigdon, and D. Straub (2011) “An Update and Extension to SEM Guidelines for Administrative and 
Social Science Research,” MIS Quarterly (35)2, pp. iii–xiv. 

Gefen, D., and D. Straub (2005) “A Practical Guide to Factorial Validity Using PLS-Graph: Tutorial and Annotated 
Example,” Communications of the Association for Information Systems (16) Article 5, pp. 91–109. 

Gefen, D., D.W. Straub, and M.-C. Boudreau (2000) “Structural Equation Modeling and Regression: Guidelines for 
Research Practice,” Communications of the Association Information Systems (4)7, pp. 1–77. 

Gold, A.H., A. Malhotra, and A.H. Segars (2001) “Knowledge Management: An Organizational Capabilities 
Perspective,” Journal of Management Information Systems (18)1, pp. 185–214. 

Graham, J.M. (2006) “Congeneric and (Essentially) Tau-Equivalent Estimates of Score Reliability: What They Are 
and How to Use Them,” Educational and Psychological Measurement (66)6, pp. 930–944. 

Grover, V., J.T.C. Teng, and K.D. Fiedler (2002) “Investigating the Role of Information Technology in Building 
Buyer–Supplier Relationships,” Journal of the Association for Information Systems (3)7, pp. 217–245. 

Hair, J.F., R.E. Anderson, R.L. Tathem, and W.C. Black (1998) Multivariate Data Analysis, Upper Saddle River, NJ: 
Prentice Hall. 

Hanisch, K.A., and C.L. Hulin (1991) “General Attitudes and Organizational Withdrawal: An Evaluation of a Causal 
Model,” Journal of Vocational Behavior (39)1, pp. 110–128. 

Hardin, A.M., J.C.-J. Chang, and M.A. Fuller (2008) “Formative vs. Reflective Measurement: Comment on Marakas, 
Johnson, and Clay (2007),” Journal of the Association for Information Systems (9)9, pp. 519-534. 

Harman, H.H. (1976) Modern Factor Analysis, Chicago, IL: University of Chicago Press. 

Howell, R.D., E. Breivik, and J.B. Wilcox (2007) “Reconsidering Formative Measurement,” Psychological Methods 
(12)2, pp. 205–218. 

Hu, L.T., P.M. Bentler, and Y. Kano (1992) “Can Test Statistics in Covariance Structure Analysis Be Trusted?” 
Psychological Bulletin (112)2, pp. 351–362. 

Hunter, J.E., and D.W. Gerbing (1982) “Unidimensional Measurement, Second Order Factor Analysis, and Causal 
Models,” in Staw, B.M., and L.L. Cummings, Research in Organizational Behavior, Greenwich, CT: JAI Press, 
pp. 267–320. 

Jarvis, C.B., S.B. Mackenzie, and P.M. Podsakoff (2003) “A Critical Review of Construct Indicators and 
Measurement Model Misspecification in Marketing and Consumer Research,” Journal of Consumer Research 
(30)2, pp. 199–218. 

Joreskog, K.G., and A.S. Goldberger (1975) “Estimation of a Model with Multiple Indicators and Multiple Causes of a 
Single Latent Variable,” Journal of the American Statistical Association (70)351, pp. 631–639. 

Karahanna, E., R. Agarwal, and C.M. Angst (2006) “Reconceptualizing Compatibility Beliefs in Technology 
Acceptance Research,” MIS Quarterly (30)4, pp. 781–804. 



 

 

Volume 30 Article 23 
393 

Kim, G., B. Shin, and V. Grover (2010) “Investigating Two Contradictory Views of Formative Measurement in 
Information Systems Research,” MIS Quarterly (34)2, pp. 345–366. 

Klein, R. (2006) “Internet-Based Patient-Physician Electronic Communication Applications: Patient Acceptance and 
Trust,” e-Service Journal (5)2, pp. 27–51. 

Kline, R.B. (2005) Principles and Practice of Structural Equation Modeling, New York, NY: The Guilford Press. 

