
Operator Based Multiscale Method for
Compressible Flow

H. Zhou, SPE, Stanford U.; H.A. Tchelepi, SPE, Stanford U.;

Abstract
Multiscale methods have been developed for accurate and efficient
numerical solution of flow problems in large-scale heterogeneous
reservoirs. A scalable and extendible Operator Based Multiscale
Method (OBMM) is described here. OBMM is cast as a general
algebraic framework. It is natural and convenient to incorporate
more physics in OBMM for multiscale computation. In OBMM,
two operators are constructed: prolongation and restriction. The
prolongation operator is constructed by assembling the multiscale
basis functions. The specific form of the restriction operator de-
pends on the coarse-scale discretization formulation (e.g., finite-
volume or finite-element). The coarse-scale pressure equation is
obtained algebraically by applying the prolongation and restriction
operators to the fine-scale flow equations. Solving the coarse-scale
equation results in a high quality coarse-scale pressure. The fine
scale pressure can be reconstructed by applying the prolongation
operator to the coarse-scale pressure. A conservative fine-scale ve-
locity field is then reconstructed to solve the transport (saturation)
equation. We describe the OBMM approach for multiscale model-
ing of compressible multiphase flow. We show that extension from
incompressible to compressible flows is straightforward. No special
treatment for compressibility is required. The efficiency of multi-
scale formulations over standard fine-scale methods is retained by
OBMM. The accuracy of OBMM is demonstrated using several nu-
merical examples including a challenging depletion problem in a
strongly heterogeneous permeability field (SPE 10).

Introduction
The accuracy of simulating subsurface flow relies strongly on the
detailed geologic description of the porous formation. Formation
properties such as porosity and permeability typically vary over
many scales. As a result, it is not unusual for a detailed geologic
description to require 107 − 108 grid cells. However, this level of
resolution is far beyond the computational capability of state-of-
the-art reservoir simulators (106 grid cells). Moreover, in many ap-
plications, a large number of reservoir simulations are performed
(e.g., history matching, sensitivity analysis and stochastic simula-
tion). Thus, it is necessary to have an efficient and accurate compu-
tational method to study these highly detailed models.

Multiscale formulations are very promising due to their ability to
resolve fine-scale information accurately without direct solution of
the global fine-scale equations. Recently, there has been increasing
interest in multiscale methods. Hou and Wu (1997) proposed a mul-
tiscale finite-element method (MsFEM) that captures the fine-scale
information by constructing special basis functions within each ele-
ment. However, the reconstructed fine-scale velocity is not conser-
vative. Later, Chen and Hou (2003) proposed a conservative mixed
finite-element multiscale method. Another multiscale mixed finite-
element method was presented by Arbogast (2002) and Arbogast
and Bryant (2002). Numerical Green functions were used to resolve
the fine-scale information, which are then coupled with coarse-scale
operators to obtain the global solution. Aarnes (2004) proposed a
modified mixed finite-element method, which constructs special ba-
sis functions sensitive to the nature of the elliptic problem. Chen et
al. (2003) developed a local-global upscaling method by extract-
ing local boundary conditions from a global solution, and then con-
structing coarse scale system from local solutions. All these meth-
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ods considered incompressible flow in heterogeneous porous media
where the pressure equation is elliptic.

A multiscale finite-volume method (MsFVM) was proposed by
Jenny, Lee and Tchelepi (2003, 2004, 2006) for heterogeneous el-
liptic problems. They employed two sets of basis functions — dual
and primal. The dual basis functions are identical to those of Hou
and Wu (1997), while the primal basis functions are obtained by
solving local elliptic problems with Neumann boundary conditions
calculated from the dual basis functions.

Existing multiscale methods (Aarnes 2004; Arbogast 2002; Chen
and Hou 2003; Hou and Wu 1997; Jenny, Lee, and Tchelepi 2003)
deal with the incompressible flow problem only. However, com-
pressibility will be significant if a gas phase is present. Gas has a
large compressibility, which is a strong function of pressure. There-
fore, there can be significant spatial compressibility variations in
the reservoir, and this is a challenge for multiscale modeling. Very
recently, Lunati and Jenny (2005) considered compressible multi-
phase flow in the framework of MsFVM. They proposed three mod-
els to account for the effects of compressibility. Using those models,
compressibility effects were represented in the coarse-scale equa-
tions and the reconstructed fine-scale fluxes according to the mag-
nitude of compressibility.

