Operator Placement for In-Network Stream Query

Processing
Utkarsh Srivastava Kamesh Munagala Jennifer Widom
Stanford University Duke University Stanford University

usriv@cs.stanford.edu kamesh@cs.duke.edu widom@cs.stanford.edu

ABSTRACT Query | Results

In sensor networks, data acquisition frequently takes place atlow- | increasin
= : ! . ; 1 g
cgpablllty devices. The.acqwred da;a is then trarjsmltted through a | computationa
hierarchy of nodes having progressively increasing network band- | power ,
width and computational power. We consider the problem of ex- { Nincreasin
)) | g
ecuting queries over these data streams, posed at the root of the : :
) L Lo b . ' | bandwidth
hierarchy. To minimize data transmission, it is desirable to perform OO0 |
“in-network” query processing: do some part of the work at inter- | | Data acquisition ! |
mediate nodes as the data travels to the root. Most previous work on =777 7T e
in-network query processing has focused on aggregation and inex-
pensive filters. In this paper, we address in-network processing for
queries involving possibly expensive conjunctive filters, and joins.
We consider the problem of placing operators along the nodes of
the hierarchy so that the overall cost of computation and data trans- _) _
mission is minimized. We show that the problem is tractable, give lower in the hierarchy, in order to reduce overall network costs
an optimal algorithm, and demonstrate that a simpler greedy op- [14]. In general, finding the best point in the hierarchy at which
erator placement algorithm can fail to find the optimal solution. to perform specific processing is a difficult problem: Placing work
Finally we define a number of interesting variations of the basic lower in the hierarchy reduces transmission costs butimposes more
operator placement problem and demonstrate their hardness. burden on lower-capability devices. The goal is to properly balance
these opposing effects to minimize overall cost.

Figure 1: Sensor Data Processing

1. INTRODUCTION Previ coni ‘ ina has doi
We consider query processing in environments where data is col-. revious work on in-network query processing has focused omaguer

lected at “edge devices” with limited capabilities, such as sensors. in V.VhiCh dat‘?‘ red_uction occurs because of aggregation operators [14]
Collected data is transmitted through a hierarchy of network nodes ?hr INExpensive flltt_ers. SltrlcthPU costs are typr:cally mt'Ch Io¥ver
and links with progressively increasing computational power and an communication costs, ItIS common In Such cases 1o perform
network bandwidth, as shown in Figure 1. The “high fan-in” envi- all operations as low dc_>w_n in the hierarchy as p_ossmle. For ex-
ronment addressed by the BerkeldiFi project [10] is one exam- ample, a common heuristic is to push down all filters to the leaf

ple, but other scenarios that involve data acquisition and subsequenfques Or Sensors. In_ this paper, we cons_lder queries that may in-
processing, e.g., network monitoring [6], may exhibit similar gen- volve expensive predicates, such as text, image, or video filtering,
eral charac,teristics ’ or lookups to remote sources. In these cases, it may not be best (or

even possible) to filter at the low-capability leaf nodes or sensors.

Typically, queries are posed and results collected at the root of the
hierarchy. One simple approach is to transmit all data acquired at
the sensors through the hierarchy to the root, then perform all query
processing at the root. However, if queries produce significantly
less data than they consume—because of filtering, aggregation, o
low-selectivity joins—then this approach may pose considerable
unnecessary burden on network bandwidthnetwork query pro-

cessingpushes some or all of the query execution task to nodes

As a concrete example, consider a video surveillance application
running over a hierarchy of nodes, with the sensors capturing the
raw images. Suppose the user is looking for images in which the
onitored area is dimly lit and there is a lot of motion between
successive frames (indicating potentially suspicious activity). This
query involves two filters. The first and relatively cheap filter (say
Fy) checks for dim images by calculating the average pixel inten-
sity. The second filter (sa¥:) checks for “sufficient” motion, and
may be a complicated image processing algorithm that is best not
run on the low-capability image-gathering sensor. In this case, the

Permission to make digital or hard copies of all or part of thirknfor preferred plan would be to execute at the sensor, and then trans-
personal or classroom use is granted without fee providatidbpies are mit filtered images up the hierarchy to a node with sufficient com-
not made or distributed for profit or commercial advantage, hatidopies putational power to executi,.

bear this notice and the full citation on the first page. Toyootherwise, to

repuplis_h, to post on servers or to redistribute to listguiees prior specific In general, our objective is to place each filter operator at the “best”
permission and/or a fee. ’