Law, K.S., C.-S. Wong, and W.H. Mobley (1998) “Toward a Taxonomy of Multidimensional Constructs,” Academy of 
Management Review (23)4, pp. 741–755. 

Law, K.S., and C.S. Wong (1999) “Multidimensional Constructs in Structural Equation Analysis: An Illustration Using 
the Job Perception and Job Satisfaction Constructs,” Journal of Management (25)2, pp. 143–160. 

Lewis, B.R., G.F. Templeton, and T.A. Byrd (2005) “A Methodology for Construct Development in MIS Research,” 
European Journal of Information Systems (14), pp. 388–400. 

Li, X., T.J. Hess, and J.S. Valacich (2008) “Why Do We Trust New Technology? A Study of Initial Trust Formation 
with Organizational Information Systems,” Journal of Strategic Information Systems (17), pp. 39–71. 

Little, R.J.A., and D.A. Rubin (1987) Statistical Analysis with Missing Data, New York, NY: John Wiley & Sons. 

Lohmöller, J.-B. (1989) Latent Variable Path Modeling with Partial Least Squares, Heidelberg, Germany: Physica-
Verlag. 

Lu, H.P., H.J. Yu and S.S.K. Lu (2001) “The Effects of Cognitive Style and Model Type on DSS Acceptance: An 
Empirical Study,” European Journal of Operational Research (131)3, pp. 649–663. 

MacCallum, R.C., and M.W. Browne (1993) “The Use of Causal Indicators in Covariance Structure Models: Some 
Practical Issues,” Psychological Bulletin (114)3, pp. 533–541. 

MacKenzie, S.B., P.M. Podsakoff, and N.P. Podsakoff (2011) “Construct Measurement and Validation Procedure in 
MIS and Behavior Research: Integrating New and Exisiting Techniquies,” MIS Quarterly (35)2, pp. 293–334. 

Marakas, G., R. Johnson, and P.F. Clay (2007) “The Evolving Nature of the Computer Self-efficacy Construct: An 
Empirical Investigation of Measurement Construction, Validity, Reliability and Stability over Time,” Journal of 
the Association for Information Systems (8)1, pp. 15-46. 

Marakas, G., R.D. Johnson, and P.F. Clay (2008) “Formative vs. Reflective Measurement: A Reply to Hardin, 
Chang, and Fuller,” Journal of the Association for Information Systems (9)9, pp. 535-566. 

Marakas, G.M., M.Y. Yi, and R.D. Johnson (1998) “The Multilevel and Multifaceted Character of Computer Self-
efficacy: Toward Clarification of the Construct and an Integrative Framework for Research,” Information 
Systems Research (9)2, pp. 126–163. 

Marsh, H.W., and D. Hocevar (1985) “Application of Confirmatory Factor Analysis to the Study of Self Concept: First 
and Higher Order Factor Models and Their Invariance Across Groups,” Psychological Bulletin (97)3, pp. 562–
582. 

McKnight, D.H., V. Choudhury, and C. Kacmar (2002) “Developing and Validating Trust Measures for e-Commerce: 
An Integrative Typology,” Information Systems Research (13)3, pp. 334–359. 

Ones, D.S., and C. Viswesvaran (1996) “Bandwidth-Fidelity Dilemma in Personality Measurement for Personnel 
Selection,” Journal of Organizational Behavior (17)6, pp. 609–626. 

Petter, S., D. Straub, and A. Rai (2007) “Specifying Formative Constructs in Information Systems Research,” MIS 
Quarterly (31)4, pp. 623–656. 

Polites, G., N. Roberts, and J. Thatcher (2012) “Conceptualizing Models Using Multidimensional Constructs: A 
Conceptual Review and Guidelines for Their Use,” European Journal of Information Systems (21)1, pp. 22–48. 

