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We study the connection between operator ordering schemes and the c-number formula- 
tions of quantum mechanics, which are based on generating functionals and functional 
integrals. We show by explicit construction that different operator ordering schemes 
are related to different functional and functional integral formulations of quantum me- 
chanics. The results of these considerations are applied to classical non-linear stochastic 
dynamics by using the formal analogy between the Fokker-Planck equation and the 
Schr6dinger equation. 

1. Introduction 

The c-number formulations of quantum mechanics 
based on generating functionals and functional inte- 
grals often provide convenient compact expressions 
suitable for formal manipulations, e.g. for the deriva- 
tion of equations of motion and the generation of 
perturbation expansions (see e.g. [1-6]). 
It is known [7-14] that there exist different functional 
integral representations of the quantum mechanical 
propagator; this non-uniqueness reflects the under- 
lying operator ordering problem. In this paper we 
show by explicit construction that not only the prop- 
agator, but the whole apparatus of quantum mechanics 
may be recast in terms of different functional integral 
formulations, each of which is related to a particular 
operator ordering scheme. 
In addition, we derive different formulations of quan- 
tum mechanics in terms of generating functionals by 
using the fact that we are free to define the time order- 
ing operation for equal times with the help of an 
arbitrary operator ordering scheme. 
Using these results and the formal analogy between 
the Fokker-Planck equation and the SchrSdinger 
equation, we establish a class of functional and func- 
tional integral formulations of general diffusion pro- 
cesses which have attracted increasing attention re- 

cently [15-24]. As a byproduct we get functional inte- 
gral formulations of the Martin-Rose-Siggia formalism 
[-25] generalized to the case of arbitrary diffusion and 
drift coefficients. 

2. Operator Ordering Schemes and Time Ordering 

In this section we establish our notations and discuss 
various definitions of time ordering for equal times in 
terms of well known operator ordering schemes 
[26-291. 
We consider a non-relativistic quantum mechanical 
system consisting of n degrees of freedom with posi- 
tion operators Q: = (Q1 .... , Q,) and momentum opera- 
tors P:=(P~ .. . . .  P,), which obey the canonical com- 
mutation relations (h= 1) 

[Qk, Pkk'] = i tSkk,. (2.1) 

The dynamics of the system may be derived from the 
Schr6dinger equation 

d 
~10 ,}  = - i H l ~ t } ,  (2.2) 

where for simplicity the Hamiltonian H = H ( Q ,  P) is 
assumed to have no explicit time dependence. For a 
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Schr6dinger operator A=A(Q,P) the corresponding 
Heisenberg operator 

A(t): = U,7~ ~ AUtt, (2.3) 

obeys the Heisenberg equation 

dA 
- i [ A ( 0 ,  H ( t ) ] ,  (2 .4 )  

de 

where 

G,,: = e-i(t-, ,),  (2.5) 

is the time-evolution operator. In the Heisenberg pic- 
ture the state of the system is described by a time 
independent state operator W. The expectation value 
(A> of an operator A in the state W is given by 

(A> = Sp WA. (2.6) 

For notational convenience we combine the (2- and 
P-operators into a 2n-component vector operator 
4}: =(4}+, 4})=(Q,  P) with components 

Qk for ~ = + (2.7) 
4}~k: = Pk C~=--. 

The equal time commutation relations now read 

[4}j (t), 4} 2 (t)] = - aI2, (2.8) 

where the symbol I stands for (cq, ka) and the matrices 
a x, a y and a = are related to the Pauli-matrices r~, zY 
and ~ by 

'Y . . . .  ~'Y'~ (2.9) 

According to (2.4) and (2.8), the equation of motion 
for 4}(0 takes the form 

ia~2 07 4}2 (t)q-FJ (4}( t ) )=0,  (2.10) 

with 

OH 
/71 (4})" = - al 2 [4}2, H(4})] - a4}1. (2.11) 

Here and hereafter repeated indices are to be summed 
over. 
At this point we observe that all information on the 
dynamics of the system is contained in the expectation 
values of the time ordered products 

T(4} 1 (tl) . . .  4}m(tm)) 
..= 4}=<m)(t~(m})... 4}=m(t=a)). (2.12) 

Here n represents the permutation such that t=(=)> 
• .. > t=(l). Definition (2.12) gives a definite meaning to 

the T-ordering operation, only in the event when all 
times involved are different. However, it is convenient 
to extend the T-ordering to the case when two or more 
times coincide. 
In quantum field theory and in many body theory, 
the Hamiltonian and all other physical quantities 
are given in forms which are definitely ordered, e.g. 
normally or symmetrically ordered. This is the reason 
why this type of operator ordering is used to define 
the T-ordering for equal times. Although it is reason- 
able to proceed in this way, we want to stress that we 
are free to define the T-ordering for equal times in an 
arbitrary way. We will find that this freedom of choice 
is intimately connected with the possibility of writing 
the theory in terms of different functional formula- 
tions. Let us hence study the consequences when we 
define the T-ordering for equal times as a definitely, 
but arbitrarily, ordered product. 
For simplicity we restrict ourselves to a special class 
of ordering procedures parametrized by a real ordering 
parameter u. We define the u-ordered product {A(4})}, 
of an operator A(4}) by {4}1}," = 4}1 and by postulating 
a Wick-theorem with the u-contraction 

