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ABSTRACT 24 

There are natural synergies between shared autonomous vehicle (AV) fleets and electric vehicle 25 
(EV) technology, since fleets of AVs resolve the practical limitations of today’s non-autonomous 26 
EVs, including traveler range anxiety, access to charging infrastructure, and charging time 27 
management. Fleet-managed AVs relieve such concerns, managing range and charging activities 28 
based on real-time trip demand and established charging-station locations, as demonstrated in 29 
this paper. This work explores the management of a fleet of shared autonomous (battery-only) 30 
electric vehicles (SAEVs) in a regional discrete-time, agent-based model. The simulation 31 
examines the operation of SAEVs under various vehicle range and charging infrastructure 32 
scenarios in a gridded city modeled roughly after the densities of Austin, Texas. 33 

Results based on 2009 NHTS trip distance and time-of-day distributions indicate that fleet size is 34 
sensitive to battery recharge time and vehicle range, with each 80-mile range SAEV replacing 35 

3.7 privately owned vehicles and each 200-mile range SAEV replacing 5.5 privately owned 36 
vehicles, under Level II (240-volt AC) charging. With Level III 480-volt DC fast-charging 37 
infrastructure in place, these ratios rise to 5.4 vehicles for the 80-mile range SAEV and 6.8 38 
vehicles for the 200-mile range SAEV. SAEVs can serve 96 to 98% of trip requests with average 39 
wait times between 7 and 10 minutes per trip. However, due to the need to travel while “empty” 40 

for charging and passenger pick-up, SAEV fleets are predicted to generate an additional 7.1 to 41 
14.0% of travel miles. Financial analysis suggests that the combined cost of charging 42 
infrastructure, vehicle capital and maintenance, electricity, insurance, and registration for a fleet 43 
of SAEVs ranges from $0.42 to $0.49 per occupied mile traveled, which implies SAEV service 44 
can be offered at the equivalent per-mile cost of private vehicle ownership for low mileage 45 
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households, and thus be competitive with current manually-driven carsharing services and 46 

significantly cheaper than on-demand driver-operated transportation services. When Austin-47 
specific trip patterns (with more concentrated trip origins and destinations) are introduced in an 48 
additional case study, the simulation predicts a decrease in fleet “empty” vehicle-miles (down to 49 

3 to 4 percent of all SAEV travel) and average wait times (ranging from 2 to 4 minutes per trip), 50 
with each SAEV replacing 5 to 9 privately owned vehicles. 51 

KEYWORDS 52 

Agent-based modeling, carsharing, electric vehicles, autonomous vehicles. 53 

INTRODUCTION 54 

Recent transportation trends in increasing electric vehicle (EV) sales and growing carsharing 55 
membership have important impacts on greenhouse gas emissions and energy use. Incentivizing 56 

plug-in EV adoption and shared-vehicle use may be key strategies for helping regions achieve 57 

national- and state-level air quality standards for ozone and particulate matter, and ultimately 58 
carbon-emissions standards. At the same time, with the rise of the shared-use economy, 59 
carsharing is emerging as an alternative mode that is more flexible than transit but less expensive 60 

than traditional private-vehicle ownership. However, the growth of EVs and carsharing are both 61 
hindered by technological and social factors. For EVs, the most significant hindrance may be 62 

“range anxiety,” a user’s concern for being stranded with a fully discharged battery and no 63 
reasonable recharge option (Bartlett 2012). Meanwhile, as EVs penetrate the private and 64 
commercial vehicle fleets, they are also gaining ground in the carsharing world. EVs are a 65 

natural match for carsharing operations as existing members of carsharing operations tend to 66 

drive smaller and more fuel efficient vehicles than non-carshare members (Martin and Shaheen 67 
2011). Cutting edge carsharing operators (CSOs) are already employing EVs in their fleets (such 68 
as Daimler’s Car2Go and BMW’s DriveNow operations), but the manual relocation of fleets in 69 

one-way carsharing systems continues to present profitability challenges to CSOs. The 70 
introduction of autonomous driving technology would remove the challenge of manual vehicle 71 

relocation and presents a driver-free method for shared EVs to reach travelers’ origins and 72 
destinations as well as charging stations. In a carsharing setting, a fleet of shared autonomous 73 

electric vehicles (SAEVs) would automate the battery management and charging process, and 74 
take range anxiety out of the equation for growth of EVs. With the recent popularity of on-75 
demand transportation services through transportation network companies, it is possible to 76 
imagine a future travel system where autonomous vehicle (AV) technologies merges with 77 
carsharing and EVs in a SAEV fleet. But can self-driving vehicles be shared, self-charged, and 78 
right (battery-) sized for the trip lengths that travelers desire?  79 

This study attempts to answer this question through the simulation of a SAEV fleet in a discrete-80 

time agent-based model, examining fleet operations in a 100-mile by 100-mile gridded 81 
metropolitan area. Scenarios combine short-range and long-range electric vehicles with Level II 82 
and Level III charging infrastructure to look at the impacts of vehicle range and charging time on 83 
fleet size, charging station sites, ability to meet trip demand, user wait times, and induced vehicle 84 
miles traveled (VMT). Following the discussion of the simulation results, a financial analysis 85 
highlights the tradeoffs between capital investment in vehicles and charging infrastructure and 86 

user benefits. 87 
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PRIOR RESEARCH 88 

There is a wealth of literature examining carsharing, electric vehicles and charging infrastructure 89 
planning, and autonomous vehicles as separate topics. Studies looking at gasoline-propelled and 90 
(especially) electric AVs in a shared setting are more limited. Wang et al. (2006) proposed a 91 

dynamic fleet management algorithm for shared fully automated vehicles based on queuing 92 
theory. In a simulative environment with five stations and five vehicles, the average passenger 93 
waiting time was 3.37 minutes with average vehicle usage rate of 4.3 vehicles, compared to a 94 
fixed dispatch algorithm where average passenger wait time was 4.89 minutes and vehicle usage 95 
rate 3.7 vehicles. Spieser et al. (2014) modeled a fleet of shared self-driving vehicles in 96 

Singapore in the absence of any private vehicles, and found that each shared vehicle can replace 97 
three privately owned vehicles and serve 12.3 households. In Kornhauser et al. (2013), 98 
aTaxiStands (autonomous taxi stands) are placed in every half mile by half mile pixel across 99 