Qureshi, I., and D. Compeau (2009) “Assessing Between-Group Differences in Information Systems Research: A 
Comparison of Covariance- and Component-Based SEM,” MIS Quarterly (33)1, pp. 197–214. 

Rai, A., R. Patnayakuni, and N. Seth (2006) “Firm Performance Impacts of Digitally Enabled Supply Chain 
Integration Capabilities,” MIS Quarterly (30)2, pp. 225–246. 

Rindskopf, D., and T. Rose (1988) “Some Theory and Applications of Confirmatory Second-order Factor Analysis,” 
Multivariate Behavioral Research (23), pp. 51–67. 

Roberts, N., and J. Thatcher (2009) “Conceptualizing and Testing Formative Constructs: Tutorial and Annotated 
Example,” Database (40)3, pp. 9–39. 



 

 

394 
Volume 30 Article 23 

Satorra, A.C., and P.M. Bentler (1988) Scaling Corrections for Chi-square Statistics in Covariance Structure 
Analysis, Proceedings of the Business and Economics Sections, Alexandria, VA: American Statistical 
Association. 

Segars, A. (1997) “Assessing the Unidimensionality of Measurement: A Paradigm and Illustration Within the Context 
of Information Systems Research,” Omega (25)1, pp. 107–121. 

Shin, B., and G. Kim (2011) “Investigating the Reliability of Second-Order Formative Measurement in Information 
Systems Research,” European Journal of Information Systems (20)5, pp. 608–623. 

Straub, D., M.-C. Boudreau, and D. Gefen (2004) “Validation Guidelines for IS Positivist Research,” 
Communications of the Association for Information Systems (13) Article 24, pp. 380–427. 

Sun, H., and Y. Fang (2010) Toward a Model of Mindfulness in Technology Acceptance, International Conference 
on Information Systems, St. Louis, MO: AIS eLibrary. 

Swanson, E.B., and E. Dans (2000) “System Life Expectancy and the Maintenance Effort: Exploring Their 
Equilibration,” MIS Quarterly (24)2, pp. 277–297. 

Tanriverdi, H. (2006) “Performance Effects of Information Technology Synergies in Multibusiness Firms,” MIS 
Quarterly (30)1, pp. 57–77. 

Teo, H.H., K.K. Wei, and I. Benbasat (2003) “Predicting Intention to Adopt Interorganizational Linkages: An 
Institutional Perspective,” MIS Quarterly (27)1, pp. 19–50. 

Tippins, M.J., and R.S. Sohi (2003) “IT Competency and Firm Performance: Is Organizational Learning a Missing 
Link?” Stretegic Management Journal (18)8, pp. 745–761. 

Treiblmaier, H., P.M. Bentler, and P. Mair (2011) “Formative Constructs Implemented via Common Factors,” 
Structural Equation Modeling (18)1, pp. 1–17. 

Venkatraman, N. (1989) “Strategic Orientation of Business Enterprises: The Construct, Dimensionality, and 
Measurement,” Management Science (35)8, pp. 942–962. 

Wang, D., L. Xuy, and H.C. Chanz (2008) Understanding Users’ Continuance of Facebook: The Role of General and 
Specific Computer Self-efficacy, International Conference on Information Systems, Montreal, PQ: AIS 
eLibrary. 

West, S.G., J.F. Finch, and P.J. Curran (1995) “Structural Equation Models with Nonnormal Variables: Problems and 
Remedies,” in Hoyle, R.H., Structural Equation Modeling: Concepts, Issues, and Applications, Thousand 
Oaks, CA: Sage, pp. 56–75. 

Wetzels, M., G. Odekerken-Schroder, and C. van Oppen (2009) “Using PLS Path Modeling for Assessing 
Hierarchical Construct Models: Guidelines and Empirical Illustrations,” MIS Quarterly (33)1, pp. 177–195. 

Wong, C.S., K.S. Law, and G.-H. Huang (2008) “On the Importance of Conducting Construct-level Analysis for 
Multidimensional Constructs in Theory Development and Testing,” Journal of Management (34)4, pp. 744–
764. 

