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OPERATOR MONOTONE FUNCTIONS, POSITIVE DEFINITE
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Abstract. Let f(t) be a real continuous function on an interval, and consider
the operator function f(X) defined for Hermitian operators X. We will show
that if f(X) is increasing w.r.t. the operator order, then for F (t) =

∫
f(t)dt

the operator function F (X) is convex. Let h(t) and g(t) be C1 functions
defined on an interval I. Suppose h(t) is non-decreasing and g(t) is increasing.
Then we will define the continuous kernel function Kh, g by Kh, g(t, s) =
(h(t) − h(s))/(g(t) − g(s)), which is a generalization of the Löwner kernel
function. We will see that it is positive definite if and only if h(A) � h(B)
whenever g(A) � g(B) for Hermitian operators A,B, and we give a method to
construct a large number of infinitely divisible kernel functions.

1. Introduction

Let I be an interval of the real axis and f(t) a real continuous function defined
on I. For a bounded Hermitian operator (or matrix) A on a Hilbert space whose
spectrum is in I, f(A) stands for the ordinary functional calculus. f is called an
operator monotone function on I if f(A) � f(B) whenever A � B. f is sometimes
said to be operator decreasing if −f is operator monotone. A continuous function
f defined on I is called an operator convex function on I if f(sA + (1 − s)B) �
sf(A) + (1− s)f(B) for every 0 < s < 1 and for every pair of bounded Hermitian
operators A and B whose spectra are both in I. An operator concave function is
likewise defined. It is known that g(t) is an operator convex function on an open
interval I if and only if g(t) is of class C2(I), and for each t0 ∈ I, the function f(t)
defined by

(1) f(t) =
g(t)− g(t0)

t− t0
(t �= t0), f(t0) = g′(t0)

is operator monotone on I ([14] and [1]).
Let K(t, s) be a real continuous function defined on I × I, and assume that it is

symmetric. Then K(t, s) is called a positive definite kernel on I if

(2)

∫∫

I×I

K(t, s)φ(t)φ(s)dt ds � 0
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for all real continuous functions φ with compact support in I. Suppose K(t, s) � 0
for every t, s in I. Then the kernel K(t, s) is said to be infinitely divisible on I
if K(t, s)r is a positive definite kernel for every r > 0. A kernel K(t, s) is said
to be conditionally positive on I if (2) holds for every continuous function φ on I
such that the support of φ is compact and the integral of φ over I vanishes. A
kernel K(t, s) is sometimes said to be conditionally negative on I if −K(t, s) is
conditionally positive definite on I. In this paper we say that K(t, s) conditionally
vanishes on I if it is conditionally positive and conditionally negative on I.

The Löwner theorem says that a C1 function f is operator monotone on an open
interval I if and only if the Löwner kernel Kf (t, s) defined by

Kf (t, s) =
f(t)− f(s)

t− s
(t �= s), Kf (t, t) = f ′(t)

is positive definite on I and that such a function f possesses a holomorphic exten-
sion f(z) onto the open upper half plane Π+ which maps Π+ into itself; namely
f(z) is a Pick function. In this case, by Herglotz’s theorem f(t) has an integral
representation,

(3) f(t) = α+ βt+

∫ ∞

−∞
(− x

x2 + 1
+

1

x− t
)dν(x),

where α is real, β � 0 and ν is a Borel measure so that
∫ ∞

−∞

1

x2 + 1
dν(x) < ∞, ν(I) = 0.

For further details see [2, 3, 6, 13].
Let f(t) be a C1 function defined on an infinite interval (a,∞). We will show

that the Löwner kernel Kf (t, s) is positive definite on (a,∞) if and only if Kf (t, s)
is conditionally positive, lim

t→∞
f(t)/t < ∞ and f(∞) := lim

t→∞
f(t) > −∞.