New Jersey, and passengers walk to taxi stands rather than allowing AVs to relocate. Douglas 100 
(2015) uses the base model proposed in Kornhauser et al. (2013) to size the fleet of an 101 
autonomous taxi system in a 5-mile by 5-mile subset of the New Jersey model and found a 102 

minimum of 550 vehicles was needed to serve the trip demand. Burns et al. (2013) examined the 103 
performance of a shared autonomous fleet in three distinct city environments: a mid-sized city 104 
(Ann Arbor, Michigan), a low-density suburban development (Babcock Ranch, Florida), and a 105 

large densely-populated urban area (Manhattan, New York). The study found that in mid-sized 106 
urban and suburban settings, each shared vehicle could replace 6.7 privately owned vehicles. 107 
Meanwhile, in the dense urban setting, the current taxi fleet could be downsized by 30% with the 108 

introduction of autonomous driving technology with average wait times at less than one minute. 109 
The International Transport Forum (2015) looked at the application of shared and self-driving 110 

vehicles in Lisbon, Portugal, and found that with ride-sharing enabled, each shared vehicle can 111 

replace approximately 10 privately owned vehicles and induces 6% more VMT than the current 112 

baseline. Without ride-sharing, each sequentially shared vehicle can replace 6 privately owned 113 
vehicles but induces 44% more travel distance. This study also looked at the impact of 114 
electrifying shared self-driving vehicles, assuming an electric range of 175 kilometers (108 115 

miles) and a recharge time of 30 minutes, and found that the fleet would need to be 2% larger. 116 
Fagnant and Kockelman (2014) presented an agent-based model for Shared Autonomous 117 

Vehicles (SAVs) which simulated environmental benefits of such a fleet as compared to 118 
conventional vehicle ownership and use in a dense urban core area. Simulation results indicated 119 
that each SAV can replace 11 conventional private owned vehicles, but generates up to 10% 120 

more travel distances. When the simulation was extended to a case study of low market 121 
penetration (1.3% of trips) in Austin, Texas, each SAV was found to be able to replace 9 122 
conventional vehicles and on average, generated 8% more VMT due to unoccupied travel 123 
(Fagnant et al. 2015).  124 

 125 
Charging/refueling in a fleet of shared self-driving vehicles has remained a missing component 126 
in all of the prior studies mentioned here except ITF (2015) and Fagnant and Kockelman (2014), 127 
both of which model the refueling process rather simplistically. Fagnant and Kockelman (2014) 128 
modeled the logistics of refueling by assuming the 400-mile range SAVs could refuel at any 129 

location within the grid with a fixed service lag time. In ITF (2015), recharging of EVs is only 130 
looked at in terms of equivalent fleet sizing compared to longer-range and shorter-recharge-time, 131 
gasoline-propelled vehicles. No study has examined the operations of shared autonomous 132 

vehicles looking specifically at the vehicle propulsion system and charging infrastructure, both 133 
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of which have direct impacts on the vehicle’s ability to travel to passengers as well as 134 

fueling/charging stations. The work described here builds from the framework in Fagnant and 135 
Kockelman (2014) and analyzes the operations of a SAEV fleet under different vehicle range and 136 
charging infrastructure assumptions. There are natural synergies between AVs and EVs, as the 137 

“smart” nature of AVs resolve the practical limitations of the non-autonomous EV in the market 138 
today. These limitations include the previously discussed all electric range, charging station 139 
density, and charging time management. Fleet managed “smart” AVs relieve such concerns from 140 
the individual traveler, managing range and charging activities based on predicted trip demand 141 
and established locations of charging stations, as demonstrated in the work here. 142 

 143 

METHODOLOGY 144 
 145 
Model Setup 146 

The discrete-time agent based model used here is an expansion of the 10-mile by 10-mile model 147 
proposed by Fagnant and Kockelman (2014). In its setup, the model generates a square 100-mile 148 

by 100-mile gridded metropolitan area, divided into 160,000 quarter-mile by quarter-mile cells. 149 
The gridded city (roughly modeled after the population density pattern of Austin, Texas) is 150 
divided into four zones as shown in Figure 2-1: downtown (the innermost 2.5-mile radius), urban 151 

(the next ring 7.5-mile radius), suburban (the next ring 15-mile radius), and exurban (the 152 
remainder area). Zone population densities and trip rates are determined with data from the 153 

Austin travel demand model segmented by population density (see Table 1). Each zone has its 154 
own unique average trip generation rate (representing approximately 10% of all trips in the 155 
Austin region inclusive of return trips, reflecting what Shaheen et al. [2006] estimates as market 156 

potential for carsharing in a manually-driven setting) and average peak and off-peak travel 157 

speeds (derived from sample peak and off-peak trips from the Austin travel demand model), as 158 
shown in Table 1.  159 
 160 
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 161 

Figure 1. City Zones and Zone Limits 162 

Table 1. Zone Trip Generation Rates & Travel Speeds 163 

  

Population Density 

(persons/mi2) 

Avg Trip Gen. Rate 

(trips/cell/day) 

Travel Speed (mi/hr) 

Peak Off-Peak 

Downtown 7500-50,000 129  15 15 

Urban 2000-7499 39 24 24 

Suburban 500-1999 11 30 33 

Exurban <499 1 33 36 

 164 

The actual trip generation rate in each cell is drawn from a Poisson distribution with Table 1’s 165 
value used as the average rate for each 5-minute time step within a 24-hour temporal distribution 166 
following the 2009 National Household Travel Survey (FHWA 2009). The destination cells for 167 

each trip generated are assigned as a function of the trip length (drawn from the 2009 NHTS trip 168 
length distribution) and proportional to the share of cells to the north, south, east, and west of the 169 

origin cells. In other words, the trip generation methodology used here favors higher attraction 170 
levels towards the city center. In the simulation, roughly 680,000 SAEV trips are generated per 171 

day (representing roughly 10% of trips in a simulated 2.9 million people region). For detailed 172 
information on the step-by-step trip generation methodology used here, please refer to Fagnant 173 
and Kockelman (2014). 174 

The model first runs through a two-phase warm start, during which the number of charging 175 
stations and the size of the SAEV fleet is determined. After the warm start completes, the model 176 
then runs for 50 consecutive days with the predetermined fleet size and charging station layout to 177 
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output fleet operation performance metrics. Each phase of the model is discussed in detail in the 178 

following sections. 179 

Charging Stations Generation 180 

In Phase 1 of the warm start, consecutive 24-hour days are modeled to determine the number of 181 

charging stations needed for full service of the SAEV fleet. Figure 2 demonstrates the process of 182 
how and where charging stations are generated in the warm start. 183 

