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ABSTRACT22

This paper presents a highly efficient approach for bounding the responses and probability of23

failure of nonlinear models subjected to imprecisely defined stochastic Gaussian loads. Typically,24
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such computations involve solving a nested double loop problem, where the propagation of the25

aleatory uncertainty has to be performed for each realization of the epistemic parameters. Apart26

from near-trivial cases, such computation is generally intractable without resorting to surrogate27

modeling schemes, especially in the context of performing nonlinear dynamical simulations. The28

recently introduced operator norm framework allows for breaking this double loop by determining29

those values of the epistemic uncertain parameters that produce bounds on the probability of30

failure a priori. However, the method is in its current form only applicable to linear models due31

to the adopted assumptions in the derivation of the involved operator norms. In this paper, the32

operator norm framework is extended and generalized by resorting to the statistical linearization33

methodology, to account for nonlinear systems. Two case studies are included to demonstrate the34

validity and efficiency of the proposed approach.35

Keywords: Uncertainty quantification; Imprecise probabilities; Operator norm theorem; Statisti-36

cal linearization37

INTRODUCTION38

Uncertainties about the true properties of, and loads acting on, structural systems are commonly39

encountered in the context of all fields of engineering, including structural dynamics. For instance,40

natural phenomena such as earthquakes or wind loads are especially hard to model exactly, since41

the corresponding dynamical loads acting on the system often cannot be described in a crisp way42

due to the sheer complexity of the underlying phenomena. Further, when designing structures with43

natural or highly engineered materials, such uncertainties may arise as well. To treat these issues44

effectively, stochastic processes (Shinozuka and Sato 1967, Vanmarcke and Grigoriu 1983) have45

been introduced as a rigorous framework to account for the aleatory uncertainties and corresponding46

correlations in space and time of uncertain loads and properties. This is obtained by resorting to47

the well-documented framework of probability theory, which is highly suited to treat aleatory48

uncertainties.49

However, the definition of such stochastic processes may require prohibitive amounts of in-50

formative data to fully characterize the probabilistic descriptors, including the auto-correlation51
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function. In a practical engineering context, such information may not always be available due to52

scarcity, incompleteness or even conflicted nature of typically available data sources. As a potential53

remedy, one can model the additional (epistemic) uncertainty by means of subjective probability54

density functions, which might be a valid approach in case sufficient reasons are present to validate55

the considered assumptions. However, in general, this includes unwarranted subjectivity in the56

analysis, which might give a wrong sense of reliability to the model. Alternatively, set theoretical57

approaches, such as intervals (Faes and Moens 2019b) or fuzzy numbers (Beer 2004), can be58

used to include the epistemic uncertainty. By imposing such set-theoretical descriptors on top of59

probabilistic models for the uncertainty, a full set of probabilistic models that is consistent with60

the lack of knowledge is considered, which allows for an objective judgement on the bounds of the61

system reliability. In this context, utilizing the concept of imprecise probabilities (Beer et al. 2013)62

provides the analyst with a concrete theoretical framework to define and compute (with such hybrid63

forms) the uncertainties. In structural dynamics, for instance, given a set of stochastic processes that64

are consistent with the epistemic uncertainty, an imprecise probabilities-based solution treatment65

leads to bounds on the first excursion probability. The latter not only allows to assess the sensitivity66

of the model reliability to the existing epistemic uncertainty, but also yields an estimate of the lower67

bound of the reliability.68

In engineering practice, however, the effective application of such methods is typically hindered69

by the corresponding computational cost. In essence, the propagation of the epistemic and aleatory70

uncertainty has to be performed such that their effects on the reliability are kept separated (Moens71

and Vandepitte 2004). This gives rise to double loop approaches, where the outer loop takes care of72

epistemic uncertainty while the inner loop deals with aleatory uncertainty. Many efficient methods73

have been introduced in recent years to alleviate this computational cost; see, indicatively, Faes74

et al. (2021a) for a recent review paper. Examples of such approaches are based on Extended75

Monte Carlo simulation (Wei et al. 2019), surrogate modeling schemes (Schöbi and Sudret 2017),76

Bayesian probabilistic propagation (Wei et al. 2021) or Line Sampling (de Angelis et al. 2015).77

A recent development in this context is based on operator norm theory to decouple the double78
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loop into a deterministic optimization, followed by a single reliability analysis per bound on the79

reliability (Faes et al. 2020; 2021b), which is capable of reducing the corresponding computational80

cost by several orders of magnitude. However, the methods based on operator norm theory are81

limited to linear systems subject to Gaussian loading, which renders their application to realistic82

engineering models impossible.83

In this regard, directing attention to extending the operator norm framework to nonlinear84

dynamical systems subject to imprecise Gaussian loading, a new technique is developed herein for85

computing moderate to large failure probabilities. This is attained by resorting to the statistical86

linearization methodology (Roberts and Spanos 2003, Socha 2007), which is used for defining87

an equivalent linear system of equations to account for the nonlinear system under consideration.88

Then, an operator norm theory-based solution treatment (Faes et al. 2021b) is employed to obtain89

the bounds on the probability of failure. Two pertinent numerical examples demonstrate the validity90

and efficiency of the proposed methodology.91

BOUNDS ON THE RELIABILITY OF NONLINEAR DYNAMICAL SYSTEMS92

Nonlinear stochastic dynamics93

A nonlinear dynamical system subjected to a stochastic load ?(C, /) is represented using the94

Finite Element representation of the dynamical equation, by the following set of ordinary differential95

equations:96

M¥q(C) + C ¤q(C) +Kq(C) +� ( ¥q(C), ¤q(C), q(C)) = 1?(C, /), (1)97

where M ∈ R=3×=3 , C ∈ R=3×=3 and K ∈ R=3×=3 represent, respectively, the mass, damping and98

stiffness matrices of the system, and =3 denotes the degrees of freedom in the model. Further,99

/ represents a realization of a random variable vector, whereas the vector 1 ∈ R=3×1 links the100

stochastic load ?(C, /) to the appropriate degrees of freedom in the structure. The vectors q ∈ R=3 ,101

