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Operator Formalism'for'DOuble

*
Quantum NMR

t | i
S. Vega and A. Pines
.Department of Chemistry and Materials and Molecular Research Division,

Lawrence Berkeley Laboratory, University of California,
Berkeley, California 94720

ABSTRACT

'An operator formalism is presented which conveniently treats the interaction

of a'spinflvnucleus with a weak radio frequency field. The Hamiltonian in the

rotating frame is ¥ = - vaIz - wlI +-% wQ(3 I —I(I+l)) where Aw is the
resenance offset  (Aw = wé—w) wl is the intensity of the rf field and mQ is

the quadrupolar splitting. Nine fictitious spin-% operatoré,-I i where
) b4

P = %,¥,2 and 1 = 1,2,3, are defined where p refers to the transition between

two of the levels and i the Cartesian component. The operators which are the

] =

generatdrs of the group'SU(3),satisfy spin-% commutation relations[Ip T Ip K
’ > ’

i Ip 2w];lerej,k,ﬂ, = 1,2,3 or cyclic permutation. Thus each p defines a three
’ .

dimensional space termed p-space. For irradiation near one of the quadrupolar

Q 1

effective Hamiltonian can be written ¥ ~ — 8w I -/E-w I i.e; a
X,3 1 x,1 ;

fictitious spin-)s Hamiltonian in x-space with effective magnetogyric ratio Yy

satellites, for example Ay = wy + Sw with Sw, w, << wQ’it is shown that the

along the 3 (resonance offset) axis andn/E'Y along the 1 (rf field) axis. For
irradiation near the center we can effect double quantum transitions between
m = *1. The formalism allows us to write the effective operators for these

transitions. For example, if we take Aw = 6w again with Sw, w, << w, we

1 Q



En

o

vfﬁnd the effective Double Quantum (DQ) Hamiltonian ﬂb

—-ii~-

f Q ~ =2 Sw Iz,l -
1

ZT'IQ 3° Thus the z-space is referred to as the double ﬁuantum frame
b4

Q

with effective magnetogyric ratio 2y along the 1 (resonance offset) axis
w
and al-Y along the 3 (xrf field) axis. The limiting expressions are compared

Q

with exact calculations for arbitrary w, done by high speed computer.

1
The theory is applied to various cases of irradiation including our
previously reported technique of Fourier Transform Double Quantum NMR.
Various pulse sequences for preparing, storing and maintaining the
evolution of double quantum coherence are analysed for single crystal
and polycrystalline samples. Finally the effects of rf phase on the

double quantum phase are presented briefly and the possibility of double

quantum spin locking is analysed.
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I. INTRODUCTION

One of the most familiar and useful descriptions of pulsed nmr
expefiments is in terms of the evolution of a mégnetization Vector in
the'rétating frame.l Often, in such experiments, a resonant radio
frequenéy pulse brings the spin eigenfunctions into coherent super-
poéition, creating a transverse magnetization which evolves in a free
induction decay (FID) yielding on Fourier transformatién an nmr absorption
spectrum. For noninteracting spin -)% nuclei this description is complete, .

but may not be for spin -1 or' greater or for interacting spins. 1In

'particular, we have been interested in the case of spin ~1 such as

. o 2
deuterium, where it was shown recently™’

that states of the system
can be created by double quantum transitions which cannot be described
by a single three dimensional vector. Such cases are important and
have allowed us for the first time an approach to overcoming the large
deuterium quadrubolar broadening and obtaining high resolution solid
state Fourier transform nmr of deuterium.

The question which arises and is discussed in the present paper is
whether we can provide a  compact,  convenient operator and vector
picture for the description 6f this spin -1 pulsed nmr. To do this wé
need to develop an operator formalism for the possible single quantﬁm
and double quantum transitions in the system, such that the density
operator and Hamiltonian of the system are described in terms éf a
set of basis operators with Cartesian commutation relations.3 This
would be a valuable supplement to the elegant three level Bloch equations

developed by Brewer and Hahn.4
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To make this more clear, let us consider a system of noninteracting_
IfspinsAin an extéfﬁaiaﬁaénetié‘fiéld:;:Tﬁébépih system éah be . defined
by the spin density matrix p; which in'the_case of‘noninter;Cting
spins has a dimeﬁéion ;f‘(ZI + 1) x.(QI +ni). From the faqf that there-
aré>N = (21 + 1)2 ; 1 trééeléss independent Hermitianvoperators An’ the
density matrix can be expressed as:

N - .

p(t) = }: an(t) An + aol | (1)

n=1

" where 1 is the-unity matrix and the coefficients an(t) can be obtained

by salving;the equation of = motion for p(t):
2 o) = -1 Bl (2)
a3t "N LT ¢ .

¥ is'thelspin Hamiltonian of the system:

o= - W, Iz--Zw1 I_ cosut _ | (3)

where w, =y Ho_with Ho magnetic field strength and 2w1 the rf
irradiation strength at frequency w. Using the high tempefature

approximgtion.for the equilibrium form of p:

0 =“‘"l“—!(l +4f9' 1) S o : (4)
o 2L+ 1 " kT Tz o |

and representing the density matrix in the rotating frame

of s exp(ult) p exp(iwl ), )



the solution of Equation (2)‘is:

p = exp(i(AwIz'+ wllx)t) Py exp_(-i(AmIz 4 wlIX)t) E o (6) .
- .

whére'we have drOpﬁed the'ésterisk on p. The most general form of thiév
solution is.easily.obtained from the éommqtation rela;ions between the . ’ v
'angular momentum operators Ix; Iy and Izﬁ o |

.p =.;£;Zy,z ap(t),Ipv+ aorlv - - | . @)
and is depicted schematically in Figure 1. It is therefore clear that
for this case the sﬁin system is defined by the‘coeffiéientanf oniy
threé opefators Ix’ Iy'énd Iz épd that we.do.nbt ﬂeed allv(ZI + 1)2 -1
:bperators.  This simplification makes it also possible to repfesent the
'density matrix in terms_of a véctdr_in a thrée dimensional space with.
coo?dinates, ax; ayvand az. This vgétor describes the density matrix
sufficiently and is proportionai to the real magnetization vector in the
rotating frame.

., All these basic arguments are valid in the_case that‘the main Hamiltonian

# has only linear te;ms in the angular momentum‘éperator._ If we add any
bilinear term to the Hamiltonian the soiution.of Equation (2) no longer :
has the simple form of'Equation_(7) and the three angular momentum
operators are not sufficient to desgribe p. For the ﬁarticular case of
I=1/2 theée solutions are general for any.interactioﬁ, because there are
only thfee independent traceless He:mitian operators with diménsion 2 x 2
(Pauli matrices). However for I > 1/2‘there are more tﬁan three and we must ‘&

use them to describe the spin system in operational form. For our case
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we need to add electric quadrupolar interactions to the Zeeman interactions

- in-Eq. (3) and to define a new basis set of'operatbrs. The number of

opérators>is determinéd by‘the spin value‘I and they can be takeﬁ in many
féfms.' Physically, the additibnal operators correspond to the possibility
of opérafions'other thanlpufé rotations oﬁ the spin s&stem,ISUCh as the
production 6f‘normally forbidden trénéitioné. In Fhe'néxt séétion we
&efine a-convenienf Set of‘oﬁeratofs for spin systems with I = 1 and shoﬁ
that they‘havé a useful Cartesian representation. This partiéularbchoice
is_very helpful for the description of pure nuclear quadrupole resonance
‘in’éolidss and.it will be shown to be just as useful in the descriptiop v
of double quantum coherence and croés polarizatibn experimeﬁts of -
dehterium_nmr in solids. The main thrust of the theéry is therefore to
provide a formal basis for describing double quantum éxperiments.

In Section III the Zeeman and the electric quadrupole Hamiltonian are

represented in terms of these'opefators and in Section IV the solution

for the spin density matrix for different forms of the Hamiltonian is

. derived. The actual physical observables, the signal intensities and

frequencies, are discussed in Section V and ;he Fourier transforms of the
signals observed iniah NMR éxperiment aré calculated.

In Section VI wé.present the results of central interest baséd on -
the formalism of the previous sectioms. We consider the case of double
quantum coherence and its detection. It is‘shown thén in an appropriate
limit the evolution of the syétem can be.described in terms of rotations .

of a vector in a fictitious three dimensional space, a subspace of the

full set of operators introduced previously. The physical significénce

of this frame and its transformations to the observed rotating frame are



discussed. The basic structure of Sections IV-VI is therefore logically

broken into the steps:
preparation =+ evolution + detection

" Finally, applications of the theory to deuterium nmr in single crystals

and polycrystalline éamples are illustrated in Section VII.

L3
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II. FICTITIOUS SPIN-! OPERATORS

Let us now consider a system of noninteracting spins I = 1 in an
external magnetic field with a nonvanishing electric quadrupole inter-
action. As-was mentioned Before, the density matrix for such a system
cannot be described by only three angular momentum operators and we
have to>define a set of 8 independent traceless Hermitian operators.
The set we select has particular commutation relations between the
individuél operators. . The matrix.representation of the operators in.
the basis set of the eigenfunctions of Iz consists: of the fictitious
épin half operators and to the generators of the group SU(3)? The

operators in terms of the three linear angular momentum operators are

given by:
=1 =1 = 1
Ix,l— 2 Ix Iy,l E Iy Iz,l 2 Iz
=1 =1 ‘ =1
Ix;Z 4(IyIz+IzIy) Iy,2 4(IZIX+IXIZ) Iz,2 4(IXIy+IyIX)
. 2 _2 2 .2 2 .2
=1 - =1 — = L -—

(8)

For reasons of symmetry we defined nine operators which are dependent

fhrough the equality

IX,3+Iy’3+Iz’3= 0 | €))

I and

The most important property of these operators is that Ip 1 52
P b

I behave like the Cartesian angular momentum operators Ix’ Iy’ and Iz

P,3

for all three possible p's; p = x,¥,2»
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Namely
[Ip,l’ Ip;z] =i Ip’3 or cycli; permutation of 1, 2,.3 : (10) -7
R /
and therefore:
g v
-161 ) 101 _ _ _ ' o
e A | e T = (1 cosf + 1 .sinb 11
P2 & T2 p,3 1RO an

The form of thevoperators and theif transformations are summarized in
table I, and the matrix fepresentation of these bperatdrs fér‘IA= 1
is éhown in table II.