Zhu, K. (2004) “The Complementarity of Information Technology Infrastructure and E-Commerce Capability: A 
Resource-Based Assessment of Their Business Value,” Journal of Management Information Systems (21)1, 
pp. 167–202. 

APPENDIX A: STEP-BY-STEP INSTRUCTIONS USING EQS 

To help facilitate this tutorial we have posted the item correlation matrix at www.usf-research.org/CAIS-Wright. 

To start, we need to establish convergent and discriminant validity. To do so we will run multiple measurement 
models in EQS. Initially, we open our model data in EQS (for detailed direction on this, see the EQS manual). After 
the data is loaded, we click on the “New Model Builder” button in the toolbar. Although we provide detailed step-by-
step instructions, readers interested in more details concerning EQS are directed to excellent resources [Byrne, 
2006]. Then we click on the “Diagram Window” button. 

The toolbar for the diagram helper is shown in Figure A-1. For our purposes, we will use four tools in particular: 
model direct one-way paths (these can be paths between constructs and indicators, as well as paths between 
constructs), insert variables (i.e., indicators, manifest variables), insert factors (i.e., constructs, latent variables), and 
model covariances. For the sake of consistency, we refer to measured or manifest variables as indicators, and 
constructs or latent variables as factors.  

http://www.usf-research.org/CAIS-Wright
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Figure A-1. Diagram Helper Toolbar (shown on left-hand side) 

We click the variable button and then click in the blank screen to assign indicators, which displays the indicators in 
our data set. To do so we click the “V” button (insert variables) on the toolbar. Then we click on any area in the 
diagram window (i.e., white space) to generate a dialog box in which we can select indicators to include in our 
model. We select all of the indicators we wish to use (some or all of the indicators can be selected at one time). 
Then we transfer the indicators we wish to use to the right column, and click “OK” (see Figure A-2). 

 

Figure A-2. Transferring Indicators from “Variable List” to “Variables to Use” 

The indicators will then appear in the diagram window. We can move the indicators around the diagram by selecting 
the yellow arrow. We will organize the indicators to prepare for the confirmatory factor analyses. The insertion of 
indicators is completed in the same way for every model. Alternatively, once the indicators are inserted, the model 
can simply be rearranged after each analysis. 

Model 1: First-Order Factor Model 

Our first measurement model tests for the multidimensionality of cognitive absorption. Specifically, we hypothesize 
that a unidimensional first-order factor model accounts for the variance among all twenty indicators. We model 
factors (i.e., latent variables) by selecting the factor (“F”) button and clicking in the diagram  window. Like the 
indicator insertion process, we must click on the “F” button and then click on an area in the diagram window in order 
to create new factors. 

For ease of reference, we can assign labels to the factors by double clicking on them. In this case, we change the 
label of F1 to CA (see Figure A-3). 
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Figure A-3. Assigning Label to a Factor 

Next, we assign the indicators to the factor by selecting the one-way path drawing arrow (see Figure A1 above). It is 
important to note that the direction in which we draw the arrow designates the path as either reflective or formative. 
In order to assign reflective paths, we first click the factor, and then the indicator. We repeat the process to assign all 
of the indicators to the factor. Figure A-4 depicts CA as a unidimensional factor. 

 

Figure A-4. Modeling Cognitive Absorption as a Unidimensional Factor 

In order to assign a measurement scale to each factor, we must fix a single indicator path for each factor to be 1.0 
[Kline, 2005]. In order to fix a parameter at 1.0, we double click on a path and select “Fixed Parameter” (see Figure 
A-5). 
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Figure A-5. Fixing a Parameter Estimate to 1.0 

To run our model, we must generate the EQS command file. We do this by selecting “Build EQS” and then clicking 
“Title/Specifications.” 