¤q ∈ R=3 and ¥q ∈ R=3 represent, respectively, the nodal displacements, velocities and accelera-102

tions, where a dot over a variable denotes differentiation with respect to time C ∈ R. Finally,103

� ( ¥q(C), ¤q(C), q(C)) ∈ R=3 represents the nonlinear restoring force, which depends on the nodal104
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displacement, velocity and acceleration vectors.105

In Eq. (1), ?(C, /) represents the load to which the system is subjected, which in the context of106

stochastic dynamical systems is usually modeled as a stochastic process. If ?(C, /) is a stationary107

zero-mean Gaussian process, it can be characterized using its power spectral density function108

(%% (l), where l ∈ R denotes the circular frequency. The Wiener-Khintchine theorem allows for109

the calculation of the autocorrelation function corresponding to (%% (l), and vice versa. This is110

attained by utilizing the Fourier transforms:111

(%% (l) =
1
2c

∫ +∞

−∞
'%% (g)4−ilg3g, '%% (g) =

∫ +∞

−∞
(%% (l)4ilg3l, (2)112

where '%% (g) denotes the autocorrelation function with time lag g ∈ R and ‘i’ is the imaginary

unit. Sample paths of this stochastic process can be generated, for example, by applying the

Karhunen-Loève (KL) expansion (e.g., Schenk and Schuëller 2005, Stefanou 2009). In this regard,

assume that the loading is applied for time ) , where C: = (: − 1)ΔC, : = 1, 2, . . . , =) , corresponds

to time discretization with step ΔC and =) denotes the number of discrete time steps. Then, the

associated discrete correlation matrix RPP ∈ R=) ×=) becomes:

RPP =



'%% (0) '%% (C1 − C2) . . . '%%
(
C1 − C=)

)
'%% (C2 − C1) '%% (0) . . . '%%

(
C2 − C=)

)
...

...
. . .

...

'%%
(
C=) − C1

)
'%%

(
C=) − C2

)
. . . '%% (0)


. (3)

Note that the framework described above can be also extended to account for non-stationary113

Gaussian processes, see e.g. Li and Chen (2009a). Utilizing the matrix-vector form of the KL114

expansion, i.e.:115

p(/) = 	�1/2/, (4)116

sample paths compatible with the stochastic ground acceleration are generated. In Eq. (4), p117

denotes an =) -dimensional vector containing the sample of the loading; / is a realization of118
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the random variable vector �, which follows an = !-dimensional standard Gaussian distribution,119

where = ! corresponds to the number of terms retained in the KL expansion; 	 ∈ R=) ×= !120

is a matrix whose columns contain the eigenvectors associated with the largest = ! eigenvalues121

of the discrete covariance matrix RPP; and � ∈ R= !×= ! denotes a diagonal matrix whose122

elements contain the largest = ! eigenvalues of RPP. A criterion for selecting the number123

of terms to be retained in the KL expansion is to find the minimum value of = ! , such that124 ∑= !
?=1 _? ≥ ?E

∑=)
?=1 _?, where ?E denotes the fraction of the total variance of the underlying125

stochastic process that is retained by the approximate representation, and _? is the ?-th eigenvalue126

of RPP (Lee and Verleysen 2007). For a recent overview of numerical methods to solve the associ-127

ated Fredholm integral eigenvalue problem in a continuous case, the reader is directed to Betz et al.128

(2014). Alternatively, the sample paths can also be generated using frequency domain methods,129

such as described in Chen and Li (2013).130

In a structural engineering context, one is usually interested in finding the reliability of the131

structure, which is related to its performance by means of Eq. (1). Practically, the structural132

reliability can be quantified by its complement, i.e., the failure probability % 5 . In this context,133

failure is encoded in the performance function 6(/), i.e., 6(/) ≤ 0 indicates that the realization of134

values / leads to a structural failure. The probability of failure is calculated by solving the integral135

equation:136

% 5 =

∫
/∈R= !

�� (/) 5� (/)3/, (5)137

where 5� (·) is a standard = !-dimensional Gaussian probability density function and �� (·) is the138

indicator function, whose value is equal to one in case 6(/) ≤ 0 and zero otherwise. Note, in139

passing, that the exact formulation of 6(/) is highly case dependent. For instance, when considering140

the first-passage problem, which is a classical problem in stochastic dynamics (e.g., Spanos and141

Kougioumtzoglou 2014, Spanos et al. 2016), 6(/) is given by:142

6 (/) = 1 − max
8=1,...,=[

(
max

:=1,...,=)

(
|[8 (C: , /) |

18

))
. (6)143
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where [8 (C: , /), 8 = 1, 2, . . . , =[, indicates the 8-th response of the system at time instant C: (e.g., @8144

or one of its time derivatives), | · | denotes the absolute value and 18 is a predefined threshold value145

above which a structural failure occurs (e.g., a maximally allowed displacement).146

The integral in Eq. (5) usually comprises a high number of dimensions, as = ! may be in the147

order of hundreds or thousands for realistic stochastic processes. Furthermore, 6(/), and hence,148

�� (/) is only known point-wise for realizations / of �. Therefore, such an integral cannot be149

solved analytically. In general, simulation methods should be applied to evaluate % 5 (Schuëller and150

Pradlwarter 2007). However, using simulation methods to calculate the probability of failure of a151

non-linear dynamical system can become quite challenging (Pradlwarter et al. 2007). For instance,152

the definition of appropriate importance sampling density functions to be used within the context of153

Importance Sampling might not always be trivial in this case (Au 2009). Moreover, it is highlighted154

that the nonlinear restoring force � ( ¥q(C), ¤q(C), q(C)) in Eq. (1) hinders the determination of155

[8 (C: ), 8 = 1, 2, . . . , =[, : = 1, 2, . . . , =) , since its presence necessitates the employment of pertinent156

numerical algorithms (Chopra 1995). In particular, combining simulation algorithms with these157

nonlinear solvers potentially leads to solution frameworks of prohibitively high computational cost.158

