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Operations Flow Effectiveness: A Systems Approach to Measuring 

Flow Performance  

Purpose  

Effective operations management systems (OMS) measurement remains a critical issue for theorists and 

practicing managers (Neely, 2005, Bititci et al., 2012). Traditional labour efficiency measures sufficed 

when all that was made could be sold or when mass production systems filled warehouses with stock and 

the OMS had little relationship with ‘the consumer’. Modern manufacturing systems require a different 

form of flow optimisation (beyond labour efficiency) measurement (Schmenner, 2015). The essential unit 

of measure for all OMS designs is the optimal use of time for process value-adding and the flow of 

materials into and from the conversion process. Timely flow therefore satisfies the needs of multiple 

organisational stakeholders including cash flow (accounting), consumer reaction times (marketing) and the 

general steady state flow of materials (sales and supply chain). This paper presents the results of testing a 

new performance measure of Operations Flow Effectiveness (OFE) with ten purposively selected cases. 

Design/Methodology  

The paper is theory building using ten, purposively selected, longitudinal case studies drawn from the UK 

high-value manufacturing (HVM) sector using a pluralist methodology of interviews, observation and 

secondary data.  

Findings  

The Operations Flow Effectiveness (OFE) measure provides a holistic view of material flow through the 

input-process-output cycles of a firm. The measure highlights OMS design weaknesses and flow inhibitors 

that reduce cash flow using a time-based approach to measuring OMS performance.  

Originality/Value  

The paper tests a new process-focused flow performance measure. The measure supports a holistic 

approach to the manufacturing enterprise and allows different OMS designs to be evaluated so that 

organisational learning may be enacted to support performance improvement.  

Keywords 

Flow, Performance measurement, High-value manufacturing, Case study. 
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Modern operations management discourse, in an era of make-to-order, smaller batch sizes, and a greater 

emphasis on waste elimination (Womack and Jones, 1996), has returned to the central question of what is 

flow and how should it be measured. The traditional dominance of mass production measures – myopically 

focused on labour productivity and maximum utilisation of the production process – has attracted criticism 

in most volume and repetitive order settings. For the modern business, measuring and managing for pure 

process efficiency is unlikely to nurture the ‘externally supportive’ position so cherished by Hayes and 

Wheelwright (1984) nor does such “traditional efficiency” (essentially labor productivity) align well with 

a modern concern for ‘servitization’, personalized production, mass customization, and the new 

technological advances presented by Industrie 4.0, 3D Printing and new technology-based ‘S’ curves 

(Rogers, 2010). 

The concept of ‘system flow’ is poorly defined for these new emergent operations management models. 

The increasing emphasis on the circular economy and a migration to higher value adding sectors for mature 

economies, means productivity-based cost efficiency measurement is increasingly a questionable 

operations management measure (Schulte, 2013, Bonciu, 2014, Lewandowski, 2016). The dysfunctions of 

applying ineffective or poorly aligned ‘flow’ measures has been well explored in the literature (Goldratt, 

1990, Deming, 2000), however, agreement on effective flow performance measures has yet to be reached 

for new high-value manufacturing contexts and a new world of ultimate flexibility and personalisation. 

The latter may provide manufacturers with access to product markets where greater profits exist from 

personalized production but it does not allow operations managers to ignore the measurement of process 

‘efficiency’ for learning and control (Technology Strategy Board, 2012a, MacBryde et al., 2013). It is not 

just a ‘developed’ country challenge to transition to higher value manufacturing. Emerging manufacturing 

economies have already overtaken France and the United Kingdom in terms of manufacturing Gross Value 

Added GVA (Mckinsey Global Institute, 2012) so despite the progress made in operations management 

technology and models, the measurement of flow remains a key challenge. The modern imperative is 

therefore to measure value added time and understand how high performance is supported by 

organizational features that optimize people, information, equipment, material flows and improvement 

based on organizational learning to occur (Größler et al., 2006). 

This paper focuses on purposively selected cases drawn from the British High-Value Manufacturing 

(HVM) sector and a context most likely to reflect the general movement from traditional mass production 

designs to more experimental OMS models. A cross-comparative case study involving ten manufacturers 

was selected and the Operations Flow Effectiveness measure was applied to assess the flow performance 

of each organization. Additional assessments of the ‘states’ of six key subsystems were undertaken to 

determine how these ‘states’ support high levels of operations management flow performance. 

Operations Management & Measurement  

A systematic literature review was undertaken using key word searches and citation databases including 

EBSCO, Google Scholar, Emerald Insight and Science Direct archives to identify studies of operations 
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management performance measures. The key words used for searches included operations management 

and measurements, supply chain management and measurements, material flow measurement and other 

synonyms aligned with the subject of flow measurement. The results showed a lack of systematic studies 

and conceptual studies and a bias of papers towards lean systems reviews, environmental/green and 

sustainability performance measures, studies of risk measurement or humanitarian logistics performance 

measures, modelling of specific cases, sector specific measures and benchmarking studies. These studies 

were reviewed and, whilst useful, most failed to conceptualize material flow. After systematic reduction, 

only 33 papers, published since year 2001, were considered of use to this study and deemed to meet the 

qualities of process measures of flow with properties that support flow measurement of firm-level process 

performance. 

Literature Review  

The review of the extant literature commences with the positioning of OM measures for strategic elevation 

and the relevance of OM to a modern business. It will highlight the importance of ‘material flow’ and its 

central relationship with improved cash flow (economic sustainability), and then expose the measurement 

gap in the modern approach of ‘Swift and Even Flow’ (SEF). 

The modern debate concerning OM measures and objective setting (Neely et al., 2005) can be traced to 

(Skinner, 1969) and the rejection of the cost efficiency ‘trade-off’ where a cost focus compromised all 

other performance objectives. For Skinner, performance was conceptualized as lowest unit cost and set 

within the dominant model of scientific mass production. A cost focus led to a focus on productivity 

through utilisation to the point of making products without orders. Later authors, founded their applied 

models on a ‘quality first’ approach to flow (Nakane, 1986, Ferdows and De Meyer, 1990) which better 

aligned with a competitive market environment, differentiation and the corporate sales function. The OMS 

‘sandcone’ model (Ferdows and De Meyer, 1990) exemplified this distinct logic and evolutionary approach 

to performance objective mastery based on quality and treated cost as the outcome of OM design decisions 

(technology, layout, etc.). The quality focus generated benefits in terms of time compression, dependability 

and later flexibility of the production process as the competitive weapon for strategic elevation that Skinner 

(1969) and Hayes and Wheelwright (1984) so desired. 