Motivated to construct a flexible algebraic multiscale framework
that can deal with compressible multiphase flow in highly detailed
heterogeneous models, we developed an operator based multiscale
method (OBMM). The OBMM algorithm is composed of four steps:
(1) constructing the prolongation and restriction operators, (2) as-
sembling and solving the coarse-scale pressure equations, (3) recon-
structing the fine-scale pressure and velocity fields, and (4) solving
the fine-scale transport equations.

OBMM is a general algebraic multiscale framework for com-
pressible multiphase flow. This algebraic framework can also be
extended naturally from structured to unstructured grid. Moreover,
the OBMM approach may be used to employ multiscale solution
strategies in existing simulators with a relatively small investment.

Operator Based Multiscale Method
In this section, we describe the operator based multiscale method
(OBMM) for the two-phase flow problem. We show that for incom-
pressible flow, OBMM is identical to the original MsFVM(Jenny,
Lee, and Tchelepi 2003). The effects of compressibility are taken
into account naturally when constructing the coarse-scale operators.
The basis functions and reconstructed fine-scale fluxes also account
for the compressibility effects. The overall algorithm to solve cou-
pled flow and transport problems with the OBMM framework is
described, and adaptive computation of the basis functions is dis-
cussed.

Model Equations.. We consider immiscible two-phase flow in
porous media. Extension to three-phase flow is straightforward.
Gravity and capillarity are neglected here. The governing equations
are the mass conservation equations of the two phases,

∂(φbl)
∂t

+∇ · (blul) = ql ,

ul =−λl∇p,

λl =
kkrl

µ
,

. . . . . . . . . . . . . . . . . . . . . . . (1)

where l = 1,2 denotes the two phases; bl is the inverse of the phase
formation-volume factor, which is defined as the ratio of density
at reservoir conditions to density at standard conditions; ul is the
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phase volumetric flux at reservoir conditions; ql is the source term;
λl is the phase mobility; krl is the phase relative permeability; φ and
k are the porosity and absolute permeability.

Because multiscale methods are usually applied only to the pres-
sure equation, the flow (pressure and total velocity) and transport
problems are treated separately and differently. Thus, the flow and
transport equations are solved sequentially using either an IMPES
(Implicit Pressure Explicit Saturation) or a sequential fully implicit
(SFI) Method (Tchelepi et al. (2007)). Here we adopt the sequential
fully implicit approach. The linearized discrete pressure equation
can be obtained from Eq.1 through simple algebraic manipulation.
The semi-discrete equation for iteration ν+1 at time step n+1 is

C
pν+1− pν

∆t
− αν

1∇ ·
(
bν

1λν
1∇pν+1)

− αν
2∇ ·

(
bν

2λν
2∇pν+1)

= RHS,

. . . . . . . . . . . . (2)

where,

α
ν
1 = 1/bν

1,

α
ν
2 = 1/bν

2,

C =
(

∂φ

∂p
−φ

n(bn
1Sn

1
∂α1

∂p
+bn

2Sn
2

∂α2

∂p
)

+∆t
∂(α1q1 +α2q2)

∂p

)ν

,
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∆t
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∆t

(
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1Sn
1 +α

ν
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2Sn
2
)

−(α1qν
1 +α2qν

2).

. . . . . (3)

Given a fine-scale problem, Eq.2 can be written in matrix form
as

(T f −C f )p f = r f , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)

where T f is the fine-scale transmissibility matrix associated with
the flow part, C f is the fine-scale compressibility matrix associated
with the accumulation part, p f denotes the fine-scale pressure vec-
tor, and r f is the fine-scale right-hand-side vector.

The linearized discrete form of the transport equation for phase 1
is

φν+1bν+1
1 Sν+1

1 −φnbn
1Sn

1
∆t

= ∇ ·
{

bν+1
1

[
f ν
1 +

∂ f1
∂S1

∣∣∣∣ν (Sν+1
1 −Sν

1)
]

uν+1
T

}
−q1,

(5)

where f1 is the fractional flow of phase 1, and uT is the total veloc-
ity.

