Operator Inequality and its Application to Capacity of Gaussian Channel

Kenjiro YANAGI ${ }^{*}$ Han Wu CHEN ${ }^{\dagger}$ and Ji Wen YU \ddagger

Key Words: Operator Inequality, Gaussian Channel, Capacity, Feedback

1991 Mathematical Classification: 94A

Abstract

We give some inequalities of capacity in Gaussian channel with or without feedback. The nonfeedback capacity $C_{n, Z}(P)$ and the feedback capacity $C_{n, F B, Z}(P)$ are both concave functions of P. Though it is shown that $C_{n, Z}(P)$ is a convex function of Z in some sense, $C_{n, F B, Z}(P)$ is a convex like function of Z.

1 INTRODUCTION

The following model for the discrete time Gaussian channel with feedback is considered:

$$
Y_{n}=S_{n}+Z_{n}, \quad n=1,2, \ldots
$$

where $Z=\left\{Z_{n} ; n=1,2, \ldots\right\}$ is a non-degenerate, zero mean Gaussian process representing the noise and $S=\left\{S_{n} ; n=1,2, \ldots\right\}$ and $Y=\left\{Y_{n} ; n=1,2, \ldots\right\}$ are stochastic processes representing input signals and output signals, respectively. The channel is with noiseless feedback, so S_{n} is a function of a message to be transmitted and the output signals Y_{1}, \ldots, Y_{n-1}. For a code of rate R and length n, with code words $x^{n}\left(W, Y^{n-1}\right), W \in\left\{1, \ldots, 2^{n R}\right\}$, and a decoding function g_{n} : $\mathbb{R}^{n} \rightarrow\left\{1, \ldots, 2^{n R}\right\}$, the probability of error is

$$
P e^{(n)}=\operatorname{Pr}\left\{g_{n}\left(Y^{n}\right) \neq W ; Y^{n}=x^{n}\left(W, Y^{n-1}\right)+Z^{n}\right\}
$$

[^0]where W is uniformly distributed over $\left\{1, \ldots, 2^{n R}\right\}$ and independent of Z^{n}. The signal is subject to an expected power constraint
$$
\frac{1}{n} \sum_{i=1}^{n} E\left[S_{i}^{2}\right] \leq P
$$
and the feedback is causal, i.e., S_{i} is dependent of Z_{1}, \ldots, Z_{i-1} for $i=1,2, \ldots, n$. Similarly, when there is no feedback, S_{i} is independent of Z^{n}. We denote by $R_{X}^{(n)}, R_{Z}^{(n)}$ the covariance matrices of X, Z, respectively. It is well known that a finite block length capacity is given by
$$
C_{n, F B, Z}(P)=\max \frac{1}{2 n} \ln \frac{\left|R_{X}^{(n)}+R_{Z}^{(n)}\right|}{\left|R_{Z}^{(n)}\right|},
$$
where the maximum is on $R_{X}^{(n)}$ symmetric, nonnegative definite and B strictly lower triangular, such that
$$
\operatorname{Tr}\left[(I+B) R_{X}^{(n)}\left(I+B^{t}\right)+B R_{Z}^{(n)} B^{t}\right] \leq n P .
$$

Similarly, let $C_{n, Z}(P)$ be the maximal value when $B=0$, i.e. when there is no feedback. Under these conditions, Cover and Pombra proved the following.

Proposition 1 (Cover and Pombra [5]) For every $\epsilon>0$ there exist codes, with block length n and $2^{n\left(C_{n, F B, Z}(P)-\epsilon\right)}$ codewords, $n=1,2, \ldots$, such that $P e^{(n)} \rightarrow 0$, as $n \rightarrow \infty$. Conversely, for every $\epsilon>0$ and any sequence of codes with $2^{n\left(C_{n, F B, Z}(P)+\epsilon\right)}$ codewords and block length $n, P e^{(n)}$ is bounded away from zero for all n. The same theorem holds in the special case without feedback upon replacing $C_{n, F B, Z}(P)$ by $C_{n, Z}(P)$.

When block length n is fixed, $C_{n, Z}(P)$ is given exactly.