The two indices p,i in Ip . indicate that for each p we have a

. s

Subspace i=1,2,3 with spin -4 transformation properties, thus the
name fictitious spin -k operators?. Thus eéch p defines a three dimensional
space which we term the p-space. In particular, for reasons which will
become clear, the z-space is termed the doublé.quantﬁm space. In many
physically réalistiC'situations the spin system‘will evolve with no transitions
between the p-sbaces and will consist of roﬁatiohs.inione’thrée-diﬁensional
spaée. |

Now, using these operators we rewrite the Hamiltonian and the spin

<

density matrix of the spin system. If we consider a Zeeman and quadrupole

Hamiltonian we_ﬁave: . . ) ' .
' ’
H=-wl +%w (31° - I(I+1))
: oz 37Q 77z '
c-wI 420 @ -1 ) o (12)
o z,l 37°Q°x%x,3 v,3° ’ :
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where w, = YIHo is again the external magnetic field strengh in

angular frequency units, and

2 .
20 _€4qQ [l

Q = ST 2(3cos26-l) + n sinze_c032¢]

is the quadrupole interaction strength truncated with respect to the
o : 1 . .

direction of the magnetic field (wq.<< wo). In the fictitious spin -%

formalism, the two terms in the Hamiltonian of Equation (12) are

commutative, because of the general rule:

[1 s 1 -1I

p,i 4,3 r 3] =0 P,4q,r = x:Y;z
’ ’ s

i=1,2,3 (13)

an important relationship which will be used later many times; it

is particularly important for’cross polarization>experiments in which
case they form the tWo constants of the motion? At high temperatures,
a possible representation of the density matrix in terms of thé nine

operators:

p=2 P ap’i(t) I, + aol | (14)

=l px,y,z Pot

is conveniently described in terms of three coordinate systems according

to the three groups of ;hree operators defined by p in Equation (10). In

Figure 2 we demonstrate pictorially this representation. From the definitions
of the operators, only the (p,l)—axés correspond to the observable angular
momentum expectation values <Ix>; <Iy> and <Iz>'- It will be shown.in the

next section that we can connect each coordinate system to one of the



three transitions in- the three level system of spin I=1 in the rotating.
frame.A The properties of the operators and the simple transformation
rules in Tables I and II will be uséd in the following sections to
describe the spin system in ﬁhe most convenient way. For completeness
we give the expressions of our operators in terms of the irreducible

tensor representation components T, of the angular momentum operators

9 m
of first and second rank:
Ten =g Ty Tyy) Te,2 2 To17 Ty y)
1 = V2 (7 41, ) I, =2 (T, 4T, )
v,1 4 11 1-1 v,2 2 21 "2-1
Jo 1 3 1
=Y = V— T =
L3 =4 Tao T3 (TpptTy ) I3 5 T20 Y7 (TytTyy)
I =11 I lr, ) 1L =-Yoar )
z,1 2 710 z,2 2 22 72-27 z,3 2 22 72-2
(15)
In the descriptidn of our experiments of double quantum nmr, the Tlm
are not convenient operators. We can see that the IZ 2 and Iz 3 opérators
b s

are related to the double quantum transition states (Am = 2), while

I 1 and I
x

y,17 Ty,2 1

the single quantum transitions (Am = 1). We can now discuss the spin

and IX 2 have matrix elements between the levels of
b

Hamiltonian of a spin system with I=1 in terms of the operators of Table

I and we shall derive the different forms of this Hamiltonian for different

situations of frequency and intensity of radio frequency irradiation.

Se vy



III. HAMILTONIANS

The purpose of this section will be to represent the spin Hamiltonian

of a spin system with spins I=1 in terms of the operators ?f Table I for

l

several experimentally realistic situations. In general and with the

definitions of Equation (12) we write the Hamiltonian

. 1 2
= - I +30, BT, -_1(1+1)). - 2w

for the spin-1 nucleus with Zeeman and quadrupole coupling (see fig. 3)

lIx coswt (16)

where we allow for a rf irradiation field of strength of 200l and of

frequency w. With the assumption that wo >> . it is common to represent

Q

the spin system in the rotating frame defined by the unitary transformation

U= exp (—iw Izt) oQ@an

The Hamiltonian becomes then: (suppressing rapidly oscillating terms) :

3= UH = - T, - eI+ Ty (3 TL - I(TH)) (18)

where

Since we work from now on in the rotating frame, we suppress the asterisk.

The Hamiltonian can now be written in terms of the operators of Table I:

o= - 2wi o =201 g r ey Tl ) : (19)

b

To emphasize the use of the new operators we shall discuss this Hamiltonian
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for different values of Aw, Wy and wQ' We shall show that by proper
rotations this Hamiltonian assumes a convenient form which makes it

easier to deal with. As a rule we shall always try to write # in terms

I and I

s , because then it is possible to evaluate the
X,3 v,3 z,3

of I
béhavior of the spin density‘as a function of time analytically. This.
is analogous to the case of only Zeeman interaction in which we rotate
the Hémiltonian in the rotating frame to a frame so that the Hamiltonian

becomes proportional to Iz’ i.e., the tilted rotating frame. Here we

shall want the vectors along p,3 in each of the p-frames.

Aw = 0, w, = 0: (At resonance, no irradiation)

The first case under consideration corresponds to a situation where

there is not a rf field and the rotating frame is taken to be at frequency

w . Then
o
JC=+§wQ (1 ,3—1},’3) (a)
= w,.I —vl-w (1 ;I ) (b)
B Q7x,3 3°Q Y,3; 2’3
Wl . -Tw (I I ) (c) | (20)
Q Y,3 3 Q Z,3 X,3

The three expressions for ¥ are identical and can be obtained by using
the definitions of Table I. The reason for representing # in the three :

forms is, that each expression has the form

=0l - o I .-1I ith = i tati
plp3 qr( 3 r’3) with p,q,r = X,¥,Z or cyclic permutation

(21)
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a sum of two commuting operators (Eq. 13). These representations make
it possible to obtain simply the solution of the equation of motion in
the rotating frame for different initial density matrices:

dp ,
e = - 1 J(‘
ot [,

1

For example, if p(o) = Ix’ then we use 20(b) to find

P ~i(w I, - sw (I -1 )t 1w I —sw (I -1
o(t) = ze—LKtI : e+j%t - %e i Q7x,3 3 Q( v,3 z,3)) I e ( Qx,3 3 Q( v,3 z,g)
: x,1 - S ' ’ x,1 ' .
UL.)Q , wQ . .
3 ze_leIX’3t el 7;-(Iy,3—lz,3)t . e—l T;I(Iy,3_1z,3)t ele Ix,3t
x,1

-iw. I t iw. I t

= 2e Qx,3 I e x,3° 2(Ix cosw .t + Ix sinw t) . (22)

,1 Q »2 Q

The'lést step in‘équation (22) is calculated using the first commutation
relation in Table I. The important properties of equation (20) will be
used many times in calculating the evolution of the density matrix. The
usefulness of these representations wili become clear when we apply an
rf field with small Wy where they maintain their form affer a small
fiétitious sﬁin - rotaﬁion. |

Aw # 0, w, = 0: (Off resonance, no irradiation)

When we consider the rotating frame with respect to a rotation frequency

different from wo‘then Aw # 0 and ¥ becomes in the rotating frame:
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H = -2Aw I, % 2 w. (1 ) (23)

173 % Yg,37ly,3

To derive from this equation the general form of equation (21), we apply
a transformation corresponding to a tilt of our coordinate system with

the operator:
oom .m
0,2 = e 1) )
The transformed (tilted) Hamiltonian ﬂ& can be calculated, realizing that

"UZ 9 operating on the first term of ¥, will rotate it to IZ 3 and that it
b b

is commutativewith the second term:

%, = U:,ZJC U, , = 2w I, 4+ % 0 T3l 3) - (24)
Again we can rewrite ﬂ& according to the definitions of Ip,3:
K= -Mw) T, - (5w +hw) (I -1 )
T Q X,3 3°Q v,3 "z,3
= -(gHw) T - G 0 g-w) (12’3—ix’3) (25)
To obtain the expressions in equation (25) from equation (24) we

use the following formalism: The Hamiltonian for the three level system

of spins with I=1 can always be represented, after the proper tilt, by

¥, = (EX—Ey)Iz’B - EZ(IX,B—IY’3) = ‘*’zIz,3 - EZ(IX’B—IY,3)
= (Ey—Ez)Ix,B - Ex(Iy,3_Iz,3,) = wax,B - Ex(Iy,3fIz,3)
= (EZ—EX)Iy’3 - Ey(Iz,3-Ix,3) = nyy,3- - Ey(Iz,3-Ix,3) (26)-
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where EX’ Ey’ Ez are the energies of the eigenstates |x>, |y> and |z> of

ﬂ&. The expressions of the eigenstates of ﬂ&-in terms of the eigenstétes

of IzAin this tilted frame are:

|x> = - 1 (J+41>=-19; |y> = z (|41>+]-1>) and |2> = o> . (27)
e Ve
This'cén be derived from the definitions of Ip,3 and:
1 4lp> 2 T[> = 0
Iq?3llp> = %(Ii-li)];p = - Zp>
I, 4lp> = %(1(21-112)) [p> = %lp> | - (28)

This is  depicted schematically in Figure 4. From the matrix representation
in Table II, we can see that the fact that the trace of H is zero correspdnds

her e: to:- 5

E +E +E =0 ' R s
X y VA

-

Aw = 0, w; # 0 (irradiation at resonance)
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" We now introduce the radio frequency irradiation field at frequency w .

I . +24 ¢ I ) (30)
X .

[ﬂ‘= - 2w s1 37°Q Ix,3- y,3

1

To find the tilt operator which will transform this Hamiltonian to the

1

form.of equation (26), we rewrite ¥ again in the following way:

:ﬂ’= - 2w11X +w, I -=w (Iy’3—Iz’3) . (31)

We now tilt with the operator:

Ux’z(e) = exp(lﬁlx,z)
- with
. 2w _
8 =tan = (=H .
Q
The reason for writing equation (31) is now clear, because Ix 2 commutes

with the third term and rotates the two first terms:

_ gt ] D
Ho = Uy, o Ug 0 =T 0, I, 5= 30 Ty 4 I’z,3)‘
1 2 1 '
= - E—(we—wQ)Iz’3 + (§ wQ+§(we—wQ»(IX’3—Iy’3) (32)
with:
2, 2.1/2
w, = (4wl + wQ) (33)

where we used again equation (26) to obtain the second expression.

Clearly, in the last term of (32) we—wQ can be neglected.
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For the case that w, << w. equation (32) results in

1 . Q

W o . P
Hp= -3 T2,3 T 3% Uy, 37y, 8) | (34)

where we used

2
w
1 2 2.1/2 . 1 '
2-((4wl+wQ) - wQ) == . (35)
: Q
A similar result can be obtained by coherent averaging of —wlI by ﬂb
\ o : : ' : X ‘

when the approximation w, << w_  is valid.