The ‘quality first’ agenda of the 1980s and 1990s onwards, supported the Total Quality Management and 

later the lean approaches to OMS and extended measurements towards a holistic understanding of end-to-

end performance measurement. The emphasis on quality improvement and waste reduction supported 

business viability by linking the OMS with better financial performance, greater cash flow and better cash 

management to avoid insolvency of fundamentally profitable businesses (Boer et al., 2015). 

In the quality and lean era of flow measurement, information and material flow were linked to cash flow 

and the economic success of the firm through a minimal consumption of cash. Unlike the traditional mass 

production measures that accelerated the consumption of cash through over-production, additional storage 

requirements and obsolescence costs (Womack and Jones, 1996). The lean approach exposed the apparent 
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traditional low unit production costs as masking a higher overall total cost of production (Ohno, 1988). 

The Lean approach based greatly on Deming (2000) supported the hypothesis that sustainable competitive 

advantage was founded upon high material flow derived from high quality processes (Womack et al. 

(1990). 

However, lean systems and quality systems rely heavily on repetitive flows of standardized products and 

a movement from large to small batches then one-piece flow (Womack and Jones, 1996). But these 

methods are employed in relatively closed and oligopolistic industries where demand can be controlled 

and products can be standardized. Internal measures of lean systems favour a rhythm (Takt time) to 

replenishment or measures such as the Overall Equipment Effectiveness of a given asset (Nakajima, 1988) 

and where production was nonetheless controlled. Indeed, during this era of manufacturing (post mass 

production) the ‘Theory of Swift and Even Flow’ (SEF) by Schmenner and Swink (1998) emerged but 

stopped well short of offering a set of performance measures that can be used to test the effectiveness and 

viability of lean manufacturing (Gregory, 2007, Ríos, 2010). The lean approach did however introduce the 

concept of time compression and just in time management (Monden (2011) as well as a movement from a 

current designed OM ‘steady state’ to a future state where OM redesign would enhance flow in a closed 

system – such as the automotive, aerospace, electronics and food production sectors (Rother and Shook, 

2003). The application of lean flow systems in more open systems, where control is less easy to apply 

proved a challenge and resulted in maintaining excessive capacity to absorb less regular demand or a return 

to greater inventories of standardized products (Klug (2013).  

Swift and Even Flow therefore rested heavily on enhanced physical flow through a reduction of ‘noise’ in 

production subsystems (making), and informational exchanges (that trigger production). Where 

information could not be controlled and departmental measures of utilization were present, local process 

optimization inhibited the system level of material flow needed for effective cash flow.  System ‘noise’ 

and variations within a lean steady state arise from erratic demand and are amplified by unreliable 

equipment, erratic supplier performance, and inaccurate customer forecasts. They inhibit progress towards 

stockless make to order production and these variations halt the flow of materials for an entire closely 

coupled production and supply system. Closed lean systems and SEF seek to reduce the noise of system 

dynamics (Forrester, 1961, Burbidge, 1985, Towill, 1997, Forza and Salvador, 2001, Childerhouse and 

Towill, 2003, Geary et al., 2006, Durugbo et al., 2014, Huo et al., 2014) to enhance process flow 

(Schmenner and Swink, 1998, Schmenner, 2001, Schmenner et al., 2009, Schmenner, 2015). The 

underlying premise of the theory is that “the more swift and even the flow of materials through a process, 

the more productive that process is” (Schmenner and Swink, 2009, p.102), regardless of the capital 

intensity or products offered by the firm. 

Despite the weaknesses of SEF, it explicitly seeks to maximize ‘value added’ activities whilst minimizing 

‘non-value added’ wasteful ones internally (Ohno, 1988). SEF also supports organisational learning and 

improvement processes using Six Sigma, etc., to reduce such noisy variation (Schroeder et al., 2008). 
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Schmenner and Swink (1998) argue noise and waste elimination result from management decision-making 

and operations management working practices and include attempts to dampen it through lean practices 

(Shingo, 1981), and the poorly researched methodology of Total Productive Maintenance TPM (Nakajima, 

1988). SEF also seeks bottleneck optimisation by reducing process variation and reducing the forms of 

noise and compromised ‘laws of variability’ identified by Hopp and Spearman (2008) and the earlier works 

of (Goldratt, 1990).  

At this current juncture in operations management thinking, SEF appears appropriate for the design of 

technical systems for speed and time compression based on the ‘quality first’ approach to optimising 

available productive time (minimizing errors/noise) to achieve greater flow performance. However, SEF 

has significant weaknesses and poorly accounts for modern approaches to manufacturing, the provision of 

higher value added products and the personalization of goods needed when dealing with modern customers. 

In short SEF is effective for relatively closed systems making standardised products. Yet modern 

conditions call for specialised products made in a much more flexible approach to product delivery, new 

socio-technical system designs needed to support truly ‘on demand’ manufacturing, and a fundamental 

need to review how flow is measured. This new ‘post lean’ manufacturing domain includes the challenge 

of Industry 4.0 and cyber-physical systems (Liao et al., 2017). Despite decades of operations management 

thinking, modern OMS advances have exposed fundamental issues with the conceptualization of and 

‘supporting states’ of organisational features that support high levels of flow for a firm (Boer et al., 2015). 

The next section will explore the alignment of performance management systems and the exploitation of 

flow by an OMS. 

Performance Management and Measurement Systems 

There is no universally agreed constitution of an effective  performance management system (Pinheiro de 

Lima et al., 2013), yet Franco‐Santos et al. (2007) found seventeen different definitions for the term. 