Recall the symbol “�” introduced in [16, 17]: let h(t) be a non-decreasing con-
tinuous function on I and g(t) an increasing continuous function on I; then h is
said to be majorized by g and denoted by h � g on I if h(A) � h(B) whenever
g(A) � g(B) for A,B whose spectra are both in I. It is clear that f(t) � t on I
means that f(t) is operator monotone on I. For a pair of C1 functions h(t) and
g(t), we define a continuous kernel Kh,g(t, s) by

(4) Kh,g(t, s) =
h(t)− h(s)

g(t)− g(s)
(s �= t), Kh,g(t, t) =

h′(t)

g′(t)
.

The Löwner kernel Kf (t, s) can be written as Kf,t(t, s) in this way. We will see that
the kernel Kh,g(t, s) is positive definite on I if and only if h � g on I. Suppose the
range of g is (0,∞). Then we will show that if the kernel Kh,g is positive definite
on (a, b), then the kernel Khg,g is conditionally negative and the kernel Kg,hg is
infinitely divisible. This result must provide a large number of infinitely divisible
kernels. We will also give a characterization for Kh,g to be conditionally negative.

2. Geometric features

In this section we discuss certain geometric features of operator convex functions.
We first make an improvement on the well-known fact about the relation between
operator convexity and operator monotonicity which was mentioned in the previous
section.
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Lemma 2.1. Let g(t) be a differentiable function on an open interval I. Then
g(t) is operator convex if for a point t0 ∈ I the function f(t) defined by (1) is
operator monotone on I. Conversely, if g(t) is operator convex, then f(t) is operator
monotone for each t0 ∈ I.

Proof. By representing f(t) as (3) we get

g(t) = g(t0)− αt0 + (α− βt0)t+ βt2 +

∫ ∞

−∞
(−1 +

x− t0
x− t

− x

x2 + 1
(t− t0))dν(x).

Therefore g(t0) − αt0 + (α − βt0)t + βt2 is clearly operator convex. Note that for
a given x, 1

x−t and − 1
x−t are operator convex on −∞ < t < x and x < t < ∞,

respectively. Thus for each x �∈ I, x−t0
x−t is operator convex on I. Thus one can see

that g(t) is operator convex. The converse is well-known. �

Proposition 2.2. Let f(t) be an operator monotone (or decreasing) function on
I. Then the indefinite integral

∫
f(t)dt is an operator convex (or concave) function

on I.

Proof. We show only the case where f(t) is operator monotone. To do so, we prove

that g(t) :=
∫ t

c
f(s)ds is operator convex on any compact subinterval [a, b] ⊂ I for

a fixed point c in I. Notice that

g(t) = lim
n→∞

n∑

k=1

f(c+
k

n
(t− c))

1

n
(t− c) (a � t � b),

where the right hand side uniformly converges. Put h(t) = f(c + k
n (t − c))(t− c).

Since
h(t)− h(c)

t− c
= f(c+

k

n
(t− c))

is operator monotone on I, by Lemma 2.1 h(t) is operator convex, and hence so is
g(t) on [a, b]. �

We note that the above lemma is a slight generalization of Exercise V.3.14 of [2].

Example 2.1. t log t and log Γ(t) are both operator convex on (0,∞). log cos t is

operator concave on (−π

2
,
π

2
).

Proof. Since log t is operator monotone on (0,∞), from Proposition 2.2 it follows
that t log t − t is operator convex there, which implies t log t is operator convex

too. Since tan t and
Γ′(t)

Γ(t)
are both operator monotone on (−π

2
,
π

2
) and on (0,∞),

respectively, the required fact follows from Proposition 2.2. �

We remark that the converse of Proposition 2.2 does not hold: for instance,
1

t

is operator convex on (0,∞), but
d

dt

1

t
= − 1

t2
is not operator monotone there.

