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Abstract: We give some inequalities of capacity in Gaussian channel with or
without feedback. The nonfeedback capacity Cn,Z(P ) and the feedback capacity
Cn,F B,Z(P ) are both concave functions of P . Though it is shown that Cn,Z(P ) is a
convex function of Z in some sense, Cn,F B,Z(P ) is a convex like function of Z .

1 INTRODUCTION

The following model for the discrete time Gaussian channel with feedback is consid-
ered:

Yn = Sn + Zn, n = 1, 2, . . .

where Z = {Zn;n = 1, 2, . . .} is a non-degenerate, zero mean Gaussian process
representing the noise and S = {Sn;n = 1, 2, . . .} and Y = {Yn;n = 1, 2, . . .}
are stochastic processes representing input signals and output signals, respectively.
The channel is with noiseless feedback, so Sn is a function of a message to be
transmitted and the output signals Y1, . . . , Yn−1. For a code of rate R and length
n, with code words xn(W,Y n−1),W ∈ {1, . . . , 2nR}, and a decoding function gn :
R

n → {1, . . . , 2nR}, the probability of error is

Pe(n) = Pr{gn(Y
n) �=W ;Y n = xn(W,Y n−1) + Zn},
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where W is uniformly distributed over {1, . . . , 2nR} and independent of Zn. The
signal is subject to an expected power constraint

1

n

n∑
i=1

E[S2
i ] ≤ P,

and the feedback is causal, i.e., Si is dependent of Z1, . . . , Zi−1 for i = 1, 2, . . . , n.
Similarly, when there is no feedback, Si is independent of Z

n. We denote by
R

(n)
X , R

(n)
Z the covariance matrices of X,Z , respectively. It is well known that a

finite block length capacity is given by

Cn,F B,Z(P ) = max
1

2n
ln

|R(n)
X +R

(n)
Z |

|R(n)
Z |

,

where the maximum is on R
(n)
X symmetric, nonnegative definite and B strictly lower

triangular, such that

Tr[(I + B)R
(n)
X (I +Bt) + BR

(n)
Z Bt] ≤ nP.

Similarly, let Cn,Z(P ) be the maximal value when B = 0, i.e. when there is no
feedback. Under these conditions, Cover and Pombra proved the following.

Proposition 1 (Cover and Pombra [5]) For every ε > 0 there exist codes, with
block length n and 2n(Cn,F B,Z(P )−ε) codewords, n = 1, 2, . . ., such that Pe(n) → 0, as
n → ∞. Conversely, for every ε > 0 and any sequence of codes with 2n(Cn,F B,Z(P )+ε)

codewords and block length n, Pe(n) is bounded away from zero for all n. The same
theorem holds in the special case without feedback upon replacing Cn,F B,Z(P ) by
Cn,Z(P ).

When block length n is fixed, Cn,Z(P ) is given exactly.

Proposition 2 (Gallager [9])

Cn,Z(P ) =
1

2n

k∑
i=1

ln
nP + r1 + · · · + rk

kri
,

where 0 < r1 ≤ r2 ≤ · · · ≤ rn are eigenvalues of R
(n)
Z and k(≤ n) is the largest

integer satisfying nP + r1 + · · · + rk > krk.

We can also represent Cn,F B,Z(P ) by the different formula.

2



Proposition 3 Let D = R
(n)
Z > 0. Then

Cn,F B,Z(P ) = max
1

2n
log

|T +BD +DBt +D|
|D| , (1)

where the maximum is on T ≥ 0 and B strictly lower triangular, such that

T −BDBt > 0, and Tr(T ) ≤ nP.

Proof. By definition there is A > 0 and strictly lower trianglar B such that

Tr[(I + B)A(I + Bt) + BDBt] ≤ nP (2)

and

Cn,F B,Z(P ) =
1

2n
log

|A+D|
|D| . (3)

Let
T = (I +B)A(I +Bt) +BDBt.

Then by (2) we have Tr(T ) ≤ nP and

T − BDBt = (I + B)A(I + Bt) > 0.

Since
|I + B| = |I +Bt| = 1,

we have

|A+D| = |(I +B)A(I +Bt) + (I + B)D(I + Bt)| = |T +BD +DBt +D|.

This consideration shows, by (3),

Cn,F B,Z(P ) ≤ RHS of (1).