1 Q

Aw # 0, Wy # 0: (general case)

Finally we shall discuss the case in which all terms of equation (19)
are different from zero. In this case it is not simple to transform
¥ to our desired form. However, for the most important situations where:

ml << wQ we can obtain the result with an approximation. We shall therefore

discuss these cases separately in the following:

<< w.: (irradiation near one satellite)

1 Q

Aw v w.,, w

Q,

w
I

We start with an rf irradiation field about the frequency (wo" w.). In

Q
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this case the Hamiltonian becomes, with Aw = w,. + Swand§y << Wo*

Q

2
It = - 2(uuQ+6(;o)Iz’l + 3 wQ (Ix,3-Iy;3) - Zu)lIx,l . : (36)
Tilting this Hamiltonian by Uz 2(%) we obtain (Table I and equation (25)):
H, = 2w +Sw)I + g—w (r .-I Y - 2w '{l-I -1 I }
T Q Zz,3 3°Q %x,3 "v,3 1 VE- x,1 V@r v,2

4 Y
= - 8w I 5~ (5 w. + Sw) (I 3—12,3) -\/iwl {Ix’l—Iy’z} (37)

»3 Q Y

We now use the approximation wl'<< wQ to simplify the last term. 1In the

last ‘expression of equation (37) we realize that with the approximation

@l <<_QQ’ the term V@wl Iy,2 can be neglected, yielding:
- e -
¥, = - Suw Ix,3 JEwl Ix,l - (3 Wg + 5w)(1y’3 12,3) (38)

This result has the form of a Zeeman interaction in the fictitious
x-rotating frame (x-space) With an rf field of v@wl intensity and

an offset frequency of 8w as in figure 5. Thus, in the physically
reasonable limit wy <« wQ ve see that one satellite of the quadrupolar
spectrum can be considered as a single spin -} Zeeman type transition
with modified (in fact anisotropic) Y on'which one can perform nmr

experiments. The last term of (38) is commutative with the rest and

can in most cases be disregarded.
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Aw v - w, and w, << w_. (irradiation near other satellite)

Q 1 Q

w | w
Qﬂ:‘ Q
|
“w“

il

In analogy with the former case we obtain the Hamiltonian in the tilted

- LI -y
frame, defined by Uz,2 (2), w1th.Aw wQ + Sw
. A | _
H,o==-68wl - W -Sw)(IZ,3—Ix’3) - JZwl (Ix,l Iy,z) o (39)

T v,3 3°Q

and with the same arguments, ignoring V@bl Ix 1 since ml << wQ, we
: b

have:

Hp=-dwI o+ \/5'“’1 ‘Iy,z -G (‘fQ'Gw)(Iz,B_Ix,B) \ L 6o

This is depicted schematically in figure 6.

Aw v 0 and Wy << QQ
w | w
Q Q
1
Wo
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We shall now discuss the Hamiltonian iﬁ the rotating frame with an rf
irradiation near to the center (Aw = 6w frequency of the quadrupole
spectrum. This of course is the region where we expect to induce double
quantum transitions. We shall see how this comes about rigorously.-

We have:

- 2w, I + = G
W T wq (T 571, 3 (41)
To obtain a convenient expression for ﬂ& we perform the same tilt as

was necessary for equation (32), transforming to a tilted frame

| -1 AWy
Ux’z(e) = exp(if Ix,2) , 0 = tan Czr—)
. .Q
which results in:
o= -2 Sw (I cosfB/2 + I sinf/2) + w I —gﬂ)(l - ).
T z,1 v,2 e "x,3 3Q7y,3 z,3
(42)
With the conditions 2 Sw wl.<< wg we can neglect the term 2 8w sin6/2 Iy 2
’
. 1 . . :
with respect to 5 (we+wQ) Iy,3’ yielding: g
ot =260l .~ (w-0) I ,+2w (I I .) (43)
T "z, 2 Ve Q "z,3 3 °Q "x,3 7y,3

This. shows that even in the case of rf irradiation near to the center
frequency we can talk about a fictitious Zeeman interaction in a fictitious

z coordinate system. For the case that w, << w_ we can use (35) yielding:

1 Q

w 2
i z—26wIz' —Z)—‘I + = w. (I ) (44)

T 2,3 T 3% Yx,375y,3
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This is depicted in figure 7 and defines the z-frame, or double quantum
, w
frame. The effective rf irradiation field along the z,3 axis is o and .

the resonance offset if multiplied by 2, i.e., 2 duw. ‘Q

The exact solution for thé general case of Wy # 0, Aw # 0 and
wQ # 0 must be calculated by numerical computations and in Section VII -
we shall discuss some results of those calculations. The main results

of this section are summarized in Table III. Also included in the table

for future use are the forms of IX and Iy in the tilted frames, IxT and

IyT' After representing possible forms of the Hamiltonian in the rotating

frame we now discuss the time behavior of the spin system under the
influence of those Hamiltonians and attempt to obtain closed expressions

for the signal intensities measured in nmr experiments.
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IV. ©PREPARATION OF SPIN DENSITY MATRIX

We now calculate the evolution of the density matrix during pulses
described by the various cases ofvirradiation in the ﬁrevious éections.
If we define a.reduced density matrix appropriate to-high temperature
then in the rotating frame:

3
ot

p="i [J{,p]

From the equilibrium expression for Py it is clear that p in general can

be written as:

1,2.3 x z _
HOEEDY i a 1, (45)

1

with a . calculated from:
b ]

iHt

o(t) = e M 5oy o (46)

Our aim is now to obtain the explicit forms of the last equation fo;
different‘Hamiltonians derived in the previous section. A variety of
specifically interesting cases for nmr spectroscopy will be discussed.
The initial signél intensities measured in the corresponding nmr experi-

ments will be calculated.

Aw v wq, wy # 0
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We shall start with the case in which rf irradiation is applied about the
resonance of the higher side peak of the quadrupole spectrum and we shall

take as the initial condition for po the reduced high temperature eqﬁilibrium

expression: N
Py = b Iz
with
wo , ‘ v
b = T v YD)

We wish ;now to calculate (46) with ¥ given in (36). As was shown in (36)-(38)
the Hamiltonian can be rewritten in a tilted frame and the result is given
in (38) and Table III. We begin by taking the case that &w = 0, i.e.,

irradiation exactly at one satellite. In this tilted frame po becomes

N N u
poT - Uz,2 (2) po Uz,2 2)
=-2 I, =bI b (T T ) : (48)
Insertion of Por and ﬂ& from Table III assuming Sw = O:

_ | 4 1
o= =V20 Iy =g @ 37T, 3)

into equation (46) yields:

-1 e b e V1t b(I_ I .)
pT(t) = e Por © _ Xx,3 “y,3 7z,3
(49)
= in/- + -
b(IX.,3 cosvﬁblt + Ix,2 31n¢§wlt) b(Iy’3 Iz,3) (50)
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where we used the commutation relations of Table I. It is clear from
thié result, that the density matr;x pT(t) can be described in the
fictitious x-coordinate system. The last term of pT(t) is not significant
for the_present experiments because it will.nof result in an nmr signal.
It is crucial of course in many double resonance experiments and
.constitutes> the quadrupolar reservoir. With the result of equation (50)
we can calculate the signals measured in an nmr experiment, after a pulse
in the i—direction of duration t, i.e., <Ix(t)> and <Iy(t)> the expectation

values of Ix and Iy in the rotating frame:

|0

Sx(t) .Y<Ix(t)>.=.y tr'{p(t)IX} =y tr {pT(t)IXT}

]

Sy(t) .Y<Iy(t)> =Y tr {p(t)Iy} =Y tr {pi(t)IyT} (51)

where we used the fact that the trace is independent of the representation

of the operators. In our case from Table III:

+ Ll T ' \
IXT’ =2 Uz,2 (2) Ix,l Uz,2 (2) -Vﬁ-(1x,l Iy,2)

-2yl (T i_ |
IyT =2 Uz,2 (2) Iy,l Uz,2 (2) - VQ-(Iy,l+Ix,2) (52)

and with equation (50) we get the expected result for irradiation in the

x—direction:

S (t) =0
x
22 1 .
Sy(t) —-JE-bY 31nvﬁhlt t?{Ix,Z} = 297 So 31nV§&lt (53)
with 2_1 )
So=4N'bYZITl ='§'NYb
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and N is the number of spins in the sample. We want to emphasize here
_that the effective rotation frequency, due to an irradiation field in

the rotating frame}_of wy = Yﬂi, on one satellite is ngl =\ﬂ?ﬂﬁf

1(b)

This is representative of an effective magnetogyric ratioﬂJEQ. The

truncation of ﬂ’, by ignoring the Ferm with Iy’z,‘ig‘the reason for
the fact that the solution‘df eqﬁation (53) is not ;ffected by the
off resonance satellite of the quadrupolar spectrum at 2wQ.
.The result for iréadiation at Aw = - w, can be obtained in the

Q

same way. Starting from equation (40) for H% and calculating the values
of Sx and Sy gives results.anélogous to equation (53). -To complete

the description of the nmr éignal after a single pulse on one of the

satellites of the quadrupole spectrum we now take into account also dw # 0.

The Hamiltonian effective for this transition is (equation (38) and

Table III):

¥ f - Sw Ix,3 - J@bl Ix,l (54)
where we took Sw = Aw - wQ and the effective initial condition for o]
in this frame from equation (48) is:

o =bI | | (55)

The signal intensities are proportional to the expectétion values of

I and 1
X

x,1 ,2:

Sx(t) = VQ—Y tr{pT(t) I# l} =-Z;7 So sin¢ cos¢ (1-coswst)

b

Sy(t) = VE_Y tr{pT(t) Ix’z} = - Z%? So cos¢ éinwst (56)
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where

2,1/2

2
Wy = (Sw™ + Zwl)

and

This result is in full analogy to a regular Zeeman interaction Hamiltonian
as is discussed in Section I. The analogous operators for spin -% are

I and I
X

10 2 respectively.