Proposition 2 (Gallager [9])

$$
C_{n, Z}(P)=\frac{1}{2 n} \sum_{i=1}^{k} \ln \frac{n P+r_{1}+\cdots+r_{k}}{k r_{i}}
$$

where $0<r_{1} \leq r_{2} \leq \cdots \leq r_{n}$ are eigenvalues of $R_{Z}^{(n)}$ and $k(\leq n)$ is the largest integer satisfying $n P+r_{1}+\cdots+r_{k}>k r_{k}$.

We can also represent $C_{n, F B, Z}(P)$ by the different formula.

Proposition 3 Let $D=R_{Z}^{(n)}>0$. Then

$$
\begin{equation*}
C_{n, F B, Z}(P)=\max \frac{1}{2 n} \log \frac{\left|T+B D+D B^{t}+D\right|}{|D|}, \tag{1}
\end{equation*}
$$

where the maximum is on $T \geq 0$ and B strictly lower triangular, such that

$$
T-B D B^{t}>0, \quad \text { and } \quad \operatorname{Tr}(T) \leq n P .
$$

Proof. By definition there is $A>0$ and strictly lower trianglar B such that

$$
\begin{equation*}
\operatorname{Tr}\left[(I+B) A\left(I+B^{t}\right)+B D B^{t}\right] \leq n P \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{n, F B, Z}(P)=\frac{1}{2 n} \log \frac{|A+D|}{|D|} \tag{3}
\end{equation*}
$$

Let

$$
T=(I+B) A\left(I+B^{t}\right)+B D B^{t} .
$$

Then by (2) we have $\operatorname{Tr}(T) \leq n P$ and

$$
T-B D B^{t}=(I+B) A\left(I+B^{t}\right)>0
$$

Since

$$
|I+B|=\left|I+B^{t}\right|=1
$$

we have

$$
|A+D|=\left|(I+B) A\left(I+B^{t}\right)+(I+B) D\left(I+B^{t}\right)\right|=\left|T+B D+D B^{t}+D\right|
$$

This consideration shows, by (3),

$$
C_{n, F B, Z}(P) \leq \text { RHS of }(1)
$$

Conversely there is $T>0$ and strictly lower triangular B such that $T-B D B^{t}>0$ and

$$
\begin{equation*}
\text { RHS of }(1)=\frac{1}{2 n} \log \frac{\left|T+B D+D B^{t}+D\right|}{|D|} . \tag{4}
\end{equation*}
$$

Let

$$
A=(I+B)^{-1}\left(T-B D B^{t}\right)\left(I+B^{t}\right)^{-1}
$$

Then since $T-B D B^{t}>0$, we have $A>0$ and

$$
(I+B) A\left(I+B^{t}\right)+B D B^{t}=T
$$

so that

$$
\operatorname{Tr}\left[(I+B) A\left(I+B^{t}\right)+B D B^{t}\right] \leq n P .
$$

Just as in the foregoing arguments

$$
\left|T+B D+D B^{t}+D\right|=|A+D| .
$$

By (4) this consideration shows

$$
\text { RHS of }(1) \leq C_{n, F B, Z}(P)
$$

This completes the proof.
In this paper, we first show that the Gaussian feedback capacity $C_{n, F B, Z}(P)$ is a concave function of P. And we also show that $C_{n, F B, Z}(P)$ is a convexlike function of Z by using the operator convexity of $\log \left(1+t^{-1}\right)$. At last we have an open problem about convexity of $C_{n, F B,(}(P)$.

2 CONCAVITY OF $C_{n, F B, Z}(\cdot)$

Before proving the concavity of $C_{n, F B, Z}(P)$ as the function of P, we need two lemmas.