Prolongation Operator.. The multiscale prolongation operator, P ,
is defined as the mapping from coarse-scale pressure to fine-scale
pressure, i.e.,

p f = P pc, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6)

where pc denotes the cell-center coarse-scale pressure. Hou and
Wu (1997) used a set of specially constructed basis functions to
relate the fine and coarse pressures. Although their study was for
the incompressible flow (elliptic) problem, we have found that their
basis functions also work for parabolic problems (e.g., compressible
flow). The construction of the basis functions for Eq.1 is discussed
below.

Considering a two dimensional multiscale grid as shown in Fig.1,
the physical domain is partitioned into disjoint primal coarse blocks,
and each coarse block is further partitioned into fine cells. Dual
coarse blocks are defined by connecting the centers of primal coarse
blocks. The idea of the dual coarse grid is an alternative to the over-
sampling approach proposed by Hou and Wu (1997). As shown by
Hou and Wu (1997), oversampling is necessary to reduce the er-
ror caused by the imposed reduced local boundary conditions. The
dual coarse grid offers significant advantages. It ensures a locally

  
1 2 

4 3 

1 2 

4 3 

 

Ω̃A Ω̃A

Fig. 1—Two-dimensional multiscale grid with a typical dual con-
trol volume. The enlarged dual control volume shows the un-
derlying fine grid.

conservative operator on the coarse grid by extracting fluxes across
the primal coarse blocks. Such fluxes are located near the centers of
the respective dual blocks; as a result, the influence of the imposed
local boundary condition is small.

Following the idea of the reduced boundary condition in Hou
and Wu (1997), a basis function associated with coarse node i (i =
1, . . . ,4) in dual block Ω̃A is obtained by solving the elliptic part of
Eq.1,

αν
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1∇φi

A
)
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A
)

= 0 in Ω̃A,

α
ν
1

∂

∂xt

(
bν

1λ
ν
1

∂φi
A

∂xt

)
+α

ν
2

∂

∂xt

(
bν

2λ
ν
2

∂φi
A

∂xt

)
= 0 on ∂Ω̃A,
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A(x j) = δi j,

(7)

where subscript t denotes the component tangential to the boundary,
and j denotes any coarse node in Ω̃A ( j = 1, . . . ,4). Note that the
inverse of formation volume factors (bl) are included in Eq.7 to ac-
count for the local effects of compressibility on the basis functions.
Some other boundary conditions for the basis functions are also
possible, e.g., constant pressure boundary, uniform flux boundary,
etc. The reduced boundary condition has been shown to yield quite
accurate results in isotropic, highly heterogeneous problems (Hou
and Wu 1997; Jenny, Lee, and Tchelepi 2003). Moreover, as will
be clear from the following discussion, the construction of OBMM
is actually independent of the specific form of the basis functions.
Any appropriate basis function can be employed in our framework.

With the basis functions, we can easily construct the prolongation
operator. Let K be the global index of a coarse node, iK,A be the
local index of node K in dual block Ω̃A, and DK the set of dual
blocks intersected by node K. For Cartesian grid, the number of
elements in DK is 2d , where d is the number of dimensions. Using
a global point of view, a basis function can be written as

φK = ∑
Ω̃A∈DK

φ
iK,A
A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8)

The multiscale prolongation operator, P , is an n×N matrix, where
n is the number of global fine nodes and N is the number of global
coarse nodes. Let k denote a fine node and K a coarse node. Then
one has

Pk,K = φK(xk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9)

Restriction Operator.. Plugging Eq.6 into Eq.4, one obtains

(T f −C f )P pc = r f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10)

The significance of Eq.10 is that its unknowns are coarse-scale pres-
sures. We need to apply a restriction operator, R , that provides a
mapping from fine to coarse space. We write

R (T f −C f )P pc = R r f , . . . . . . . . . . . . . . . . . . . . . . . . (11)

or

(Tc−Cc)pc = rc, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (12)

2 2008 SPE Journal



where Tc,Cc,rc are the coarse-scale counterparts of T f ,C f ,r f , and
are defined as

Tc = R T f P
Cc = R C f P
rc = R r f .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . (13)

Eq.12 is the coarse-scale equation we need to solve.
The restriction operator, R , maps the fine-scale discretization

equations into the coarse scale; it is not unique. The specific choice
for R depends on the discretization scheme (e.g., finite element, or
finite volume). We denote a fine-scale conservation equation by E.
A finite volume formulation starts withZ