I , I and I for I
x> Ty 7 Tz X 3

Aw v 0, W, < W

1~ Q

The discussion of rf irradiation at the center frequency of the spectrum
is interesting from the point éf view of double quantum effects in our
three level system. In this section we shall discuss the creation of
coherence of the double quantum transition. In this case, according to
Table III, the Hamiltonian in the frame tilted by U (6) with 8 =

1 2w x,2

(ZT—J and 46w wy << wé is:

Q

tan
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1,2, 21/2 2 i
H, = - 26w Iz’1 T3 ((wQ + 4 w) - o.)Q)Iz’3 3 wQ(Ix,S Iy’3) (57)

To evaluate equation (46) for this case we transform Py in equation (47)

according to Ux 2(6):

ppT = 2b exp(-—161x I exp(iGIx

27521 ,2)

= 2b (Iz cos 6/2 + Iy,2 sin 6/2) (58)

1

We calculate pT(t) by inserting equations (57) and (58) in equation (46) with
Sw |

0:

]
(1]
ke
(1]

Pp(t)

1 v
-1 E-(we-wQ)I

z,3t

1
i (w-w)I t
=2b e 2 e Q72,3 I e

2,1 cos 0/2

1

- . |
. +H [w +w ]I _t - = [w 4w ]JI .t
+ e 2 ¢ QW3 I, 2 e QY3 544 072

. 1 ' 1 .
2b {Iz,l cos 5 (we-QQ)t - 1,803 (we-wQ)t} cos 6/2

- 1 v 1
+ 2b {Iy’zlcog 5 (we+mQ)c + Iy’1 g;n > (we+wQ)t}.sin 8/2 (59)

whefe we recall that:

2 2.1/2 R
Wy (wQ+4 W) v ;

<< (nQ (equation (35))

The calculated behavior of pT(t) becomes for w
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2 2
\ v : wy Wy .
pT(t) = 2b (Iz,l cos-aa t - Iz,2 sin Bg t) (60)

The second term in equation (60) represents the coherence of the

double quantum transition, because it has matrix eléments between the

of these states. For the case Wy <<in we can again talk gffectively about
a fictitious Zeeman type Hamiltonian on the transition |+l> - |—1>. The
preparation of the density;matrig in thié case is depicted schematically
in Figureb8vfor Sw = 0. We refgr to such a pulse with.wl << wQ and

. 2 '
48w wl << wQ as a double quantum pulse. The effective Hamiltonian in this

case is obtained from (35) and (57):

2
, Wy
JC’:— . - —
T 2 Sw Iz,l wQ Iz’3 (61)
wl
The effective magnetogyric ratio is o Y and the off resonance term is two

Q .
t}mes-the offset frequency. The rotation frequency of spins around Iz 3 is
w bd
™ and was already observed by Hatanaka et al.3

Q

The observables SX and Sy subsequent to preparation by a double quantum

pulse can be calculated from eqhations (51) and (59)

_ + _ _ ,
IX,T =2 Ux,2 (8) Ix,l UX,Z(G) = 2(Ix’l cos 0 Ix,3 sin 6)
1 =2 U T ('e)'I U ,(8) = 2(1_ 9. 1 i g) (62)
y,T X,2 - Ty,1 x,2 y,1 €os 3 z,2 sin 5

and become:
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92]
1

= Y tr(pg(t) IxT) =0

w
}

=Y tr(pT(t) IyT) = %-Y_So sine{sin‘%-(we—wq)t + sin-% (we+wQ)§} (63)

R

0 since w,. . << w_, giving sinf = 0.

1 Q
Thus after such a pulse there is essentially no observable signal, i.e..
the double-quantum coherent state does not evolve with an observable signal.

Since 1 and Iz are related to the coherence of * 1 transition we define

zy2 »3
the double quantum coherence in the case that Iz 2 is prepared:
b
Q(e) = 2y ex(p(e) I, ,) = 2y trlpp(e) I, o)) . (64)
or similarily with I or a combination of I and I .
‘ z,3 v o Z,2 z,3

Q(t) as mentioned above is not an observable in an nmr experiment. It can be

calculated in our case using:

t . - ) S
: ;z,ZT Ux,2 (6) Iz,2 Ux,z(e) = Iz_’2 cos 5 + Iy,l sin > . (65)
giving:
- : 29 oL oy - ein? 8 g L :
Q(t) = - So_{cos > sin 3 (we wQ)t.. 31g 5 sin 3 (we+wQ)t} (66)

The coherence Q(t) is maximum in the case of wy << wQ for

EIS
SN

1 _rm :
3 (vt = -t =3 | (67)

Q

«

- |
Tgus the E—condition for a double quantum pulse with w1.<< wQ 1s given by
w .
Bi t = gu This is a g-double quantum pulse.

Q
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The preparation of the density matrix in the rotating frame for‘the'general
case during rf irradiatioﬂ with 8w # 0 is complicated and is best caldulated
with the help of a high speed computer. 1In the next section, we shall
discuss the evolution of the spin system without rf irradiation after the
density matrix has been prepared in non-equilibrium form. The signglA
intensities measured after rf pulses will be discussed and the Fourier

transforms of different FID signals will be given.
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V. EVOLUTION AND SIGNALS

In this section we give the equations for the density matrix of the spin
system in.terms of:our nine operators for fhe case that no rf irradiation
is applied to the éystem. We assumé the system to be in a non—equilibfium
state‘after_some preparation and ask how it evolves with time. This
corresponds to the behavior of the spin system after an excitation
pﬁlse. We ignore for 'simplicity all relaxation effects.

The evoiution-df the spin density matrix under the influence of the

main Hamiltonian without rf irradiation:

, ' ' 2
E‘— - 20w .Iz,l +3 g (Ix’3—1y,3)

is calculated by inserting this Hamiltonian in the solution for p(t) in
equation (46). The signal intensities are then proportional to the expectation
values. of Ix and Iy. We shall therefore first derive the time behavior of an
arbitrary p(o) due to ¥ and shall show which of the coefficients of p(o):
o =Za ,(0) 1 (68)
p( ) ip p’]_ p,i ‘ .
are subsequently detectable. A straightforward calculation gives for the

coefficients ap i(t), with the assumption that ap 3(o) = 0, p=X%X,y,2:
b . b

ax,l(t) =:% (ax,i(o) +»ay’2(o)) cos(w ;Aw)t - l-(ax’z(o) + ay

Q 5 l(o)) sin(mQ—Aw)t

L]

1 . 1
-3 (ay’l(O) - aX,Z(O)) Sln(—wQ—Aw)t -3 (ay,2(°) - a, 1000 éos(-wQ-Aw)t
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a, ,(®) = %'(ax,z(é.) +a () ’gos(wQ-Aw)t +z (3, 1(0) + 3 ,(0)) sin(uy-bw)t
, % (ay (@) - a, () cos(-uy-tw)t + 2 (ay ,() - a, ;(0) sin(-u-bw)t
A @ - 3 (a) 1(0) = a, ,(©) cos(-ug-bw)t - (a) ,(0) = a, 1 (0)) sin(-uy-du)t
+z (a1 @) +a ,() sin(mVQ—Aw)t'+% (a,,5() + 2, 1 (@) coslugbwe
.ay’z(t)v =2 (a (@) = a1 (@) cos (-u-twt + 3z (ay 4 (0) - ax’z(o))sin(-wQ-.Aw)t
42 (a, (@) +a_ ,()) cos(uy-tu)t -2 (g}'{,z(o) + ay,l(o)') sin (uy-Mw)t
a, () =a,

az;z(t) = az 2(o) cos 2Awt

b

az,3(t) - az’z(o) sin 2Awt

éX’S(t) = —'ay’B(t) =0 ' (69)

For the special case that Aw = 0 we get:

a l(t) = a_ 1(o) cos th -a 2(o) sin th
ax,z(t) = ax;l(o) sin th + ax,z(o) cos th
ay,l(t) = ay,l(o) cos th + ay,z(o) sin th
a ,(t) =-a (o) sin w.t +a_,(0) cos w.t (70)

V.2 v,1 Q y,2 Q
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These expressions are calculated by the following procedure:

' : . o . m
a ’i(t) = tr {pT(t) Uz,2<2) Ip,i Uz,z(z)} (71)
with
S -iKt +iK_t
PR T T, u T
and
w o=vl @y, @ - (73)
T z,2'2 z,2'2 h
The result for the FID signal can now be calculated:
| er= y tr {p(t) Ix} = ax,l(t) P(t)
S =vytr{p(t) 1.} =a t t 74
y =Y RO Lh = a0 v | (74)
- where Y(t) is a decaying function with a decay time T2 and Y (o) = %’Y N = So’
The coherence of the double quantum transition is defined as
Q) = a, ,(t) ¥(t) o (75)

9

A schematic representation of the results of equations (69).and (70) is shown
in Figures 9 and 10. The x- and y-components of the ap vectors are defined

by the coefficients of:

0y © < Lo, 1,

px(t>e=§;ax,i<t) Ty ‘, - (76)
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. réspectively, i.e., ap is the vector defined by the components a .. The
. ]

time evolution of the z-vector defined by the coefficients of:

Dz(t) =;az(t) Iz’i : | | 7 (77)
is also shown. From the results of equations (69)-(75) and of Figure 9,
we see that in the case ovaw = 0 the signal is linearly polarized. This
. . . 11 - .
is also demonstrated in Figure for the case Py ay,l Iy,l + ay’2 Iy,2

We find in this case for the detected signals:

Sy =(a 1 costt + ay’z.siant)w(t) = Z ay cos(th—¢)w(t) (78)
where a_ = (ay,l + ay,z)l/2 and ¢ = tan—l (ng%) .

The results for Aw # O with the same initial condition is given by

wn
I

= ay cos (th—¢) sin Awt P(t)

S a cos (w

Sy g Qt—d)_)_cos Awt P(t) | » (79)

For completeness we give in Table IV the results of p(o) after a resonant

(Aw = 0) pulse of t seconds and of w; strength in the x direction for

1

different initial density matrices just before the pulse.

The evolution of a, 2(t) and a, 3(t) in equations (69) is particularly

b

interesting. Although they are not directly detectable as mentioned

previously the time dependence does not contain w i.e., they do not

Q’
exhibit any quadrupolar interaction. Thus if their decay could be monitored,

they would yield a high resolution nmr spectrum. This indeed is the basis

. for the approach we have termed Fourier transform double quantum nmr.
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To observe a pure double quantum decay, the system must be prepared so

that
plo) = az,2 Iz,2 + az,3 Iz,3 '

After time t the double quantum coherence which has evolved only with 2 Aw
must be detected by an additional pulse or set of pulses. In the next
section this is discussed in detail both for the ideal double quantum case

W, << w,. and for the more pfactical case of general W, -

1 Q
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VI. DOUBLE QUANTUM COHERENCE

In this section examples of different pulse sequences will be discussed.

We shall be interested in the efficiency of formation of I double quantum

z,2’
cohgrence and its detection by pulses since it is not directly detectable as

an nmr signal. First the effect of a single pulse on the spin system wiil

be described and the physical observables will be derived. 1In all the examples
discuised below, we také Aw = 0 during the pulses, i.e., we assume Wy >> Aw
and E— >> Aw. Without rf irradiation we take account of Aw.

wq_ _ .
‘A. One pulse (Figure 12)
Applying a short rf pulse on our system results in a new density matrix
after this pulse given in Table IV. These results>aré simplified in Table V

)

for the épecial cases of very strong (wl >> wQ) and very weak (wl << wQ
irradiation. In the former case we expect pure rotations, i.e., normal single

quantum behavior and in the second one expects double quantum effects. The

results of this table are calculated from equation (46) with # as given in

Table III:
2
Wy
< H=x-— I + = I -1I
Wp = W wy 2.3 3 Wo Ty 53~ 1,3
and
wp 2> Wy 2 HE - 2w Ty \ (80)

From the results of Table V we can answer the question of.which pulse we need

to apply in order to obtain a detectable signal or to create double quantum

-
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- coherence. From the discussion of the previous section we know that the

only coefficients of p(t) which give rise to detectable signals during

evolution are a , a , a and a . These coefficients can be
x,1° x,27 y,l »2 '

created for example from I and IZ 9 by wl >> w,, while for w << w

z,1 , Q 1 Q

thé double quantum coherence coefficient a is obtained. For comparison

2,2
betweeﬁ the exact solutions of Table IV and the épproximated solutions
of Table V we have plotted in Figure 13 and Figure 14 the coefficients

of I_ . and I as functionsof the length of an x-pulse with v, = 20 KHz

z,2 v,1 ‘ 1
and VQ = 60 KHz for pi = Iz,l' Fgrizrre double quantum behavior w1.<< wq,
we éxpect from Table V a. = - gin — t.
z2,2 wQ

The results of the coefficient of.Iz 1 (Figure 15) and‘Iz 9 (Figure
]

]

16) are shown as functions of v for a fixed pulse time T = 56 usec and

Q

T ='28;usec respectively., This is to indicate the degree to which we can

create double quantum coherence, I , over a continuous range of w

Ly & Q°

The approximated results are in reasonable agreement with the exact

calculations for w. > 2.5 wl.'