Definitional  disagreement has created confusion which limits the generalizability of traditional research 

(Marr and Schiuma (2003). Neely et al. (2005) usefully argue that a performance measurement system 

(PMS) is “the set of metrics used to quantify both the efficiency and effectiveness of actions” (p.1229), 

they also argue for a portfolio of measures to be used for modern complex and contextually embedded 

businesses (Srimai et al., 2011). PMS structure superordinate company goals into measures for control 

purposes and the measurement of flow. Traditional labour productivity and crude measures of cost 

efficiency oppose modern priorities for profitable customer satisfaction with minimal delay, maximum 

personalization at the lowest possible level of waste. 

PMS should support and focus operations management (Drucker, 1954, Power, 1997), yet it can also 

become an inhibitor when mismatches exist between corporate need and OM measurement (Neely et al., 

2005). Further aligned goals and flow measurement feedback must also be calibrated to meet the speed of 

the market environment if feedback is to be used to stimulate adaptation of performance and avoid noise. 

Too frequent feedback creates distortions and triggers reactions in the form of a “permanent sense of crisis” 
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and time-lagged feedback can inhibit flow, particularly cash flow. As such a robust measure of OM 

resource flow, aligned within a PMS, can optimize flow and learning (Srimai et al. (2011) to once again 

achieve a swift if not even flow of materials to customers and the achievement of business strategy  

(Pinheiro de Lima et al., 2013). In modern times, lean systems may be regarded as achieving quality and 

delivery of standard products yet the realization of the flexibility stage of the ‘sandcone’ model of mastery 

and to survive in the harsh modern competitive and pen market requires a fundamental rethink of a PMS 

and what it promote (Neely et al., 2005). 

An effective PMS  derived measure will also unite and engage internal stakeholders (Melnyk et al., 2004) 

thereby reducing the dysfunctions of inconsistency and misalignment of measures between managers 

(Pinheiro de Lima et al., 2013); authors advocate a top-down and process-focused set of measures to 

achieve world class performance (Akao, 1991, Jonsson and Lesshammar, 1999, Franco‐Santos et al., 2007, 

Hanson et al., 2011). Alignment of process performance measures should exploit oragnisational 

dependencies for collaboration to generate and sustain the performance needed to support the 

organizational needs. Measures that are closest to the input-process-output cycle therefore support process 

thinking and support an effective PMS (Table 1). 

Features of an effective performance 

measurement system 
Author 

1. Reflect the overall strategy of the organisation 

Drucker (1954), Caplice and Sheffi (1995), 

Jonsson and Lesshammar (1999), Neely et al. 

(2005), Tung et al. (2011), Micheli et al. (2017) 

2. Provides a grounding for communication 

between stakeholders 

Melnyk et al. (2004), Van Aken et al. (2005), 

Longo and Mura (2008), Cocca and Alberti 

(2010), Hanson et al. (2011) 

3. Diagnose reasons for the current situation 
Johnson and Kaplan (1987), Power (1997), Srimai 

et al. (2011), Maestrini et al. (2017) 

4. Detects abnormality to trigger learning and 

improvement 

Maskell (1991), Bond (1999), Melnyk et al. 

(2004), Franco‐Santos et al. (2007), Gimbert et al. 

(2010), Franco-Santos et al. (2012) 

Table 1: Features of an effective performance measurement system 

Source: The researchers 

A PMS unites an OMS and the measures of flow performance and poorly aligned systems can sub-optimise 

business performance. Traditionally PMS favoured productivity, profitability, throughput, or quality 

(Kaynak, 2003, Ahmad and Schroeder, 2003, Koufteros et al., 2005, Merschmann and Thonemann, 2011), 

and in the main ignored Neely et al.’s (2005) call for pluralism and ‘end to end’ process approach. 

Traditional contradictions included achieving optimal labour productivity whilst creating excessive stock, 

or measures of on time customer service that ignored excessive lead times. Profitability was also a 

problematic measure that was subject to sales teams (customer price negotiations), and product design 

process was a measure that could not and typically was not owned by the operations management of a firm. 

Throughput measurements do support flow, yet are often directed only to system bottlenecks management 

(Goldratt, 1990). Hence, the correct selection of time-based flow measures to support the corporate PMS 

goals is vitally important to modern businesses.  
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In a post-lean world, such measures would tend to favour the management of time and responsiveness to 

customer order fulfilment. The next section will explore the Overall Equipment Effectiveness (OEE), an 

associated lean production and world class performance measure (Nakajima, 1988) and how it provides a 

process focused and time-based measure that can also assess the ability of an operations management 

design to handle the flexibility to change between products (McKone et al., 1999) needed for modern open 

markets. Andersson and Bellgran (2015), argue OEE is one of the most commonly cited OM performance 

measures in lean operations alongside productivity and has long been used to measure maintenance system 

performance (Nakajima, 1988) and also production lines (Oechsner et al., 2002, Nachiappan and 

Anantharaman, 2006). Despite its focus on optimal time-usage for value adding (100% OEE), OEE has 

attracted criticism (Suzuki, 1994, Oechsner et al., 2002, Garza-Reyes et al., 2015). Suzuki (1994) argues 

operations effectiveness is not purely equipment dependent (materials and labour need to be considered) 

and Oechsner et al. (2002) propose it should only be applied to individual isolated equipment. Other 

authors propose inadequacies concerning ‘green factors’, labour variances, and supplier performance  

(Garza-Reyes et al., 2015). These criticisms are contested by McCarthy and Rich (2015) who claim most 

criticisms are effectively managed by the measure and its sub-measures see Figure 1. Logistical delays are 

captured by the asset ‘availability’ and machine speed, availability, process quality, product quality, and 

supply variances are all captured and can be identified by the original OEE measure of(Nakajima, 1988). 

 

Figure 1: Calculation of Overall Equipment Effectiveness 

Source: The researchers, adapted from Nakajima (1988) 

Nakajima (1988) OEE measure evaluate progress towards the ‘zero loss’ and ideal state of Total Productive 

Maintenance (TPM). This measure is comprised of three components (Jonsson and Lesshammar, 1999) 

which are the availability (A), performance (P), and quality (P) – each expressed as a percentage – with 

OEE  expressed by multiplying these three factors together. A resulting OEE therefore indicates 

performance improvement (Bamber et al., 2003) and it is argued to assist double loop employee learning 

(Garza-Reyes et al., 2015).  