Ωk

E dV = 0 (∀ fine cell Ωk,k = 1, . . . ,n). . . . . . . . . (14)

A coarse-scale finite volume formulation requiresZ
ΩK

E dV = 0 (∀ coarse block ΩK ,K = 1, . . . ,N). . . . (15)

Comparing Eq.14 and Eq.15, it is clear that Eq.15 can be obtained
by summing Eq.14 for all the fine cells inside a coarse block K, i.e.,Z

ΩK

E dV = ∑
Ωk∈ΩK

Z
Ωk

E dV. . . . . . . . . . . . . . . . . . . . . . . (16)

The summation in Eq.16 can be represented by the restriction oper-
ator, R , as follows

RK,k =
{

1 if Ωk ⊂ΩK
0 otherwise (K = 1, . . . ,N;k = 1, . . . ,n). (17)

It is also important to note that the restriction operator does not
depend on the detailed discretization scheme (i.e., backward dif-
ference or central difference, etc.) and thus is general for a given
formulation.

In a Galerkin-type finite element method, the coarse-scale equa-
tion may be written asZ

ΩK

φME dV = 0 (K,M = 1, . . . ,N) . . . . . . . . . . . . . . . (18)

and one can show that R takes the following form

R = P T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (19)

Zhou (2006) provides a detailed treatment for finite-element based
multiscale formulations.

Coarse-Scale Operators.. Given the prolongation and restriction
operators defined above, the coarse-scale system, Eq.12, can be
constructed. We shed some light on the physical meaning of the
coarse-scale operators. The focus is on OBMM using the finite-
volume formulation (i.e., R given by Eq.17).

To make the analysis easier, consider a one-dimensional problem.
Fig.2 shows the grid with coarse blocks K − 1,K,K + 1, and fine
cells k−4, . . . ,k+4. We first look at the incompressible case where

 

K-1 K K+1 

k-4 k-3 k-2 k-1 k k+1 k+2 k+3 k+4 

Fig. 2—One-dimensional multiscale grid

Eq.1 becomes

∇ · (λt∇p) = qt , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (20)

where, λt = λ1 + λ2 is the total mobility, and qt is the total source
term. Using a central difference scheme in the fine-scale discretiza-
tion, the OBMM algorithm gives three non-zeros elements for the
Kth row of the coarse-scale transmissibility matrix, i.e.,

TcK,K−1 = −
λk−3/2

∆x
(φK−1(xk−1)−φK−1(xk−2)) ,

TcK,K = −
λk−3/2

∆x
(φK(xk−1)−φK(xk−2))

+
λk+3/2

∆x
(φK(xk+2)−φK−1(xk+1)) , . (21)

TcK,K+1 = −
λk+3/2

∆x
(φK+1(xk+2)−φK+1(xk+1)) .

These coarse-scale operators are exactly the same as the effective
coarse-grid transmissibility constructed by Jenny et al.. (2003). For
example, from Eq.21, TcK,K−1 is the flux across the interface be-
tween coarse blocks K−1 and K with respect to a unit pressure at
node K−1.

Compressibility is taken into account in the basis functions, Eq.7,
and in constructing the coarse-scale transmissibility and compress-
ibility matrices, Eq.13. The fine-scale fluxes represented by T f
contain compressibility effects, and OBMM gives the coarse-scale
fluxes by summing up the fine-scale fluxes in a coarse block. There-
fore, the effective transmissibility constructed by OBMM accounts
for compressibility of the flow. The coarse-scale compressibility
matrix in Eq.13 distribute the accumulation terms in the coarse grid
according to the underlying fine-scale accumulation terms. By con-
struction, the scheme is conservative on both the fine and coarse
scales.

Compared with the original MsFVM for incompressible prob-
lems, OBMM gives exactly the same coarse scale system when us-
ing a finite-volume type restriction operator. However, the construc-
tion using OBMM is much simpler. Through OBMM, we can easily
build the coarse scale system on top of a fine scale formulation by
simply providing the restriction and prolongation operators. There-
fore, OBMM provides a great advantage in developing multiscale
simulators from existing fine-scale codes.