,4}1 (J~2,: = (~l 4}2 --  {I~1 (~2}u 
u 

- -  1 " x 1 y 
: -  ( z -  u)  ~ 812  - ~-o-, 2 • ( 2 . 1 3 )  

When we choose u=0,  1 ~, 1, we get respectively the 
well known anti-standard (PQ), Weyl-Wigner and 
standard (QP) ordering schemes. Every ordering pro- 
cedure defines a phase space description [-26-29]. 
Hence, via the u-ordering, there corresponds to an 
operator A(4}) in a one-to-one manner, a u-function 
a, (qo) of the phase space variables q0.-= (q~ +, ~0_)= (q, p) 
which is determined by 

A(4}) =:{a.(4})}u. (2.14) 

The functions G and G' are related by 

a,,= SY,,,a,. (2.15) 

Here ~ , , ,  is a linear operator acting on phase space 
functions a(q0) according to 

O 2 
~,,a(qo):=exp (li(u-u')a~2 ~ 2 )  a((?). (2.16) 

Equivalent to the definition (2.14) is the relation 

<~o+ [A(4})] qo+> 

d" q~_ ei~_~+~_~,+~ ) G(qo~)" (2.17) 
=5 (2r& 

Here [q0+>=lq) is the eigenvector of the position 
operator 4}+ =Q, q0+ =q  is the corresponding eigen- 
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value, and ~o, stands for 

~0°, =(~0+ + u(q,+ -~0+), ~0_). (2.18) 

Let us define T, as the time ordering operation which 
extends the definition (2.12) to the case of equal times 
through 

T, A('~(t)): = {A(~(t)},. (2.19) 

The expression on the r.h.s, should be understood 
according to the following prescription: 

{A(~(t))}, = Ut7o ~ {A(qi)}, U,o. (2.20) 

From Equations (2.14) and (2.19) we obtain 

A(~b(t)) = T, a,(q~(t)). (2.21) 

This expression may be written as a limit of a time 
ordered product taken at different times, since for 
an arbitrary function a(q~) we have 

T~ a(~b(t)) = T~So,a(~+(t), • (t+0)) 

= Tu 5~ ,  a (~+ (t + 0), ~b (t)). (2.22) 

3. Functional Formulation of Quantum Dynamics 

In this section we review the functional formulation 
of quantum mechanics (e.g. [1-4]). We will find that 
this formulation takes different forms for different 
definitions of the time ordering for equal times. 
The quantity which plays the central role in this 
formulation is the functional 

Z. [ ~ ] :=  <% ~ , °  [q] >~a" (3.1) 

Here t~, t b are two given times such that tb>t , ,  the 
T,-ordered product of the operator 

tb 

Ytb,o [t/] : = exp (i ~ d t t/3 (t) ~b 3 (t)) (3.2) 
ta 

is the "S-matrix" corresponding to the source-field t/(t), 
and the bracket < )b, is defined as 

<" )ha" = <cP~)[ U~,. (')I ~o~)>. (3.3) 

By functional differentiation of Z,  we have 

g'z~[,7] 
img Y]I ( t l ) " '  g I~rn (tm) = < Tu ((/~1 ( t l )"  " " (I)m (tin) Ytb ta ["f~])>ba ' 

(3.4) 

From this expression we obtain the m-point functions 
by setting ~/=0 

i,,gth(tl)...gtb,(tm ) ,=0=(T,(~bl(t0...~m(tm)))b,. (3.5) 

Such functions characterize the dynamics of the system 
in the time interval (t,, tb). By multiplying them with 
the density matrix Qp(+")l WUt;-t] ]~o~ )> and then inte- 
grating over q¢+a) and (b) q~+, we get the correlation func- 
tions of the system in the state W. 
As functions of the times tl, ..., t,,, the functional 
derivatives (3.4) and (3.5) of Z,  are discontinuous at 
those points where at least two times t~ and tj cor- 
responding to g/grl+ (h) and g/g t/_ (t;) cdincide; this 
is due to the fact that the operators 4~+ and ~_ do not 
commute. Nevertheless, via the T,-ordering, the equal 
time second and higher order functional derivatives 
are fixed at these points of discontinuity in a u-depen- 
dent way. This may also be considered as a conse- 
quence of the fact that the functional Z,  [q] itself takes 
a u-dependent value when the source-field t/(t) con- 
tains g-functions. 
For an arbitrary function a(ep) we have according to 
Equation (3.4) 

a ~ Z,,[tl]=<T~(a(fb(t)) Yrbt.['l]))ba- (3.6) 