Imprecise stochastic dynamical analysis159

The characterization of the stochastic process ?(C, /) in Eq. (1) in terms of its power spectral160

density, or autocorrelation function, usually relies on a prescribed model. This, in turn, depends on161

a number of parameters, which are grouped in a vector ) ∈ R=\ . In this case, the parameters that162

determine the covariance matrix RPP(g |)) reflect some specific characteristics of the process, such163

as dominant frequencies, amplitude, etc. When selecting the appropriate value of these quantities,164

the analyst may be faced with considerable uncertainty, such as lack of knowledge, vague or165

ambiguous information, etc., which leads to epistemic uncertainty concerning the correct parameter166

value. Therefore, instead of selecting a crisp value, it is often preferred to explicitly account for this167

epistemic uncertainty by resorting to non-traditional models for uncertainty quantification (Beer168

et al. 2013).169

In this regard, it is herein assumed that the epistemic uncertainty in the definition of ) can be170
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bounded by an interval, i.e., ) ∈ ) � = [) , )], where ) and ) denote, respectively, the lower and171

upper bound between which the true parameter value is believed to lie. Techniques to infer these172

bounds based on limited data have been reported; see, indicatively, Imholz et al. (2020). Taking173

these uncertainties explicitly into account, Eq. (1) becomes:174

M¥q(C) + C ¤q(C) +Kq(C) +� ( ¥q(C), ¤q(C), q(C)) = 1?(C, /, ) �). (7)175

Close inspection of Eq. (7) reveals that both interval and random variables are present. The fact that176

the input parameters of the stochastic loading model are described by means of intervals has impor-177

tant implications on the evaluation of the structural reliability of the model under consideration. In178

particular, both loading and the structural system responses become interval stochastic processes179

(Faes and Moens 2019a). This, in turn, leads to an interval valued performance function, which180

causes the failure probability to become interval valued as well. Therefore, instead of calculating181

a single probability of failure associated with the structure (using Eq. (5)), given the epistemic182

uncertainty represented by ) � , one has to estimate the bounds on % 5 . These bounds are calculated183

by solving the optimization problems:184

% 5 = min
)∈) �

(
% 5 ())

)
= min

)∈) �

(∫
/∈R= !

�� (/, )) 5� (/)3/
)
, (8)185

186

% 5 = max
)∈) �

(
% 5 ())

)
= max

)∈) �

(∫
/∈R= !

�� (/, )) 5� (/)3/
)
. (9)187

In general, the solution of the optimization problems defined in Eqs. (8) and (9) is extremely188

demanding from a computational perspective. Specifically, as pointed out earlier, the solution of189

the reliability problem for nonlinear dynamical systems is rather cumbersome. In addition, solving190

the corresponding optimization problems is not straightforward, since this constitutes a double loop191

problem, where the inner loop comprises probability calculation, while the outer loop explores the192

possible values of the parameters ) . Hence, besides considering near-trivial simulation models,193

such computation is generally intractable without resorting to surrogate modelling strategies.194
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OPERATOR NORM THEORY AS A TOOL TO DECOUPLE THE DOUBLE LOOP195

A highly efficient operator norm theory-based approach to decouple the double loop associated196

with the solution of Eqs. (8) and (9) has already been developed by some of the authors of the197

present paper (Faes et al. 2021b; 2020). In this section, a concise presentation of the results in198

Faes et al. (2021b, 2020) is provided for completeness. Then, directing attention to computing the199

bounds on the probability of failure of the nonlinear system given by Eq. (7), a novel methodology200

is proposed, which is based on the combination of the statistical linearization method (Roberts and201

Spanos 2003) with the theoretical framework described above.202

Linear problems203

The operator norm method introduced in Faes et al. (2021b, 2020), specifically focuses on204

models whose relation between the response ( and the uncertain inputs ) and / is given by:205

(() , /) = AB())/ . (10)206

In Eq. (10), A : R=C ↦→ R=[ denotes a continuous linear map that represents the translation of207

the model input to the responses of interest, whereasB : R= ! ↦→ R=C is a linear map that transforms208

the random vector / to the sample paths of the stochastic process which serves as model input. For209

instance, using the KL series expansion, B is given in its discrete form as:210

B = 	�1/2, (11)211

where	 and� are the matrices which contain, respectively, the eigenvectors and eigenvalues of the212

matrixRPP (see also section “Bounds on the reliability of nonlinear dynamical systems”). Note that213

eq. (10) allows modeling the dynamic response of linear structural systems comprising classical or214

non-proportional damping subject to dynamic loading. Details about the numerical formulation of215

eq. (10) can be found in, e.g., Chopra (1995); Jensen and Valdebenito (2007).216

Considering the linear map defined in Eq. (10) and also defining D()) = AB()) for simplicity,217
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it can be shown that the inequality:218

‖D())/‖?1 ≤ |2 |‖/‖?2 , (12)219

with ‖·‖? denoting a certain !? norm, always holds. In essence, this equation states that the length220

of the uncertain model input /, quantified via a prescribed !?8 norm, can be amplified at most by221

a factor 2 towards the model responses ( when applying the linear mapping defined by D()). A222

measure for how much a certain deterministic linear map D()) increases the length of the uncertain223

model input v in the maximum case, is given by the operator norm ‖D())‖?1,?2 , which is defined224

in a deterministic sense (i.e., for one realization of the uncertain parameters) as:225

‖D())‖?1,?2 = inf
{
2 ≥ 0 : | |D())v| |?1 ≤ |2 | · ‖v‖?2 ,∀v ∈ R=E

}
, (13)226

or, equivalently:227

‖D())‖?1,?2 = sup
{ ‖D())v‖?1
‖v‖?2

: v ∈ R=E with v ≠ 0
}
. (14)228

Clearly, the calculation of a specific value ‖D())‖?1,?2 depends on the choice of ?1 and ?2. The229

interested reader is directed to Faes et al. (2021b, 2020) for an analytical presentation of the method230

and for guidance on the optimal selection of ?1 and ?2; and to Faes and Valdebenito (2020, 2021)231

for a practical application of the framework in the context of reliability-based design optimization.232