When more physics needs to be included in the MsFVM, special
treatment is necessary to formulate the new coarse scale system,
which was what Lunati and Jenny (2005) did to extend the original
MsFVM to compressible flow. In their discrete formulation, they
assumed that the coarse scale accumulation term is diagonal ma-
trix (i.e., the contribution to coarse scale accumulation in a coarse
block is only from the block itself), and they proposed three models
to compute that contribution. In their most accurate model (FSA,
referring to Fine Scale Accumulation), the accumulation part is cal-
culated at the fine scale from the dual pressure. In the MsFVM
construction, the dual pressure in one primal coarse block depends
on the coarse scale pressure in all of the neighboring coarse blocks.
Consequently, to accurately compute the coarse scale accumulation
from the fine scale dual pressure, we should have a multi-diagonal
matrix (3d in d-dimensional space) instead of a diagonal one. Lu-
nati and Jenny (2005) imposed additional constraints to get a diag-
onal accumulation matrix from FSA. In OBMM, on the other hand,
there is no assumption on the form of the coarse scale system. If we
choose to compute coarse scale accumulation from the fine-scale
dual pressure, we naturally obtain a 3d-diagonal matrix for accu-
mulation, which is the most accurate representation.

In addition, due the difficulty in eliminating saturation in the
coarse-scale equations, the derived coarse scale pressure system by
Lunati and Jenny (2005) has dependency on saturation, which may
introduce some numerical difficulty in multiphase flow problems.
In OBMM, one can easily eliminate saturation from the pressure
equation on the fine scale, and then the construction of the coarse
scale pressure system is independent of saturation, as in Eq.2.

Fine-Scale Velocity.. The coarse-scale pressure, pc, is obtained
from Eq.12, and then the dual fine-scale pressure, pd , is recon-
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νp = 1;νs = 1; pνp = pn;Sνs = Sn

/* outer loop */
while ( pressure equation not converged)

calculate fine-scale operators;
update basis functions;
assemble prolongation operator;
calculate coarse-scale operators;
solve for coarse-scale pressure, pc;
reconstruct dual fine-scale pressure, pd ;
reconstruct primal fine-scale pressure, pv;
νp = νp +1; pνp = pd ;
update pressure dependent properties: b = b(pνp);
calculate fine-scale total velocity uT from pd and pv;
/* inner loop */
while (saturation equation not converged)

solve linearized transport equation for Sνs+1;
νs = νs +1;
update saturation dependent properties:
⇒ λ = λ(Sνs);

end
end
n = n+1

Fig. 3—The pseudo code of OBMM with SFI scheme for one
time step

structed by

pd = P pc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (22)

The fine-scale velocity calculated using pd may be discontinuous
across the interfaces of dual coarse blocks, since the basis functions
assure flux continuity only in the interior of each dual block. To ob-
tain a conservative fine-scale velocity, we solve the fine-scale Eq.2
locally for each primal coarse block with flux boundary conditions.
The flux boundary conditions are obtained from pd . The fine-scale
pressure computed in this manner is the primal fine-scale pressure,
which we denote as pv. Then, the fine-scale velocity in the interior
of primal coarse blocks is calculated from pv, while the velocity on
the boundary of a primal coarse block is calculated from pd . Com-
pressibility is taken into account in the fine-scale fluxes naturally
when the fine-scale pressure is available.

Coupling Flow and Transport.. We choose the sequential fully
implicit (SFI) algorithm to solve the coupled flow and transport
equations. For each time step, in an outer loop we solve for the
fine-scale pressure using OBMM and calculate the fine-scale total
velocity, uT ; in an inner loop we solve for the fine scale saturation
implicitly according to Eq.5. The pseudo code for one time step
is listed in Fig.3, where n denotes a time step and ν denotes the
iteration level.

Note that for the finite-volume based OBMM, the restriction op-
erator need to be constructed once as shown by Eq.17. Also note
that when solving the saturation equations in the inner loops, the
total velocity uT is fixed.

Adaptive Updating of Basis Functions. The OBMM would not be
efficient if we have to update the basis functions every iteration by
solving Eq.7. Jenny et al. (2004, 2006) proposed adaptive updat-
ing of the basis functions according to the change of total mobility.
However, as can be seen from Eq.7, the basis functions rely not
only on the mobility, but also on pressure in compressible flows.
Our adaptive updating of basis functions is performed as follows. If
the condition

1
1+ ελ

<
(∑l blλl)ν

(∑l blλl)∗
< 1+ ελ . . . . . . . . . . . . . . . . . . . . (23)

is not satisfied for all fine cells inside a dual coarse block, then the
basis functions associated with that dual block should be recom-

puted. The superscript * here denotes the state in the last basis func-
tion update. The parameter ελ is a user defined adaptivity threshold.
Usually, 0.1 ≤ ελ ≤ 0.2 yields results close to those without adap-
tivity. Note that Eq.23 does not contain the absolute permeability,
which is usually static.