Q

To illustrate the case where wy is larger than wQ’ we take Vi = 60 KHz

and v, = 20 KHz. The approximated results and the exact calculation are

Q

compared in Figure'l7 for the coefficient of I as functions of the pulse

y,1

2.1° We see that for long pulses the approximated solution
,1°

is out of phase with the exact calculation. This comes from the fact that

length, with"pi =1

even in this case (vl > V) some a is formed. In Figure 18 we show the

Q z,2

I coefficient as a function of v, for a constant pulse length of 16 usec.

z,2 Q

We see that at v, = 20 the coefficient of 1 is a =
Q z,2 z,2

we also show an experimental result on a single crystal of deuterated

.84, In Figure 19

oxalic acid dihydrate. In this experiment the value of a, after a single

»1
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is left. The a, 4 value is detected by a

following the first pulse.

pulse probes how much I
_ - z,1

second pulse, which is applied at time T2

The signal after this second pulse is then proportional to a, and is
) b .

plotted as a function of the length of the first pulse. The experimental

values are compared with the calculated a, values for the experimental

v »1
parameters Vv, = 26 KHz and VQ = 16 KHz from Equation (69).

In Table VI we summarize the effects of pulses of particular length
correspondingvto‘a 90° rotation for the single quantum case wy >> wQ
where the effective rotary frequencies are w; or 2 wy and for t?e

‘ w

double quantum case wl.<< w. where the effective frequency is B—'.

B. Twoigulses (Figure 20)

- In this paragraph we shall discuss the effects of three different
two-pulse sequences which then will be used later for the detection of

double quantum coherence in single crystals and powders.

Two weak pulses

The application of two x-pulses of equal length and strength Figure

20(a) is used for the storage of a What we mean by this is that

z,2°

Vafter a single weak pulse (Table V) on pi = Iz 1 the density matrix -
‘ b

contains a coefficient az 2 #'O. This coefficient of Iz 2 after the
} ] . } )

pulse can then evolve for a time T after which it can be brought back

to a coefficient of IZ by an additional ﬁeak pulse. It will be shown

»1

later that this can be of importance for the detection of the time

behavior of a, s the coherence. With the assumptions w, << w, and
s .

1 Q

Aw << w, the results for the density matrix in this case are:

Q
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. =1
pl z,l 2 |
W Wy
D(tp) x Iz,l cos — tp -1 2 sin — ¢t
3 2 9
__wl . wl . ‘
p(t +1) ¥ I gos =t - sin—=t {1 cos 2AwT - I sin 2AwTt}
P z, w, Pp w, p 2,2 z,3
: Q Q
2 2
E L. 2wy 5 Wy
p(2t +1) ~ I _{cos®™ — t_ - sin“ — t_ cos 2Awt}
P z,1 P w. p :
Q Q
2 2 2
w W w
1 1, . : 1 .
-1 cos —t_sin — t_ {1 + cos 2Awtr} - 1 sin — t_ sin 2Awt
z,2 w. p w, Pp z,3 W~ P
Q Q _ Q
where
t = t. - =t . : ' 8.
P Pl P2 . (81)
2
. wl - _
From this result we see that in the ideal case with Zr-tp =-§ , 1.e., two

f=)

90° double quantum pulses:

- sin 2Awt Iz (82)

O(thfT) = - qos'ZAwT Iz )3

»1

and that the coefficient of the final density matrix reflects the evolution

of between the pulses. When we have a distribution of wq, e.g., in a

12,2

powder, then of course we cannot satisfy the 90° double quantum pulse

condition for all w To see the distortion effects, the square of the exact

Q
~ coefficient of a, , after the first pulse, which reflects the maanr in
’ - w!

; _ . . , 9
which I is created and "stored" as I . ., is. shown with sin® — t_,
z,2 z,1 wQ P

for vl = 20 KHz and tp = 28 usec, as funétions of VQ (Figure2l ). The

advantage of "storing'" the a ,asa . with the second pulse is discussed.
, , v \

in the next paragraph.
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Two strong pulses

We go now over to the case in which we apply two strong rf irradiation
pulses [Figure 20(b)] on the spin system with a time delay of T. This
sequenCe‘is important for polycrystalline samples in which a range of wQ
values are present. In that case this pulse sequence is used to obtain
an echo signal since the amplitude of the signal following one pulse is
obscured by dead time. If we consider an initial state py = Iz,l then

we obtain for the Wy independent coefficients of the density matrix p(2T)a

time T after the second pulse with w, >> w, and Aw << w, the following form

1 Q 1
values:
For
, =TI =
1,x 1 T2 M Uyt T3
- _ 2
ay,l(tpl) = 1 and ay’l(ZT) cos” Awt
and for
: T _m
“lx fpp T2 ™ Uyt T2
1,
ay,l(tpl) =1 and ax,l(ZT)'_ > sin 20wt | (84)
where we write p(21) for ot ., + 1T+t ., + 1) and where w is a pulse in
| pl p2 1,p .
the p-direction. All other coefficients of p(2t1) are dependent on wQ, and

will average away for polycrystalline samples. From these results we see that
the spin echo in a sample with a distribution of wQ is still dependent on Aw
while the wQ dependence essentially disappéars. This effect will be
discussed again in the next paragraph. In Figuré 22 an example of a

two strong pulse sequence is shown with v, = 60 KHz and tpl = tp2 = 4 ysec.
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The exactly calculated coefficient of I after 2T is plotted for

ys1

different v, values. The echo thus gives a good measure of a, “before

Q »1

the two pulses.

The final two pulse.sequence consists of one weak pulse followed
after T seconds by a strong pulse, Figure 20(c). The reason for
applying this sequence is to detect in the simplest way the coherence

behavior during the delay timg T. If the first pulse is selected to be

. : o w v
a double quantum 90° pulse, Gl tpl ='% then the density matrix for
Q v . .
p. =1 is given after this pulse by
i z,l1 ,
e )= -1, » : . (85)

The evolution of p(1) during the time T between the pulses is given by:

p(t . +T) = —Iz

ol cos 2AwT +:Iz sin 2AwT - : (86)

) »3

and the strong second detection pulse results in:

- (1 ))sin 28wt . (87)

Y’z y,3—12,3

| - 1
p(tpl + T+ th) = +I  _cos ZAwT-f > (Ix,3

X :
= — i >> - .
where we took wltp2 2 with wl 'mQ-

This results in a signal intensity, according to equations (79):

g = S cos2 Awt sinw,.t sinAwt

X o —Q
Sy = S cos2 Awt siant coshwt (88)

The behavior of this pulse sequence is depicted schematically in Figure 23 for Iy,l'
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Thg.signal thus bégins with zero intensity, but the average intensity
during evolution affer the second bulse is proportional to the double
quantum frge induction decay. A convenient way to detecﬁ the double
quantum décay is to Fgurier transform Sx +iSy and plot the intensity

of the transform versus T for the quadrupolar frequency of interest.

A second Fburier transformation then yields the doublé quantum spectrum.
This is a speciai case of two-dimensional spectroscopy.12 If there is

a distribution of;mQ as in a powder the double—quantum-% condition ca;not

be met everywhere yielding characteristic lineshapes.13 This is discussed

in the next section.
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VII. EXAMPLES

Inrthis last section we shall discuss some possible pulse sequences
for the deteétion of the chemical shifts of spins with I=1. The idea of
detecting the coherence of the double quantum transition has been shown
to be useful for the determination of chemical shifts values in single
crystals and polycrystalline samples. Thé quadrupolar broadening is
eliminated in:- the double quantum transition and the dipolar coupling can
be eliminated by diluting the deuterium in a protonated host and spin
decoupling the protons.

A. Single crystals

The fact that there are a finite number of discrete wQ values p;esent
in a measurement on a oriented single crystal, makes it possible to detect
the chemical shiftrvalue, 0, of a particular nucleus by a two pulse
sequence as discussed at the end of the last section. In the ideal case
in which we can apply pulses wifh either wl.<< mQ or wl >> mQ the puise
lengths are determined by the conditions in the ﬁrevious segtion. However, in
practice it is not always possible to obtain these ideal pulses and we have
to deal explicitly Qith the actualiparameters (wl, tp) of the pqlses and
the exact solutions for the density matrix and signal intensities. If we
consider a deuterium nucleus in a crystal with a single well defined value
w, and we assume that the rf irradiation strength wy always satisfies

Q

wy >> Sw + Qwo, where 8w is the offset frequency of irradiation and o is

the unknown chemical shift (in ppm), we can derive the eXplicit expressions

for the spin density matrix. The basic idea for the detection of 0 is

to apply two pulses; the first pulse to create the coherent state Iz 9
. b

and the second to moniter it in the form of a signal. Consider as

-7
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{an,example Figure 20(c) -using the simplest pulse sequence. The density
matrix after the first pulse, applied to a spin system in thermal equilibrium,

and length t is given by (not assuming W, << w ):

1 Q

with intensity w
, p,1

L -2 1 2 1
= - - + si -
p(t_Pl) 2b {[cos” 6/2 cos > (w,, wQ)tpl sin 8/2 cos 3 ((.ue+qu)tpl]Iz,l
- [0032 6/2 sin-l (w -w‘)t - sin2 8/2 sin l-(w +w )t ﬂI
2 e Q" pl . 2 e Q' prz,2
+-l sin.ﬁ [sin l-(w +w )t _; + - sin l-(w —Q )t ]I
2 2 e Q' pl 2 e Q" pl Ty,1
+-l sin 6 [cos l-(w'+w )t - cos l-(w -w )t . 11 .} (89) -
2 2 Ve Q' "pl 2 e Q"prl "y,2 .
with
2w
wz = 4w2 + wz and 6 = tan“l —=
e 1 Q W
Q
The optimal preparation pulse makes the coefficient of Iz o one, i.e.,
a , =1. We require, therefore, that the I and I coefficients
z,2 y,1 ¥s2

are zero, so to make the signal intensities after this pulse zero. This

condition becomes from (89):