In case of calculating first excursion probabilities, taking into account Eq. (6), experience233

shows that selecting ?1 → ∞ and ?2 = 2 provides a good correlation between the operator234

norm ‖D())‖∞,2 and the failure probability % 5 . This happens since the operator norm ‖D())‖∞,2235

describes the amount of ‘energy’ amplification in the random signal towards the ‘extremes’ of236

the responses (8, and hence, its corresponding effect on % 5 . Thus, it is readily seen that finding237

those values of the epistemic uncertain parameters ) that minimize and maximize, respectively,238

‖D())‖∞,2 will provide a good approximation of the realizations that minimize and maximize % 5 .239

Hence, the double loop that is presented in Eqs. (8) and (9) can be efficiently decoupled, first, by240
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determining )* via:241

)* = argmax
)∈) �

‖D())‖∞,2 (15)242

to find the parameters that yield % 5 , and then, by determining )! via:243

)! = argmin
)∈) �

‖D())‖∞,2 (16)244

to find the parameters that yield % 5 . Next, the bounds on % 5 , i.e., % 5 and % 5 , are obtained by245

solving Eq. (5) twice, corresponding to )* and )! . It is noted that any pertinent optimization solver246

can be employed to solve Eqs. (15) and (16). Further, it is readily seen that recasting the problem247

in the form given by Eq. (10) is critical for the application of the method. In essence, this means248

that the underlying model must be linear, and that the aleatory uncertainty can only be present in249

the load description (Faes et al. 2021b). This feature of the method hinders its direct application to250

nonlinear systems defined by Eq. (7). Nevertheless, this limitation is addressed in the following by251

resorting to the statistical linearization method, i.e., by defining an equivalent linear system for the252

nonlinear system of Eq. (7).253

Statistical linearization methodology254

In this section, a concise presentation of the statistical linearization methodology is provided for255

completeness. The main objective of the method is to replace the originally considered nonlinear256

system with an equivalent linear one and minimize (in some sense) the difference between the257

two systems. Clearly, the readily available solution frameworks for treating the equivalent linear258

system are used to estimate the stochastic response of its nonlinear counterpart. In general, several259

variations of the method have been used to solve approximately and efficiently nonlinear stochastic260

differential equations associated with engineering applications; see, indicatively, Fragkoulis et al.261

(2016b); Kougioumtzoglou et al. (2017); Fragkoulis et al. (2019); Spanos and Malara (2020);262

Pasparakis et al. (2021); Ni et al. (2021) and references therein. Its extensive utilization in263

stochastic dynamics is associated with its capacity to treat a wide range of nonlinear behaviors in a264

straightforward manner.265
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The statistical linearization method is invoked herein to obtain an equivalent linear system that266

is compatible with the operator norm framework. For the application of the method, the nonlinear267

system in Eq. (1) is replaced by an equivalent linear system of the form:268

(M +M4) ¥q(C) + (C + C4) ¤q(C) + (K +K4) q(C) = 1?(C, /). (17)269

In Eq. (17), M4,C4 and K4 denote, respectively, the mass, damping and stiffness =3 × =3 matrices270

of the equivalent linear system that account for neglecting the nonlinearity from Eq. (1) . Next, the271

error 9 ∈ R=3 is defined as the difference between Eqs. (1) and (17), i.e.:272

9 = � ( ¥q(C), ¤q(C), q(C)) −M4 ¥q(C) − C4 ¤q(C) −K4q(C), (18)273

and its mean square is minimized. Note that although several criteria are available for minimizing274

9 (e.g., Socha 2007, Elishakoff and Andriamasy 2012), adopting a mean square error minimization275

in conjunction with the Gaussian assumption for the system response probability density functions276

(Roberts and Spanos 2003) facilitates the determination of the equivalent linear system in Eq. (17).277

Specifically, the elements of matrices M4,C4 and K4 are given in closed form by:278

<48 9 = E

[
m�8

m ¥@ 9

]
, 248 9 = E

[
m�8

m ¤@ 9

]
, :48 9 = E

[
m�8

m@ 9

]
, (19)279

where E[·] is the expectation operator and the indices 8, 9 = 1, 2, . . . , =3 denote the corresponding280

element of the =3 × =3 matrices and =3-dimensional vectors.281

Next, note that the equivalent linear system response variance is also required to compute the282

elements of the equivalent matrices given by Eq. (19). This is attained by employing either a time-283

or a frequency-domain solution framework (Roberts and Spanos 2003, Fragkoulis et al. 2016b,284

Kougioumtzoglou et al. 2017). For instance, following the latter, the system response variance is285
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determined by resorting to the input-output relationship of random vibration theory:286

Sqq(l) = "(l)SPP(l)"T∗(l), (20)287

where Sqq(l) and SPP(l) denote, respectively, the response and excitation power spectrum, and288

‘T∗’ corresponds to the conjugate transpose matrix operator. Further, "(l) is the frequency289

response function matrix of the equivalent system in Eq. (17), i.e.:290

"(l) =
[
−l2(M +M4) + il(C + C4) + (K +K4)

]−1
, (21)291

Thus, taking into account Eqs. (20) and (21), the system response variance is determined by:292

E
[
@28 (C)

]
=

∫ ∞

−∞
(@8@8 (l)dl, E

[
¤@28 (C)

]
=

∫ ∞

−∞
l2(@8@8 (l)dl, E

[
¥@28 (C)

]
=

∫ ∞

−∞
l4(@8@8 (l)dl,

(22)293

where (@8@8 (l), 8 = 1, 2, . . . , =3 , are the diagonal elements of the system response spectrum294

Sqq(l). Clearly, Eq. (19) and Eq. (22) define a coupled set of nonlinear equations to be solved295

for determining M4,C4 and K4. For its solution, the following iterative scheme is used. First, the296

equivalent parameter matrices in Eq. (17) are set equal to null matrices. Then, initial values for the297

response variance are computed by Eq. (22). Next, the latter are used in conjunction with Eq. (19)298

to update the values for M4,C4 and K4. The last two steps are repeated until convergence.299