However we have

Proposition 2.3. Let g(t) be an operator convex function on (0,∞). Then g′(
√
t)

is operator monotone there.
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Proof. We first assume that g(t) is operator convex on [0,∞) and g′(0+) is finite.
Since (g(t)− g(0))/t is operator monotone on [0,∞), it admits an expression given

by (3) with ν([0,∞)) = 0. We then notice that
1

x(x2 + 1)
is integrable with respect

to dν(x), because g′(0+) = lim
t→+0

(g(t)− g(0))/t is finite. By differentiating

g(t) = g(0) + αt+ βt2 +

∫ ∞

−∞
t(− x

x2 + 1
+

1

x− t
)dν(x)

we obtain

(5) g′(t) = α+ 2βt+

∫ ∞

−∞
{− x

x2 + 1
+

x

(x− t)2
}dν(x) (0 < t < ∞).

Indeed, take any real number M > 0. Then for 0 < t < M and −∞ < x < 0

| ∂
∂t

t(− x

x2 + 1
+

1

x− t
)| = | − x

x2 + 1
+

x

(x− t)2
| � |x(2tx− t2 + 1)|

(x2 + 1)(x− t)2

<
2t|x|+ t2 + 1

(x2 + 1)|x| � 2M
1

x2 + 1
+ (M2 + 1)

1

(x2 + 1)|x| .

The largest side is integrable with respect to dν(x). (5) therefore holds for 0 < t <
M and hence for 0 < t < ∞. We therefore get

g′(
√
t) = α+ 2β

√
t+

∫ ∞

−∞
{− x

x2 + 1
+

x

(x−
√
t)2

}dμ(x).

Since (x −
√
t)2 is operator monotone on 0 < t < ∞ for −∞ < x < 0, so is

x

(x−
√
t)2

. g′(
√
t) is therefore operator monotone on (0,∞). We next suppose that

g(t) is defined on (0,∞). For sufficiently small ε > 0 put gε(t) = g(t + ε). By
the result proved above we get that g′ε(

√
t) = g′(

√
t + ε) is operator monotone on

0 < t < ∞. By letting ε → 0 we get the operator monotonicity of g′(
√
t). �

It is well-known that a positive continuous function f(t) on [0,∞) is operator
monotone if and only if f(t) is operator concave (cf. Theorem V.2.5 of [2]). Also,
there are some extensions of it (for instance, [15]). Now we give an eventual exten-
sion with an elementary proof.

Theorem 2.4. Let f(t) be a continuous function on (a,∞), where a � −∞. Then

(i) f(t) is operator decreasing if and only if f(t) is operator convex and f(∞) <
∞;

(ii) f(t) is operator monotone if and only if f(t) is operator concave and f(∞) >
−∞.

Proof. We need to show only statement (i), because (ii) follows from it. Assume
f(t) is operator convex and f(∞) < ∞; notice here that f(∞) := lim

t→∞
f(t) exists
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since f(t) is convex. We will prove f(B) � f(A) if a < A � B. By considering

B + δ instead of B, we may assume that B − A � δ > 0. Then
λ

1− λ
(B −A) > a

if 0 < λ < 1 and λ is sufficiently close to 1. For such a λ

f(λB) = f(λA+ (1− λ)
λ

1− λ
(B −A))

� λf(A) + (1− λ)f(
λ

1− λ
(B −A)).

In the case of f(∞) = −∞, f( λ
1−λ (B − A)) � 0 for λ sufficiently close to 1. We

therefore get f(λB) � λf(A) and hence f(B) � f(A). In the case of f(∞) > −∞,
(1 − λ)f( λ

1−λ (B − A)) → 0 as λ → 1 − 0. This also yields f(B) � f(A). To see

the converse statement we use the well-known technique. Assume f(t) is operator
decreasing. Then we obviously get f(∞) < ∞. For 0 < λ < 1 define the unitary
operator W on the direct sum of a Hilbert space by

W =

( √
λI −

√
1− λI√

1− λI
√
λI

)

.

Since

W ∗
(

A 0
0 B

)

W =

(
λA+ (1− λ)B

√
λ(1− λ)(B −A)√

λ(1− λ)(B −A) λB + (1− λ)A

)

,

for an arbitrary ε > 0 there exists δ > 0 such that

W ∗
(

A 0
0 B

)

W �
(

λA+ (1− λ)B + ε 0
0 λB + (1− λ)A+ δ

)

.