Lemma 1 For $D \geq 0$, and B_{1}, B_{2} and $\alpha, \beta \geq 0$ with $\alpha+\beta=1$

$$
\alpha B_{1} D B_{1}^{t}+\beta B_{2} D B_{2}^{t} \geq\left(\alpha B_{1}+\beta B_{2}\right) D\left(\alpha B_{1}^{t}+\beta B_{2}^{t}\right)
$$

Proof. This is known and easy to prove. In fact,

$$
\begin{aligned}
& \left\{\alpha B_{1} D B_{1}^{t}+\beta B_{2} D B_{2}^{t}\right\}-\left(\alpha B_{1}+\beta B_{2}\right) D\left(\alpha B_{1}^{t}+\beta B_{2}^{t}\right) \\
= & \alpha \beta\left(B_{1}-B_{2}\right) D\left(B_{1}^{t}-B_{2}^{t}\right) \geq 0 .
\end{aligned}
$$

Lemma 2 The function $\log t$ is operator concave on $(0, \infty)$, that is, for $T_{1}, T_{2}>0$ and $\alpha, \beta \geq 0$ with $\alpha+\beta=1$

$$
\log \left(\alpha T_{1}+\beta T_{2}\right) \geq \alpha \log \left(T_{1}\right)+\beta \log \left(T_{2}\right)
$$

Proof. This is a well known fact. By Lemma 1 we have first

$$
\left(\alpha T_{1}+\beta T_{2}\right) \geq\left(\alpha T_{1}^{1 / 2}+\beta T_{2}^{1 / 2}\right)^{2}
$$

which implies by Löwner theorem

$$
\left(\alpha T_{1}+\beta T_{2}\right)^{1 / 2} \geq \alpha T_{1}^{1 / 2}+\beta T_{2}^{1 / 2}
$$

Repeating this argument we can conclude

$$
\left(\alpha T_{1}+\beta T_{2}\right)^{1 /\left(2^{k}\right)} \geq \alpha T_{1}^{1 /\left(2^{k}\right)}+\beta T_{2}^{1 /\left(2^{k}\right)}(k=1,2 \ldots)
$$

Now the operator concavity of the function $\log t$ can be derived as

$$
\begin{aligned}
\log \left(\alpha T_{1}+\beta T_{2}\right) & =\lim _{k \rightarrow \infty} 2^{k}\left\{\left(\alpha T_{1}+\beta T_{2}\right)^{1 /\left(2^{k}\right)}-I\right\} \\
& \geq \alpha \lim _{k \rightarrow \infty} 2^{k}\left(T_{1}^{1 /\left(2^{k}\right)}-I\right)+\beta \lim _{k \rightarrow \infty} 2^{k}\left(T_{2}^{1 /\left(2^{k}\right)}-I\right) \\
& =\alpha \log \left(T_{1}\right)+\beta \log \left(T_{2}\right)
\end{aligned}
$$

Now we can prove the convacity of $C_{n, F B, Z}(\cdot)$.
Theorem 1 Fix Z. Then $C_{n, F B, Z}(P)$ is a concave function of P, that is, for any $P_{1}, P_{2} \geq 0$ and for any $\alpha, \beta \geq 0$ with $\alpha+\beta=1$

$$
C_{n, F B, Z}\left(\alpha P_{1}+\beta P_{2}\right) \geq \alpha C_{n, F B, Z}\left(P_{1}\right)+\beta C_{n, F B, Z}\left(P_{2}\right) .
$$

Proof. By Proposition 3 there are $T_{1}, T_{2}>0$ and strictly lower triangular B_{1}, B_{2} such that

$$
C_{n, F B, Z}\left(P_{i}\right)=\frac{1}{2 n} \log \frac{\left|T_{i}+B_{i} D+D B_{i}^{t}+D\right|}{|D|}(i=1,2),
$$

and

$$
T_{i}-B_{i} D B_{i}^{t}>0, \quad \text { and } \quad \operatorname{Tr}\left(T_{i}\right) \leq n P_{i} \quad(i=1,2)
$$

Let

$$
T=\alpha T_{1}+\beta T_{2}, \quad \text { and } \quad B=\alpha B_{1}+\beta B_{2}
$$

Then clearly $\operatorname{Tr}(T) \leq n\left(\alpha P_{1}+\beta P_{2}\right)$ and B is strictly lower triangular. Since by Lemma 1

$$
B D B^{t}=\left(\alpha B_{1}+\beta B_{2}\right) D\left(\alpha B_{1}^{t}+\beta B_{2}^{t}\right) \leq \alpha B_{1} D B_{1}^{t}+\beta B_{2} D B_{2}^{t}
$$

we have

$$
T-B D B^{t} \geq \alpha\left(T_{1}-B_{1} D B_{1}^{t}\right)+\beta\left(T_{2}-B_{2} D B_{2}^{t}\right)>0
$$