Finally, it is noted that since the linearization is performed in a mean-square error minimization300

sense, the approximation of the true system is generally less accurate in the tails of the distribution.301

Hence, the accuracy of the method tends to decrease when considering smaller failure probabilities.302

That is, using the equivalent linear system does not generally provide sufficiently accurate estimates303

for smaller failure probabilities. In this regard, in the proposed approach the equivalent linear system304

is only used for identifying the epistemic parameter values that yield the extrema of % 5 . After these305

values have been identified, they are used to obtain the corresponding lower and upper bounds of % 5306

for the original nonlinear system by means of direct Monte Carlo simulation. Nonetheless, as it is307
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shown in the numerical examples section, the proposed framework provides practical advantages in308

the sense that the failure probability bounds can be computed with significantly greater numerical309

efficiency.310

Solution of the equivalent linear system311

Clearly, Eq. (17) represents a linear structural system subject to stochastic Gaussian loading.312

However, it is noted that, depending on the form of nonlinearity � ( ¥q(C), ¤q(C), q(C)) in Eq. (7),313

the parameter matrices of the equivalent system in Eq. (17) are no longer necessarily symmetric.314

Nevertheless, this poses no difficulty in applying the proposed methodology. In general, new ap-315

proaches have been recently developed for treating linear and nonlinear multi-degree-of-freedom316

systems which lack mathematically appealing properties, such as symmetry and positive definite-317

ness; see, indicatively, Fragkoulis et al. (2016a,b). Further, note that matrix C + C4 represents a318

‘full’ damping matrix. Therefore, commonly applied solution schemes based on convolution, as319

described in Chopra (1995) cannot be applied directly.320

In this regard, Eq. (17) is recast into a state-space form (Chopra 1995; Jensen and Valdeben-321

ito 2007):322

M∗ ¤q∗(C) +K∗q∗(C) = P∗(C, /), (23)323

where M∗ ∈ R2=3×2=3 , K∗ ∈ R2=3×2=3 and P∗ ∈ R2=3×1 are block matrices given by:324

M∗ =


0 M +M4

M +M4 C + C4

 , K∗ =


−(M +M4) 0

0 K +K4

 , P∗ =


0

1?(C, /)

 , (24)325

and q∗(C) denotes the 2=3-dimensional vector326

q∗(C) =

¤@(C)

@(C)

 . (25)327
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The impulse response function ℎ8 (C) corresponding to the system in Eq. (23) is defined as:328

ℎ8 (C) =
2=3∑
A=1

#)8 �r�)?A1

(2_A)A + (A)
4_A C , (26)329

where 8 = 1, 2, . . . , =A denotes the number of responses, and #8 is a constant vector such that a330

response of interest [8 is generated as [8 = #)8 q. Variables )A and (A are the modal energies given331

by:332

)A = �)?A (M +M4)�?A , (A = �)?A (C + C4)�?A , (27)333

where �?A and �?A are, respectively, the position parts (i.e., the last =3 components) of the right334

and left eigenvectors, associated with the right and left eigenproblems of Eq. (23); _A contains the335

corresponding eigenvalues.336

The dynamic responses (8, 8 = 1, 2, . . . , =[, that solve Eq. (17) are calculated by apply-

ing the convolution integral between the corresponding unit impulse response functions ℎ8 (C),

8 = 1, 2, . . . , =[, and the stochastic loading ?(C, /), i.e.:

[8 (C, /) =
∫ C

0
ℎ8 (C − g) ?(C, /)3g, 8 = 1, 2, . . . , =[ . (28)

In view of the excitation model introduced in Eq. (4), evaluating Eq. (28) at time C: yields:337

[8 (C: , /) =
:∑

;1=1
ΔCn;1ℎ8 (C: − C;1)

(
= !∑
;2=1

k;1,;2

√
_;2b;2

)
= $8,:/, (29)338

for 8 = 1, 2, . . . , =[, : = 1, 2, . . . , =) , where k;1,;2 is the (;1, ;2)-th element of matrix 	; $8,: is a

= !-dimensional vector such that:

$8,: =
[∑:

;1=1 ΔCn;1ℎ8 (C: − C;1)k;1,1
√
_1 . . .

∑:
;1=1 ΔCn;1ℎ8 (C: − C;1)k;1,= !

√
_= !

]
(30)

and n;1 is a coefficient depending on the numerical integration scheme used in the evaluation of the339

convolution integral. When the trapezoidal integration rule is chosen (Gautschi 2012), n;1 = 1/2,340
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if ;1 = 1 or ;1 = :; otherwise, n;1 = 1. As such, (8 is calculated as a linear transformation that maps341

the standard normal random vector / to the responses (8 for each time instant:342

(8 (/) = �8 ())/, (31)343

where:344

(8 (/) =



[8 (C1, /)

[8 (C2, /)
...

[8 (C=) , /)


, �8 ()) =



$8,1())

$8,2())
...

$8,=) ())


, (32)345

in which �8 ()) is a =) × = ! matrix that represents a linear map from the standard normal random346

vector / to the 8-th response of interest. Note that �8 ()) depends directly on the epistemic uncertain347

parameters ) through the eigenvalues and eigenvectors of the KL series expansion.348

Bounds on the first excursion probability349

As explained in section “Linear problems”, the operator norm theorem can be used to bound the350

probability of failure of linear models under epistemic uncertainty in the definition of the load. To351

extend the method towards treating nonlinear dynamical simulation models, a framework based on352

the combination of the operator norm-based treatment and the statistical linearization methodology353

is proposed. Hereto, the linearized system of Eq. (31) is considered. Specifically, the epistemic354

uncertain parameters of the imprecisely defined stochastic load that bound % 5 are defined as:355