 184 

Figure 2. Agent Based Model Algorithm: Charging Station Generation 185 

Once a trip is generated by the process discussed in the Model Setup section, a traveler looks for 186 

the closest available status SAEV within a 5-minute travel time radius through a greedy search 187 
algorithm (searching at increasing distances starting from its own origin cell). If an available 188 
SAEV is located within a 5-minute travel-time radius, the traveler claims the SAEV and the 189 
SAEV falls under in use mode for the subsequent time periods to pick up the traveler, complete 190 

the assigned trip, and release traveler. If a SAEV is not available within a 5-minute travel-time 191 
radius, the traveler joins a waitlist. In the following 5-minute time step, travelers on the wait list 192 
are prioritized and served first, before new trips generated during the current time step are served 193 

by SAEVs. When a traveler has been on the waitlist for 10 minutes (or two time steps), a new 194 
SAEV is generated with full charge in the traveler’s origin cell. 195 

Once a SAEV releases a traveler at the destination cell, the vehicle changes from in use to 196 
available status, and awaits for a traveler call in the subsequent 5-minute time step. If the vehicle 197 
is not called in the time step, the SAEV changes from available to relocating status, and its 198 
subsequent actions are discussed in the Strategic Vehicle Relocation section. If a traveler calls, 199 
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the SAEV checks to ensure that its remaining range is greater than the distance to the traveler 200 

plus the distance of the requested trip before accepting the call. If the range is insufficient, the 201 
call is rejected and the SAEV changes from available to charging status. In charging status, the 202 
SAEV looks for the nearest charging station (by the same greedy algorithm used in trip 203 

matching), and if one does not exist within its remaining range, a charging station is generated in 204 
the SAEV’s current cell. The SAEV then stays in charging status at the charging station for the 205 
number of time steps proportional to its remaining range to achieve full charge status, as shown 206 
in Equation 1: 207 

𝑇𝑐ℎ𝑎𝑟𝑔𝑒 = ⌈
𝑅𝑎𝑛𝑔𝑒𝑓𝑢𝑙𝑙−𝑅𝑎𝑛𝑔𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑅𝑎𝑛𝑔𝑒𝑓𝑢𝑙𝑙
⌉ 𝑇𝑓𝑢𝑙𝑙              (1) 208 

where 𝑇𝑐ℎ𝑎𝑟𝑔𝑒 is the number of time steps a SAEV remains at the charging station in charging 209 

status before becoming available for the next traveler, 𝑅𝑎𝑛𝑔𝑒𝑓𝑢𝑙𝑙 is the number of grid cells a 210 

SAEV can travel when fully charged, 𝑅𝑎𝑛𝑔𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the SAEV’s current remaining range, and 211 

𝑇𝑓𝑢𝑙𝑙 is the number of time steps required for a fully depleted SAEV battery to fully charge. 212 

Phase 1 continues until the number of charging stations on consecutive days converges to within 213 
1%. 214 

SAEV Fleet Generation 215 

When Phase 1 is complete, the charging station layout is set and no more charging stations can 216 

be added to the city. The SAEV fleet is cleared to start Phase 2, which determines the size of the 217 
SAEV fleet. The two phases of the warm start operate independently of each other since the 218 
number of SAEVs required in the fleet depends on the number of charging stations available. 219 

During the generation of the charging stations, the corresponding SAEV fleet is (temporarily) 220 

oversized. The overall algorithm for Phase 2 is similar to that of Phase 1. However, because no 221 
charging stations are generated in Phase 2, in order to accept a traveler’s call, the SAEV must 222 
have sufficient range to travel to the traveler, complete the requested trip, and travel to the 223 

nearest charging station from the destination cell. Phase 2 is run for 20 days, with vehicles 224 
cleared at the end of each day. The average number of SAEVs generated from the 20 days is 225 

taken as the fleet size for the full run.  226 

Waitlist 227 

Once the charging station locations and SAEV fleet size is determined from the two-phase warm 228 
start, the program runs through 50 consecutive days when vehicles are in continuous operation 229 

(no vehicle clearing). The full run’s model structure is identical to that of Phase 2, except no new 230 
SAEVs are generated and travelers remain on the waitlist. If a traveler’s trip request is rejected in 231 
6 consecutive time steps (equivalent to 30 minutes on the waitlist), that trip is considered 232 
unserved and is removed from the waitlist.  233 

Strategic Vehicle Relocation 234 

During each step of the model (warm start and full run), available SAEVs that are not called by 235 
travelers are assigned to relocating status for that time step. The relocation strategy used in this 236 
model first attempts to balance the available SAEVs in the current time step with the expected 237 
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demand in a 2-mile by 2-mile block in the subsequent time step, then uses two additional 238 

strategies to efficiently distribute SAEVs amongst bordering blocks with a large vehicle supply 239 
gap. This combination of relocation strategies was deemed the most effective out of several that 240 
were tested in Fagnant and Kockelman (2014), which also describes the relocation process in 241 

detail. To ensure that vehicles in relocating status have sufficient range for relocation, a check 242 
ensures that the SAEV has sufficient range to travel a distance equivalent to 5 minutes of travel 243 
time from its original cell (roughly equivalent to 2 miles but varies slightly with zone) plus the 244 
distance to the nearest charging station to the relocation destination. 245 
 246 

MODEL SCENARIO RESULTS 247 

The agent-based model described here is run for several scenarios to examine the sensitivity of 248 
various fleet operation metrics to model inputs, as shown in Table 2. A non-electric SAV 249 

scenario (assuming 400-mile range and 15 minute refueling time) is run as a reference case for 250 
comparison to the results in Fagnant and Kockelman (2014). Next, the SAEV scenario assumes 251 
the vehicle has an 80-mile range (similar to current models of the Nissan Leaf, Chevrolet Spark, 252 