Then again by Proposition 2 we have

$$
C_{n, F B, Z}\left(\alpha P_{1}+\beta P_{2}\right) \geq \frac{1}{2 n} \log \frac{\left|T+B D+D B^{t}+D\right|}{|D|} .
$$

Since

$$
T+B D+D B^{t}+D=\alpha\left(T_{1}+B_{1} D+D B_{1}^{t}+D\right)+\beta\left(T_{2}+B_{2} D+D B_{2}^{t}+D\right)
$$

we have by Lemma 2
$\log \left(T+B D+D B^{t}+D\right) \geq \alpha \log \left(T_{1}+B_{1} D+D B_{1}^{t}+D\right)+\beta \log \left(T_{2}+B_{2} D+D B_{2}^{t}+D\right)$, which implies
$\operatorname{Tr}\left[\log \left(T+B D+D B^{t}+D\right)\right] \geq \alpha \operatorname{Tr}\left[\log \left(T_{1}+B_{1} D+D B_{1}^{t}+D\right)\right]+\beta \operatorname{Tr}\left[\log \left(T_{2}+B_{2} D+D B_{2}^{t}+D\right)\right]$.
The inequality

$$
C_{n, F B, Z}\left(\alpha P_{1}+\beta P_{2}\right) \geq \alpha C_{n, F B, Z}\left(P_{1}\right)+\beta C_{n, F B, Z}\left(P_{2}\right)
$$

follows from the relation

$$
\log |A|=\operatorname{Tr}[\log (A)] \quad(A>0)
$$

This completes the proof.

3 CONVEXITY OF $C_{n, \cdot}(P), C_{n, F B, \cdot}(P)$

Before proving the convexity of $C_{n, Z}(P)$ and the convexlikeness of $C_{n, F B, Z}(P)$ as the function of Z, we need the following lemma.

Lemma 3 The function

$$
f(t)=\log \left(1+t^{-1}\right)=\log (1+t)-\log t
$$

is operator convex on $(0, \infty)$, that is, for any $\alpha, \beta \geq 0$ with $\alpha+\beta=1$ and for $T_{1}, T_{1}>0$

$$
\begin{equation*}
\log \left(I+\left(\alpha T_{1}+\beta T_{2}\right)^{-1}\right) \leq \alpha \log \left(I+T_{1}^{-1}\right)+\beta \log \left(I+T_{2}^{-1}\right) \tag{5}
\end{equation*}
$$

Proof. It is well known that for any $\lambda>0$ the function

$$
f_{\lambda}(t)=\frac{1}{\lambda+t}
$$

is operator convex on $(0, \infty)$, that is, for $\alpha, \beta \geq 0$ with $\alpha+\beta=1$ and for $T_{1}, T_{2} \geq 0$

$$
\begin{equation*}
\left\{\lambda I+\left(\alpha T_{1}+\beta T_{2}\right)\right\}^{-1} \leq \alpha\left(\lambda I+T_{1}\right)^{-1}+\beta\left(\lambda I+T_{2}\right)^{-1} \tag{6}
\end{equation*}
$$

Then, since

$$
f(t)=\log (1+t)-\log t=\int_{0}^{1} \frac{1}{\lambda+t} d \lambda=\int_{0}^{1} f_{\lambda}(t) d \lambda
$$

(5) follows from (6).