)* = argmax
)∈) �

max
8=1,2,...,=[

‖�8 ())‖∞,2 (33)356

and:357

)! = argmin
)∈) �

max
8=1,2,...,=[

‖�8 ())‖∞,2, (34)358

with �8 as defined in Eq. (32). These parameter realizations are used for finding the parameters that359

yield % 5 and % 5 , respectively. Note that the explicit dependence of �8 on ) is highlighted in these360
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equations. The parameters ) influence�8 through the eigenfunctions and corresponding eigenvalues361

of the KL expansion shown in Eq. (4) and the interaction with the structural nonlinearities. Based362

on the derivations in Tropp (2004), Eqs. (33) and (34) are recast into:363

)* = argmax
)∈) �

max
8=1,2,...,=[

max
9=1,2,...,=)

‖� 9 :
8
())‖2 (35)364

and:365

)! = argmin
)∈) �

max
8=1,2,...,=[

max
9=1,2,...,=)

‖� 9 :
8
())‖2, (36)366

respectively, where the superscript ‘ 9 :’ denotes the 9-th row of matrix �8 and ‖ · ‖2 denotes the367

regular !2 vector norm.368

To summarize, the proposed procedure can be described as follows:369

1. Represent the nonlinear model including the epistemic uncertainty by using Eq. (7).370

2. Solve the optimization problems in Eqs. (35) and (36) to identify )* and )! , by using371

any appropriate algorithm. Then, compute matrix �()) for a given realization ) . This372

is done in two steps. First, applying the statistical linearization method, solve iteratively373

Eqs. (19)-(22). Secondly, taking into account Eqs. (24)-(32), perform modal analysis over374

the equivalent linear system to derive matrix �()).375

3. Once )* and )! are identified, perform reliability analysis using the full nonlinear model376

in order to determine the upper and lower bounds of the failure probability.377

NUMERICAL EXAMPLES378

Case study 1: two-degrees-of-freedom nonlinear system379

In this case study, the two-degrees-of-freedom (DOF) system in Fig. 1 is considered. The380

system consists of masses <1 and <2, which are connected to each other by a linear damper of381

damping coefficient 22 and a linear spring of stiffness coefficient :2. Further, mass <1 connects382

to the foundation by a linear damper of damping coefficient 21 and a nonlinear spring of stiffness383

coefficient :1.384
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Next, considering the coordinates vector qT =
[
@1 @2

]
and following the standard Newtonian385

approach to derive the system governing equations of motion (Roberts and Spanos 2003), Eq. (1)386

is formulated. The system parameter matrices are given by:387

M =


<1 0

0 <2

 , C =


21 + 22 −22

−22 22

 , K =


:1 + :2 −:2

−:2 :2

 , (37)388

whereas:389

1?(C, /) =

1

0

 ?(C, /) (38)390

denotes the stochastic excitation. Further, the nonlinear restoring force of the system is given by:391

�( ¥q, ¤q, q) =

:1a@

3
1

0

 , (39)392

where a corresponds to the intensity of the nonlinearity. Finally, the load ?(C, /) acting on the393

system is modeled as a zero-mean Gaussian stochastic process, described by the Clough-Penzien394

spectrum (Li and Chen 2009b):395

(%% (l) =
l4

(
l46 + (2Z6l6l)2

)
(0(

(l26 − l2)2 + (2Z6l6l)2
) (
(l2

5
− l2)2 + (2Z 5l 5l)2

) . (40)396

The following parameter values are considered for the system in Fig. 1, <1 = <2 = 1 [kg],397

21 = 22 = 0.2 [N· s/m], :1 = :2 = 1 [N/m], whereas the intensity of the nonlinearity is a = 1 and398

the nominal parameters of the excitation spectrum are [l6, l 5 , Z6, Z 5 , (0] = [4c, 0.4c, 0.7, 0.7, 3×399

10−4]. Failure of the system is considered as the first passage of any of the displacements of the400

masses over a threshold value of 1 = 0.040 [m]. Further, it is considered that the analyst is unsure401

about the exact values of the stochastic load acting on the system. Specifically, the definition of the402

parameters of the Clough-Penzien spectrum is subject to epistemic uncertainty. The intervals that403
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are applied for bounding this epistemic uncertainty are shown in Table 1.404

Next, the herein proposed operator norm theory-based statistical linearization framework is405

employed for computing the bounds on the probability of failure. In this regard, first, the governing406

equation of motion with parameter matrices and nonlinear vector given by Eqs. (37) and Eq. (39),407

respectively, is replaced by an equivalent linear system of the form of Eq. (17). Then, considering408

the error function in Eq. (18) and adopting a mean square minimization of the error, Eq. (19) leads409

to the equivalent parameter matrices:410

M4 =


0 0

0 0

 , C4 =


0 0

0 0

 , K4 =


3:1af2@1 0

0 0

 . (41)411

Regarding the numerical implementation, considering as stopping criterion
���K8+1

4 −K8
4

K8
4

��� < 10−5,412

where the index ‘8’ denotes the 8-th iteration and the initial value K04 is set equal to zero, the413

iterative scheme described in the section “Statistical linearization methodology” converges after414

three iterations. Thus, the nonlinear system shown in Fig. 1 is approximated by the equivalent415

linear system whose governing equations of motion are given by Eq. (17).416

Next, the augmented state-space system in Eq. (23) is formulated and taking into account417

Eqs. (26)-(31), the linear map �8 ()) is calculated. Then, following the presentation in the section418

“Bounds on the first excursion probability”, and considering the derived equivalent linear matrices,419

the operator norm that corresponds to any given realization of the epistemically uncertain Gaussian420

process load is computed. In addition, the optimization over the operator norm can be performed421

using the Matlab built-in patternsearch optimization tool. Finally, two optimization problems have422

to be solved; the first one for determining )* (see Eq. (35)) and the second one for determining )!423

(see Eq. (36)), which require approximately 100 iterations to converge.424

So far, the operator norm-based statistical linearization framework is used for determining the425

bounds on % 5 . Next, the validity of the obtained results is verified by using a brute-force implemen-426

tation of the double-loop problem. Hereto, the Newmark solver is considered in conjunction with427