According to relation (2.22) the functional derivatives 
of Z,, at the points of discontinuity may be written 
as u-dependent limits 

a Z"=5~°ua (t)' igtl_(t+O ) 

=~q~l,a igtl+(t+O), ig~_(t ) Z,. (3.7) 

Each of these two relations is equivalent to (3.6). 
Specializing (3.6) to t /=0 and using definition (2.19), 
we find that a given function a(cp) is related to the 
operator {a(q~)}, by 

a Z,[n= o = < {a (~b (t))},)b,, (3.8) 

and conversely according to (2.21), that a given opera- 
tor A(~b) is related to the function a,(~o) by 

(g)Zu[~=o=<A(ob(t)))ba.  (3.9) 

From the relations (3.5) and (3.9) and from the defini- 
tion (3.3) of the bracket < )b~, we see that the operator 
formalism of quantum mechanics may be expressed 
in terms of Zu and its functional derivatives. This 
functional formulation of quantum mechanics be- 
comes self-contained when we add an equation of 
motion for Z,.  
From (2.8) and (2.10) we have 

0 gZ, ~- <T,(Ytbt) Fl(~(t)) T,(Ytt~))b~ =th (t) Z,.  
a~2 8t g~z(t) 

0.1o) 
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Using (2.21) applied to the operator FI, we get, accord- 
ing to (3.6), a closed equation for Z,, namely 

0 6Zu 
~- f l u t ~ )  Zu=tll(O Z u. (3.11) 

afz 0t 6t/2(t ) 

Here the u-function fl , ,  which corresponds to F 1, is 
related to the u-function h,, which corresponds to the 
Hamiltonian H, by 

Oh.(q~) A . ( ~ 0 ) = - -  (3.12) 
0(pl 

We get the functional Z,, defined by (3.1), as a solution 
of (3.11) by imposing the following boundary condi- 
tions (see e.g. [4]): 

Z.[01 = (1)ha, (3.13) 

(~Zu -~- q)(+a) Zu ' (3.14) 
i 6t/+(t,+0) 

6Z, (b) 
:(p+ Z,. (3.15) 

i (Sq + (tb--O) 

We remark that for Hamiltonians of the simple 
type H = (PkPk/2m) + v(Q), the associated u-function 
h u :  (Pk pk/2 m) + v (q) and hence fx, are independent 
of u. Nevertheless, even in this case an arbitrary 
operator A corresponds, according to (3.9), to a u-de- 
pendent functional derivative of Z,. The u-dependence 
of the functional formulation of quantum dynamics 
appears in perturbation theory also. Let Z~ °) and 
Z, represent the generating functionals of the systems 
characterized respectively by the Hamiltonians H (°) 
and H = H ( ° ) + H  (1). According to the definition (3.1) 
and (3.6) Z, is related to Z ~°) via 

Z,[t/] =exp - i ~ d t h ~  ~) fi t. ~ Z~.°) [t/] . (3.16) 

Here h(,X)(qo) is the u-function associated with the 
operator Ha) (4~). 
In summary we see that the above equations provide 
different functional formulations of quantum dynam- 
ics, depending on the choice of the underlying order- 
ing scheme. Hence, since there is no preference for a 
particular ordering scheme, there is no preference for 
a particular functional formulation. 
Conversely, we may consider the above equations as 
a method of quantization. For a classical system with 
the Hamiltonian function h(cp), we can write down a 
corresponding quantum mechanical equation of mo- 
tion which is (3.11) with fl,(cP) replaced by fx(q)) 
:=Oh/O~o~. Since the second and higher order func- 
tional derivatives of the functional Z, which is a solu- 
tion of this functional differential equation and which 

obeys the boundary conditions (3.13)-(3.15), are neces- 
sarily discontinuous as functions of the occurring 
times, we have to add a rule for the interpretation of 
the equal time derivatives of Z. This rule plays the 
role of a prescription which associates in a definite 
way a quantum mechanical Hilbert space operator to 
a classical phase space function a(~0). In particular, 
when we define such a rule by (3.7), denoting this by 
writing Z, instead of Z, we see from (3.8) that the 
associated operator is given as the u-ordered pro- 
duct {a (~b)},. 
It is the freedom of choice inherent in defining the 
equal time derivatives that is the functional formula- 
tion's way of reflecting the operator ordering problem. 