PODS 2005June 13-15, 2005, Baltimore, Maryland. node in the hierarchy for that filter, based on its selectivity and
Copyright 2005 ACM 1-59593-062-0/05/06 $5.00. cost, so that the total cost of computation and communication is

computational computational computational

cost scale-down cost scale-down cost scale-down
yl N y2 N ym_lx
Data — [N; N, Nm
Aquisition o o o Results
— — issi transmission
(Stream) transmission transmission

COSt Zl COSt 12 COSt lm_l

increasing computation power and bandwidth

Figure 2: Basic Scenario and Cost Model

minimized. We refer to this problem as tlo@erator placement this data. As this data is transmitted up the hierarchy, the basic net-
problem Intuitively, the main tradeoff that needs to be considered work topology we need to consider (shown in Figure 2) consists
is the lower computational costs at nodes higher up in the hierar- of a linear chain of noded/;, N, ..., N,,, wherem is the num-

chy against the transmission cost of getting the data up to thoseber of levels in the hierarchy. In relation to Figure 1, the leftmost
nodes. Suppose we have anlevel hierarchy ana filters in our node N; corresponds to the point of acquisition, while the right-
query. Then there ana™ possible filter placements for processing most nodeV,,, corresponds to the root of the hierarchy. Each node
the data as it travels to the root. We show that nevertheless the op-N; transmits only to nodeV,.,. We consider the linear hierar-
erator placement problem has a polynomial-time optimal solution. chy merely for ease of presentation; in Section 3.4 we show how
We provide an optimal algorithm, and show that a simpler greedy our algorithms extend in a straightforward manner to general tree
algorithm can fail to find the optimal solution. hierarchies.

A key idea in our work is to model network links as filters. Thenwe Let streamS denote the data acquired by nodg. Let F =
can address our overall problem as one of filter ordering on a sin- { F1, F», ..., F,,} be a set of: filters. We first consider in-network
gle node, but with precedence constraints for those filters that areprocessing for the following basic query posed at the root @dgge
modeling links. We start by consideringcorrelatedfilters, i.e.,

filters whose selectivity is independent of the other filters, and then SELECT x FROM S WHERE F1 AFa A ... A Fa @)
extend our algorithm to correlated filters. In both cases, we show | Section 4 we extend our algorithms to deal with queries that
how the precedence constraints can be dealt with so that knowninyolve a multiway join of streams in addition to conjunctive filters.
results on filter ordering [13, 16] can be reused. After addressing |n this paper we do not consider multiple queries together: The
queries with filters alone, we extend our algorithm to include mul- possibility of shared computation among multiple queries yields an
tiway joins, showing how to decide where a join operator should be eyen more complex operator placement problem that we leave as

placed optimally with respect to the query’s filter operators.

The overall contributions of this paper are:

e We define the problem of operator placement for in-network
processing of queries with expensive filters (Section 2).

We describe a greedy algorithm that can fail to find the glob-
ally optimal solution to the operator placement problem, then
present a polynomial-time optimal algorithm for uncorrelated
filters. We extend our algorithm to provide the best possible
approximation for correlated filters (Section 3).

We extend our algorithm to include operator placement for a
multiway stream join together with filters (Section 4).

We identify several variations on the problem and in some

future work.

An in-network query plarfor the query in (1) is simply a mapping

of each filter inF to exactly one node. Figure 3 shows a sample
in-network query plan for executing a query with= 4 filters on

m = 4 nodes. Figure 3 also shows the data that is transmitted along
each network link. Each link transmits only those tuples that have
passed all filters executed so far. The cost of an in-network query
plan consists of two parts: the cost of executing the filters on the
various nodes, together with the cost of transmitting the tuples over
the network links. The exact model used to evaluate the cost of an
in-network query plan is explained in the next section.

2.1 Cost Model

The cost of an in-network query plan is calculated using the fol-
lowing three quantities:

cases show their hardness (Section 5). We consider nodes

with resource constraints, load balancing across nodes, and
a more complex cost model for how filter costs may vary
across different nodes.

We finally present related work in Section 6 and conclusions in
Section 7.

2. PRELIMINARIES
We begin by considering data acquired by only one of the leaf
nodes of Figure 1 and focus on in-network query processing over

1. Selectivity of filters: Associated with each filteF' is a se-
lectivity s(F') that is defined as the fraction of the tuples in
streamsS that are expected to satisfy. We assume for now
that the filters are independent, i.e., selectivity of a filter re-
mains the same irrespective of which filters have been ap-
plied earlier. Correlated filters are dealt with in Section 3.3.