OEE

Availability Performance Quality

Breakdown Minor Stoppage Defects

Set-up and adjustment Reduced Speed Start-up losses

X

+

X

+ +
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However, research concerning OEE usage (Nachiappan and Anantharaman, 2006, Tsarouhas, 2012, Garza-

Reyes et al., 2015) have mainly been case studies and lacked generalization (and were discounted from 

this study). The authors accepted these criticisms as a failure to holistically measure flow beyond a single 

asset or tightly coupled production line. It was also perceived to miss the timely provision of inputs and 

outputs. The contemporary operations management requirement is to adopt a ‘whole process’ view that 

the traditional OEE ‘point measure’ could not provide and any measure would need to be capable of usage 

in different operations management contexts. The OEE measure could be operationalized, with 

modification, to measure swift and even flow when integrated with input and output quality and delivery 

performances. 

The contemporary context of modern manufacturing is post-lean, it requires rapid and timely order 

fulfilment of diverse and customized product ranges and takes performance to a higher level of flexibility 

than previously posited by the “sandcone” model (Ferdows and DeMeyer, 1990). SEF has been 

theoretically attributed to high OM performance (Schmenner and Swink, 1998, Seuring, 2009) but it lacks 

a measure of holistic flow performance. Given the high priority attached to the context of High-Value 

Manufacturing (HVM) by developed and developing economies, few studies of flow performance exist, 

hence this gap became the focus of this theory building study. The HVM sector represents a diverse 

manufacturing sector with significant variability in products and supply chains that are more representative 

of the different forms of OM process choice.  

Research Design  

The authors adopt a realist approach in grounding this context-rich study of performance measurement 

(MacCarthy et al., 2013). The approach allows for theory building and to identify ‘outliers’ whose OM 

systems defy the norm (Voss et al., 2002, Sousa and Voss, 2008). The HVM sector is under-researched 

and the poor definition of the subject and this context made the study inappropriate for a positivistic 

methodology (Stuart et al., 2002). Flynn et al. (1990), Eisenhardt (1991), and Yin (2013) all support the 

appropriateness of such a methodology as presented in (Figure 2). 

 

Figure 2: A strategy for combining laboratory tests with field tests in theory development  

Source: Swamidass (1991) 

Operations management theory has often been derived from actual practice particularly in areas such as 

quality, process improvement and performance in operations (Safizadeh et al., 1996, Narasimhan and 

Jayaram, 1998, Gotzamani and Tsiotras, 2001, Radnor and Gosselin, 2005, Größler and Grübner, 2006, 

Observation/
Hypothesis

Field Test Laboratory Test Theory

Feedback

Feedback
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Narasimhan et al., 2006, Zotteri and Kalchschmidt, 2007, Bou-Llusar et al., 2009, Khan et al., 2011, Phan 

et al., 2011, Soni and Kodali, 2012, Jasti and Kodali, 2014). However, much remains to be understood 

about OM system performance and measures. The case strategy is an accepted approach and a preferred 

method for complex organisational analysis (Meredith, 1998, Voss et al., 2002, Stuart et al., 2002, 

Flyvbjerg, 2006, MacCarthy et al., 2013). The case study increases the likelihood of novel theory 

development (Boer et al., 2015) especially when applied as with a cross-case comparative method 

(Leonard-Barton, 1990, Voss et al., 2002). 

Given the limited number of cases which can usually be studied in a population of HVM businesses, the 

definition of HVM is drawn from the UK Government’s TSB (now called Innovate UK), and 10 

purposively selected cases were selected and included a diversity of technologies, products and market 

sectors as per Flynn et al. (1990) advocate to select cases that appear to violate the proposed theory. The 

inclusion of cases that disprove theory ironically enriches theory by showing where it is inapplicable 

(Eisenhardt and Graebner, 2007). Ten cases were selected of which eight were high-value manufacturers 

and from the two low value manufacturing category (See Figure 4). The cases were drawn from 

pharmaceutical, low volume vehicles, electrical mechanisms, semi-conductor, automotive and industrial 

products, electrical systems, medical support devices, home furnishings, filtration, and ventilation 

equipment. The purposive selection criteria and justification draws from the recommendations for  

generalization from a purposive or theoretical sampling (Silverman, 2013) – (see Table 2). 

Selection criteria Main purpose 

End-product falls in the TSB criteria of 

high-value 

To test the theory in the context of high-value manufacturing sector 

Manufacturing sites located in the UK To ensure all cases are operated under British business laws 

End-product falls in the TSB criteria of 

low-value 

To understand if the theory holds outside the high-value 

manufacturing sector as well 

Management structure of +100 

employees 

To increase the probability that a formal management structure 

exists 

Mature site (more than 5 years) To assure that a culture and customary practices exists 

No focus on financial performance To avoid problems concerning the financial performance of the firm 

Table 2: Purposive case study selection criteria  

Source: The researchers 

Qualitative data was strengthened by quantitative data (Eisenhardt and Graebner, 2007) drawn from 

multiple sources and informants (Jick, 1979) and are shown in (Table 3). The choice of management 

informants was restricted to management grades as they hold responsibility for designing subsystems and 

features that enable or inhibit high OM performance (Table 4).  

 

 

Instrument Form 
Theory 

building 

Theory 

testing 

Semi-structured interviews 
Multiple interviews with multiple management 

informants at each case study 
Yes No 

Observational methods 
Shop-floor tours and observations of production 

performance and workplace organisation 
Yes No 
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Archival document tools 

Diverse collection of company documents 

including strategy booklets, performance 

measurement databases, and internal 

communications 

Yes No 

Researcher daybook 

A personal log was kept throughout the research 

phases used to document reflections and taking 

notes 

Yes No 

Self-completion questionnaire 

1-6 Likert scale to investigate strategy, 

communications, socio-technical system, supply 

chain relationships, learning and improvement, 

and performance 

No Yes 

Table 3: Data collection instruments and research phases 

Source: The researchers 

 