From the assumption we obtain

W ∗
(

f(A) 0
0 f(B)

)

W = f

(

W ∗
(

A 0
0 B

)

W

)

�
(

f (λA+ (1− λ)B + ε) 0
0 f (λB + (1− λ)A+ δ)

)

.

By comparing (1, 1) elements we have

λf(A) + (1− λ)f(B) � f(λA+ (1− λ)B + ε),

which gives the operator convexity of f , because ε is arbitrary. �

Recall that f(t) = t2 is operator convex on (−∞,∞), but not operator decreas-
ing there: this says we cannot remove the condition f(∞) < ∞ in (i) of the above
theorem. The next corollary easily follows from (ii) of Theorem 2.4 and Proposi-
tion 2.3.

Corollary 2.5 ([18]). If f(t) is operator monotone on (0,∞), then so is −f ′(
√
t).

The second statement of the next corollary is well-known (e.g. see [9]).

Corollary 2.6. If f(t) is operator monotone on (a,∞), then so is
t− c

f(t)− f(c)
for

each c > a. Moreover if a = 0 and f(0+) � 0, then
t

f(t)
is operator monotone on

(0,∞).
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Proof. Since −f(t) is operator convex, for each c > 0, −f(t)− f(c)

t− c
is operator

monotone; hence so is
t− c

f(t)− f(c)
. In the special case where a = 0 and f(0+) �

0 we see that −f(t)− f(0+)

t
is operator monotone on (0,∞). From −f(t)

t
=

−f(t)− f(0+)

t
− f(0+)

t
it follows that −f(t)

t
is operator monotone, and hence so

is
t

f(t)
. �

Suppose f(t) is a function defined on a left half line. Then f(−t) is defined on a
right half line, f(t) is operator monotone if and only if f(−t) is operator decreasing,
and f(t) is operator convex if and only if f(−t) is operator convex. By Theorem 2.4
we therefore get

Corollary 2.7. Let f(t) be a continuous function on (−∞, b), where b � ∞. Then
f(t) is operator monotone (or decreasing) if and only if f(t) is operator convex (or
concave) and f(−∞) < ∞ (or f(−∞) > −∞).

We have so far dealt with functions on “infinite intervals” except for Proposi-
tion 2.2. We now express an operator monotone function on a “finite interval” as
a sum of such functions.

Proposition 2.8. Let f(t) be an operator monotone function on a finite interval
(a, b). Then there is a decomposition of f(t) such that

f(t) = f+(t) + f−(t) (a < t < b),

where f+(t) and f−(t) are operator monotone on (a,∞) and (−∞, b) respectively.

Proof. f(t) is expressed as (3) with ν((a, b)) = 0. It is easy to see that

f+(t) := α+ βt+

∫ a

−∞
(− x

x2 + 1
+

1

x− t
)dν(x) (a < t < ∞),

f−(t) :=

∫ ∞

b

(− x

x2 + 1
+

1

x− t
)dν(x) (−∞ < t < b)

satisfy the required fact. �
We remark that by Theorem 2.4 or Corollary 2.7 f+(t) is operator concave and

f−(t) is operator convex. So we cannot determine whether an operator monotone
function on a finite interval is operator concave or whether it is operator convex.

Example 2.2. The formula

tan t =
∞∑

n=−∞
{ 1

(n− 1
2 )π − t

− nπ

n2π + 1
}

says tan t is operator monotone on (−π

2
,
π

2
). Put

f+(t) =

0∑

n=−∞
{ 1

(n− 1
2 )π − t

− nπ

n2π + 1
}, f−(t) =

∞∑

n=1

{ 1

(n− 1
2 )π − t

− nπ

n2π + 1
}.

Then f+(t) and f−(t) are operator monotone on (−π

2
,∞) and (−∞,

π

2
), respec-

tively, and tan t = f+(t) + f−(t).
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3. Löwner kernels

This section is devoted to the study of the Löwner kernel functions. We first
refer to the result shown by Bhatia and Sano in [5]:

Let f(t) be a C2 function on [0,∞) such that f(t) � 0 and f(0) = f ′(0) = 0.
Then f is operator convex on [0,∞) if and only if the Löwner kernel Kf (t, s) is
conditionally negative definite on [0,∞).