Monte Carlo simulation (MCS) as the ‘inner loop’ in Eqs. (8) and (9) for computing % 5 for each428
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realization of the epistemic uncertainty. It is noted that a total of 1000 samples are considered for429

estimating the failure probability at each realization of the epistemic parameters. A patternsearch430

optimization algorithm (Kolda et al. 2003) is used to solve the optimization problem in the ‘outer431

loop’. This result serves as the benchmark for the bounds on % 5 against which the result of the432

proposed operator norm-based statistical linearization framework is compared.433

Results and discussion434

The functional relationship between the operator norm ‖�‖2,∞, as computed over the linearized435

system, and % 5 , as computed using MCS combined with the Newmark solver, is shown in Fig. 2.436

The black dots in this figure are obtained by drawing 1000 uniformly distributed samples in between437

the bounds of ) � . First, it is noted that the relation between the operator norm ‖�8 ())‖∞,2 and % 5 is438

not bĳective. In addition, there is a clear trend between these two quantities, where higher operator439

norm values correspond to higher probability of failure values and vice-versa. This illustrates440

the validity of the proposed approach in the sense that minimizing (or maximizing) the operator441

norm also yields a minimum (or maximum) of the failure probability. Further, Table 2 shows the442

parameters that yield an extremum in % 5 by optimizing directly over % 5 (indicated DL), as well as443

over the operator norm (indicated ON). These parameters are grouped in the rows indicated with444

) . Furthermore, the corresponding optima are reported, as well as the number of required function445

calls (=0). It is important to stress that to obtain a value for the operator norm, only the linear map �446

(see Eq. (31)) needs to be assembled and the corresponding operator norm needs to be calculated.447

On the other hand, the calculation of one value of % 5 requires the full solution of Eq. (5).448

Finally, in order to evaluate the performance of the proposed approach for different threshold449

levels, Fig. 3 presents the failure probability bounds obtained by the proposedmethod (denoted ON)450

and the reference bounds obtained by a direct double loop implementation (denotedDL) for different451

values of 1. First, note that the failure probability values tend to decrease for higher threshold levels,452

as expected. In addition, it is seen that the lower bounds for the failure probability obtained by453

the proposed approach agree very well with the reference values for smaller threshold levels, i.e.,454

1 ≤ 0.040m. On the other hand, the deviations between the operator norm-based estimates for the455
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lower bounds and the corresponding reference values tend to increase for larger values of 1, which456

are associated with smaller failure probabilities. For instance, the proposed scheme overestimates457

the lower failure probability bound in 30% for the case 1 = 0.050 m. This illustrates that the458

proposed statistical linearization-based method is more suitable for problems involving moderate459

to large failure probabilities, as already pointed out. In this regard, the integration of the ON-based460

framework with alternative linearization techniques can (potentially) improve the performance of461

the proposed scheme for smaller failure probabilities.462

Case study 2: six degrees-of-freedom structure463

In this example, a 6-DOF system of rigid masses <8 (8 = 1, 2, · · · , 6) connected to each other464

by nonlinear dampers as shown in Fig. 4 is considered. In this regard, considering the coordinates465

vector qT =
[
@1 @2 @3 @4 @5 @6

]
, the matrix form of the system governing equations of466

motion is formulated (see Eq. (1)), whose parameter matrices are given by:467

M =



<1 0 0 0 0 0

<2 <2 0 0 0 0

<3 <3 <3 0 0 0

<4 <4 <4 <4 0 0

<5 <5 <5 <5 <5 0

<6 <6 <6 <6 <6 <6



,C =



21 −22 0 0 0 0

0 22 −23 0 0 0

0 0 23 −24 0 0

0 0 0 24 −25 0

0 0 0 0 25 −26

0 0 0 0 0 26



(42)468

and:469

K =



:1 −:2 0 0 0 0

0 :2 −:3 0 0 0

0 0 :3 −:4 0 0

0 0 0 :4 −:5 0

0 0 0 0 :5 −:6

0 0 0 0 0 :6



. (43)470

21 Ni et al., November 30, 2021



Further, it is assumed that the system is subjected to ground acceleration, which is modeled as a471

stochastic process, whose corresponding power spectrum is given by:472

S(l) =



(1(l) 0 0 0 0 0

0 (2(l) 0 0 0 0

0 0 (3(l) 0 0 0

0 0 0 (4(l) 0 0

0 0 0 0 (5(l) 0

0 0 0 0 0 (6(l)



, (44)473

where (8 (l), 8 = 1, 2, . . . , 6, is modeled as a Clough-Penzien spectrum (see Eq. (40)) with the474

epistemic uncertainty on the parameters l6, l 5 , Z6 and Z 5 characterized by the intervals given475

in Table 1, whereas the epistemic uncertainty on parameter (0 is characterized by the interval476

[0.8, 1.2] × 0.05. In addition, the nonlinear function �( ¥q, ¤q, q) takes the form:477

�T( ¥q, ¤q, q) =478 [
21a ¤@31 − 22a ¤@

3
2 22a ¤@32 − 23a ¤@

3
3 23a ¤@33 − 24a ¤@

3
4 24a ¤@34 − 25a ¤@

3
5 25a ¤@35 − 26a ¤@

3
6 26a ¤@36

]
,479

(45)480

with a describing the intensity of the nonlinearity in Eq. (45). The system parameter values are481

<1 = <2 · · · = <6 = 1, 21 = 22 · · · = 26 = 0.2, :1 = :2 · · · = :6 = 1 and a = 3. In addition, failure482

is defined in this case as the first passage of any interstory drift beyond the maximum allowable483

threshold 1 = 0.6 m.484

Then, the herein proposed operator norm theory-based statistical linearization framework is485

applied. In this regard, the equivalent linear mass and stiffness 6 × 6 matrices take the form:486

Me = Ke = 0, (46)487
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whereas the equivalent linear damping 6 × 6 matrix becomes:488

Ce =



321af2¤@1 −322af
2
¤@2 0 0 0 0

0 322af2¤@2 −323af2¤@3 0 0 0

0 0 323af2¤@3 −324af2¤@4 0 0

0 0 0 324af2¤@4 −325af2¤@5 0

0 0 0 0 325af2¤@5 −326af2¤@6
0 0 0 0 0 326af2¤@6



. (47)489

The elements of the equivalent matrix in Eq. (47) are determined by utilizing the iterative scheme490

described in the section ‘Statistical linearization methodology’. Specifically, using
���C8+14 −C84