Management informant Reason for selection 

Operations Director/Managing Director 
Responsible for overseeing the whole system and for matching 

the operations resources with the environmental demands  

Operations/Manufacturing/Production 

Manager 

Responsible for the conversion process and ensuring that the 

production resources are utilised efficiently 

Quality Manager 
Responsible for the quality of the materials and the end-

products 

Maintenance Manager 
Responsible for the reliability and availability of the conversion 

process 

Supply Chain/Procurement/Purchasing 

Manager 

Responsible for ensuring the availability of high quality 

materials for production on time and in full 

Logistics/Customer Service Manager 
Responsible for delivering the output on time and in full to the 

customer 

Human Resource Manager 
Responsible for the recruitment, training, and development of 

staff 

Product Design and Development/NPI 

Manager 

Responsible for the design and development of new products 

Table 4: Reasons for selecting the management informants 

Source: The researchers 

Research designs and practical considerations create limitations and for this study include the deliberate 

exclusion of R&D and design functions and the relationship with flow performance. The definition of high-

value manufacturing businesses implies a reasonable spend by the organisation on R&D activity 

(Technology Strategy Board, 2012a), and a theoretical link already exists between high R&D investment 

and potentially high performance. This link was not tested in this research and nor was the product design 

and development in general. Moreover, the financial stability of the cases was not undertaken as financing 

was not seen as a high influence on operational performance (beyond interruptions to material flow, if 

accounts were unpaid). No such disturbances were found during the research Measures of profitability 

were not used because some businesses were cost centres, some engaged in transfer pricing for 

international businesses and the vagaries of profit generation.  

This study does not compare direct market competitors in favour of testing the flow measure across several 

OMS contexts rather than benchmarking and is vagaries. The study of direct competitors within the case 

studies would have provided an interesting insight as the environment, technology, supplier base, and 

customers, are the same or similar. Thus, the only differentiation would have been the operations design; 

such a scenario did not exist in this research. 
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Another limitation, by design, originates from the UK base for all businesses. As such, there is a single 

national culture involved with this study and affecting the participating cases. Even though the study 

focuses on the design of operations, a problem facing all operations managers, national culture will have 

implications in the treatment and extent to which labour can engage in improvement and how far managers 

will empower the workforce or organise them into teams. 

The UK High-Value Manufacturing Sector 

The UK High-Value Manufacturing (HVM) sector is critical to national prosperity. UK economic 

manufacturing output, as measured by GVA, has endured a steady decline for many decades from more 

than 30% in the early 1970s to 10% in 2014. Although the relative importance of the sector has reduced it 

has reached a plateau (Figure 3), countries such as Italy, Brazil, South Korea, and France, have surpassed 

the UK’s position despite the UK remaining strong in key industries (including aerospace where it ranks 

second only to the United States and is the host country to the Head Quarters of two of the top six 

pharmaceutical companies see (Advanced Institute of Management Research, 2008). It also boasts one of 

the most productive automotive plants in Europe operated by Nissan in Sunderland. These national assets 

in sectors  including aerospace, automotive, pharmaceuticals, and food were identified by the UK 

Government’s Technology Strategy Board (TSB) – now known as Innovate UK - as critical to the UK’s 

future viability and strategy for 2025 (Technology Strategy Board, 2012b). 

 

Figure 3: Manufacturing gross value added as percentage of total economy 

Source: House of Commons Library (2015) 

Defining HVM  

The Technology Strategy Board (2012a) defined ‘High Value Manufacturing’ as “the application of 

leading-edge technical knowledge and expertise to the creation of products, production processes, and 

associated services which have strong potential to bring sustainable growth and high economic value to 

the UK. Activities by high-value manufacturers may stretch from R&D at one end to recycling at the other” 

(p.6). However, according to the Advanced Institute of Management Research (2008) high-value 

manufacturers are defined as “…firms that do not compete primarily on cost. Instead they deliver value 

for one or more of their stakeholder groups by contracting for capability, delivering product/service 

innovation, establishing process excellence, achieving high brand recognition and/or contributing to a 
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sustainable society” (p.5). In other words, manufacturing organizations must go beyond the traditional 

views of production and historic models of high performance to exploit value from modern complicated 

supply networks (Technology Strategy Board, 2008). 

MacBryde et al. (2013) argue that high-value manufacturing is a state that is achieved when firms move 

away from competing primarily on ‘cost’ and add value through other means, often by services or high 

efficiency of production processes making high value goods. As such, “there is no simple definition of 

high-value manufacturing” (Institute for Manufacturing, 2006) albeit the TSB offers a typology of R&D 

expenditure and potential for economic growth as key dimensions of HVM (Figure 4). The sectors include 

food & drink, marine & other transport, aerospace, automotive, pharmaceuticals, computers, electronics, 

optical products, chemicals, and electrical equipment and these sectors produce high performance products, 

have significant investment in high technical R&D, and employ highly skilled staff. 
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Figure 4: TSB matrix identifying high-value manufacturing sectors 

Source: TSB (2012a) 

Data Analysis and Findings 

To holistically measure materials flow, the OEE measure (collected over a period of 28 weeks) was 

extended by including the measurement of quality and delivery reliability of system inputs/outputs to 

enable the measurement of material flow through the whole system (Figure 5). The quality and delivery 

performance of suppliers was based on the average performance of product specific materials for 28 weeks. 

Customer quality and delivery performance focused on the typical product which utilized the most 

resources. Quality was measured as a percentage (defects per hundred) and delivery was calibrated to +/- 

2 hours of when the product was expected for delivery. The authors considered this measure to be more 

robust and holistic that those adopted by previous studies. 
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Figure 5: Performance measures used to assess the case studies 

Source: The researchers 

The results of this case performance analysis allowed a classification of low performer, average performer, 

or high performer to be allocated to each case (Table 5) and (Table 6) show case performance. (Figure 6), 

shows show the material flow performance – the incoming flow, the internal flow, and the outgoing flow. 

The data for the ‘high performers’ shows that these organizations perform exceptionally well on all the 

measures, whereas other organizations do not show a consistent level of performance. As such, the 

performance of a manufacturing organization is therefore not only dependent on its own operations, but 

also on the performance of other members in the supply chain. Consequently, the competitive position of 

each case will depend highly on the ‘weakest link’ in the chain (Seuring, 2009). This suggests that the 

strategic configuration of the supply chain is a critical task, which comprises supplier selection as well as 

the distribution among the customers, and the efficient managing of internal operations. 