Now we can prove the convexity of $C_{n,(}(P)$.
Theorem 2 Given Z_{1}, Z_{2} and $\alpha, \beta \geq 0$ with $\alpha+\beta=1$, define Z by

$$
R_{Z}^{(n)}=\alpha R_{Z_{1}}^{(n)}+\beta R_{Z_{2}}^{(n)}
$$

Then

$$
C_{n, Z}(P) \leq \alpha C_{n, Z_{1}}(P)+\beta C_{n, Z_{2}}(P)
$$

Proof. Let

$$
D_{i}=R_{Z_{i}}^{(n)} \quad(i=1,2), \quad \text { and } \quad D=R_{Z}^{(n)}
$$

Then by definition

$$
D=\alpha D_{1}+\beta D_{2}
$$

and

$$
C_{n, Z_{i}}(P)=\max \left\{\frac{1}{2 n} \log \frac{\left|A+D_{i}\right|}{\left|D_{i}\right|} ; A>0, \operatorname{Tr}(A) \leq n P\right\} \quad(i=1,2)
$$

and

$$
C_{n, Z}(P)=\max \left\{\frac{1}{2 n} \log \frac{|A+D|}{|D|} ; A>0, \operatorname{Tr}(A) \leq n P\right\}
$$

Remark that

$$
\begin{aligned}
\log \frac{|A+D|}{|D|} & =\log \left|A D^{-1}+I\right| \\
& =\log \left|A^{1 / 2} D^{-1} A^{1 / 2}+I\right| \\
& =\log \left|I+\left(A^{-1 / 2} D A^{-1 / 2}\right)^{-1}\right|
\end{aligned}
$$

Since by Lemma 3

$$
\begin{aligned}
\log \frac{|A+D|}{|D|} & =\operatorname{Tr}\left[\log \left\{I+\left(\alpha\left(A^{-1 / 2} D_{1} A^{-1 / 2}\right)+\beta\left(A^{-1 / 2} D_{2} A^{-1 / 2}\right)\right)^{-1}\right\}\right] \\
& \leq \alpha \operatorname{Tr}\left[\log \left\{I+\left(A^{-1 / 2} D_{1} A^{-1 / 2}\right)^{-1}\right\}\right]+\beta \operatorname{Tr}\left[\log \left\{I+\left(A^{-1 / 2} D_{2} A^{-1 / 2}\right)^{-1}\right\}\right] \\
& \leq \alpha \log \frac{\left|A+D_{1}\right|}{\left|D_{1}\right|}+\beta \log \frac{\left|A+D_{2}\right|}{\left|D_{2}\right|}
\end{aligned}
$$

This completes the proof.
Theorem 3 Given Z_{1}, Z_{2} and $\alpha, \beta \geq 0$ with $\alpha+\beta=1$, define Z by

$$
R_{Z}^{(n)}=\alpha R_{Z_{1}}^{(n)}+\beta R_{Z_{2}}^{(n)} .
$$

Then there exist $P_{1}, P_{2} \geq 0$ with $\alpha P_{1}+\beta P_{2}=P$ such that

$$
C_{n, F B, Z}(P) \leq \alpha C_{n, F B, Z_{1}}\left(P_{1}\right)+\beta C_{n, F B, Z_{2}}\left(P_{2}\right) .
$$

Proof. Let us use the notations in the proof of Theorem 3. Take $A>0$ and strictly triangular B such that

$$
\operatorname{Tr}\left[(I+B) A\left(I+B^{t}\right)+B D B^{t}\right]=n P
$$

and

$$
\frac{1}{2 n} \log \frac{|A+D|}{|D|}=C_{n, F B, Z}(P)
$$

Since

$$
\begin{aligned}
& \operatorname{Tr}\left[(I+B) A\left(I+B^{t}\right)+B D B^{t}\right] \\
= & \alpha \operatorname{Tr}\left[(I+B) A\left(I+B^{t}\right)+B D_{1} B^{t}\right]+\beta \operatorname{Tr}\left[(I+B) A\left(I+B^{t}\right)+B D_{2} B^{t}\right],
\end{aligned}
$$

we have $\alpha P_{1}+\beta P_{2}=P$, where

$$
P_{i}=\frac{1}{n} \operatorname{Tr}\left[(I+B) A\left(I+B^{t}\right)+B D_{i} B^{t}\right] \quad(i=1,2) .
$$

Since, as in the proof of Theorem 2,

$$
\log \frac{|A+D|}{|D|} \leq \alpha \log \frac{\left|A+D_{1}\right|}{\left|D_{1}\right|}+\beta \log \frac{\left|A+D_{2}\right|}{\left|D_{2}\right|}
$$

we can conclude

$$
\begin{aligned}
C_{n, F B, Z}(P) & \leq \frac{\alpha}{2 n} \log \frac{\left|A+D_{1}\right|}{\left|D_{1}\right|}+\frac{\beta}{2 n} \log \frac{\left|A+D_{2}\right|}{\left|D_{2}\right|} \\
& \leq \alpha C_{n, F B, Z_{1}}\left(P_{1}\right)+\beta C_{n, F B, Z_{2}}\left(P_{2}\right) .
\end{aligned}
$$

This completes the proof.
Finally we have the following open problem.