Numerical Results
1D Compressible Single Phase Flow. First, we consider 1D single
phase gas flow in a homogeneous permeability field. The purpose
is to examine the accuracy of OBMM for compressible problems
compared with other approaches.

The fluid is taken to be ideal gas and thus the PVT relation is
simply

b =
p
p0

, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (24)

where p0 is pressure at standard condition. The fine grid contains
100 fine cells and coarse grid has 5 blocks. The permeability is
assumed to be constant. Initial pressure is constant at 1 atm. The
left and right boundaries are kept at constant pressure, 10 and 1 atm,
respectively. We define a dimensionless characteristic time τ as

τ =
µφL2

k(pl − pr)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (25)

We compare the pressure results of OBMM with the FSA model
as well as fine-scale reference solutions. Note that in the FSA
model, we use the basis functions used by Lunati and Jenny (2005),
which only depend on the total mobility. The basis functions in
OBMM are computed from Eq.7.
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Fig. 4—Comparison of pressure results of OBMM, FSA and fine-
scale reference solution for 1D single phase gas flow at several
time steps.

OBMM shows some error at early time, which is mainly due to
the fact that the elliptic basis functions do not capture the fine scale
pressure distribution in the early transient period. OBMM quickly
approaches the fine-scale reference solution at later time. At t = τ,
the results are exactly the same as the fine-scale solution. On the
other hand, the FSA model shows somewhat larger errors at later
time, which are mainly due to two reasons. One is the diagonal
approximation of the coarse scale accumulation; the other is due to
computing the basis functions without dependency on pressure (or
b), which gives linear basis functions in this homogeneous single
phase problem.

2D two-phase depletion problem. We now study two-dimensional
two-phase flow. The permeability field is extracted from the top
layer of the SPE 10 model (Christie and Blunt 2001). The vari-
ance of the logarithmic permeability of this model is σ2

lnk = 5.45 as
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shown in Fig.5, which is highly heterogeneous. The fine-scale grid
contains 220× 60 cells, and the coarse-scale grid contains 20× 6
blocks. The upscaling factor is 110 (11×10).

 

 

20 40 60 80 100 120 140 160 180 200 220

10

20

30

40

50

60

−4 −2 0 2 4 6 8

Fig. 5—Log-permeability of the top layer of the SPE 10 model

We study the depletion problem of oil and gas. The PVT proper-
ties are represented by formation volume factors as

bg =
p
p0

,

bo = 1+10−3(p− p0).
. . . . . . . . . . . . . . . . . . . (26)

Quadratic relative permeability curves are used. The viscosities of
the two phases are µg = 1.8×10−2,µo = 1. The porosity is constant
at 0.1. The field has an initial oil saturation of 0.5 and an initial
pressure of 147 psi. The left boundary is kept at a constant pressure
of 147 psi with So = 0.5, while the right boundary is brought to a
constant pressure of 14.7 psi. Due to the pressure drop and com-
pressibility differences, the gas expands faster than the oil, which
causes the saturation change in the field.

We show a comparison of the OBMM solution with a fine-scale
reference solution for the pressure and saturation fields at three time
steps: 5−3τ, 0.2τ and τ, where the dimensionless characteristic time
is defined by

τ =
µoφL2

x
k̄(pl − pr)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (27)

Here k̄ is the median permeability. The time step is 5× 10−3τ for
the first 10 time steps and then kept constant at 0.01τ thereafter. The
adaptivity threshold ε in Eq.23 is 0.2.
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Fig. 6—Fine-scale pressure at t = 5−3τ: (a) using fine-scale
method; (b) using OBMM

For all time steps, good agreement between OBMM and the fine-
scale reference solutions is observed. We also report in Table 2 the
error statistics and the cumulative percentage of basis functions that
are recomputed. The pressure error, εp, and the saturation error, εs,
are defined as