Classification Low performers Average performers High performers 

Material flow Less than 50% Between 50% and 80% More than 80% 

Table 5: Classification of operations systems based on their material flow performance 

Source: The researchers 

Analysis criteria 1 2 3 4 5 6 7 8 9 10 

QD of suppliers 
Quality 81% 97% 80% 99% 99% 99% 95% 98% 99% 99% 

Delivery 84% 85% 90% 96% 99% 97% 96% 97% 98% 98% 

OEE 

Availability 82% 83% 79% 81% 85% 87% 85% 92% 94% 96% 

Performance 87% 84% 95% 89% 88% 95% 96% 88% 93% 95% 

Quality 91% 91% 97% 96% 97% 99% 98% 98% 99% 99% 

QD to customers 
Quality 98% 99% 97% 97% 99% 99% 99% 99% 99% 99% 

Delivery 82% 89% 97% 98% 99% 90% 99% 97% 99% 99% 

Incoming flow 68% 82% 72% 95% 98% 96% 91% 95% 97% 97% 

Internal flow 65% 63% 73% 70% 72% 82% 80% 79% 85% 90% 

Outgoing flow 80% 88% 94% 95% 98% 89% 98% 96% 98% 98% 

Material flow 36% 46% 49% 63% 69% 70% 72% 72% 81% 86% 

Table 6: Performance of the cases in different analysis criteria, ranked by material flow 

Source: The researchers 

 

Overall Equipment Effectiveness: 

 
Operations Flow Effectiveness: 
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Figure 6: Different flow performances of each case study 

Source: The researchers 

To enable cross-case comparison, data collected was populated into data tables (Miles et al., 2014) to 

permit a robust cross-case comparison. Axial coding was chosen to reduce the data set and better manage 

the comparisons to more effectively identify patterns of design features that promoted high as well as ‘swift 

and even flow’ of material. Using significant wall space to present the cross-case comparison tables it was 

possible to see ‘the big picture’ and from which, and over 8 rounds of data reduction and pattern 

identification, (Figure 7) was generated to show the significant features that support flow. 

 

Figure 7: Design elements and features of high performance operations 

Source: The researchers 
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Operations Strategy 

The importance of a guiding operations strategy, its development, and its purpose in relation to the different 

case studies (shown in Table 7) highlights the significant differences between high and low performing 

manufacturing organizations. A fundamental finding shows swift and even flow is enabled by adaptiveness 

and multi-layered feed-forward planning subsystems subsystem, combined with an open systems approach 

to strategy and with more frequent updates (to cope with and adapt to the competitive and dynamic 

environment). It also shows the strong involvement and alignment of staff. The uniting bond of the system 

is a ‘quality first’ approach adopted by the organization towards customers, suppliers and staff and 

additional competitive priorities such as speed, dependability, and flexibility so that the business can 

deliver on its promises and generate higher flow performance. 
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Table 7: Main findings between high and low performance in operations strategy 

Source: The researchers 

Communications System 

Table 8 shows significant differences between the case studies with regards to their communication system 

and information sharing (internally and with supply chain partners). Fundamentally, the long-term plans 

(accompanied by short cycles of control feedback) provide organizations with clearer predictions of the 

future changes and enables them to quickly detect changes/react to maintain SEF the swift and even flow 

of materials. Sharing of information by using a variety of methods for different purposes engages everyone 

in the organization, and it gives the lowest hierarchical levels a ‘voice’ as well as the opportunity to 

innovate and contribute to the overall improvement of the organization. In this manner, information 

exchange and clarity are used to prevent excessive stocks and chaotic production (information has replaced 

physically stocked products) and it can be argued that that long feed-forward plans, accompanied by short 

and frequent feedback cycles result in enhanced performance and enables swift and even flow of materials. 
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Table 8: Main findings between high and low performance in the communications system 

Source: The researchers 

Supply Chain Relationships 

The performance of supply chain flow is critical to operational performance of quality material flow. 

(Table 9), shows partnering with other supply chain members and the sharing of useful information 

promotes and enhances material flow. Collaborative working improves flow by sharing the benefits of 

these improvements of improvements and across the whole chain. Selecting the suppliers and customers 

with the right capabilities is clearly shown as vital to partnership and uninterrupted material flow. Finally, 

the maintenance of an alternative and capable supply base ensures risks are reduced and flow can be 

maintained in the event of a catastrophe at a main supplier. 
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Table 9: Main findings between high and low performance in supply chain relationship 

Source: The researchers 

Technical System 

The best technical system will never be optimized without robust controls to ensure line availability and 

quality of the machine, process and material flow. (Table 10), shows a series of control mechanisms 

including staff engagement and double loop learning are employed at and beyond the focal case 

organization. These simple devices and artefacts allow operators to escalate concerns and prompt greater 

responsiveness to restore flow production (they heighten the situational awareness of all staff to flow 

underperformance and abnormal variance) and thereby prevent waste and interruption. Proactive asset 

maintenance guarantees availability and production speeds which ensures production plans can be 

achieved and reduces management noise and re-planning. An effective technical system design is therefore 

found to be critical to swift and even material flow of. 
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Table 10: Main findings between high and low performance in technical system 

Source: The researchers 

Social System 

A culture of teamwork and heightened interpersonal dependency is a basic foundation for modern 

dominant OM models - but there are significant variances in the range and focus of the skill-sets between 

workers in organizations of different performance classifications. The high performing organizations rely 

on staff trained in determining variation in delivery and speed as well as quality variation detection (this 

allows better use of management as noise is reduced). The low performers use only quality variation 

detection methods and are unaware of asset underperformance from (operating at lower speeds). The 

finding shows the critical role that workers have on controlling the environment, the machinery, and the 

quality and a pivotal aspect of swift and even flow of materials. Investments and improving the social 

system is a major investment by high flow performers acting as learning organizations (Table 11). 
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Table 11: Main findings between high and low performance in the social system 