4. Functional Integral Formulation 
of Quantum Dynamics 

In this section we write the generating functional 
Zu PT] as a functional integral, thereby getting a func- 
tional integral formulation of quantum dynamics. As 
is well known [4-6], such a formulation provides 
conveniently compact expressions suitable for formal 
manipulations, e.g. for the generation of perturbation 
expansions. 
In order to guarantee that this c-number method 
yields correct results we have to define functional 
integration in a u-dependent way, which reflects the 
underlying operator ordering problem. We believe 
that these considerations are a key for a better under- 
standing of the so called ambiguities occurring in 
functional integral formulations which have been 
widely discussed in the literature [7-141. 
The power of functional integration techniques is 
fundamentally due to the fact that it is possible to 
carry out formal manipulations according to a few 
simple rules without being forced, at each step, to go 
back to the explicit definition of the functional inte- 
gration. Specifically, let us assume that functional 
integration is a linear operation, that it can be inter- 
changed with functional differentiation with respect 
to the sourcefield, and that it obeys the functional 
integration by parts lemma (see e.g. [51). We will 
show that, in agreement with these rules, the func- 
tional Zu[,7] defined in (3.1) may be written as 

Z, ['I] =S c~o e isuro,"l , (4.1) 
u 

with the "action" functional 
tg 

S, [(p, q] := Sdt C,(cp(t), ~b (t), '7(0, (4.2) 
ta 

and the "Lagrangian" 

L, (qo, ~b, '1)' = q0-k ~ +k-- h,(q°) +'1~ q°3- (4.3) 
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In (4.1) the u-integral ~ gO means functional integration 
u 

over all phase space paths q( t )=(e+( t ) , e_ ( t ) ) ,  sub- 
ject to e + ( t , ) = e ~  ) and e+(tb)=~0(+b). There is no re- 
striction on e-(t).  
According to the rules assumed above we get from (4.1) 

bmz" [~fl = S be  e d q )  ... era(t,,) d s~[~'"l, 
i m b t11(t 1 ) . . .  b t l r  a(tm) u ( 4 . 4 )  

and hence for an arbitrary equal time functional 
derivative of Z,  

a Z,  [~7] = ~ 6 e  a(e(t)) e is"le" "1. (4.5) 
u 

In order to be consistent with the relation (3.7) for the 
equal time functional derivatives of Z,,  we must have 

b e  a(e(t))  e is-~,~l 
u 

= (. b e  5~o, a (e+ (t), e -  (t + 0)) e is"(o' nl 
u 

= ~ b e  5~ ,  a (e+ (t + 0), q - ( t ) )  e ~s~Ee'"~. (4.6) 
u 

These conditions of consistency show that functional 
integration has to be defined in a u-dependent way. 
For that reason we have attached the index u to the 
symbol ~8e, which we call the u-integration. We re- 

u 

mark that for Hamiltonians of the simple type 
H = (Pk Pk/2 m) + V (Q), the associated functional S, is 
independent of u. Nevertheless, even in this case the 
conditions of consistency (4.6) require a u-dependent 
definition of functional integration. 
Equation (4.1) may now be formally verified by show- 
ing that the functional integral on the r.h.s, satisfies 
the equation of motion (3.11) and the boundary condi- 
tions (3.13)-(3.15). Except for the boundary condition 
(3.13) this can easily be done by utilizing the rules 
assumed above. For example, the equation of motion 
(3.11) follows from (4.5) and the following integration 
by parts lemma: 

b 

=i  ~ b e e is~L°'"l bS, (4.7) 
. be l ( t ) '  

with 

i af2 ~b z ( t)--f l ,  (e (t)) + l~1 (t). (4.8) 
b e l  (t) 

The boundary condition (3.13) can be shown only 
when an explicit definition of the u-integration is 
available. We leave this problem to the next section. 

As another example illustrating the usefulness of the 
functional integration technique, we mention that the 
perturbative expansion (3.16) follows immediately 
from (4.1). 
The functional integral formulation of quantum me- 
chanics is contained in the relations 

She el(t,).., e ~ ( t ~ )  e 'S"L~' °J 
u 

= (T, (¢1 (tl) ..- ~bm (tm)))ba (4.9) 

and 

b e  au(e(t)) e is"[~°' o]= ( A(cb(t)) )ba" (4.10) 
u 

These equations follow when we insert (4.1) into (3.5) 
and (3.9). In particular, the propagator is given by 

.[be e'SuCe'°l--(1)b,--QP~)l e -" '~ - ' ° )Ule~) ) .  (4.11) 
u 

The functional integration technique provides another 
method of quantization. To a classical system with the 
Hamiltonian function h(e), we associate a functional 
S[e ,  17] which is given by (4.2) and (4.3) when h, is 
replaced by h. A corresponding quantum theory is 
then contained in the functional Z , [q]  defined by 
(4.1) with S, replaced by S. In particular, to a classical 
phase space function a(e) there then corresponds the 
quantum mechanical Hilbert space operator {a(q~)}, 
via 

b e  a(e  (t)) e isis' Ol = ({a(~(t))},)b~. (4.12) 
u 

The choice of the parameter u in relation (4.6), which 
characterizes the u-integration, thus selects from the 
possible operator ordering schemes the u-ordering 
scheme. 