. Cost of filters: Each filter F" has a per-tuple cos{ F, i) of
execution on nod&';. To model the fact that the nodes in the
hierarchy have increasing computational power, we assume
that the cost of any filter scales down by a facter< 1

YL T Vel

| ‘ ‘ o (S) e
Ny GFAF(S) No! Oc . e(S) N3 RAFAF, Ny,
Streams—@ tz : 12 - F AR e S Results

1,=700 1,=500 — > [7=300 —

N

Figure 3: Running Example

on moving from nodeV; to N;y; (see Figure 2). Thatis, The cost scaling factors and the transmission costs are as shown in
c¢(F,i+ 1) = v;c(F,1). Note that even though we are sup- Figure 3. Assume stream tuples are acquiredvatat unit rate.
posing scale-down, a decrease in computational power on
moving from nodeN; to N, is captured byy; > 1 and Using equation(2), the execution cost of the sequerfce F> of
can be incorporated into our approach directly. filters at nodeV; is 200—1—%-400 = 400. Since two filters each with
o " selectivityl /2 have been applied, the rate of data transmitted from
3. Cost of network transrmssmn The cost of tran.smlttlng a Ni to N> and fromN, to N3 is 1/4 of the unit rate each. Thus the
tuple on the network link from nod#; to Ny, is I; (see total transmission cost up to Nodé; is X (700 +500) = 300. The
Elg_ure_Z). We assume thatlnclud_es' an appr'oprlate mulf per-tuple execution cost & at N3 is ¢(Fs, 3) = y172¢(F3, 1) =
tiplicative factor to convert transmission cost into a quantity 13, since the rate intaVs is 1 /4, the execution cost of; is
that can be treated at par with computational cost. 1 -130 = 32.5. Similarly the transmission cost froiNs to N,
and the execution cost dfy are calculated to be37.5 and 7.8
respectively. Thus the total costd§P) = 400 + 300 + 32.5 +

Consider an in-network query plaR for the query in (1). Let
gquety p query in (1) 3754+78="777.8. O

‘P(F') denote the index number of the node at which filieiis

executed under plaR. Let F; be the set of filters executed at node

N;, ie,Fi = {F | P(F) = i}. We assume that at each nal¥g, 2.2 Problem Statement

the set of filters; are executed in the optimal sequence given by - gince each of the filters can be placed at any of thenodes, there

the following theorem [13]. arem™ possible in-network query plans. The problem of operator
placement for in-network query processing is to efficiently choose

THEOREM 2.1. The optimal sequence to execute a set of inde- the least-cost plan among the exponential number of alternatives.

pendent filters on a single node is in increasing ordewaoik where
costr) 0

rank of a filter F* is given by rankF') = —iesivive ectivityr) DEFINITION 2.3 (OPERATORPLACEMENT PROBLEM). For

each filter F € F, chooseP(F) € {1,...,m} such thate(P)
given by(3) is minimized. [

Consider a sequence of filters 7' = Fy,..., F.,. Letc(F',4)
denote the cost per tuple of executing this sequence at Nodk
, . In this section, we consider solutions to the operator placement
n J— X -) . -
, . , problem given by Definition 2.3. We first assume independent fil-
o(F,1) = Z <C(FJ" 0) H S(Fk)) @ ters and specify a local greedy operator placement algorithm (Sec-
J=t k=1 tion 3.1). We show that this algorithm does not always find the
Letr(F;) denote the sequence of filters/ in rank order With- globally optimal solution. We then provide an optimal operator

out loss of generality assume that the data in stréamacquired Placement algorithm (Section 3.2), and extend this algorithm for
at the rate of one tuple per some unit time. Then the cost per unit correlated filters (Section 3.3) and tree hierarchies (Section 3.4).
time of the in-network plarP is given by (assumég = 0):

m 3.1 Greedy Algorithm
c(P) = Z H s(F) (li—l + c(r(F), Z)) (3) For an in-network query pla®, let ¢(P, i) denote the part of the

i=1 F|P(F)<i total costc(P) that is incurred at nodév;. This cost includes
not only the execution of filters at nodé;, but also the transmis-
sion of the filtered tuple stream from no@& to N;yi. ¢(P) =
>, (P, i), and notice that(P, i) depends only otFy, ..., F;
and not onFiy1, ..., Fm.