Honda Fit EV, and BMW i3) and 4 hour recharge time, corresponding to charging times of 253 
current market BEVs with a 240-volt AC Level II charger. A SAEV Fast Charge scenario 254 

combines the same 80-mile vehicle with a recharge time of 30 minutes, mimicking the 255 
specifications of current market BEVs with a Level III 480-volt DC high-current charger. 256 
Following fast charging guidelines, the SAEVs in the fast charge scenarios will only be charged 257 

to 80% full to protect the batteries from losing capacity with repeat fast charging, which 258 
effectively reduces the range to 64 miles. The last two scenarios looks at various types of 259 

charging in combination with long-range BEVs (LR SAEV) matching the 200-mile range 260 
specification of the upcoming Chevrolet Bolt and Tesla Model 3 (both with 2017 planned release 261 

dates). The LR SAEV scenario combines a 200-mile range with a 4-hour recharge time while the 262 
LR SAEV Fast Charge scenario combines a 160-mile effective range with a 30 minute fast 263 

charge time. 264 

Table 2. Scenario Results 265 

Scenario SAV SAEV 

SAEV     

Fast Charge LR SAEV 

LR SAEV 

Fast Charge 

Range (mi) 400 80 64 200 160 

Refuel/Recharge Time (min) 15 240 30 240 30 

# of Charging/Fueling Station Sites 1062 1562 1573 1555 1517 

# of Chargers/Fuel Pumps* 2245 30,129 16,510 16,554 2389 

Fleet Size 29,939 57,279 39,593 41,179 31,859 

Avg Daily Miles per Vehicle 259 131 197 190 241 

Avg Daily Trips per Vehicle 22.3 11.4 16.9 16.3 20.8 

Private Veh Replacement Rate 7.32 3.73 5.53 5.33 6.82 

% Trips Unserved 2.13% 3.94% 4.36% 2.29% 2.73% 

Avg Trip Distance (mi) 10.1 9.41 9.08 10.0 10.0 

Avg Wait Time Per Trip (min) 9.3 8.1 7.7 8.4 9.5 

Avg Range Remain. at Recharge (mi) 1.6 43.1 40.7 5.4 2.5 
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% Total Unoccupied Travel Distance 6.6% 10.7% 14.0% 7.1% 7.1% 

% Unoccupied Travel for Trips 5.2% 4.1% 3.0% 4.7% 4.9% 

% Unoccupied Travel for Charging 0.3% 2.5% 5.0% 0.6% 0.7% 

% Unoccupied Travel for Relocation 1.1% 4.1% 6.1% 1.9% 1.4% 

Max % Concurrently Charging 

Vehicles   7.5% 52.6% 41.7% 40.2% 7.5% 
*As proxied by the maximum number of concurrent charging/refueling vehicles in the day. 266 

Simulation results show that the number of vehicles needed in a fleet is highly sensitive to charge 267 
time and, to a slightly lesser degree, vehicle range. Substituting Level III in place of Level II 268 
chargers for SAEV and LR SAEV fleets reduced the required fleet size by 30.9 and 23.3%, 269 
respectively. On the other hand, increasing the electric range of vehicles from 80 to 200 miles 270 
reduced the fleet size by 28.1 and 19.5% respectively for Level II and Level III charging 271 

schemes. Combining these effects, the necessary fleet for the SAEV scenario is almost double 272 
the size of that for the LR SAEV Fast Charge scenario. Using 2009 NHTS rates for 3.02 private 273 

car trips per licensed U.S. driver and 0.99 household vehicles per licensed driver (Santos et al. 274 
2011), the private vehicle replacement rate is highest at one shared vehicle for every 7.3 private 275 
vehicles in the SAV scenario, in line with the results from the mid-sized urban and suburban 276 

models in Burns et. al (2013) and the regional model in Fagnant and Kockelman (2015). 277 
However, once the fleet is electrified, the private vehicle replacement rate ranges from a 278 
comparable 1:6.8 vehicle ratio in the LR SAEV Fast Charge scenario to a much lower 1:3.7 279 

vehicle ratio in the SAEV scenario. Non-electric SAV fleet requires the fewest number of 280 
vehicles (29,939) for full service, and the closest competitive EV scenario (LR SAEV Fast 281 

Charge) increases that fleet size by 6.6%, a slightly larger difference than estimated in ITF 282 
(2015) despite longer EV range assumption. As seen in Figure 3, a snap shot of each vehicle’s 283 

activity during the peak 5-minute period (defined as the time step with the most in use vehicles) 284 
demonstrates that with longer charging times and shorter ranges, vehicles are simply tied up at 285 

charging stations not able to service trip demand. While the number of in use vehicles is 286 
relatively consistent across all scenarios, the number of charging vehicles increases significantly 287 
with longer vehicle charge times and shorter electric range.  288 

 289 
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 290 

Figure 3. Peak (5-Minute) Period Vehicle Use 291 

As seen in the results in Table 2, for full service, all EV scenarios produced similar numbers of 292 
charging station sites. This result suggests that the number of charging station sites (cells with 293 
charging stations) necessary for full service has an inelastic relationship with the vehicle’s 294 

electric range, but is more determined by the geography of the city (or size of the service geo-295 
fence). Conversely, the total number of chargers needed (as proxied by the average number of 296 

charging vehicles in the time step with the most concurrent charging across 50 days) is highly 297 
sensitive to charge time and vehicle range. Using Level III chargers cuts the charge time for 298 

SAEV and LR SAEV fleets by 87.5%, and correspondingly, the number of needed chargers by 299 
45.2 and 85.6%. Holding charging infrastructure constant, substituting LR SAEVs for SAEVs in 300 
the fleet (and increasing vehicle range by 150%), the number of chargers needed decreases 45.0 301 
and 85.6%. Generally speaking, high trip demand periods coincide with high charging activity 302 

periods. Simulation results suggest that the LR SAEV Fast Charge scenario is best at spreading 303 
out charging demand across the day, with a maximum of 7.46% of vehicles in the fleet 304 
concurrently charging during any time step. On the other hand,  in the base SAEV scenario, as 305 

many as 52.6% of the vehicle fleet charge concurrently during the peak charge time period of the 306 
day (defined as the 5-minute period with the largest percentage of charging vehicles). 307 

Simulation results show that longer vehicle range translates into higher percentages of trips 308 
served, as vehicles simply cannot serve trips longer than its maximum range. In the 2009 NHTS, 309 
1.05% of the trips are over 80 miles long. In the simulation results, the difference between trips 310 
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SAEV Fast

Charge
LR SAEV

LR SAEV
Fast Charge

Unused/Relocating Vehicles 4339 8741 10359 5145 6408

Charging Vehicles 2085 27668 6459 14340 2288

In Use Vehicles 23515 20869 22774 21693 23162
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served between the 200-mile LR SAEV and the 80-mile SAEV is 1.65%. However, longer 311 

vehicle range is generally associated with longer wait times in the simulation results, primarily 312 
due to the inefficiency of serving trips originating in low-demand suburban and exurban areas a 313 
shared setting. As seen in Table 2, longer-range vehicles spend more of their “empty” VMT for 314 

passenger pick-up while shorter-range vehicles spend more of their “empty” VMT for relocation.  315 