Open Problem. For any Z_{1}, Z_{2}, for any $P \geq 0$ and for any $\alpha, \beta \geq 0(\alpha+\beta=1)$,

$$
C_{n, F B, Z}(P) \leq \alpha C_{n, F B, Z_{1}}(P)+\beta C_{n, F B, Z_{2}}(P)
$$

ACKNOWLEDGEMENT. The authors wish to thank the reviewer for his very valuable advice and constructive criticism.

References

[1] H.W.Chen and K.Yanagi, On the Cover's conjecture on capacity of Gaussian channel with feedback, IEICE Trans. Fundamentals, vol E80-A, no 11, pp 22722275, November 1997.
[2] H.W.Chen and K.Yanagi, Refinements of the half-bit and factor-of-two bounds for capacity in Gaussian channels with feedback, IEEE Trans. Information Theory, vol IT-45, no 1, pp 319-325, January 1999.
[3] H.W.Chen and K.Yanagi, Upper bounds on the capacity of discrete time blockwise white Gaussian channels with feedback, IEEE Trans. Information Theory, vol IT-46, no 3, pp 1125-1131, May 2000.
[4] T.M.Cover, Conjecture: Feedback does not help much, in Open problems in communication and computation, T.Cover and B.Gopinath (Ed.), pp 70-71, Springer-Verlag, New York, 1987.
[5] T.M.Cover and S.Pombra, Gaussian feedback capacity, IEEE Trans. Information Theory, vol IT-35, no 1, pp 37-43, January 1989.
[6] T.M.Cover and J.A.Thomas, Elements of Information Theory, New York, Wiley, 1991.
[7] A.Dembo, On Gaussian feedback capacity, IEEE Trans. Information Theory, vol IT-35, no 5, pp 1072-1089, September 1989.
[8] P.Ebert, The capacity of the Gaussian channel with feedback, Bell. Syst. Tech. $J .$, vol 49, pp 1705-1712, 1970.
[9] R.G.Gallager, Information Theory and Reliable Communication, John Wiley and Sons, New York, 1968.
[10] S.Ihara and K.Yanagi, Capacity of discrete time Gaussian channel with and without feedback, II, Japan J. Appl. Math., vol 6, pp 245-258, 1989.
[11] M.Pinsker, talk delivered at the Soviet Information Theory Meeting, (no abstract published), 1969.
[12] K.Yanagi, An upper bound to the capacity of discrete time Gaussian channel with feedback, Lecture Notes in Math., vol 1299, pp 565-570, 1988.
[13] K.Yanagi, Necessary and sufficient condition for capacity of the discrete time Gaussian channel to be increased by feedback, IEEE Trans. Information Theory, vol IT-38, no 6, pp 1788-1791, November 1992
[14] K.Yanagi, An upper bound to the capacity of discrete time Gaussian channel with feedback, II, IEEE Trans. Information Theory, vol IT-40, no 2, pp 588-593, March 1994.
[15] K.Yanagi, An upper bound to the capacity of discrete time Gaussian channel with feedback, III, Bull. Kyushu Inst. Tech., Pure and Applied Mathematics, vol 45, pp 1-8, 1998.

[^0]: *Department of Applied Science, Faculty of Engineering, Yamaguchi University, Ube 7558611, Japan. This paper was partially supported by Grant-in-Aid for Scientific Research (C), No.11640169, Japan Society for the Promotion of Science
 ${ }^{\dagger}$ Graduate School of Science and Engineering, Yamaguchi University, Ube 755-8611, Japan
 ${ }^{\ddagger}$ Graduate School of Science and Engineering, Yamaguchi University, Ube 755-8611, Japan