5. Functional Integrals as Limits 
of Lattice Expressions 

In the last sections we have demonstrated the usefulness 
of the functional integration technique without giving 
an explicit definition of functional integrals and without 
justifying the rules for manipulating them. In this 
section we fill this gap by defining the u-integration 
as a limit of a u-dependent lattice expression. In what 
follows we assume implicitly that all limits exist. We 
will not discuss possible relations between this lattice 
approach to functional integration and the approach 
based on generalized measure theory (see e.g. the 
articles and the references given in [30, 31]). 
In order to find the lattice definition of the u-integra- 
tion, we start with a lattice approximation 

Z ° V )  ( ~ )  ' = ( T  u eiv~-'ANrl~v)q)~V))b a ( 5 . i )  
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of the generating functional Z,[r/] defined by (3.1). 
Z(f ) is a function of the variables ~1(~):=-~1(t (~)) and 
depends on the operators ~b(').'=~b(t(~)). The times 

tI~):=t,+vAN, v=0,  1, ..., N (5.2) 

split up the interval (t,,tb) into N subintervals 
(t (v- ~), t (v)) each of length A N" = (tb - -  t,)/N. 
For an arbitrary function a(~0) we have according to 
(5.1) 

a iAu~l(U ) Z(~N)(I1)=(Tu(a(~U~)e~=~ ))ba" 
(5.3) 

Carrying out the T,-ordering and using (2.20) and (3.3), 
we can write the r.h.s, of (5.3) as 

({eiaN,~'e~'}, ... {a(~(,)) eia~,~"'% "' }, 

... {eia~"g"*9'},)b, 

= ((,0(+b) I {eia~rn*N'~3}u e-iaNH 

... {a(~) eia~"~"'%}, e -ia~n 

. . .  {eiaN"~*)qS }u e - i a s H  Iq)(~)) .  (5.4) 

By employing the completeness relation 

1 = ~ d" qo? ) lip?)) (~o?)1 (5.5) 

N - 1  times, we get from (5.3) and (5.4) 

a (i 8 d" . . .dnq)(+ N - l )  

( (p~) ]  {a(~b) giaNtl(3u)Oa}u e - i A N H  I~o~-*)> 
N 

" 1-[ (cP(+~)[ {eia~n~'%}, e-la~u I~°?-*)>, (5.6) 
v = l  
v~t* 

where 

_(01 qo~) and qo~): =(p+(b). (5.7) (D+ : =  

Since we are interested in the limit N-+ 0% it is sufficient 
to retain all terms of order 1IN in each of the N fac- 
tors occurring on the r.h.s, of (5.6). For an arbitrary 
function b(qo) we have according to definition (2.14) 

{b (~) e iaN"~)°  ~}u e-iANH 

Switching over to matrix elements and using (2.17) 
in conjunction with the definition (4.3) of L,, we get 

(P~)l {b(40 e*a""~'~'}~ e-'aNn ]q°?-*)> 

_ fd" q~e ) hi-(v,, e~A,,L~(~,L~'.4'~',,(~') (~ : r ) ,  (5.9) 

with the abbreviations 

(o (~)" = (~o (~)- ~o (~-~))/AN, ~o~ ): "~(~) • =t~ , ,+ ,~0L)) ,  (5.10) 

and 

q¢") =qo~-t)+u(qo~)-cp(~-t)), (p(,~.'=qo~). (5.11) u+" 

The idea behind relation (5.9) is a generalization of the 
idea used in E9, 11, 13, 14] to approximate the short 
time propagator. 
Applying (5.9) to (5.6) with b(q,)=l  for v # #  and 
b(rp)=a(rp) for v=~t, we arrive at 

O 

x ~ 

where we have introduced the abbreviation 

_d" ~o~ ) urzrl d" q~) d" (p~) 
d(N) ~o." (5. 1 3) 

(2 re)" ~'v= 1 (2 ~)" ' 

and the function 
N 

S~,N)(~ o, 0" = Y. AN - ~v) ~b(v), ,¢v)). L,t~o,, (5.14) 
V=I 

Proceeding along analogous lines we find for the 
multitime partial derivative of Z(f ) 

~m z(N) - .  (~) 
(i AN) m at/Iv')... Ot/~ ") 

N 

= (T~(% ... ))b~, (5.15) 

the relation 

(i d~)  m ~ v . . . .  a ~ )  

which holds independently of whether some of the 
Vl,...,vm coincide or not. Therefore (5.12) may be 
considered as a special case of (5.16). We now proceed 
to examine the limit N--,oo. Consider a set of times 
tl, ..., t~ which fall into the interval (G, tb) and which 
may or may not be distinct. For a given subdivision 
(5.2) of this interval we associate with t j ( j= 1, ..., m) 
the time t ('J), where vj is determined by 

t ~v-') < t~ < t (vj). (5.17) 

Starting from 
t b 

i I dt~13 (t) ~3 (t) 
(T~(~l(t,)... ~,,(t,,) e ~ ))b~ 

lim (T,(q}~ v~) 4)(=v~ ) i {1ANr/~")q~) . . . .  e "~ ))b,, (5.18) 
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and using (3.4) and (5.15), we then have 

~ z.  [~7] ~m z(~)(~) 
= lim 

(i)m6th(t,) ... 6tlm(tm) N~oo (iaN)mStl~ "')... Orl(~ ~)" (5.19) 