We extend this as follows:

Theorem 3.1. Let f(t) be a C1 function on (a,∞). Then

(i) f(t) is operator convex on (a,∞) if and only if the Löwner kernel Kf (t, s)

is conditionally negative definite and lim
t→∞

f(t)

t
> −∞;

(ii) f(t) is operator concave on (a,∞) if and only if the Löwner kernel Kf (t, s)

is conditionally positive definite and lim
t→∞

f(t)

t
< ∞.

To prove this we invoke the following:

Lemma 3.2. Let f(t) be a C1 function on (a, b). Then the Löwner kernel Kf (t, s)

is conditionally positive definite if and only if hc(t) :=
f(t)− f(c)

t− c
is operator convex

on (a, b) for each c in (a, b).

Proof. It is known that Kf (t, s) is conditionally positive definite if and only if
hc(t)− hc(c)

t− c
is operator monotone on (a, b) for each c ([6, p. 139]). By Lemma 2.1,

this is equivalent with the operator convexity of hc(t). �

Proof of Theorem 3.1. (i) Assume f(t) is operator convex. Since f(t) is a numerical

convex function, we have lim
t→∞

f(t)

t
> −∞. The operator convexity of f(t) guar-

antees h(t) :=
f(t)− f(c)

t− c
to be operator monotone on (a,∞), and hence operator

concave. This implies
−f(t)− (−f(c))

t− c
is operator convex. By Lemma 3.2, the

Löwner kernel K−f (t, s) is conditionally positive definite, that is, Kf (t, s) is con-
ditionally negative definite. We next show the converse statement. By Lemma 3.2

h(t) :=
f(t)− f(c)

t− c
is operator concave on (a,∞). The assumption lim

t→∞

f(t)

t
> −∞

implies h(∞) > −∞. By Theorem 2.4 h(t) is operator monotone. f(t) is therefore
operator convex. Statement (ii) can be shown in the same way as the above or
easily follows from (i). �

We give an example which shows the indispensability of the condition lim
t→∞

f(t)

t
>

−∞: the Löwner kernel Kf (t, s) = −(t2 + st + s2) of f(t) = −t3 is conditionally
negative on (0,∞), but f(t) is not operator convex there.

By combining Theorem 2.4 and Theorem 3.1 we can easily get the next theorem,
which clarifies the relation between the positive definiteness and the conditionally
positive definiteness of a Löwner kernel.

Theorem 3.3. Let f(t) be C1 function on (a,∞). Then
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(i) the Löwner kernel Kf (t, s) is positive definite on (a,∞) if and only if

Kf (t, s) is conditionally positive definite on (a,∞), lim
t→∞

f(t)

t
< ∞ and

f(∞) > −∞.
(ii) the Löwner kernel Kf (t, s) is negative definite on (a,∞) if and only if

Kf (t, s) is conditionally negative definite on (a,∞), lim
t→∞

f(t)

t
> −∞, and

f(∞) < ∞.

For functions defined on a left half line one can easily obtain the following:

Corollary 3.4. Let f(t) be a C1 function on (−∞, b). Then

(i) f(t) is operator convex (or concave) if and only if lim
t→−∞

f(t)

t
< ∞ (or

lim
t→−∞

f(t)

t
> −∞) and the Löwner kernel Kf (t, s) is conditionally positive

(or negative) definite.
(ii) The Löwner kernel Kf (t, s) is positive (or negative) definite if and only if

Kf (t, s) is conditionally positive (or negative) definite, lim
t→−∞

f(t)

t
< ∞ (or

lim
t→−∞

f(t)

t
> −∞), and f(−∞) < ∞ (or f(−∞) > −∞).