1 1 ' '
E-(we+wQ)tpl + 5 (we—@Q)tplb = 27k | (90)
i.e.,
: 21k
tpl = T k = 1,2, ceo (91)
e

For this condition, equation (89) becomes:
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o(t ) =2b{cos % (W -0t I . -sinx (w-0)ty I .} (92)
pl U2 Ve @rl Tz,1 2 Ve 7Pl 0

In the ideal case we make the coefficient of Iz equal to one in (92) by:

,2
Lw=w)tq =T (2n41) n=0,1
2 (W™ pl 2 slyeen

Together with the definition of w, and Eq. (91) we obtain:

_ 2m-1
tpl = m T (93)
- Q
k,m = 1,2,...
_ 1 2k 2 _.1/2
w =7 (gD D7 Y9 k>m (94)
In Figure 24 the values for t and w, are plotted as functions of w

p,1 1 Q

form =k =1 and m = k = 5. From such graphs we can determine appropriate

After this preparation pulse we let

w, and t 's for the experimental w,.
1979 5 P Q
p(tpl)' = 2b IZ 9 evolve over a period of T and apply'the second pulse
when:
p(T) = 2b I_, cos2(8wkowg)T = 2b I_ ; sin2(Suwtowg)T | ©(95)
s *

If we measure the signal intensity, Sy, At seconds after the secbﬁd,pulse
and we take At . << 1/8w, then any strong pulse gives an intensity
proportional to az,Z(T) = 2b cos2k6w+owo)T. The signal intensity after

a second pulse inthe x-direction is seen from Table IV to be proportional

to

(1) (96)

SX(T) o« az’3
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and the proportionality factor is a function of the pulse length and height

and of the value of w In the ideal case of an infinitély strong x-pulse

Q"

‘we obtain for the Sy t seconds after the pulse:

t cos(bw + Gwo) t 97)

sy(t) = S cos2 (Sw + Owo)T sinw,

The double quantum decay can thus be plotted as a function of T. The

result after an arbitrary pulse can be written as:

Sy(t) = So'ay cos2 (Sw + owo)T Sin(th + ¢y) - (98)

.

where

1/2
a, .= (ay’l(O) + ay,2(°)))

-1 |
¢ = tan (ay’l(o)/ay 2(o)) ‘(99)

and ay’l(o) and ay 2(o) are the initial coeff1c1enﬁs of Iy,l and Iy,2

Just after the second pulse. To demonstrate the dependence of a and
o : _ y

¢ on the parameters of the second pulse and on the value of w, we show in

. , Q
Figure 25 the exact calculated ay 1(o) and tpl ay 2(6) values of the density

b b

matrix after a pulse of length tp = 3 usec and of height v, = 60 KHz applied on

1
p(t) = Iz 2° It is clear that this prejection of the density matrix on the
b

y-coordinate system is strongly dependent on wQ and that thezgrand ¢ values

in Equation (98) are different for different w. values.

Q

Second Order Quadrupole Shift

Before discussing some aspects of the double quantum coherence

measurements on polycrystalline samples, we shall make some comments on
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the higher ordér corrections which we muét consider in doing chemical shift
measurgmenfs.

The qua&rupole Hamiltonian as it was defined in Equatioﬁ (12) is only
takenvtq first order with respect to the external magnetic field -wOIZ.
There are, however, measurable second order effects, which will shift the

measured w, values by an amount:

Q

(2

Q,Q’L(wé/lz wy) 2 {sin” 26 + sin® 0} | ._ (100)

with the definition of Equation (12) and the assﬁmption of a symmetric
"quadrupole temsor. A straight-forward calculation shows that this
correction adds up to the Hamiltonian in the rotating frame as:

+ 2 wéz) I +-g w. (

= -2(w + owo)Iz 2,1 Y39 Ix,B-Iy,3)

»1

This result shows us that this second order correction is indistinguishable

from thé'chemical shift tensor and that it must be calculated and subtracted

from the measured value ow_ + wéz). In a magnetic field of v 4.5 T the
correction can introduce a shift in O of the order of 1 ppm for wQ v 100 KHz,

- We now go over to discuss some aspects of measurements on polycrystalline

saﬁples.

B.  polycrystalline Samples

In this paragraph we discuss the measurements of the chemical
shielding tensor in polycrystalline samples. . The distribution of wQ values

in a powder sample complicates the detection of the chemical shift pattern

as depicted schematically in Figure 26. In particular, as was discussed
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in the former sections, the preparétion of the double quantum coherence

and its detection is strongly dependent on the quadrupolar frequency wq.

The simplest pulse sequence for the detection of ow is the two pulse

sequence shown in Figure 20(c). After the first pulse we obtain a value

(w.). In

of thevqoefflclent of Iz’2 which will now be wQ dependent, az,2 wQ

‘the ideal case we would like to obtain a 2(wQ) = 1, but this is not
. v

possible practically over the whole w, range. We therefore apply a first

Q
pulse which will make az,z(mQ) maximum over the range of wQ's. The
optimization can be deterﬁined.by‘a'high speed computer calculation and
these procedures will not bevdiscuSSed here. In Figure 16 an az,z(mQ) .
plot is shown for the case of one pulse with a maximum value of vQ = 120 KHz.
Exce?t for the values of vQ near vQ = 0, the az,2(mQ) values are larger than

0.6, if we take pi(wQ) = I . To obtain the efficiency of the detection

z,1

of the double quantum coherence Q(T,w.), we calculate the observable

Q
a_ ,(w.) after the second x-pulseoriginating from a_ _(w.) just before this
y,17Q z,2°°Q

pulse. The product of az,2(wQ) after the first pulse and this ay’zgng;

will yield the efficiency of the measurement of double quantum coherence

_for the different w. values. We shall call this product the double quantum

Q

transfer function. Again in the ideal case this transfer function would be

one over the whole w_. range. In Figure 27(a) we show a transfer function of

Q

a two pulse sequence calculated for ay 1 just after the second pulse. This
b
illustrates the type of distortion which will be obtained in the Fourier

transform double quantum spectrum as a function of w We shall of course

Q"

have for every function a value of zero for w, = 0. Knowing the transfer

Q

_function we are able to predict the high resolution spectrum for an experiment

where the total signal:
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Sy = “dw
17 w
e

(w,) -

o 2y,1%
is;ﬁéQSufe& jusf:éffer thebsécoﬁd ﬁulse as 5 fuﬁétion of the time
between théypulseé,'T. We need; hoﬁe&ér, to know the relative
6riehtétions'of'zhe electric quadrupoie tensor aﬁd the chemical
‘shielding tensor.
' 'Before we shéw an actual calculationxdf.a high résolution double

liq'ﬁéntﬁ'xfh}"‘chetﬁica'l shift‘powder spéctrum;lwe-fealize thatiin pfactigé Sy
cannot Bé“obtainea”just after the second pﬁlse due’to detector recovery
time. In Figure 27(b) we show again the transfef function fér the
séme'édﬁditidns'as in FiéUre 27(a), if we wéit 30 psec to detect éy
after thé second pulse &ue"to receiver. dead time;' Due to the Q

Q

depehdenée‘of'ay 1 after the pulse we do not obtain a useful transfer
. 9 .

function and we are forced to use other puise sequences. A good example

for detection of the double-quantum'decay is the pulse sequence of

Figure 20 (a). With this sequence Wwe store the a, z(w ) coefficients in
’ s

the coefficients of Iz'l.' This was discussed in the last section and a
’ . : '
calculated a, l(O)Q) after the second pulse is shown in Figure2l . If we
’ . .
wait now more than TZ seconds and we apply a third pulse the signal Sy

will be proﬁbrtionai to the coherence a before the second pulse, i.e.,

z,2
will map out tﬁé double quantum decay. In Figﬁre 28(a) the transfer
function for thislkin& of'exéeriment‘is éhoﬁn.‘ Again sptiﬁizationv
 tééhni§ueé mde{Bé:ﬁ;éH.fb obtain the bééf maximuﬁ.trénsfer function
COmpafing‘Figﬁréu2§ké)wahd Figure:ZS(é) we sée that the first result

is somewhat favorable over the second, although we realize that the
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rf irradiation strength is not much larger than w_ and that therefore a

Q y,1

is geﬁerated instead of a To overcome the problem of not being able

y,2°
tovmeaSure Sy just‘after the strong pulse, we combine the pulse sequences
of Figure 20(a) with 20 (b). In combining these two sequences we obtain
an echo signal after the fourth pulse which has an amplitude almost equal
to the value of Sy just after the third pulse. The corresponding transfer
function for this four pulse sequence is shown in Figure 28 (b) and can be
compared with the results of Figure 29(3). These fesults are indeed véry
good if we realiée that the irradiation strength was much smaller:than the
etheme wQ values |

~ To célculate the éxpected polycrystalline chemical shift lineshape
from the double quantum decay for the pulse sequence of Figure 28 (b) we
assume as a simple example that the eléctric field gradient tensor and
the chemical shift tensor are axially symmetric with their symmetry axes
parallél. The result is shown in Figure 29 (a) and is compared with the
real lineshape function that we should have measured if there ‘were no
quadrupole. interaction in the powder sample. In Figure 29 (b) we show a
similar result for the two pulse sequence. These theoretical results
show that it is indeed possible to detect high resolution double quantum
spectra from polycrystalline sampies and that by choosing the prbper
pulse sequences all information about the chemical shielding can be
obtained. 1In practice the results of Figures 28 and 29 will be broadened
and part of the complicated lineshape will not be observable. I; is also
clear that for other relative orientations of the quadrupole and the shielding

tensor the distortion of the double quantum spectrum will be different so

that from the lineshape we can say something about the relative orientations
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of the electric field gra@ient_and Shielding_tensqrs. Experimentalm

v _ v 13
results on polycrystalline samples will be shown in a separate paper.

o
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C. Double Quantum Phase Shift and Spin Locking

'We saw in Section III that irradiating the spin-l1 system near w, with

a field —wllx such that w11<< wQ.was efsectively equivalent to irradiating
Wl . _
1

it in the double quantum frame with - ar-I In fact the effective

z,3°

double quantum operatdr from Equation (44) can be written:
K =~-28wI -—=1 . (101)
z,1 W : ,

ignoring the commutative quadrupole term. The effective rf field is
along the z,3 axis in this frame. 2We now enquire about the effect of -
the rf phase on the direction of;l in the double quantum frame. To do

Q
this we assume that an rf field is applied with arbitrary phase ¢, 1. e.,

the rotating frame Hamiltonlan has the form:

= - 2801 - Zwl 1 cos ¢+ 1I

z,1 X,1 sin -¢) (102)

y,1

Applying the same transformation as in Equation (42 ) and assuming again

Wy << w, we find to a good approximation the effective double quantum

Q
Hamiltonian:
2
Wy .
ﬂbQ ~ = 2Mw Iz’1 f'aa (Iz,3 cos2¢ + Iz,2 sin2¢).  (103)
where again the commutative term = 3 Q ( y 3) has been dropped. Thus
, , —

an rf phase shift of ¢ corresponds to a shift of 2¢ in the'doublé'qg?ntum

frame. For example a phase shift of 90° causes the effective transverse
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double quantum field to reverse sign. A phase shift of 45° would be used

t0-effeét’double'quantﬁm‘sgin locking. This would be done by applying a
. ® ,

et | :
90° double quantum Pulsear-t = %-transforming the density matrix ficm
Q : '
Ix,1 to'Iz 9 and then phase shiftingzby 45° inducing spin locking of
? w o '
the density matrix by the operator Bi I. 9° The phase effects are
Q = '

summarized schematically in Figuré '30.