Each autonomous driving scenario produced an additional 7.1 to 14.0% of unoccupied VMT, in 316 
line with estimates in ITF (2015) and Fagnant et al. (2015). As seen in Table 2, for vehicles with 317 
longer range (SAVs and LR SAEVs), the greatest portion (65.6 to 78.4%) of that induced travel 318 
can be attributed to unoccupied vehicles traveling to pick up passengers. Unoccupied travel to 319 

charging/refueling stations played a relatively minor role in inducing additional VMT, summing 320 
to 0.5 to 0.7% of total VMT (or 4.5 to 10.0% of “empty” miles traveled) for longer range 321 
vehicles, as seen in Figure 4. Due to the more frequent need to recharge, induced miles traveled 322 

for recharging is greater for scenarios with shorter range vehicles. SAEVs registered an 323 
additional 2.5 to 5.0% miles for charging activity, consisting of 23.6 to 35.4% of their total 324 
“empty” miles traveled.  325 

Not only do shorter range vehicles charge more frequently, simulation results in Table 2 also 326 
show that they utilize a smaller percent of their range before a charging event. The phenomenon 327 

of shorter-range vehicles recharging with higher baseline remaining range can be attributed to 328 
the demand-based charging strategy employed here, where a vehicle is assigned to charging 329 
status after rejecting a trip request due to insufficient range. With shorter ranges, the SAEVs are 330 

more frequently assigned to charging status due to increased probability of having insufficient 331 
range for trips. To explore whether charging less frequently would improve the fleet performance 332 

of the shorter range SAEV scenarios, scenarios incorporating both demand- (trip rejection) and 333 

distance- (maximum remaining range) based charging strategies were also run. Table 3 displays 334 

simulation results where SAEVs are assigned to charging status after the vehicle has rejected a 335 
trip due to insufficient range and met a maximum remaining range threshold. Results show that 336 

combining demand-based charging with a 75% (60-mile) maximum remaining range criteria 337 
yielded the best fleet performance metrics from a user perspective. Average wait times reduced 338 
to 7.37 minutes per trip and percent of trips unserved decreased to 1.70%, competitive with the 339 

SAV scenario results in Table 2. From the operator perspective, applying this charging strategy 340 
increases the necessary fleet size slightly (by 0.1%) and decreases induced travel by 12.7%. 341 

Increasingly stringent recharging distance criteria continually decreases induced VMT, primarily 342 
from reduction in relocation miles. However, as relocation miles decrease, induced miles to pick 343 

up travelers increase (and subsequently increases wait times), demonstrating the inherent 344 
tradeoffs between reducing extra VMT and enhancing user experience (as measured by wait 345 

times and percent of trips served). Scenarios with distance-only thresholds for charging were also 346 
examined, but those scenarios all yielded longer wait times than charging strategies that 347 
incorporated demand. 348 

Table 3. Demand- and Distanced-Based Charging (SAEV with Level II Charging) 349 

Charging Strategy: 

Recharge Upon 

Trip Rejection, 

Max Remaining 

Range=80 mi 

Recharge Upon 

Trip Rejection, 

Max Remaining 

Range=60 mi 

Recharge Upon 

Trip Rejection, 

Max Remaining 

Range=40 mi 

Recharge Upon 

Trip Rejection, 

Max Remaining 

Range=20 mi 
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Fleet Size 57,279 57,354 57,278 57,174 

% Trips Unserved 3.9% 1.7% 3.0% 3.4% 

Avg Wait Time 

(min) 8.1 7.4 8.2 8.5 

Avg Range 

Remaining at 

Recharge (mi) 43.0 22.2 13.2 6.4 

Avg Trip Distance 

(mi) 9.5 9.5 9.5 9.5 

% Total New 

Induced Travel  10.7% 9.3% 9.1% 9.0% 

% New Induced 

Travel for Charging 2.5% 3.3% 3.1% 3.1% 

% New Induced 

Travel for Relocation 4.1% 1.9% 1.6% 1.5% 

% New Induced 

Travel for Trips 4.1% 4.1% 4.4% 4.5% 

 350 

FINANCIAL ANALYSIS 351 

Simulation results offer some insight into how combinations of vehicles and charging 352 

infrastructure impact fleet operations, but a financial analysis is necessary to truly grasp the 353 
tradeoff between additional capital investment (into vehicles with bigger batteries or more 354 
expensive fast charging stations) and user benefits (measured in additional trips served or 355 

decreased wait times). For each vehicle and charging station type, analysis was conducted for 356 

three cost levels: low-, medium-, and high-cost scenarios, as shown in Table 4. 357 

Table 4. Vehicle & Charging Infrastructure Cost Assumptions 358 

  Low Cost Mid Cost High Cost 

Vehicle Capital       

SAEV (per vehicle) $35,000 $40,000 $55,000 

LR SAEV (per vehicle) $45,000 $50,000 $80,000 

Replacement battery (per kWh) $240 $405 $570 

Vehicle Operations    

Maintenance (per mile) $0.055 $0.061 $0.066 

Insurance & Registration (per  vehicle-year) $1,280 $1,600 $1,920 

Electricity (per kWh) $0.11 $0.13 $0.26 

Charging Infrastructure       

Level II Charging (per charger) $8,000 $12,000 $18,000 

Level II Annual Maintenance (per charger) $25 $40 $50 

Level III Charging (per charger) $10,000 $45,000 $100,000 

Level III Annual Maintenance (per charger) $1,000 $1,500 $2,000 

 359 
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For vehicle capital costs, the non-autonomous SAEVs are assumed to cost from $25,000 (similar 360 

to Mitsubishi i-Miev and Smart Fortwo Electric Drive BEVs) to $45,000 per vehicle 361 
(approximate retail cost of BMW i3 BEV), with a most likely price of $30,000 (comparable to 362 
Nissan LEAF and Ford Focus Electric BEVs). The non-autonomous LR SAEVs are assumed to 363 

cost between $35,000 (projected price of the future 2017 Tesla Model 3 and Chevrolet Bolt) and 364 
$70,000 (retail price for the current model Tesla Model S), with a most likely price of $40,000 365 
per vehicle as critics believe the projected pricing for LR BEVs is too optimistic (see, e.g. 366 
Anderman 2014). These vehicle costs do not consider government rebates and incentives for EV 367 
purchases. AV technology is assumed to add $10,000 to the cost of each vehicle around the time 368 