Equation (5.19) relates the functional derivatives of 
Zu [q] in a natural way to a lattice expression. 
Guided by (5.16), we now define the functional u-inte- 
gration by 

~ 6 ( 0  ( 0 1 ( t l ) . . .  (0m([m)  e iSu[(°'rl] 
It 

^(~') m (~m) e isL'~)(~'") (5.20) • "= lira ~ d (m (0 q',l ... ~-,,, 
N ~ o o  

From this definition it is obvious that the u-integration 
is a linear operation. We have thus for an arbitrary 
function a((0) 

S 3(0 a((0(t)) e is"t~°'"l 
u 

= lira [ d(N) p a((0~ ")) e ~sL')(~'"), (5.21) 
N~oo"  

which is also suggested by (5.12). The u-integral 
S6(0GE(0]e isAe'"l of an arbitrary functional G[(0] 
u 

may be defined with the help of its Volterra expansion 
and the definition (5.20). 
Because S~ m appears, formally at least, as a Riemann 
approximation of S,, the lattice definition of the 
u-integration may be considered as a mnemonicly 
convenient notation to describe the properties of the 
limits of lattice expressions by corresponding con- 
tinuum expressions. The index u attached to the sym- 
bol j" 6(0 reflects the fact that the lattice expression, 

zl 

which is used to define a continuum expression, results 
from the formal replacement of (0(t) by (0(]) instead 
of (0(~). This procedure may be called the "discretisa- 
tion according to the u~point rule". For u = l / 2  
the u-point rule reduces to the midpoint rule (see 
e.g. [11]). 
Equation (5.7) shows that ~ 6(0 should be interpreted 

u 

as integration over phase space paths (0 (t)= (q (t), p (t)), 
subject to (0+ (ta) = ( 0 ~ )  = q(~) and (0+ (tb) = (0~) = q(b). 
A direct consequence of the lattice definition is the 
translational invariance of the u-integration 

~6(0 G[(0 +~] e'S"[~+~'"]=~6(0 G[(0] e is"[~'~l. (5.22) 
u u 

Here ~(t) is an arbitrary phase space path subject to 
~+(G)=(+(tb)=O. From relation (5.22) there follows 
immediately the functional integration by parts lemma 

6 
! 6(0 6 ~ t ( t  ) (G[(0] e'S"[~""l)=0, (5.23) 

which we have used in (4.7) with G [(0] = 1. 

Using the lattice definition (5.20) of the u-integration 
and combining (5.16) and (5.19), we get (4.4), and from 
it (4.1) and (4.5) as special cases. Hence, the generating 
functional Z,,[~/] and its derivatives may indeed be 
written in terms of u-integrals. By a comparison of 
(4.1) and (4.4), we justify that functional integration 
may be interchanged with functional differentiation 
with respect to the source field. From this rule and 
(3.7) the conditions of consistency (4.6) are direct 
consequences. 
In summary, in this section we have given an explicit 
meaning to all the functional integral expressions and 
to all the rules for manipulating them which we have 
used in the last section. As a final remark we mention 
that the expressions of this and the foregoing sections 
take a more familiar, but often a less compact form 
when we rewrite them in terms of the operators 
Q (t) = q~+ (t), P(t) = ~b (t) and the functions q+ (t), r/_ (t), 
q (t) = (0+ (t) and p (t) = (0_ (t). For instance the "act ion" 
S, [(0, q] then reads 

tb 

S, [q, p, rl +, rl_ ] = f  dt(Pk(t ) Ok(t)-  hu(q(t), p(t)) 
ta 

+ rl+k(t) qk(t) + rl_k(t) Pk(t)). (5.24) 

6. Application to Classical Stochastic Dynamics 

Recently there has been an increasing interest in func- 
tional integral formulations of diffusion processes 
[-15-21]. They may serve as concise formulations of 
non-equilibrium thermodynamics and of the Martin- 
Rose-Siggia-formalism [25] of classical stochastic 
dynamics. Further, they have been used already [22-24] 
to extend Wilson's theory [32] from static to dynamic 
critical phenomena. 
Using the results of the last sections and the formal 
analogy between the Fokker-Planck equation and 
the SchrSdinger equation, we derive in this section a 
class of functional (integral) formulations of stochastic 
dynamics. 
We consider an n-dimensional diffusion process gov- 
erned by the Fokker-Planck equation 

~2 
Ot w(q, t) = Oqk Oqk, (Dkk' (q) w(q, t)) 

- - - -  (Kk(q) w(q, t)), (6.1) 
8qk 

with the diffusion coefficients Dkk,(q ) and the drift 
coefficients Kk(q). Here w(q, t) is the probability den- 
sity to observe the vector q: =(ql , - . . ,  q,) at time t. 
The fundamental solution g(q,t[q' , t ' )  of (6.1) repre- 
sents the conditional probability density to observe 
the vector q at time t if at time t ' < t  the vector q' has 
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been realized. The fundamental solution has the fol- 
lowing properties: 

g(q, t[q', t')>=O (6.2) 

d ~ q g (q, t] q', t') = 1 (6.3) 

g (q, t[ q', t) = 6 (q - q'), (6.4) 