εp = ‖pms−p f ‖2
‖p f ‖2

,

εs = ‖Sms−S f ‖2,
. . . . . . . . . . . . . . . . . . . . . . . . (28)
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Fig. 7—Fine-scale oil saturation at t = 5−3τ: (a) using fine-scale
method; (b) using OBMM

 

 

20 40 60 80 100 120 140

(a) fine-scale reference

 

 

20 40 60 80 100 120 140

(b) OBMM

Fig. 8—Fine-scale pressure at t = 0.2τ: (a) using fine-scale
method; (b) using OBMM
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Fig. 9—Fine-scale oil saturation at t = 0.2τ: (a) using fine-scale
method; (b) using OBMM
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Fig. 10—Fine-scale pressure at t = 1τ: (a) using fine-scale
method; (b) using OBMM
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Fig. 11—Fine-scale oil saturation at t = 1τ: (a) using fine-scale
method; (b) using OBMM

t (PVI) ep es fp(%)
5e-3 1.13e-2 5.32e-5 12.22
0.2 1.80e-2 6.32e-5 7.96
0.8 1.64e-2 1.13e-4 8.79
1 1.62e-2 1.23e-4 7.98

1.5 1.64e-2 1.36e-4 6.50

Table 2—Errors and percentage of the recomputed basis func-
tions for several times

where superscript f and ms, denote, respectively, the reference and
OBMM solutions. The cumulative percentage of basis function up-
dating fp is the actual total number of updating basis functions from
time zero to the current time divided by the total number without
adaptivity.

Conclusions
An operator based multiscale method (OBMM) was developed. OBMM
serves as a general algebraic multiscale framework. The prolonga-
tion operator is assembled from the basis functions. The restriction
operator depends on the chosen discretization scheme. We have
shown the restriction operators based on a finite volume method
(FVM).

For the incompressible flow problem, the coarse-scale operator
constructed by the finite-volume-based OBMM is identical to the
MsFVM. Moreover, OBMM accounts for compressibility effects
in a natural way. The fine-scale equations contain the fine-scale
compressibility information, and the basis functions are calculated
with compressibility effects. The coarse-scale operators constructed
by OBMM account for compressibility by summing all the fine-

scale information in a coarse block and distributing the contribution
to the coarse nodes according to the basis functions.

For coupled flow and transport problems, a conservative fine-
scale velocity field is crucial. A conservative velocity field is re-
constructed by solving Neumman problems locally on the primal
coarse blocks. A sequential fully implicit scheme is used to solve
the coupled equations.

Test cases for compressible flow were presented, and the results
obtained by OBMM are in very good agreement with fine-scale ref-
erence solutions. The permeability field in the test cases is highly
heterogeneous, the compressibility is high, and the pressure varia-
tion is very large. Such challenging features show that OBMM is
capable of solving highly compressible and strongly heterogeneous
problems.

The efficiency of OBMM relative to standard fine-scale methods
lies in the fact that we do not solve a global fine-scale system. Con-
structing and solving the coarse-scale equations takes little compu-
tational effort compared with solving the global fine-scale system.
Adaptive updating of the basis functions can lead to great efficiency
gains. OBMM is readily extendible to more complicated physics.
Moreover, it does not depend on explicit description of grid geom-
etry and can be directly applied to unstructured models. OBMM is
purely algebraic and makes full use of the fine-scale properties and
equations. Thus, OBMM can be implemented in existing reservoir
simulators relatively easily. Compared with building a multiscale
simulator from scratch, that will save a great deal of effort.

Nomenclature
P prolongation operator

R restriction operator

C f fine-scale compressibility matrix

Cc coarse-scale compressibility matrix

T f fine-scale transmissibility matrix

Tc coarse-scale transmissibility matrix

p f fine-scale pressure vector

pc coarse-scale pressure vector

φi
A basis function in dual coarse block A for node i

uT fine-scale total velocity

x coordinate

λ mobility

b inverse of formation-volume factor, 1/B

l phase indicator

k global index of a fine node

K global index of a coarse node

i, j local index of a vertex of a dual coarse block

n total number of fine nodes

N total number of coarse nodes

Ω entire physical domain

Ωk the fine cell centered on node k

ΩK the primal coarse block centered on coarse node K

Ω̃A a dual coarse block
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