AV technology first hits the commercial market in 2025, per estimates from IHS (2014) and 369 
Schultz (2014). To convert vehicle capital costs to a per-mile basis, each SAEV is assumed to be 370 
in operation for 231,000 miles before replacement, equivalent to the average life span of a New 371 
York City taxicab (New York City Taxi & Limousine Commission 2014). The battery is 372 

assumed to be replaced once during the SAEV’s service span (or per 115,500 miles), in line with 373 
most BEVs’ 100,000-mile battery warrantees and evaluations of EV batteries (see, e.g., Knipe et 374 

al. 2003). Cost for replacement batteries (24 kWh for SAEVs and 60 kWh for LR SAEVs) are 375 
assumed to cost between $380 to $570 per kWh, per estimates from Plotkin and Singh (2009).  376 

For vehicle operation costs, maintenance (including tires) is assumed to cost between 5.5 and 6.6 377 
cents per mile, similar to non-autonomous vehicles (AAA 2014). Insurance and registration are 378 
assumed to be on the order of two to three times the cost of privately owned vehicles, similar to 379 

assumptions in Burns et al. (2013), which translates to $1,280 to $1,920 annually (AAA 2014). 380 
Per-mile fuel costs assume electricity ranges 11 to 26 cents per kWh, with a mid-range cost of 13 381 

cents per kWh, the US national residential electricity average (EIA 2015). The high cost scenario 382 
allows flexibility in accommodating future variable priced electricity, a growing possibility with 383 

the introduction of smart metering technology.  384 

For charging infrastructure, Level II chargers are assumed to cost between $8,000 and $18,000 385 

each, including costs for installation, hardware, materials, labor, and administration (Chang et al. 386 
2012, USDOE 2012). Annual maintenance cost for Level II chargers are assumed to be minimal 387 
at $25 to $50 per year (USDOE 2012). Level III chargers are assumed to range from $10,000 to 388 

$100,000, with average cost at $45,000 per station (USDOE 2012, New York City Taxi & 389 
Limousine Commission 2013). This cost includes installation, hardware, materials, labor, 390 

administration, and transformer upgrades. Annual maintenance cost for Level III chargers are 391 
assumed to range from $1000 to $2000 (New York City Taxi & Limousine Commission 2013). 392 

To convert charging infrastructure to a per-mile basis, the service life span of charging stations is 393 
assumed to be 10 years (Chang et al. 2012). Table 5 breaks down the cost per occupied mile of 394 

travel (costs are incurred for total miles of travel but allocated to each occupied mile of travel) 395 
for each vehicle and charging infrastructure combination in the mid-cost scenario. 396 

Table 5. Equivalent Cost Per Occupied Mile Traveled (Mid-Cost Scenario) 397 

  SAEV 

SAEV      

Fast Charge LR SAEV 

LR SAEV   

Fast Charge 

Vehicle & Battery  $0.249 $0.250 $0.346 $0.346 

Vehicle Maintenance $0.071 $0.071 $0.066 $0.066 

Insurance & Registration  $0.038 $0.026 $0.025 $0.020 
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Electricity $0.045 $0.045 $0.042 $0.042 

Charging Station Capital $0.015 $0.030 $0.007 $0.004 

Charging Station Maintenance $0.000 $0.010 $0.000 $0.001 

TOTAL $0.417 $0.433 $0.486 $0.479 

 398 

Under the most likely mid-cost scenario, a fleet of SAEVs or LR SAEVs can be operated at an 399 

equivalent per-occupied-mile-traveled cost of $0.42 to $0.49. The most uncertain component of 400 
this operating cost estimate is the AV technology. While $10,000 per vehicle is assumed in the 401 
base results in Table 5, the range of cost estimates of market-ready AV technology is large. 402 
Various sources report the cost of the retrofitted AV technology on current Google self-driving 403 
cars to range from $75,000 to $250,000 (Rogers 2015, Tannert 2014). Once the technology is 404 

mature, IHS (2014) estimates AV technology will cost between $3500 to $5000 per vehicle after 405 
5 to 10 years on the market. Incorporating the Table 4’s mid-cost figures for all other cost 406 

components, SAEV operation costs range from $0.392 per mile when AV technology costs are 407 
$5000 per vehicle to $0.867 per mile when AV technology costs are $100,000 per vehicle. 408 

 409 
Using APTA (2013) statistics, for a transit system that serves 2.4 billion annual passenger-miles, 410 

general administration expenses (including facilities and salaries) add approximately $0.184 to 411 
per-mile operational costs. Assuming operating margins of 10% (similar to the transportation 412 
industry average) and using mid-cost estimates from Table 4, SAEV service can be offered at 413 

roughly $0.66 to $0.74 per occupied mile of travel. These costs are on the low end of current 414 
manually-driven free-float carsharing services such as Car2Go, which charges roughly $0.70 to 415 

$1.23 per mile in Austin, Texas (assuming trips are between 2 to 10 miles and travel speeds are 416 
between 15 to 35 mph). Under this pricing assumption, SAEV users would pay roughly 21 to 417 

49% of what is currently charged by transportation network companies like Uber and Lyft 418 
(whose equivalent per-mile pricing is $1.50 to $3.18 in Austin). In fact, these costs are 419 
competitive with AAA (2014) estimates of average costs of private vehicle ownership, which 420 

ranges from $0.40 to $0.95 cents per mile depending on annual mileage and vehicle type, 421 
suggesting that availability of a SAEV fleet can have significant impacts on private vehicle use 422 

(and ownership), particularly for low-mileage households. 423 

Cost estimates in Table 5 are derived from fleet size and induced VMT estimates with a demand-424 

based charging strategy with no maximum range restriction (Table 2). Adding a 75% maximum 425 
range restriction (Table 3) on the SAEV base scenario reduces the cost by $0.020 per mile, 426 
yielding the most cost efficient scenario at $0.397 per mile. It is worth noting that cost estimates 427 
are based on traditional, wired charging infrastructure. Currently, a residential Level II wireless 428 