Both phase reversal and spin locking experiments have been performed

' 14
successfully and the results are presented elsewhere.
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" Table I. Fictitious Spin-l Operators,in,Terms‘of Spin?l Operators

2

‘Definitions

{a]

I E-3
p>1

fge)

(Iqu-i-IrIq)
2 2

- Iq)

I =
P>2

~
.
2]

Ip,3 -

(I I N

- Commutation Relations

Ler Tp,3] =3 T

(1, 1> Ig 00 = - i 1?,,2
(1,20 Tg,10 = - % I,2
[T, 50 Tg,2) = - —21- L
[T, 15 Tg3 - Ir’3]' =0

Linear Dependence

Ix,3 + Iy,3 + Iz,3,= 0

P»qsT = X,¥,z or cyclic perﬁutation

i,j,k = 1,2,3 or cyciic permutation

Psq,¥ = X,Y¥,2 or cyclic permutation

Fictitious Spin-l Transformations

2 o

.t.

U .I .U _,=cos0I + sinf I
Ps1 P»J Ps1 PsJ _ p,k
+ :

U I U = co080/2 I + sinf8/2 I
p,1 Q9l p,1 ) / q,1 o / e r,l
+ ' ' .

U 1 U = cos0/2 1 - sinf6/2 I
p,1 q,2 P,l ¢ / q,2 s / r,2
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cosb/2 T

g1 " Sim8/2 1

cosB/2 1
o8/ q,2

- siB/2 Ir

U Ji = exp(i 0 Ip-i)

’ 2

P54, = X,¥,2 Or cyclic permutation

i,j,k = 1,2,3 or cyclic permutation

2

s 1
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Table III. Hamiltonian Representations

U = exp(i © Ix,2) , tanf = Zcul/wQ

®
A = _wQ-i- Sw ; Sw, wl.«‘wQ"”
- _ - _J5 _ & v
ﬂ& = - Sw Ix,3_ V2 wy Ix,l (3 wQ+6w)(Iy,3 Iz,3)
 with
| U = exp(d E-Iz’z)
and
I =i(1 -I_ ) I =3(I +I_ )
xT V2 “'x,177y,2” ° “yT /7 y,1 "x,2
Aw='—ooQ+Gou;<Scu,u.>l<<uuQ
. Al 4 i
H = - - & - -
- Sw I, +/2 w I, - GGy, 6@)(12’3 Ix,3)
with
kil
U = exp(i 2 Iz,2)
and
2 2 :
IxT JZ (Ix,l_Iy,Z)" Iy’I' /7'(Iy,l+1x,2)
Aw = Sw ; Sw, w1<<wQ. |
2
wy 2 .
H = = - £ -
T Sw Iz,l wQ Iz,3 + 3 wQ (IX,3 IYs3)
with
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and
&

—sinevix 3) S S 2(cos6/2 I_ .-sin6/2 Ié

91 ’ y’ y,l )

IxT = 2(cosO Ik .2



Table IV.

S 6 3
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- Effect of rf Irradiation bn-§pin—%-0peratbrs
I A <
I e = ,1;9,3)1
e .1 © 2;; P>134,3) -

. Y . . )
(x,1;x,1) = cos 0 cosw t + sin 6
(x,l;x,Z)v= cosG sin@et
(x,1;%,3) = cosb sin (coSwet -1
(x,23%,1) = - cos sinwét
(k,Z;k,é) = cos@et
(x,2;%,3) = - sinb sinwet
(v,13y,1) = coszel2 cos-l (w + )t}¥-sin26/ivcos l-(& Aw.)t )
Ys1sY, 2 Wa 7 Q 2 e Q
(v,13y,2) = - cosZB/Z sin l-(w +w )t + sin29/2 sin-l (w ~w )t
Ys15Y, 2 e Q > . 2 e Q

, 1 1,
(y,1;2z,1) = - cos6/2 sinB/2 (sin 0 (we+wQ)t + sin 2 (we—wQ)t)

- 1 v - 1
(y,1:;2,2) = cos6/2 sinB/2 (cos 2 (we+wQ)t cié 5 (we—mQ)F)‘
(,237,1) = c0s28/2 sin + (v +w )t - sin’6/2 sin = (W -w )t
*T3Ie 2 e Q 2 e Q
(v,2;y,2) = coszelz cos~l (w+w )t + siﬁ29/2 1 (
»23Ys . 7 (watwy cos 3 we—wQ);

Y = . 1 - 1 -

(y,232,1) = cosb/2 sinB/2 (cos 5 (we+wQ)t cos 3 (we wQ)t)
. = 1 _]; | _1_ X '

(y,232,2) = cos6/2 sinB/2 (sin > (we+wQ)t + sig 3 (we—wQ)t)



(z,1,y,1)
(291’Ys2)
(z,1;z,1)

(z,1;2,2)

(z,23y,1)
(z,23y,2)
(z,2;2,1)

(232;2’2)

with
=~ 2wl
and
w, = 4 wi
6= tan—.1

= ¢ose/2‘sin6/2 (sin %-(we+w )t + sin

[}

= sin26/2 cos L

= sin26/2 sin

. L v Lo
= - cosB/2 sinfB/2 (sin 7 (we+wb)t + sin 5 (we w. )t).

. 2 1 , 2, 1 R
= - sin 9/2 sin 5 (we+wQ); f cos 0/2 sin 2_(we w )t

Ix + = wQ (1

-58~

(we-w )t)

Q Q

' 1
cos0/2 sinb/2 (cos E-(we+wQ)t - cos

Nl N[

(w-wy)t)
5'(we+wq)t + cogze/Zvcps. (wé_wd)t
1
2

(ot - ‘cos?e/z sin 5 (W,-ug)t

SN N

= cosB/2 sinB/2 (cos % (me+wQ)t —Vcos %-(we—wq)t)

Q

Q

2 ‘ 1 2 1l
= sin”6/2 cos E-(we+mQ)t + cos 0/2 cos 3 (we-wQ)t

2

, 17 3 x,3'1y,3)

+ wé)l/2

2w
1
(;;—)

Q
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Table V. Form of Density Matrix after Strong (Single Quantum) and Weak

(Double Quantum) Pulse on Different Initial Density Matrices.

Singie Quantum

" Double Quantum

‘ = ! << -
Wy >>wQ, Aw..O Wy u)Q, M = 0
Py p-pulse x-pulse
I
p’l -pal
0,2 Ip’2 cos gwlt - Ip’3 sin Zmlt
I cos 2w,t + I sin 2w, t
ps3 p,3 1 pP,2 1
a1 Iq,l cos wlt - Ir,l'31n wlt
q,2 Iq’2 cos wlt + Ir’2 sin wlt
-1 (1 cos 2wt + I sin 2w, t) +-l (r -1 )
q,3 2 *7p,3 1 P,2 1 2 *"q,3 "r,3 2 2
: ,wl wl
1 + i ¢ - in L
r,1 r,1 cos wlt . Iq’1 sin wlt Iz,l cos th Iz’2 sin wgt
I t - I in .t I 'w}t..+1 in o1
r,2 r,2 cos wl 0,2 sin ml 2,2 cos 66- 1 sin mat
1 . 1
r.3 > (Ip,3 cos Zwlt + Ip,2 sin 2w1t) 5 (Iq,3 Ir,3) 1293‘

p!q’r = x’y’z or y’z’x . hd




Table VI. Effective-l Pulses

2
_ b < u
w1 77 % Wy %
x-pulse x§pulse
2
_ w) v |
Py “it i Py Tt - Ps
w .
- L -1
Tl el Il > 2,2
. o .
- —_ I
Ix,2 m/4 Ix,3 'Iz,Z 2 z,1
o -
I3 ™4 Ie,2 1.3 2,3
IY91 ﬂ/z. - Iz,l
Iy’2 1r//2 Iz’2
I -
v,3 m/2 | Iz,3
I
Iz,l y,1
: Iz,2 m/2 - Iy’2
IZ’3 1T/2 - Iy,3
y-pulse y-pulse .
I ul + 1.
L1 m/2 L1 2,1 7 2,2
: T :
- ul -1
L2 /2 1.2 1.2 5 z,1
IX93 W/Z N IZ,3
I - I
YQl y,l
I -
y’z ﬂ/4 Iy’3
I /4 I

Y93 y,2



PR

Table VI continued.

Iz,l /2 .
Iz,2 m/2
I ' m/2 -

z,3

o
.
&%
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Figure Captions .

For isolated spin-% the density matrix can be written p = AxIx
any + azIz_ignoring the constant aol term. This is depicted
séhematically as a three dimensional vector which is proportional

to the magnetization.

For isolated spin~1, this figure depicts schematically the representation

~of the density matrix based on the 9 fictitious spin-!s operators

+ a l. The

P = X,¥,Z and i = 1,2,3, i.e., p = E : ap,i Ip,i o

P>t p,1

commas 1in p,i are suppressed in the figure for compactnesé. The
state of thé system is specified by the three vectors in tﬁe three
p;spaces each of whiqh corresponds to one two-level transition. 1In
special cases where weak and selective rf irradiation is applied,

the vectors may rotate independently in the three spaces. The z-space
(él, z2, z3) is referred to as the double quantum space; z1 is related
t§ Iz the z-magnetization and z2, z3 are related to the double quantum

coherence as explained in the text. 1 i have spin-Y% commutation
9’

reiations for 1 = 1,2,3.
Energy levels for quadrupolar spin-l1l in high magnetic field. The
quadrupolar interaction gives rise to two "allowed" tramsitions at

frequencies W, * w, where W, is the Larmor frequency. The double

Q

quantum transition from m = +1 to m = -1 is unshifted, at Wy

Schematic representation of the quadrupole Hamiltonian ﬂ& of equations

(24) and (25) in the three p-spaces of the fictitious spin-% operators 1

p,i

The three vectors representing ﬂ& correspond to the first terms in (24) and

(25): a vector along x3 of magnitude wQ-Aw depicts the term of the form

(w —Aw)IX in (25). The three vectors in Figure 2 representing the density

Q »3
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matrix will rotate each around its p3 axis with a frequency w , due
to these ﬂ& vectors. With the definition of w_ in equation (26) we
obtain w =w., - Aw, v = -(w
X y

Q Q
of the figure depicts the energy scheme of ﬂ& corresponding to the

+ Aw) and w_ = 2Mw. The bottom right

parameters of (26).
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5. When the system is irradiated near the frequency of the low field

quadrupolar satellites wo—wQ such that Sw,w, .<<-w_, the effective

1 Q’

Hamiltonian in a tilted frame defined in the text is given by

Hp ®=8w I /2w, I Thus the Hamiltonian is that of a

X, 3 1 x,1°

fictitious spin—% in the three dimensional x-space, with effective
magnetogyric ratio y along x,3 (the effective externaL field direction)
and /E-Y,along x,1 (the effective applied rf field direction). The
figure depicts this concept schematically. The term single quantum
frame is used as a reminder that the irradiation is near one of the
allowed transitions-and involves normal-single quantum effects.:

6. .The same as Figure 5 except that the irradiation is now near the
frequency of the high field quadrupolar satellite. The effective

,Hémiltonian is_ﬁow H =~ - dw Iy 3 +/§.wl Iy and the- figure shows
Snak et .