We note that a traditional assumption in SEM is that the relationship between the observed variables and their 
constructs and between one construct and another is linear [Gefen et al., 2000]. Historically, covariance-based SEM 
software had no tools for handling variations from this assumption. However, EQS 6.1 provides statistics (e.g., 
model fit, parameter estimates) which are robust to non-normality [Byrne, 2006]. To generate robust method 
statistics, we select the “robust methods” option in the EQS Model Specifications window (see Figure A-6). This 
window will appear automatically when we build the EQS command file (as performed in the previous step). It is 
important to note that EQS must have access to the original data in order to leverage robust methods. EQS cannot 
leverage robust methods with only a correlation or covariance matrix. 

 

Figure A-6. Selecting Robust Methods 

After clicking “OK,” EQS generates the command file. From here, we can insert certain options into the command 
file. To request additional output, we select “Build EQS” and “Print.” 

Of the available options, we select “Model Correlation Matrix” (this option provides construct-level correlations, see 
Figure A-7). For more information regarding additional output options, see Byrne [2006]. 
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Figure A-7. Output Options in EQS 

We will accept these options by clicking “OK.” We execute the model by clicking “Build EQS” and selecting “Run 
EQS.” 

Model 2: Dimensionality and Convergent Validity 

In the second model, we establish different first-order factors for each dimension of cognitive absorption. We aim to 
provide evidence of multidimensionality and convergent validity. Specifically, in this model we hypothesize that the 
twenty indicators form into five freely correlated first-order factors. 

First we will place latent factors for each construct. Then we assign the indicators to the latent factors by selecting 
the path drawing arrow. We designate the paths as reflective by drawing the paths from the factors to the indicators. 
Also, we fix the path for one indicator at 1.0 for each factor. Figure A-8 depicts Model 2 (without covariances). 

 

Figure A-8. Model 2 Without Covariances 
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We allow each factor to freely covary with other factors. We use the two-way covariance button to assign a 
covariance between each pair of factors. After assigning all of the covariances, our model appears as follows in 
Figure A-9. 

 

Figure A-9. Model 2 

Next, we generate the EQS command file. We select the “Robust methods” option in the EQS model specifications 
window. We then run our model. The resulting standardized parameter estimates are presented in Figure A-10. 

 

Figure A-10. Standardized Solution for Model 2 
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Model 3: Discriminant Validity 

In the third model, we will establish that each first-order factor is discriminant from the other first-order factors. We 
do this by creating a model with just two first-order factors. First, we run a confirmatory factor analysis (CFA) with a 
pair of factors allowed to freely covary. Then we constrain the covariance to 1.0. We then evaluate the change in χ2 
across the models. If constraining the covariance to 1.0 significantly hampers the χ2 statistic, then we have evidence 
of discriminant validity [Venkatraman, 1989]. In other words, the two first-order factors represent two distinctly 
different factors and do not perfectly covary. However, if constraining the covariance does not significantly hamper 
model fit, then the two first-order factors may not be significantly different. 

First, we designate two first-order-factors: Temporal Dissociation and Focused Immersion (see Figure A-11). We 
demonstrate how to run the analysis for the first pair of factors. The process must be repeated for each unique pair 
of factors. 

 

Figure A-11. CFA with Temporal Dissociation and Focused Immersion 

Next, we run the constrained model and calculate the difference in χ2. To fix the covariance at 1.0, we simply 
double-click on the covariance and select “Fixed Parameter” (see Figure A-12). 

 

Figure A-12. Setting Covariance Between Factors to 1.0 

Model 4: Parallel Model 

We test the parallel model first. The parallel model is a superordinate model which constrains the factor loadings and 
residual variances to be equal. Before we can constrain the factor loadings and residual variances, we first diagram 
the second-order factor. We start by inserting the indicators and first-order factors. 
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Next, we assign the indicators to the factors. Then, we fix a parameter estimate to 1.0 for one indicator of each first-
order factor (see Figure A-13). 