(inductive) charger can deliver similar charge times as traditional corded units while costing 429 
approximately $2500 more per unit (Evatran n.d.). This translates to a minimal $0.002 to $0.003 430 
increase in equivalent per-mile costs for the SAEV fleets modeled here. Level III inductive 431 

chargers are not currently commercially available. If wireless charging is not available for the 432 
SAEV fleets, an alternative would be to install traditional corded charging infrastructure and hire 433 
charging station attendants at each of the 1500 some odd charging station sites. Assuming one 434 
$15-per-hour-wage attendant per charging station site, per-occupied-mile-traveled costs in Table 435 
5 would increase $0.077 to $0.085. 436 
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While these per-mile costs are lower than current carsharing services and competitive with 437 

private car ownership, their ability to compete with a fleet of non-electric SAVs depends on the 438 
availability of wireless recharging infrastructure and government tax incentives on EV purchase 439 
prices. Assuming SAVs utilize existing gasoline stations with no additional infrastructure 440 

investment, a fleet of SAVs can be operated for $0.400 per mile with a 231,000-mile vehicle life 441 
span, $30,000 per SAV purchase cost ($20,000 for vehicle, $10,000 for AV technology), 30 mpg 442 
fuel economy, $3.50 per gallon gasoline price, $15 per hour wage per service attendant per 443 
gasoline station, and the same AAA-based costs for maintenance, insurance, and registration 444 
prescribed to SAEVs. Of course, this per-mile cost is highly sensitive to gasoline prices. With 445 

EVs purchased at full price, SAEVs with wireless recharging are competitive with SAVs on a 446 
per mile basis when gasoline is at $3.50 per gallon. With current federal tax incentives of $7500 447 
per EV, SAEVs become price-competitive with SAVs when gasoline is at $2.50 per gallon. 448 
Without wireless recharging infrastructure (and using station attendants at charging sites), 449 

SAEVs purchased with the $7500 federal tax rebate are not price-competitive with SAVs until 450 
gasoline reaches $4.69 per gallon. Without the federal rebate, this increases to $5.70 per gallon.  451 

AUSTIN, TEXAS CASE STUDY 452 

While the Poisson-based trip generation process modeled in the simulated monocentric city 453 

provides some variation in each cell’s trip generation rate, actual trip rates in real-city 454 
geographies are significantly less “smooth.” In exurban areas, an overall low population density 455 
is often reflected by pockets of relatively dense residential development among much larger 456 

areas of very sparse population. To offer more realism here, a case study using Austinites’ year-457 
2010 trip patterns with U.S. departure time choices (varying every 5 minutes) was performed. 458 

The 5-county region’s 1413 traffic analysis zones (TAZs) and personal trip tables (by origin 459 

versus destination zone) were used to appreciate the effects of real-world (spatially and 460 

demographically heterogeneous) trip-making behaviors. 461 

Austin’s 1413 TAZs were mapped onto the 400-cell by 400-cell gridded region with each TAZ’s 462 

trip ends assigned to one quarter-mile by quarter-mile cells. The TAZ closest to the geographic 463 
centroid of the Austin region (as determined by the mid-point value of all TAZ centroids’ 464 
longitude and latitude coordinates) was identified as the simulated region’s center (cell [200, 465 

200]). Then, each of the remaining 1412 TAZs corresponded to a cell in the simulated region by 466 
indexing the TAZ centroids’ latitude and longitude coordinates relative to the city center. This 467 
process creates a “spiky” trip generation pattern, where only 1413 out of the 160,000 cells (less 468 
than 0.9%) in the simulated region served as trip origins and destinations, rather than permitting 469 

every cell to generate (and attract trips). In reality, the 1413 TAZs in the 5-county region span 470 

across 3918 square miles, or 39.2% of the 100-mile by 100-mile simulated region. The charging 471 

strategy of trip rejection plus a maximum 75% remaining range was employed here, since this 472 
strategy improved fleet performance metrics (in Table 3), as compared to a charging strategy 473 
based solely on trip rejection. 474 

Table 6 shows scenario results from the Austin case study. Despite the significantly more 475 
concentrated (spatial and temporal) patterns of trip generation in these Austin data, the average 476 

daily miles per vehicle are very close to Table 2’s results, which used much smoother, simulated-477 
trip generation rates. However, because the average trip distance (across all ground modes, not 478 
just those by automobile, as used earlier in this paper) in the Austin case study is only 5 miles (as 479 
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opposed to the 9 to 10 mile average trip distances in Table 2’s NHTS-based results, which 480 

exclude all non-auto trips and all trips under 1 mile in distance), the daily trips per vehicle (and 481 
corresponding private vehicle replacement rates) are higher. SAEVs with Level II charging 482 
infrastructure are estimated to replace 5 private vehicles in this Austin scenario, while LR 483 

SAEVs with Level III charging infrastructure replace 9 private vehicles. Intrazonal trips are 484 
modeled as zero distance trips here, and are thus excluded from the model. This is an important 485 
result: working with trips that average almost twice as long (using the NHTS trips, which can 486 
end far outside the origin region, unlike MPO-based trip tables which end at the boundary of a 487 
region) keeps the vehicles almost twice as “busy”, resulting in roughly 50 percent higher vehicle 488 

replacement rates.   489 

Table 6. Fleet Performance Metrics from Austin Case Study Scenario 490 

Austin Scenario SAV SAEV 

SAEV     

Fast 

Charge LR SAEV 

LR SAEV 

Fast 

Charge 

Range (mi) 400 80 64 200 160 

Refuel/Recharge Time (min) 15 240 30 240 30 

# of Charging/Fueling Station Sites 21 25 26 23 25 

# of Chargers/Fuel Pumps* 1053 16,334 9889 8852 1080 

Fleet Size 14,802 26,758 16,772 21,859 14,750 

Avg Daily Miles per Vehicle 253 137 216 171 253 

Avg Daily Trips per Vehicle 27.4 15.2 24.2 18.6 27.5 

Vehicle Replacement Rate 8.98 5.00 7.95 6.09 9.02 

% Trips Unserved 0.52% 0.44% 0.25% 0.48% 0.41% 

Avg Trip Distance (mi) 5.15 5.13 5.14 5.14 5.15 

Avg Wait Time Per Trip (min) 3.49 2.86 3.01 3.15 3.25 

% Total Unoccupied Travel Distance 3.15% 4.03% 4.19% 3.25% 3.38% 

Max % Concurrent Charging Vehicles   7.11% 61.04% 58.96% 40.50% 7.32% 
*As proxied by the maximum number of concurrent charging/refueling vehicles in the day. 491 
 492 
While the Austin trips cannot go past the 5-county regional edge or border, trips under 1 mile are 493 

included here (as long as their origin and destination zones differ). Restricting trip origins and 494 
destinations to less than 1 percent of the 100-mile by 100-mile region means higher 495 
concentrations of SAEVs in select, trip-active cells, which reduces the number of unserved trips 496 
(to less than 1% across all Austin scenarios), average wait times (to between 2 and 4 minutes), 497 

and “empty” VMT (to between 3.1 to 4.2%). Those results are partly due to vehicles needing to 498 
travel less for next-passenger pickup, due to the heavy concentrations of trip origins and 499 
destinations.  500 