Lastly consider an operator convex function g(t) defined on (−1, 1). Since (g(t)−
g(0))/t is operator monotone, by using Proposition 2.8 we can write

g(t) = g(0) + tf+(t) + tf−(t),

where f+(t) and f−(t) are operator monotone on (−1,∞) and (−∞, 1), respectively;
hence tf+(t) and tf−(t) are both operator convex. The Löwner kernels of tf+(t)
and tf−(t) are therefore conditionally negative definite and conditionally positive
definite on (−1, 1), respectively.

4. Majorization and kernel functions

In this section we will study a kernel function Kh,g defined by (4) and give a
method to construct infinitely divisible kernel functions. We remark that this kernel
function is a generalization of the Löwner kernel function. By simple calculation of
the double integral (2) for this kernel, one can easily see

Lemma 4.1. Let h(t) and g(t) be C1 functions on I, and suppose that g(t) is
increasing. Suppose t = τ (x) is a differentiable and increasing function from an
interval J onto I. Then the kernel Kh, g defined by (4) is positive definite (or
infinitely divisible) on I if and only if Kh(τ), g(τ) is positive definite (or infinitely
divisible) on J .

Lemma 4.2. The following statements are equivalent:

(i) The kernel Kh, g(t, s) is positive definite on I.
(ii) There is an operator monotone function ϕ defined on g(I) such that

h(t) = (ϕ ◦ g)(t) (t ∈ I).

(iii) h � g on I.
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Proof. Lemma 4.1 says that the kernel Kh,g is positive definite on I if and only if
the Löwner kernel Kh◦g−1 is positive definite on g(I); this means h◦g−1 is operator
monotone on g(I). (i) is hence equivalent with (ii). That (ii) and (iii) are equivalent
follows from the definition of “�”. �

Note that Kf, g(t, s) is positive definite (or infinitely divisible) if Kf, h(t, s) and
Kh, g(t, s) are both positive definite (or infinitely divisible): indeed, since the Schur
product of kernel functions Kf, h and Kh, g is Kf, g(t, s), it is positive definite too.
The following is a part of the Product Lemma given in [16] and [17], but we give a
simple proof for the sake of completeness.

Lemma 4.3. Let h(t) and g(t) be positive C1 functions on an open interval I.
Suppose h(t)g(t) is increasing and its range is (0,∞). Then the kernel Kh,hg is
positive definite on I if and only if the kernel Kg,hg is as well.

Proof. Assume the kernel Kh,hg is positive definite on I. Then there is an operator
monotone function ϕ(s) on 0 < s < ∞ such that h(t) = ϕ(h(t)g(t)). Since ϕ(s) > 0,

by Corollary 2.6
s

ϕ(s)
is operator monotone on (0,∞). This means

s

ϕ(s)
� s (0 < s < ∞),

which is equivalent to

g(t) =
h(t)g(t)

h(t)
� h(t)g(t) (t ∈ I).

By Lemma 4.1 the kernel Kg,hg is positive definite on I. This completes the proof.
�

Theorem 4.4. Let h(t) and g(t) be positive C1 functions defined on I. Suppose g
is increasing and its range is (0,∞). If the kernel Kh, g is positive definite on I,
then for n � 0, m � 1 the kernels

Khn+1gm, hngm , Khngm+1, hngm

are conditionally negative, and the kernels

Khigj , hngm(t, s) =
hi(t)gj(t)− hi(s)gj(s)

hn(t)gm(t)− hn(s)gm(s)

are infinitely divisible for 0 � i � n, 0 � j � m, 1 � m, i+ j + 1 � n+m.
Moreover, if f is a (not necessarily positive) C1 function such that the kernel

Kf, g(t, s) is positive definite, then the kernel

Kg, efg(t, s)

is infinitely divisible.