In addition we have 

lim g(q, tlq' ,  t ' )=We(q) (6.5) 
t'-~ -- oO 

when there exists a unique equilibrium state We(q) , 
which is approached in the course of time starting 
from any initial state. 
If the system is at time t, in the state w(q, t~), then the 
common probability density w(q  a), t 1 ; ... ; q("), t,,) to 
observe the vectors q(1) . . . .  , q(") respectively at times 
t~ . . . . .  t , ,> t, is given by 

w (q(t), tl; .,. ; q(m), tm) = g (q(,(m)), t,(~)lq(,(m-1)) t~ (m-i)) 

... g(q(~(2)), t~(2)] q(~(1)), t~(1)) 

• jd"q g(q(~(1)), t~(,)[q, t~) w(q, t,), (6.6) 

where rc represents the permutation such that t~(m)_>_..- 
~> t,~(l ) > t a . 
The Fokker-Planck equation (6.1) is of the form of the 
Schrbdinger equation (2.1). Stochastic dynamics may 
therefore be formulated in the language of quantum 
mechanics. The usefulness of such a representation of 
stochastic dynamics has been demonstrated elsewhere 
[33, 34]. In the notation of section 2, Equation (6.1) 
reads 

d 
~[  [wt) = - i H  [wt),  (6.7) 

with w(q,  t) = {q] wt> and 

H = H(49) = - i cI)_ k ~ -  k' Dkk' (q~+) + ~b k Kk (~b+). (6.8) 

When we identify the Hamiltonian of the foregoing 
sections with the non-Hermitian Hamiltonian (6.8), 
all the quantum mechanical expressions and relations 
transform into expressions and relations of stochastic 
dynamics. This is true because in the foregoing sections 
it was nowhere necessary to assume that the Hamil- 
tonian is Hermitian. 
For the state [w~> we define the correlation functions 
for times later than ta as 

G.I1 .... (tt . . . . .  t,.I rWt°)' = SP Wto T~(q~l (tt)--" @m(tm)), 
(6.9) 

with the state operator 

Wt°:= j d" q Iw,,) <ql. (6.10) 

For el . . . . .  am = + the correlation functions reduce 
to the moment functions of the diffusion process, 
namely 

Gul+k ...... +k~ ( t l ,  . . . ,  tm[ Wt , )  

= I d" q(l) . . .  d n u"(") Uki'(1) . . . . . .  q(k~ ) W (qa), tl ; ," q(m), tin). 

(6.11) 

The causality of the correlation functions is expressed 
by the fact that they vanish when the latest time 
belongs to a momentum operator (P_. This follows 
from their definition (6.9) along with (6.2) and (6.3). 
The u-dependence of the correlation functions which 
results from the u-dependence of the time ordering T~ 
is very simple. Due to causality and the definition of 
the T,-ordering, the 2-point correlation function, for 
instance, is of the form 

Gul l2  ( t l ,  t 2 ]Wta) 

( gk'k2(tl' t2) O,(t l  - - t2) fklk2(t l ,  t2)) 
=\Ou( t2- - t l ) fk2k~( t  2, tl) 0 • (6.12) 

Here we have introduced the u-dependent step func- 
tion 

i t<O = Ojt)." = for t=O. 

t>O 
(6.13) 

The extension of the time ordering to equal times, as 
given by definition (2.19), thus merely fixes the value 
of the step function at t = 0. Correspondingly the u-de- 
pendence of the multi-point correlation functions is 
simply due to the u-dependence of the occurring step 
functions Ou (t). The generating functional for the cor- 
relation functions in the time interval (ta, tb) is given by 

tb 
i I dtq3(t)CO3(t) 

Z~[~[Wt°] ' .=Sp(W< T ,e  ~o ). (6.14) 

Using 

g(q, t l q', t ' )= (q] e -i(t-t')I'l ]q'5 (6.15) 

and (6.3), we may express the functional Z,  [t/] W t, ] in 
terms of the state function w(q,  ta) and the functional 
Z,  [t/l, defined by (3.1), in the following way 

Z~[ t l [Wj - -~dnqo~)dnqo~)Zu[ t l ]  w(~o~ ), tu). (6.16) 

Thus the functionals Z,  [t/] W J  and Z u [t/l, the latter 
of which depends on the endpoints a and b, are 
linearly connected. Therefore, the methods developed 
in Sections 2-5 directly yield a u-dependent functional 
formulation and a u-dependent functional integral for- 
mulation of diffusion processes, when we identify h,(q)) 
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with the u-function of the Hamiltonian (6.8), explicitly 

h, ((p) = - i  (P-k ~O-k' Dkk, ((P +) 

+qO-k (Kk(CP +)--2U o~--~k, Dkk'(cP +) ) 

a a s 
- - i u  o~+kKk(q~ +)+iuZ Dkk,(q~ +). (6.17) 