 

Figure A-13. Fixing Parameter Estimate for One Indicator per Factor 

Next, we can introduce our second-order factor. We use the factor tool to insert another factor (see Figure A1), and 
then we draw reflective paths to each first-order factor. Next, it is necessary to set a scale for the multidimensional 
construct. This may be accomplished by fixing a path leading from the construct to 1.0 or by fixing the variance of 
the construct to 1.0, thereby standardizing the construct. To conduct statistical tests involving the multidimensional 
construct, we must obtain standard errors for paths leading to and from the construct, and these standard errors 
cannot be calculated for fixed paths. Hence, we set the scale of our cognitive absorption construct by fixing its 
variance to 1.0 (see Figure A-14). 

 

Figure A-14. Setting Variance of Second-order Factor to 1.0 
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We will use the factor tool to insert another latent factor, and then we will draw reflective paths to each first-order 
factor. 

 

Figure A-15. Initial Parallel Model 

Figure A-15 depicts our initial second-order model. In order to implement the constraints, we must first translate the 
diagram into the EQS command file. We do so by selecting “Build EQS” and clicking “Title/Specifications.” After the 
EQS command file is generated, we implement the desired constraints into the command file. We select “Build EQS” 
and click “Constraints.” Nest click constraints to open an additional window. 

First, we constrain all factor-to-factor paths by checking the “Constrain all factor paths (F->F)” box. Then, we wish to 
constrain all of the residual variances as equal. To do this we select all of the residual variances (D1,D1 through 
D5,D5) and transfer them to the constraints by clicking the right button (see Figure A-16). 

 

Figure A-16. Constraining Factor Paths and Residual Variances 
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Model 5: Tau Equivalent 

To create this model, we construct it in the same manner as the parallel model, but we eliminate the residual 
variance constraints. We use the same model, but when we generate the model and implement constraints, we 
insert only factor-to-factor constraints. Figure A-17 depicts only factor-to-factor constraints. 

 

Figure A-17. Constraining Factor Paths 

Model 6: Congeneric Model 

The congeneric model is the same as the parallel and tau equivalent models with one exception: all constraints are 
removed. We simply build and run the superordinate model without any constraints imposed. Moreover, the 
congeneric model represents a standard second-order factor model [Rindskopf and Rose, 1988]. 

Structural Model 

Having assessed the dimensionality, convergent validity, and discriminant validity of our superordinate construct, we 
can proceed to an analysis of the theoretical model proposed by Agarwal and Karahanna [2000]. 

We first select the model builder and commence with an empty diagram window. We then insert all of the indicators 
that we intend to use in the path model. We insert factors and assign indicators to the appropriate factor with 
reflective paths. Also, we fix one indicator at 1.0 for each first-order factor. And we fix the variance of the second-
order factor (cognitive absorption) at 1.0. We then use the path tool to draw causal paths between the factors (see 
Figure A-1). 

Figure A-18 depicts our structural model. 

From here, we generate the EQS command file (see Appendix B for the command file) and select the appropriate 
analysis and output options. We set EQS to analyze the data using robust methods; we request a correlation matrix; 
and we run the structural model. The full model with standardized paths appears in Figure A-19. 
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Figure A-18. Structural Model 

  

 

Figure A-19. Standardized Solution for Structural Model 
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APPENDIX B: EQS COMMAND FILE (STRUCTURAL MODEL) 
/TITLE 

Model built by EQS 6 for Windows 

 

/SPECIFICATIONS 

DATA='c:\research\multi\multidimensional-ca.ess'; 

VARIABLES=31; CASES=318; 

METHOD=ML,ROBUST; ANALYSIS=COVARIANCE; MATRIX=RAW; 

 

/LABELS 

V1=TD01; V2=TD02; V3=TD03; V4=TD04; V5=TD05;  

V6=FI01; V7=FI02; V8=FI03; V9=FI04; V10=FI05;  

V11=HE01; V12=HE02; V13=HE03; V14=HE04; V15=CO01;  