Proof. Since Kh, g is positive definite on I, Lemma 4.3 implies that Kg/h, g is also
positive definite on I. The kernel

g(t)h(s)− h(t)g(s)

g(t)− g(s)
= h(t)

g(t)/h(t)− g(s)/h(s)

g(t)− g(s)
h(s)
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is therefore positive definite there. Thus the kernel

Khg, g(t, s) =
h(t)g(t)− h(s)g(s)

g(t)− g(s)

= h(t) + h(s)− g(t)h(s)− h(t)g(s)

g(t)− g(s)

is conditionally negative, because the kernel h(t)+h(s) conditionally vanishes. We
note that h(t) is non-decreasing, for g(t) is increasing and Kh, g is positive definite.
This implies that h(t)g(t) is increasing, which gives Khg, g(t, s) > 0 for every t, s.
Thus, the reciprocal kernel Kg, hg(t, s) of Khg, g is infinitely divisible (see [12] or
p. 458 of [13]), and hence positive definite. Lemma 4.1 deduces positive definiteness
of Kg, gm , for Kt1/m, t is positive definite. By making use of the above fact we see
Kgm+1, gm is conditionally negative. Since Kg, gm and Kh, g are positive definite, so
is Kh, gm , from which it follows that Khgm, gm is conditionally negative. Suppose
Khk+1gm, hkgm is conditionally negative for 0 � k � n. Since Khkgm, hk+1gm is
positive definite, by the transitive property Kgm, hn+1gm is positive definite. This
yields that Kg, hn+1gm is positive definite and hence so is Kh, hn+1gm . By making
use of the above fact again we see Khn+1gm+1, hn+1gm and Khn+2gm, hn+1gm are both
conditionally negative. Thus we obtain the first requirement. Since Khngm, hn+1gm

and Khngm, hngm+1 are both infinitely divisible, by the transitive property one can
easily see the second requirement. To see the last requirement we note that if a
kernel function is positive definite on In such that I1 ⊂ I2 ⊂ · · · , then so it is on⋃
In. We may therefore assume that f(t) is bounded below. Since 1 + f(t)/n is

positive for sufficiently large n and the kernel K(1+f(t)/n), g is positive definite on
I, Kg, (1+f(t)/n)ng is infinitely divisible on I for such an n. Taking the limit shows
that Kg, efg is infinitely divisible on I. �

The above result provides a wide variety of infinitely divisible kernels. We give
a few examples.

Example 4.1. Put g(t) = t on (0,∞) and f(t) = t or f(t) = −1/t in Theorem 4.4
to see that

t− s

tet − ses
,

t− s

te−t−1 − se−s−1

are both infinitely divisible on (0,∞).

We end this paper by giving some necessary and sufficient conditions for a kernel
Kh, g being conditionally negative definite.

Theorem 4.5. Let h(t) and g(t) be positive C1 functions defined on an open in-
terval (a, b), where −∞ � a < b � ∞. Suppose g(t) is increasing and the range of
g is (0,∞). Then the following are equivalent:

(i) the kernel Kh, g is conditionally negative;
(ii) there is an operator convex function ϕ defined on (0,∞) such that ϕ(g(t)) =

h(t) for t ∈ (a, b);

(iii)
h(t)− h(a+ 0)

g(t)
� g(t) (a < t < b).

Proof. (i)⇒(ii). Since h◦g−1(t) > 0 and the Löwner kernel Kh◦g−1 is conditionally
negative definite on (0,∞), by Theorem 3.1 ϕ := h ◦ g−1 is an operator convex
function on (0,∞).
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(ii)⇒(iii). Since ϕ is operator convex on (0,∞),
ϕ(t)− ϕ(0+)

t
is operator mono-

tone on (0,∞). Hence

ϕ(t)− ϕ(0+)

t
� t (0 < t < ∞), i.e.,

h(t)− h(a+ 0)

g(t)
� g(t) (a < t < b).

This implies (iii).
(iii)⇒(i). Define an operator monotone function f on (0,∞) by

f(g(t)) =
h(t)− h(a+ 0)

g(t)
.

Since tf(t) is operator convex on (0,∞), by Theorem 3.1 the Löwner kernel Ktf(t)

is conditionally negative on (0,∞), which implies that the kernel Kg(t)f(g(t)), g(t)

is conditionally negative on (a, b). Since g(t)f(g(t)) = h(t)− h(a+), we finally get
(i). �
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