.2

the y-space in which the evolution of the density matrix can be described.
7. 1In this case irradiation is near the unshifted Larmor frequency such

thatvagain Swl,wl << wQ' -The effective Ha?iltonian in a tilted frame
w
defined in the text is #{ = - 2 Sw I - —l-I .
z,1 wQ z,3
is that of a fictitious spin-’ in z-space with effective magnetogyric
, w
ratic 2Y along z,l (the effective external field direction) and oY

Q
along z,3 (the effective applied rf field direction). The term double

Thus the Hamiltonian

quantum frame arises from the fact_that the I. ; operators defining the

Z,:
+

z~frame have matrix elements between the m = 1 levels and involve

double quantum transitions.
8. Preparation of double quantum coherence. The situation is that of

Figure 7 with 6w = 0, i.e., irradiation at resonance with W, << w_.

1 Q
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=N

I and its effect on a
z,3

(i.e., thermal equilibrium)

8| €

o)

The effective Hamiltonian is then H{ = -
density matrix starting as = a 1
. y & P z,1 7z,1

is shown. The vector 8 nutates as a fictitious spin-% about z,3
3 " v
at angular frequency Bi' This is analogous to the nutation about x

" at w, for real spin-%. 1In this case the double quantum coherence

1

corresponds to the preparation of a component along z,2.
Schematic description of the evolution of the spin density matrix

under the influence of the quadrupolar Hamiltonian ﬂb =-§ wQ(Ix’3—Iy,3)

on resonance, (i.e., Aw = 0). The density matrix can be expanded as

a I .. The figure demonstrates that
i p,i ‘Psl ‘

in the case that all ap 3(0) = 0, p# rotates in the 1-2 plane in x-space
k)

at frequency w in y-space and p, stays constant in z-space.

Q Py

Same as Figure 9 for the case that Aw # 0. In this case the x and y-frames
are coupled together. The figure shows the evolution of the x and y

components of the density matrix px(O) = a I d

N A
X,1 Ix,l ax,2 X,2 an

py(O) = ay,l Iy,l + ay’2 Iy,2 qnder the influence of thg quadrupole and

resonance offset Hamiltonians.

The observables in an nmr experiment are <Ix l> and <Iy 1>. The
1] ’

evolution of the coefficients of these components of the density

matrix, a4 and ay 1 under the influence of the quadrupolar Hamiltonian
1 2

for Aw = 0 and the quadrupolar plus resonance offset Hamiltonians for

Aw # 0 are shown for the case that the initial density matrix is given

by a I + a I .
, Y y,1 y,1 ¥,2 y,2

Single rf pulse of duration T operates on the density matrix p,i and

transforms it to p which evolves as p(t).
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Tﬁeoretical calculation of the effect of a single pulse with vl = 20 KHz

at resonance to the density matrix po = ~ The solid line is the

Iz,l'

exact (computer generated) value of the double quantum coherence

coefficient a

2.0 38 @ function of the pulse length. The dashed line
b .
shows behaviorzexpected for pure double quantum transitions, i.e.,
w
a = - sin —l-T. The discrepancy arises from the fact that w, /w
z,2 wQ : . - 1'Q

is not zero, i.e., single quantum transitions are also induced.
The same parameters as Figure 13 except that the observable y-signal,

ay'l is presented, solid line (exact calculations). For pure double
b
quantum transitions we should have av_l.= 0 as indicated by-the

Ys

ﬁashed line.

Theoretical calculation of the remaining z-magnetization a 4 for an
?

rf pulse of intensity v, = 20 KHz énd,duration 56 uséc applied to the

1

equilibrium density matrix Iz as a function of quadrupole splitting

»1

vQ = wQ/Zﬂ. The solid line is an exact caiculation and the dashed line
indicates ths expected behaviof for pure double quantum behavior
wy w
= cos — T. For large w
wQ Q

gets smaller, while for small w

the agreement becomes better as. 1=

Q

the double quantum expression is of

a
z,1

Q

course not valid.
Preparation of double quantum coherence with a single pulse. An rf

pulse of intensity v, = 20 KHz and duration 28 usec is applied to

1
Py = Iz 1 and the calculated values of a, o are shown as a function
s s .
of w,. The solid line is an exact calculation showing the distortion

Q

in preparation of double quantum coherence when we have a range of

w Values as in a polycrystalline sample. The dashed line is that

Q
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2
. wy
expected for pure double quantum behavior a, , = - gin Zr—t which
LW ’ - Q
becomes more valid for small-al.
Q

. The coefficient
z,1

6f the observable signal is plotted from an exact calculation (solid
line) and for pure single quantum behavior sin wltv(dashed line).
Calculation of double quantum coherence for intense pulse of duration

This shows that even for large v, we can

s1° 1

create double quantum coherence for particular w

Q's.

Rotary free induction decay for pulse of intensity vy = 26 MHz followed

by intense pulée to monitor remaining a 1 'The solid line is calculated
b

from equation (69) and the circles are experimental pointé from a Single
érystal of deuterated oxalic acid dihydrate.

Various pulse sequences used for preparation and detection of double
quantum coherence. Pulse sequence (a) has two weak pulses. The first
is to transfer az,1 to az,2

transfers a, , back to-az l~where it can then be detected by strong
? L]

pulses yielding a signal proportional to the double quantum coherence

which then evolves during T. The second

a (t). The pulses in (b) are stronger, yielding a mixture of double

z,2

and single quantum effects. They are used to detect the amount of a 4
b4

for example prepared by (a) by producing a spin echo at time 2T

proportional to a before the pulses. This also overcomes the problem

z,1 ‘
of detector recovery time. In (c) we see the simplest pulse sequence
for monitoring the evolution of double quantum coherence. The signal
after the second strong pulse is proportional to a, 2(‘r) as explained in

’

the text.



COuvudbéuas 7y

—-69-

Distortion in preparation and storage in a of double qﬁantum

z,1
éoherence'by two weak pulse sequence for range of wQ values.
The first pulse transforms a _ to a with an efficienéy dependent

z,1 z,2

on w.. The second pulse stores a at time T back to a_ ; (for
Q Z24,2 z,1

- subsequent detection) with the same efficiency. Thus the overall
double quantum transfer function for this pulse ‘sequence is

. 2
proportional to a

2.2 where a 2 is calculated from one pulse as in
b

b

Figure 16.. The solid line is an exact calculation and the”dasheg

w
one is calculated for pure double quantum behavior az 9 = sin2 — t.
>
‘ Q

. Efficiency of detecting a ;1 (created perhaps ‘after two weak pulses)
, :

-‘By‘twa strong pulse sequence. The distortion induced by this

sequence in detecting double quantum'coherencerwill-also‘éontribute

to ‘the final lineshape. The value of ay.l’ the detected signal at
s ,

the arrow (near the echo maximum), is plotted as a function of Vv

Q

oL .
Q Xul.

Evolution and detection of double quantum coherence by simple two

- and shows very little distortion even for w

_.pulse sequence. The expressions on the figure are written for the ideal
case of a pure double quantum T/2 pulse (W ~ << wQ) followed by a normal

single quantum /2 pulse (wl\>> wQ) starting with a density matrix po = Iz.

Fourier transfeormation of thé signal yields a dispersion-like line with

intensity. proportional to <1, 2(T)> = cos2 Swt.~
s '

Allowed values of tpj_ and v, as 4 function of'vVv toiproduce/pure

1 Q

90° double quantum pulse from exact ¢alculations. The'integeré k
and m.are defined in equations (91)—(94) in the text.

Application of single pulse of intensity v, = 60 KHz 4nd duration 3

1

Showﬁ are the values of a and a

usec applied to p(T) = Iz,Z' vyl V52
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on the circular arc as a function of v_ . This demonstrates the

Q

distortion in amplitude ay and phase ¢ from equations (98) and

(99) in'detecting the double quantum coherence with sequence 20(c).

‘Schematic representation of powder pattern for deuterium with

-axially symmetric electric field gradient and chemical shift terms.

We wish to determine the chemical shift anisotropy which is

broadened tremendously by the quadrupolar splittings.

Double quantum transfer function, i.e;, detected signal ay,l at
position of arrow for two pulse sequence. The first weak pulse prepares
the double quantum coherence and the second stronger one monitors

the decay. The lineshape shows the type of distortion across the

vQ values for realistic and optimal values of the paraﬁeters. In

(a) the signal intensity is calculated immediately after the pulse.
Since this practically is impossible (b) shows the effect of detecting
after 30 ﬂsec. The distortion would make this essentially useless for
épplication to a powder. This can be alleviated using an echo.

Detected signal a at position of arrow for three and four pulse

y,1

. sequences. (a) shows the detection of double quantum coherence

prepared and stored by two weak pulses. In (b) the practically

more useful case of a spin echo is shown. This shows that. an

appreciable amount of double quantum coherence is prepared and

Q

Calculated Fourier transform double quantum spectra for polycrystalline

detected over the whole V. range.

deuterium sample with axially symmetric electric field giadient and

chemical shift tensors having their symmetry axes parallel.. The
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spectrum is obtained by>mu1tiplying the ideal chemical shift powder

pattern (top solid line) by the functions for the corresponding pulse

sequences in FigqresZS(b) and 27(a). L

Effect of rf phase on the double quantﬁmvphasé; A phase.shift of ¢

for wl in the roiﬁting frame corresponds to a 2¢ shift for the

effective field-—l in the double quantum frame. The absolute phases
Q

in each frame are arbitrary and were taken only for convenience of

presentation.
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Effective Single Quantum
Rotating Frame
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Effective Double Quantum
Rotating Frame
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Density Matrix Evolution, Aw #0
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