Source: The researchers 

Learning & Improvement System 

Staff Knowledge of the technical system promotes learning and improvement of efficiency and 

effectiveness of OM and (Table 12) shows the relationship between learning and flow improvement. High 

performing organizations reveal high organizational learning capabilities reflecting that adaptation is a 

desired outcome of learning especially in ever changing fiercely competitive markets. Being ‘fittest’ not 

only involves continuous improvement but a greater integration of worker and machine to achieve greater 

levels of technical competence and mastery – which again heightens situational awareness of staff to 

abnormal processing conditions and so to prompt a quicker countermeasure to maintain SEF. 
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Table 12: Main findings between high and low performance in learning and improvement system 

Source: The researchers 

The key to OM system viability and cash flow management, the primary reason for the Just In 

Time system (renamed ‘lean’ by Womack et al. (1990)) and an underpinning feature of agile 

systems, is swift and even flow of materials to customers and a creation of a dependent system 

whereby flows are uninterrupted and aligned. As production batches head towards personalised 

production in search of higher value adding then it is important to conceptualise flow in a means 

that reinforces a process view of the firm. The findings show an interesting insight into the design 

of high and low flow performance businesses operating in modern dynamic conditions. 

Discussion 

The concept of Swift and even material flow is intriguing but lacks a measure of flow performance that is 

holistic and can be used to learn which aspects of operations management design and support structures 

improve the value adding of production time, and more importantly, flow between the organisation and 

customers/suppliers. Most organisations have ignored Neely’s (2005) call for pluralist measures and legacy 

measures from the mass production era (cost not value focused) remain to generate dysfunctional behavior 

and stresses. The Operations Flow Effectiveness measure was found to provide meaningful measurement 

of supplier performance (on time and in quality) with internal flows through processing lines and the 

onward quality and delivery performance to customers – a process that mimics cash flow and viability of 

the OMS. Stocks within and between organizations exist to balance flow or compensate for variations in 

forecasts, etc. (reflecting a risk appetite for a business). The new flow measure, based on measuring at a 

higher level (‘Flexibility level’) of the sandcone model (Ferdows and De Meyer, 1990) is uncompromising 

as the perfect 100% score is truly optimal for a business and its existing social and technical features. The 

measure also identifies the weakest elements (supply, processing or distribution) and sub-elements that 

need to be improved to move closer to optimal levels of flow (greater availability, cycle time speeds, 

process quality, etc.) so that learning, mastery, and commercial gain results. Moreover, the OFE measures 

the typical disturbance effects commonly found in manufacturing organizations and combats the 

weaknesses of the SEF approach (Table 13). 

Typical 

disturbances effects 
Examples 

Performance 

measure 

Performance 

objectives  
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Material Shortages 
- Delays in deliveries 

- Incorrect materials or components 

Delivery 

dependability 
Dependability 

Breakdowns 

- Unplanned maintenance 

- Employee absenteeism 

- Information system  

Availability Flexibility 

Reworks - Poor product quality Quality Quality 

Non-standard 

production 

- Variability in manufacturing lead 

time 

- Variability in delivery times 

Speed Speed 

Table 13: Typical disturbances in a production system, their performance measure, and performance 

objectives  

Source: The researchers 

The lowest performing flow cases reveal a poor cohesion between operations strategy and the effectiveness 

of other OM features (social, technical and supply chain relationships) and reinforces the need to design 

rather than emulate. Poor integration, PMS alignment and poor learning result in poor cash flow 

management (the modal reason for exhausting cash flow and business viability) resulting in a competitive 

disadvantage. The study finds no individual subsystem could be identified out as the main contributor and 

sole responsibility for the overall flow ranking performance and this again reflects the need for a holistic 

and contingent OM design for flow. High performance businesses operate high flow and highly integrated 

systems where dependency is high between all direct and indirect functions. The latter “supportive” 

internal and external environment of customer/supplier relations supports Hayes and Wheelwright’s (1984) 

proposition that OMS is as competitive weapon even when tightly coupled.    

Disturbances to the production system, to the input and/or output linkages, come in the form of machine 

breakdowns, tool wear, absent workers, poor information systems and such like. Such inconcistencies  

and variation in speeds and delivery schedules affects the of utilisation of machines or availability of 

materials. In general production system disturbances to and from the case study are due to delays or 

incorrect orders and deliveries which confirms the views of (Golinska et al., 2011). Within a case, poor 

quality is the main cause of disturbance to material flow and such forms of ‘operational noise’ all reduce 

the physical and information triggered material flow. Such ‘operational noise’ can therefore be defined as 

“any event, process, or activity that creates excess errors, delays, and/or rework as a result of 

uncertainties caused by poor information exchange or physical processing”. Operational noise is a main 

cause for poor SEF and poor material flow which is amplified by: 

 Ineffective design/redesign decisions that do not support the business in achieving its goals, 

 Problems and loss of productive capacity, 

 Problems associated with inbound supply, 

 Lack of or inconsistencies in quality and quantity of information exchange. 

A variety of strategies were used to manage the dysfunctional impacts of operational noise including 

dampening techniques such as system buffering (investments in stock to ensure flow but at a cost). 

Buffering techniques represent a resource-based approach as they require excess materials, machinery, or 

labour capacity and dampening techniques include information-based approaches based on planning 
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methodologies such as smoothing or physical buffering (Golinska et al., 2011). The study finds an 

absorptive capacity was created to cope with noise  at the high performing cases and a design that, with 

heightened dependencies between businesses and within the production process improves resilience 

(Simangunsong et al., 2012). The  high performing cases maintained an absorptive capacity rather than 

attempting ‘agile’ operating model and had proactively managed risks to flow (Scott, 2003). The flow 

measure was sensitive enough to detect issues with tightly coupled businesses and the need for stock to 

maintain resilience.  