V16=CO02; V17=CO03; V18=CU01; V19=CU02; V20=CU03;  

V21=PU01; V22=PU02; V23=PU03; V24=PU04; V25=PEOU01;  

V26=PEOU02; V27=PEOU03; V28=PEOU04; V29=IUSE01; V30=IUSE02;  

V31=IUSE03;  

 

/EQUATIONS 

V1 =   1F1 + E1;  

V2 =   *F1 + E2;  

V3 =   *F1 + E3;  

V4 =   *F1 + E4;  

V5 =   *F1 + E5;  

V6 =   1F2 + E6;  

V7 =   *F2 + E7;  

V8 =   *F2 + E8;  

V9 =   *F2 + E9;  

V10 =   *F2 + E10;  

V11 =   1F3 + E11;  

V12 =   *F3 + E12;  

V13 =   *F3 + E13;  

V14 =   *F3 + E14;  

V15 =   1F4 + E15;  

V16 =   *F4 + E16;  

V17 =   *F4 + E17;  

V18 =   1F5 + E18;  

V19 =   *F5 + E19;  

V20 =   *F5 + E20;  

V21 =   1F7 + E21;  

V22 =   *F7 + E22;  

V23 =   *F7 + E23;  

V24 =   *F7 + E24;  

V25 =   1F8 + E25;  

V26 =   *F8 + E26;  

V27 =   *F8 + E27;  

V28 =   *F8 + E28;  

V29 =   1F9 + E29;  

V30 =   *F9 + E30;  

V31 =   *F9 + E31;  

F1 =   *F6 + D1;  

F2 =   *F6 + D2;  

F3 =   *F6 + D3;  

F4 =   *F6 + D4;  

F5 =   *F6 + D5;  

F7 =   *F6 + *F8 + D7;  

F8 =   *F6 + D8;  

F9 =   *F7 + *F8 + D9;  

 

/VARIANCES 

 F6 = 1; 

 E1 = *;  
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 E2 = *;  

 E3 = *;  

 E4 = *;  

 E5 = *;  

 E6 = *;  

 E7 = *;  

 E8 = *;  

 E9 = *;  

 E10 = *;  

 E11 = *;  

 E12 = *;  

 E13 = *;  

 E14 = *;  

 E15 = *;  

 E16 = *;  

 E17 = *;  

 E18 = *;  

 E19 = *;  

 E20 = *;  

 E21 = *;  

 E22 = *;  

 E23 = *;  

 E24 = *;  

 E25 = *;  

 E26 = *;  

 E27 = *;  

 E28 = *;  

 E29 = *;  

 E30 = *;  

 E31 = *;  

 D1 = *;  

 D2 = *;  

 D3 = *;  

 D4 = *;  

 D5 = *;  

 D7 = *;  

 D8 = *;  

 D9 = *;  

 

/COVARIANCES 

 

/PRINT 

FIT=ALL; 

CORRELATION=YES; 

TABLE=EQUATION; 

 

/END 

 

 

APPENDIX C: STEP-BY-STEP INSTRUCTIONS USING SMARTPLS 

This software required calculating two measurement models, as well as a structural model. First, consistent with 
Agarwal and Karahanna [2000], we estimated a confirmatory factor analysis to confirm the dimensionality of the first-
order constructs. Then, using the factor scores of CA’s dimensions, we simultaneously estimated the measurement 
and structural model. Hence, our first step involved constructing a first-order measurement model (see Figure C-1). 
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Figure C-1. Construct a Model in SmartPLS 

Next, we click on “Calculate > PLS Algorithm.” 

To view our output, we click on “Report > Default Report.” 

After establishing discriminant validity in our measurement model, we turned to evaluating the structural model. To 
do so, we used the standardized latent variable scores for each of cognitive absorption’s dimensions as indicators of 
the second-order construct. In SmartPLS, this requires creating a new data file that combines the latent variable 
scores estimated by the PLS algorithm with the raw data. To do so, we cut and pasted the scores from the 
SmartPLS default report into Excel. To access the scores, we selected the default report option in SmartPLS after 
running the PLS algorithm. 