Restricting all trips to travel between these 1413 cells also drastically reduces the number of 501 
charging station sites necessary, from 1500 some charging sites down to just 23 to 25 cells with 502 
charging stations. These charging station sites are estimated to have as many as 653 charging 503 
pads per station in the 80-mile SAEV with Level II infrastructure scenario, down to 43 charging 504 
pads per station in the LR SAEV with Level III infrastructure scenario (in order to meet the 505 
charging demand of the 5-minute period with the highest number of concurrently charging 506 
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vehicles per day), and their locations represent just 1.8% of the 1413 trip-active cells, or just 507 

0.0002% of the 100-mile by 100-mile region’s 160,000 cells. The total number of actual chargers 508 
(charging spaces) needed are approximately 50% of what was simulated in the NHTS-based trip 509 
generation simulation. Such results underscore the fact that charging station locations are a 510 

function of both the geography of the service geo-fence and travelers’ trip-making patterns. 511 

Finally, a financial analysis of the Austin SAEV scenarios yields operating costs of $0.386 to 512 
$0.472 per occupied-mile traveled, with the 80-mile range SAEVs and Level II charging 513 
infrastructure scenario providing the lowest operating costs, which is consistent with findings 514 
from the simulated-region’s scenarios (as shown in Table 5). 515 

CONCLUSIONS 516 

Motivated by natural synergies between autonomous driving technology and EVs in a shared 517 

setting, this paper employs an agent-based model to simulate the operations of a fleet of SAEVs 518 
serving 10% of all trip demand in a medium-sized metropolitan area under various vehicle and 519 
infrastructure scenarios. Simulation results show that fleet size is highly dependent on charging 520 
infrastructure and vehicle range. For the non-electric SAV scenario, each shared vehicle can 521 

replace 7.3 private vehicles. For a fleet of 80-mile range SAEVs with a 4 hour full recharge time, 522 
this replacement rate drops to one shared vehicle for every 3.7 private vehicles, since more than 523 

half of the fleet is tied up in charging activities during any time period. Simulation results also 524 
suggest these shared fleets can serve 95.6 to 97.9% of all trips with average wait times between 7 525 
and 10 minutes per trip, while producing an additional 7 to 14% of “empty” VMT for traveling 526 

to passengers, strategic repositioning, and accessing charging stations. While this induced travel 527 
can be reduced slightly with strategic charging, model results also reveal the inherent tradeoffs 528 

between reduction of induced “empty” travel and improvement of user experience (as measured 529 
by wait times and percent of trips served). These tradeoffs highlight the need for a dynamic 530 

pricing scheme for SAEVs which penalizes trips that incur more relocation miles (and thereby 531 
increase subsequent trip wait times) and incentivize trips that coincide with strategic relocation 532 

(and thereby decrease subsequent trip wait times). A case study using Austin, Texas trip patterns 533 
also was used here, to examine the impact of higher concentrations of trips across fewer zones on 534 
the service metrics of the SAEV fleet. With more concentrated trip demand, SAEVs traveled 535 

similar daily miles, but were able to serve a larger share of trips (over 99%) with shorter average 536 
wait times, ranging from just 2 to 4 minutes. In the Austin case study, “empty” vehicle-miles 537 
constitute only 3 to 4 percent of all SAEV travel, and each SAEV could replace 5 to 9 privately 538 
owned vehicles, due to somewhat shorter trip distances, as compared to the original simulation. 539 

Financial analysis reveals that despite requiring the largest fleet and the most charging stations, 540 
the base 80-mile range SAEV fleet with Level II charging stations is the cheapest to operate on a 541 

per-mile basis of all the EV scenarios. This is primarily due to the high sensitivity of per-mile 542 
operating costs to vehicle purchase price (with SAEVs assumed to cost $10,000 less per vehicle 543 
compared to LR SAEVs in the mid-cost scenarios). While SAEVs with Level II charging 544 
infrastructure is cost effective, the scenario is ineffective in spreading out charge demand, with 545 
as much as 53% of the fleet concurrently charging during the peak charging period of the day. If 546 

SAEVs become a widely adopted mode, this type of fleet can create significant demand on the 547 
electric grid and necessitate large parking areas (stations) while charging during peak hours. LR 548 
SAEVs with Level III fast charging infrastructure, while costing 14.9% more per mile compared 549 



18 
 

to SAEVs with Level II charging stations, is very effective at demand spreading, with only 7.6% 550 

of the fleet concurrently charging during the peak charging period.  551 

Financial analysis reveals that under the most likely scenario, a fleet of SAEVs can be operated 552 
at $0.41 to $0.47 per occupied mile traveled. The competitiveness of SAEVs compared to non-553 

electric SAVs hinges almost singly on the availability of automated wireless charging. With 554 
wireless automated charging, SAEVs can be price-competitive with SAVs when gasoline is 555 
priced at $3.50 per gallon or less. But with attendant serviced charging, SAEVs are only price 556 
competitive with SAVs when gasoline reaches $4.35 to $5.70 per gallon. 557 

The agent-based model presented here has limitations that merit improvement in future 558 

applications of this type. First, the charging-station generation process mimics the objective of a 559 
coverage model (see, e.g., Toregas et al., 1971), thereby ensuring full coverage of all charging 560 

demand, but it does not consider budgetary constraints and allows for an unlimited number of 561 
charging stations. Additionally, the scenarios modeled here assume that SAEVs will serve 10% 562 
of a region’s trip demand and that the temporal and spatial distributions of SAEV trips are the 563 
same as the region’s overall trip-making patterns. In reality, an SAEV’s fleet metrics should be 564 

sensitive to trip demand density, over space and time. Additionally, SAEV mode may be more 565 
attractive to specific types of trips, rather than be equally appealing for all trips. Chen and 566 

Kockelman (2016) explores pricing and operations of a SAEV fleet when competing against 567 
other modes (privately-owned manually-driven cars and city bus service) and find that with 568 
higher SAEV shares, fleet performance improves. When SAEV mode shares lies between 14 and 569 

39% (as predicted in the study), private vehicle replacement rates increase to one SAEV for 570 
every 10 to 26 vehicles with “empty” VMT constituting 7 to 9 percent of all SAEV travel. That 571 

is to say, trips that are more efficiently served by SAEVs are more likely to choose the SAEV 572 

mode, which in turn also contributes to improved fleet performance metrics.   573 
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