~ ( P + k ~ O + k  ' 

In principle there is no preference for a particular 
choice of the parameter u which characterizes the 
underlying operator ordering scheme. Nevertheless, 
here it is convenient to choose u = 0, because h, then 
takes a simple form which reflects the fact that the 
Hamiltonian (6.8) presents itself in 0-ordered form. 
From the commutation relations (2.8), the equation 
of motion (2.10), and the Hamiltonian (6.8), it is 
obvious that the formalism developed so far generalizes 
the Martin-Rose-Siggia formalism [25] to the case 
of arbitrary diffusion and drift coefficients and pro- 
vides, in addition, a class of functional integral for- 
mulations of classical stochastic dynamics. (Note that 
our definitions of ~_ and H differ from those used in 
[25] by a factor i.) 
Let us consider in some detail the functional (integral) 
formulations of a diffusion process in the state of 
equilibrium l%). From the assumption (6.5) of an 
approach to equilibrium, it follows that for fixed times 
t l ,  . . . ,  t m and t ~ - 0 %  the correlation functions G, 
become independent of the initial state [wto) in the 
infinite past and turn into the equilibrium correlation 
functions 

G,I1 .... ( t l , . . . , tm) = lira GulL..m(ta,...,tm[Wt, ). (6.18) 
t a ~  - -  cO 

Hence, the generating functional for the equilibrium 
correlation functions taken at arbitrary times is given 
by 

Z , [ q ] =  lim Z , [ r / [ W j ,  (6.19) 
ta  ~ --  oO 

tb--" + oo 

where we may use an arbitrary initial state w(q, G). 
Choosing a a-function for this state, we get from (6.16) 
and (6.19) 

2 ,  [11] = ,J !mj  d" ~o~' Z. [11]. (6.20) 
t b --t ~- GO 

The equilibrium generating functional Z,  is a solution 
of the equation of motion (3.11), and according to 
(3.16) its perturbation expansion is given by 

Z , [ t / ] =  e = ~,, [,1]. (6.21) 

The usual choice for the unperturbed Hamiltonian 
H (m is a Hamiltonian with constant diffusion and 

linear drift coefficients. The corresponding equilibrium 
functional 2(, 0) It/] is gaussian and is given by 

2(, o) It/] = e x p ( -  1 ~ dtl dt2 '-',112"~(°) (tl, t2) rh(tO q2(t~)). 
- oo (6.22) 

Since the unperturbed 2-point equilibrium correlation 
function rg(o) u,jx2 is of the form (6.12), we see explicitly 
from (6.22) that the functional ~(o)[r/] takes u-depen- 
dent values when the source field q (t) contains g-func- 
tions. This u-dependence of ~o)[17] leads to the u-de- 
pendence of the equal time functional derivatives of 
2~o) It/], which follow from (6.22) by using the rule 

~2 1 +~ 
r~(o) 

- m v *  u [ l '  2 '  firh(t~)&h(t2) 2 ~ dtrdt2" (tr ' t2 ')  

. t11, ( t r )  r12, ( t 2 , )  = ,~(o) it v'u[12 t q ,  re) (6.23) 

for tl = t2 also. 
The diagrammatic representation of the perturbation 
expansion (6.21) takes its simplest form for u=0.  This 
is due to the simplicity of h~)((p) and the fact that all 
diagrams vanish which contain self-loops correspond- 

-(o) (t,t) with =~0~ 2 ing to G0u2 cq . 
Equation (6.20) and the functional integral represen- 
tation (4.•) for Z.  It/] suggest the following functional 
integral representation for the equilibrium generating 
functional: 

Z,  [~7l = ~ 6q) e i~[~'"1 , (6.24) 
u 

with 
+ o o  

s. [e, ,ft." = d t  L.((p (t), (t), 17(t)) 
- o o  

= ~ de af2 ~2(t)-h,((P(t))+tT3(t) (P3(t) • 
- -  ct) 

(6.25) 

Equation (6.24) may be justified by arguments analo- 
guous to those used in Sections 4 and 5. In particular, 
the lattice definition of the u-integration used in (6.24) 
follows from (6.20) and (5.20) and is given by 

~g(P  (Pl ( t l )  . . .  ~Om(tm) e is"[o,"l 

-- lim lim ~ d" ~o?)~ d(mcp ~p},]a ... ~p(~) eiS~m(~o,,). 
t a ~ - - o z  N ~ o o  

,~ ~ + co (6.26) 

Hence, we have explicitly established a class of func- 
tional integral formulations of classical stochastic 
dynamics in the state of equilibrium. 

7. Conclusion 

We have investigated in some detail the intimate con- 
nection between operator ordering schemes and the 
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functional (integral) formulations of quantum and 
stochastic dynamics. 
We have considered the functional integral formula- 
tions in their phase space version only, because we 
believe that this version has many advantages in 
comparison to the configuration space version (see 
e.g. [10, 11, 23, 24]). 
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