We copy and paste these scores into Microsoft Excel (see Figures C-2 and C-3). 

 

Figure C-2. Copy Latent Variable Scores 
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Figure C-3. Paste Latent Variable Scores in Microsoft Excel 

Following this, we save the Excel spreadsheet as a comma-separated value (.csv) file. The data must then be 
reloaded into a new project in SmartPLS. We then construct a new model using the latent variable scores as 
indicators of the multidimensional construct (see Figure C-4). 

 

Figure C-4. Second-Order Factor Model 

We execute the PLS algorithm again to generate results for our second-order factor model (see Figure C-5). 
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Figure C-5. Results for Second-Order Factor Model 

We bootstrap the model by clicking on “Calculate > Bootstrapping.” Figure C-6 depicts the results of our 
bootstrapped model. 
 

 
Figure C-6. Results of Bootstrapped Model 

Following this, we generate the HTML report (see Figure C-7). 
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Figure C-7. HTML Report in SmartPLS 

 



 

 

Volume 30 Article 23 
411 

APPENDIX D: CONSTRUCT MEASURES, MEANS AND STANDARD DEVIATIONS* 

Table D-1: Construct Measures, Means and Standard Deviations* 

Construct Mean S.D. 
Temporal Dissociation 
Time appears to go by very quickly when I am using Internet Applications. 5.32 1.29 
Sometimes I lose track of time when I am using Internet Applications. 5.40 1.26 
Time flies when I am using Internet Applications. 5.35 1.26 
Most times when I get on to Internet Applications, I end up spending more time than I had 
planned. 5.42 1.26 
I often spend more time on Internet Applications than I had intended. 5.45 1.25 
Focused Immersion 
I am able to block out most other distractions. 4.41 1.36 
I am absorbed in what I am doing. 4.69 1.23 
I am immersed in the task I am performing. 4.63 1.28 
I get distracted by other attentions very easily.** 3.74 1.40 
When using Internet Applications, my attention does not get diverted very easily. 4.12 1.36 
Heightened Enjoyment 
I have fun interacting with Internet Applications. 5.06 1.17 
Using Internet Applications provides me with a lot of enjoyment. 4.96 1.20 
I enjoy using Internet Applications. 5.12 1.16 
Using Internet Applications bores me.** 4.80 1.44 
Control 
When using Internet Applications I feel in control. 4.94 1.21 
I feel that I have no control over my interaction with Internet Applications.** 4.74 1.42 
Internet Applications allow me to control my computer interaction. 4.87 1.09 
Curiosity 
Using Internet Applications excites my curiosity. 4.63 1.16 
Interacting with Internet Applications makes me curious. 4.63 1.16 
Using Internet Applications arouses my imagination. 4.54 1.21 
Perceived Usefulness 
Using Internet Applications helps me to accomplish tasks more quickly. 5.35 1.18 
Using Internet Applications improves the quality of the work I do. 5.30 1.15 
Using Internet Applications gives me greater control over my work. 5.19 1.13 
Using Internet Applications enhances my effectiveness in my work. 5.28 1.07 
Perceived Ease of Use 
My interaction with Internet Applications is clear and understandable. 5.19 1.22 
Interacting with Internet Applications does not require a lot of mental effort. 4.89 1.25 
I find Internet Applications to be easy to use. 5.23 1.19 
I find it easy to get Internet Applications to do what I want them to do. 5.13 1.20 
Intention to Use 
I intend to use Internet Applications in the future. 6.04 1.14 
I predict I would use Internet Applications in the future. 6.06 1.15 
I plan to use Internet Applications in the future. 6.09 1.13 
* All items were measured with a 1. Strongly Disagree—7. Strongly Agree response format. 
** = reverse coded 

Item Correlation Matrix can be downloaded at www.usf-research.org/CAIS-Wright. 
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