C84

��� < 10−5491

as stopping criterion, where ‘8’ denotes the 8-th iteration of the scheme, and also considering the492

initial value C04 = 0, the scheme converges after five iterations. Thus, the nonlinear system shown493

in Fig. 4 is approximated by the equivalent linear system whose governing equations of motion are494

given by Eq. (17).495

Next, the augmented state-space system in Eq. (23) is formulated and taking into account496

Eqs. (26)-(31), the linear map �8 ()) is calculated. Subsequently, following the presentation in497

the section “Bounds on the first excursion probability”, and considering the derived equivalent498

linear matrices, the operator norm that corresponds to a certain realization of the epistemically499

uncertain Gaussian process load is computed. In addition, the optimization over the operator norm500

is performed using the Matlab built-in patternsearch optimization tool. Finally, two optimization501

problems have to be solved; the first one for determining )* (see Eq. (35)) and the second one for502

determining )! (see Eq. (36)), which require approximately 200 iterations to converge.503

Results and discussion504

The results of the herein proposed framework are shown in Table 3, which shows the parameters505

that yield an extremum in % 5 by either optimizing directly over % 5 (indicated DL) or over the506

operator norm (indicated ON). These parameters are grouped in the rows indicated with ) . Clearly,507

the proposed method is capable of adequately approximating the true bounds on % 5 . The results508
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are compared to a brute-force double loop implementation using Newmark method to solve the509

nonlinear ODE, MCS to calculate % 5 , and patternsearch in Matlab to optimize over the epistemic510

parameter space. It is highlighted that the results obtained by following the proposed approach511

are in reasonable agreement with the corresponding results obtained by following a classic double512

loop approach. The small discrepancy between the results is expected and is due to adopting513

an approximate linearization scheme to enable the application of the operator norm framework.514

Nonetheless, it can be argued that these bounds are highly reasonable given the immense reduction515

in computational cost that is required to calculate them. For instance, considering the upper bound516

on % 5 , the required number of deterministic model solutions can be reduced from 292000 to just517

626, with 1000 additional samples for computing the associated failure probability.518

CONCLUSIONS519

In this paper, a novel technique has been developed for bounding the responses and probability of520

failure of nonlinear structural models subjected to imprecisely defined stochastic Gaussian loads.521

The proposed technique can be construed as a generalization of a recently developed operator522

norm-based method to account for nonlinear dynamical systems. This is attained by resorting to523

the statistical linearization methodology for defining a linear system equivalent to the nonlinear524

system under consideration. In this regard, the double loop that is typically associated with525

estimating the bounds on the probability of failure of nonlinear dynamical systems is effectively526

decoupled and the associated computational cost is reduced by several orders of magnitude. Thus,527

it can be argued that integrating statistical linearization into the operator norm framework allows528

for bounding the probability of failure of nonlinear systems with acceptable accuracy and at greatly529

reduced numerical cost. The validity and numerical efficiency of the proposed technique has530

been demonstrated by considering two nonlinear structural systems. It is noted, however, that531

since the linearization scheme has been performed in a mean-square error minimization sense, the532

representation of the nonlinear system is less accurate in the tails of the distribution. This aspect533

renders the proposed approachmostly suitable for estimating the bounds of moderate to large failure534

probabilities. Nevertheless, future work is directed towards developing an enhanced operator norm-535

24 Ni et al., November 30, 2021



based linearization scheme capable of estimating bounds on smaller failure probabilities. This can536

be achieved, in principle, by combining the application of the statistical linearization methodology537

with a stochastic averaging treatment. Further, the proposed framework can be integrated with more538

advanced simulation methods, such as importance sampling or subset simulation. Another path539

for future work consists of extending the range of application of the proposed framework to more540

general models for stochastic loading (other than Gaussian). Finally, the evaluation of the proposed541

approach for more complex and numerically demanding structural models involving multiple types542

of nonlinearities constitutes an additional subject for future research.543
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TABLE 1. Tested values for ) � .

l�6 l�
5

Z �6 Z �
5

(�0
[0.8, 1.2] × 4c [0.8, 1.2] × 0.4c [0.8, 1.2] × 0.7 [0.8, 1.2] × 0.7 [0.8, 1.2] × 3 × 10−4

TABLE 2. Results of the optimization problems. Case study 1.

parameter % 5 (DL) % 5 (ON) % 5 (DL) % 5 (ON)

)

(∗0 2.409 · 10−04 2.409 · 10−04 3.534 · 10−04 3.591 · 10−04
l∗6 11.782 15.080 11.195 10.056
l∗
5

1.507 1.508 1.007 1.005
Z∗6 0.700 0.840 0.575 0.840
Z∗
5

0.825 0.840 0.575 0.560

Output
% 5 0.084 0.088 0.977 0.974
$# 0.0072 0.0069 0.0354 0.0375
=0 354000 520 + 1000 28900 595 + 1000

TABLE 3. Results of the optimization problems. Case study 2.

parameter % 5 (DL) % 5 (ON) % 5 (DL) % 5 (ON)

)

(∗0 0.040 0.040 0.060 0.060
l∗6 12.557 12.684 14.570 10.053
l∗
5

1.507 1.508 1.007 1.005
Z∗6 0.809 0.840 0.700 0.560
Z∗
5

0.827 0.840 0.567 0.560

Output
% 5 0.097 0.123 0.859 0.855
$# 0.081 0.079 0.307 0.319
=0 281000 1804 + 1000 292000 626 + 1000
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Fig. 1. A two-degrees-of-freedom nonlinear system under stochastic excitation.
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Fig. 2. Comparison of the operator norm, computed on the linearized system with the probability
of failure as computed by Monte Carlo simulation in combination with Newmark method.
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Fig. 3. Failure probability bounds for different threshold levels obtained by the proposed method
(ON) and a double loop implementation (DL).

36 Ni et al., November 30, 2021



Fig. 4. A six-degrees-of-freedom nonlinear system under stochastic excitation.
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