Conversely there is T > 0 and strictly lower triangular B such that T − BDBt > 0
and

RHS of (1) =
1

2n
log

|T +BD +DBt +D|
|D| . (4)

Let
A = (I +B)−1(T −BDBt)(I +Bt)−1.

Then since T −BDBt > 0, we have A > 0 and

(I +B)A(I +Bt) +BDBt = T
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so that
Tr[(I +B)A(I +Bt) +BDBt] ≤ nP.

Just as in the foregoing arguments

|T +BD +DBt +D| = |A+D|.

By (4) this consideration shows

RHS of (1) ≤ Cn,F B,Z(P ).

This completes the proof. ✷

In this paper, we first show that the Gaussian feedback capacity Cn,F B,Z(P ) is a
concave function of P . And we also show that Cn,F B,Z(P ) is a convexlike function of
Z by using the operator convexity of log(1+ t−1). At last we have an open problem
about convexity of Cn,F B,·(P ).

2 CONCAVITY OF Cn,FB,Z(·)
Before proving the concavity of Cn,F B,Z(P ) as the function of P , we need two lem-
mas.

Lemma 1 For D ≥ 0, and B1, B2 and α, β ≥ 0 with α + β = 1

αB1DB
t
1 + βB2DB

t
2 ≥ (αB1 + βB2)D(αB

t
1 + βBt

2).

Proof. This is known and easy to prove. In fact,

{αB1DB
t
1 + βB2DB

t
2} − (αB1 + βB2)D(αB

t
1 + βBt

2)

= αβ(B1 −B2)D(B
t
1 −Bt

2) ≥ 0.

✷

Lemma 2 The function log t is operator concave on (0,∞), that is, for T1, T2 > 0
and α, β ≥ 0 with α + β = 1

log(αT1 + βT2) ≥ α log(T1) + β log(T2).
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Proof. This is a well known fact. By Lemma 1 we have first

(αT1 + βT2) ≥ (αT
1/2
1 + βT

1/2
2 )2,

which implies by Löwner theorem

(αT1 + βT2)
1/2 ≥ αT

1/2
1 + βT

1/2
2 .

Repeating this argument we can conclude

(αT1 + βT2)
1/(2k) ≥ αT

1/(2k)
1 + βT

1/(2k)
2 (k = 1, 2 . . .).

Now the operator concavity of the function log t can be derived as

log(αT1 + βT2) = lim
k→∞

2k{(αT1 + βT2)
1/(2k) − I}

≥ α lim
k→∞

2k(T
1/(2k)
1 − I) + β lim

k→∞
2k(T

1/(2k)
2 − I)

= α log(T1) + β log(T2).

✷

Now we can prove the convacity of Cn,F B,Z(·).

Theorem 1 Fix Z. Then Cn,F B,Z(P ) is a concave function of P , that is, for any
P1, P2 ≥ 0 and for any α, β ≥ 0 with α+ β = 1

Cn,F B,Z(αP1 + βP2) ≥ αCn,F B,Z(P1) + βCn,F B,Z(P2).

Proof. By Proposition 3 there are T1, T2 > 0 and strictly lower triangular B1, B2

such that

Cn,F B,Z(Pi) =
1

2n
log

|Ti +BiD +DBt
i +D|

|D| (i = 1, 2),

and
Ti −BiDB

t
i > 0, and Tr(Ti) ≤ nPi (i = 1, 2).

Let
T = αT1 + βT2, and B = αB1 + βB2.

Then clearly Tr(T ) ≤ n(αP1 + βP2) and B is strictly lower triangular.
Since by Lemma 1

BDBt = (αB1 + βB2)D(αB
t
1 + βBt

2) ≤ αB1DB
t
1 + βB2DB

t
2,

we have
T −BDBt ≥ α(T1 − B1DB

t
1) + β(T2 − B2DB

t
2) > 0.
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Then again by Proposition 2 we have

Cn,F B,Z(αP1 + βP2) ≥ 1

2n
log

|T + BD +DBt +D|
|D| .

Since

T + BD +DBt +D = α(T1 + B1D +DBt
1 +D) + β(T2 +B2D +DBt

2 +D),

we have by Lemma 2

log(T +BD+DBt+D) ≥ α log(T1+B1D+DBt
1+D)+β log(T2+B2D+DBt

2+D),

which implies

Tr[log(T+BD+DBt+D)] ≥ αTr[log(T1+B1D+DB
t
1+D)]+βTr[log(T2+B2D+DB

t
2+D)].