The study finds the most correlated features to high performance (and swift even flow of materials) are a 

holistic and adaptive multi-layered feed-forward planning system. The study finds higher performers had 

a more robust, frequent and sophisticated number and portfolio of future planning activities which were 

managed to ensure the alignment of all the other systems/organizations for flow. Each of the highest 

performing cases was synchronized through rich and effective communications in short cycles of control 

feedback accompanied by long feed-forward plans (allowing process managers and trading partners to look 

forward whilst controlling short run process variations). The attention to communication system design for 

the right information at the right time (vertically in both directions and horizontally across the supply chain) 

is a major distinguishing feature of a higher performing case and interestingly (even allowing for credit 

terms) for cash flow. It is surmised that higher performing cases are less threatened by bankruptcy due to 

poor cash flow. Partner relationship management and longevity of trading relationship were equally found 

at high performing cases which suggests a ‘fit’ between companies and the use of collaboration to remove 

power struggles and commercial gaming. It is the role of the technical system to physically ‘convert’ the 

materials that arrive from the supplier into products for the customer. The technical system is designed to 

have processes that can ensure a swift and even flow of materials. As such, it requires a long-term plan and 

strict control mechanisms to ensure that the materials do not vary in quality, and that the machines are 

maintained to a good condition and available when needed. The control of the technical system is the 

responsibility of the workforce in the social system. Therefore, the workforce is empowered and trained to 

detect any variation in quality, speed, and availability that will affect the flow of materials, and to take 

appropriate action to rectify the problem. The social system is people-focussed and is multi-skilled to 

perform various tasks (and absorb product variety to support SEF and avoid the rigidities of staff with 

limited flexibility and poor learning/adaptation skills). Investment in the human resources of a business in 

this manner also increases the ability of staff to detect abnormal variation and respond more quickly to 

such variation to restore flow. Based on the case findings, Figure 8 is presented to show the holistic 

properties of a higher performing business and how there is integration of six major subsystems that are 

needed for high performance operations and swift and even material flow. 

The authors consider the new flow measure a significant and valuable addition to understanding swift and 

even flow – including the understanding of swift flow in dynamic and uneven market environments. The 

ability to establish a 100% optimal score for flow (given investments in stock) allows the higher level of 

the sandcone model to be assessed and enacted. The research also identifies the six major operations 
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management subsystems that enable better flow and support higher levels of operations mastery. The 

measure therefore offers significant insight into the states and features of operations management design 

that allow such mastery to be effectively exploited in more turbulent product markets as high value 

manufacturers take the next steps to change technology, increase product variety and reduce product lives 

to a single bespoke piece. The new flow measure therefore has utility for most manufacturers and a 

potential new insight into the OM designs that support Industrie 4.0.  

 

Figure 8: Design features of high performance operations for swift and even materials flow 

Source: The researchers 

Conclusions 

The purpose of this research paper was to develop and test a flow performance measurement and to extend 

the concept of “swift and even flow” under current dynamic conditions using the UK High-Value 

Manufacturing sector to theory build. The new era demands greater flexibility of non-standardised products 

and has evolved from the standardized and limited product ranges associated with more traditional lean 

systems. The HVM sector was found to operate at high levels of flow using the new measure and that this 
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form of time management could be applied to all cases. The new era of manufacturing places greater 

emphasis on the management of time as a proxy measure for cash flow. Traditional measures will come 

under greater criticism as new models, such as Industrie 4.0, place greater stresses on manufacturers for a 

quality and tailored product fulfilment process. There remains many issues to overcome with modern 

manufacturing models including skills needed, ability of the supply chain to support personalised 

production and the redistribution of the manufacturing facility itself. The poor state of current knowledge 

concerning the measurement of flow for ‘cutting edge’ business models of ‘make on demand’ or ‘make to 

order’ operations requires a new measure of flow to align operations with the business PMS. A reversion 

to old and “tried and tested” measures, such a labour productivity, will prove both frustrating and will 

create dysfunctional behaviors. Under new operations models, labour is likely to have comparatively 

higher technical skills and the OMS will reflect capacity and time utilization when it is needed.  

The ten case study manufacturers, ranging in flow performance, were investigated to reveal the OMS 

design features that supported or inhibited high material flow. The flow measure was developed by the 

researchers to close a gap in the literature where, despite the acknowledged importance of effective and 

aligned performance measures (Neely et al., 2005), no real holistic measures exist to support the modern 

operating models and OMS. This study reveals six design elements that are necessary to achieve high 

performance including a holistically aligned operations strategy, a synchronising communications system, 

a partner-like supply chain relationship, a controlled technical system, an empowered social system, and 

an adaptive and evolving learning and improvement system. These ‘states’ support effective flow 

management. 

The findings emphasise the importance of flow and a contingent design of operations management features 

as no individual system was identified as the main contributor for higher performance. The research 

conclusions reveal new research gaps in terms of assessing which contingent features (and their sequence 

of implementation) will support new models of dynamic operations management.  The modern 

manufacturing era will place greater emphasis on learning and the adaptation of socio-technical operations 

management features to enhance the reliability. It should be noted that a holistic approach to operations 

design and the enablers of swift flow must be understood and suggests that emulation, which has long 

dominated most organisational approaches to the lean era, is not a sustainable approach and a specific 

OMS design approach must be undertaken. Such designs are even more important in dynamic markets that 

operate flow systems and they must also develop learning capabilities using feed-forward PMS systems to 

cascade business strategy and tighten feedback control systems to harness modern IT systems to monitor 

flow performance. Modern organisations must operate multi-layered levels of control, at the worker, at the 

process, and at the supply chain to detect abnormalities quicker and react to manage flow. The new 

measurement of flow investigated by this research strengthen the role of Operations Management (OM) in 

designing, implementing, and supporting high performance operations as modern ‘competitive weapon’.  
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The most important activity for operations managers is to maintain the viability of a business and to manage 

required production time for value added and revenue earning purposes. In the absence of ‘role models’ 

played by such companies as Toyota in the lean era, operations managers must align working practices 

with the highest levels of flow and do this as a true ‘end to end’ measure. The testing of the Operations 

Flow Effectiveness measure was conducted with high value manufacturers that are under pressure to 

customise and minimise batch sizes, and to improve the generalizability of the measure and approach, 

other manufacturing contexts will be targeted where product variety is even greater and product life may 

be as limited as a single piece. Industrie 4.0 (Internet of Things, 3D Printing, Augmented Reality, etc.) 

provides an ideal opportunity to test the flow measure for swift and uneven flow. It is hoped that this paper 

will stimulate debate as the cases of this research are continued to form longitudinal studies of change and 

ideally joined by international partners to test cultural influences on OMS designs and flow performance. 
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