The inequality

Cn,F B,Z(αP1 + βP2) ≥ αCn,F B,Z(P1) + βCn,F B,Z(P2)

follows from the relation

log |A| = Tr[log(A)] (A > 0).

This completes the proof. ✷

3 CONVEXITY OF Cn,·(P ), Cn,FB,·(P )

Before proving the convexity of Cn,Z(P ) and the convexlikeness of Cn,F B,Z(P ) as the
function of Z , we need the following lemma.

Lemma 3 The function

f(t) = log(1 + t−1) = log(1 + t)− log t

is operator convex on (0,∞), that is, for any α, β ≥ 0 with α + β = 1 and for
T1, T1 > 0

log(I + (αT1 + βT2)
−1) ≤ α log(I + T−1

1 ) + β log(I + T−1
2 ). (5)

Proof. It is well known that for any λ > 0 the function
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fλ(t) =
1

λ+ t

is operator convex on (0,∞), that is, for α, β ≥ 0 with α+ β = 1 and for T1, T2 ≥ 0

{λI + (αT1 + βT2)}−1 ≤ α(λI + T1)
−1 + β(λI + T2)

−1. (6)

Then, since

f(t) = log(1 + t)− log t =

∫ 1

0

1

λ+ t
dλ =

∫ 1

0

fλ(t)dλ,

(5) follows from (6). ✷

Now we can prove the convexity of Cn,·(P ).

Theorem 2 Given Z1, Z2 and α, β ≥ 0 with α+ β = 1, define Z by

R
(n)
Z = αR

(n)
Z1
+ βR

(n)
Z2
.

Then
Cn,Z(P ) ≤ αCn,Z1(P ) + βCn,Z2(P ).

Proof. Let

Di = R
(n)
Zi

(i = 1, 2), and D = R
(n)
Z .

Then by definition
D = αD1 + βD2

and

Cn,Zi
(P ) = max{ 1

2n
log

|A+Di|
|Di| ;A > 0, T r(A) ≤ nP} (i = 1, 2)

and

Cn,Z(P ) = max{ 1
2n

log
|A+D|
|D| ;A > 0, T r(A) ≤ nP}.

Remark that

log
|A+D|
|D| = log |AD−1 + I|

= log |A1/2D−1A1/2 + I|
= log |I + (A−1/2DA−1/2)−1|.
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Since by Lemma 3

log
|A+D|
|D| = Tr[log{I + (α(A−1/2D1A

−1/2) + β(A−1/2D2A
−1/2))−1}]

≤ αTr[log{I + (A−1/2D1A
−1/2)−1}] + βTr[log{I + (A−1/2D2A

−1/2)−1}]
≤ α log

|A+D1|
|D1| + β log

|A+D2|
|D2| .

This completes the proof. ✷

Theorem 3 Given Z1, Z2 and α, β ≥ 0 with α+ β = 1, define Z by

R
(n)
Z = αR

(n)
Z1
+ βR

(n)
Z2
.

Then there exist P1, P2 ≥ 0 with αP1 + βP2 = P such that

Cn,F B,Z(P ) ≤ αCn,F B,Z1(P1) + βCn,F B,Z2(P2).

Proof. Let us use the notations in the proof of Theorem 3. Take A > 0 and
strictly triangular B such that

Tr[(I +B)A(I +Bt) +BDBt] = nP

and
1

2n
log

|A+D|
|D| = Cn,F B,Z(P ).

Since

Tr[(I +B)A(I + Bt) +BDBt]

= αTr[(I +B)A(I +Bt) +BD1B
t] + βTr[(I +B)A(I +Bt) +BD2B

t],

we have αP1 + βP2 = P , where

Pi =
1

n
Tr[(I + B)A(I +Bt) + BDiB

t] (i = 1, 2).

Since, as in the proof of Theorem 2,

log
|A+D|
|D| ≤ α log

|A+D1|
|D1| + β log

|A+D2|
|D2| ,

we can conclude

Cn,F B,Z(P ) ≤ α

2n
log

|A+D1|
|D1| +

β

2n
log

|A+D2|
|D2|

≤ αCn,F B,Z1(P1) + βCn,F B,Z2(P2).

This completes the proof. ✷

Finally we have the following open problem.
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Open Problem. For any Z1, Z2, for any P ≥ 0 and for any α, β ≥ 0 (α + β = 1),

Cn,F B,Z(P ) ≤ αCn,F B,Z1(P ) + βCn,F B,Z2(P ).
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