ExampPLE 2.2. Consider the in-network query plan shown in
Figure 3. Let the selectivity of each filter b¢2, and let the costs
at nodeN; of the filters be:

A simple but reasonable way to approach the operator placement
i | R s Fy problem is the following greedy algorithm. Start with nae and
c(F,1) | 200 | 400 | 1300 | 2500 choose a set of filterg; so thate(P, 1) is minimized (explained
- - i) in the next paragraph). Then apply the approach recursively with
1
rank of & iter 5 node-dependent, However. since e cost of each 00eS(V2 .. - N} and the set of fiters” — 7. Our global
- . , - - . . m -\ H H
filter scales by the same factor going from one node to the next, the _obJectlve IS to m'.mm'z.ezi:l C(.p’.z)’ the greedy algorithm min-
rank order of filters remains the same at every node. In Section 5.2iMizes each:(7,) individually in increasing order of. In other
we discuss a more general model in which each filter's cost may words, the greedy algorithm decides which filters to apply by bal-
scale differently across nodes. ancing filtering cost against the cost of transmitting unfiltered data

to the next node, but it does not take into account how much cheaper

it would be to filter the data further up the hierarchy.

For minimizinge(P, 1) in the base case of the recursion, we intro-
duce a key idea behind all our algorithms: modeling network links
as filters. Logically, we construct a filter corresponding to each net-
work link, such that transmitting a tuple over the link is equivalent
in terms of cost to executing the constructed filter over the tuple.
For cost evaluation, the entire in-network query plan can then be

treated as executing a sequence of filters on a single node, enablingl. RECURSIVEF, { Ny, . ..

us to leverage previous work on filter ordering [3, 13, 16].

To minimizec(P, 1), we model the network link from nod¥ to

N3 as afilterF} with coste(FY, 1) = I (as the cost of transmitting
a tuple over the link i¢;), and selectivitys(F}) = 0. Choosing a
selectivity of 0 forF} factors away the cost of the plan processing
at nodesNs, ..., N,,, and thus enables the greedy algorithm to
optimize only forC (P, 1) separately. We now show tha{P, 1)
can be written as the cost of executing the filterginfollowed by
the filter F! at nodeN;.

LEMMA 3.1. ConstructF} with s(F{) = 0, ¢(F},1) = L.
Thenc(P, 1) = ¢(r(F1) o Fi, 1) wheree denotes concatenation
of sequences.

Proof. From (3),

c(P,1) c(r(F1),1) +

I

FeF|P(F)<2
c(r(F),1) + [] s(F)e(Fi,1)
FeFy

c(r(F1) e Fl 1)

O

We then orde} and the filters inF based on rank (recall The-
orem 2.1) and choose & all the filters that occur befor&} in
rank order. Note that since rafik) = I;, effectively we simply
choose agr all filters that have rank: ;.

THEOREM 3.2. ¢(P, 1) is minimized when:

Vol

{F | F occurs before} in r(F U {F{})}

PrROOF Consider a plarP in which F; is chosen according
to the theorem statement. By Lemma 3:(P,1) = c(r(F1) o
F{,1). Sinces(F{) = 0, we can append any number of filters
after F without changing the cost of executing the sequence. Thus
we can write:

c(P,1) = c(r(F1) o F} e r(F — F1),1) @)

Now suppose for contradiction that there is a different set of fil-
tersF; to be executed at nod¥; and a corresponding in-network
query plarP’ such that(P’, 1) < ¢(P, 1). Similar to (4), we can
write:

(P, 1) = c(r(F1) o F{ o r(F — F1),1) (5)

The right sides of (4) and (5) give the execution cost of the same
set of filtersF U { F{ } but in different sequences. By the choice of
Fi1, the sequence in (4) is rank ordered, but that in (5) is not. By
Theorem 2.1¢(P, 1) < ¢(P’, 1). Thus we get a contradiction.[]

ProcedurdRECURSIVE(F, { N, ..
1. if (m = 1) F, = F; return

2. Construct? with s(F!) = 0 ande(F},1) =1y
3. Calculater(F U { F{}) for ranks at nodeV,

4. F, = {F | F occurs beforg} inr(F U {F}{})}
5. RECURSIVEF — F1,{Na, ..., Nn})

- Nm})

Algorithm GREEDY
s Nim})

Figure 4: Greedy Algorithm: O((m + n) log(n))

A summary of the greedy algorithm is shown in Figure 4. We illus-
trate the operation of the greedy algorithm by an example.

ExampLE 3.3. Consider operator placement using the greedy
algorithm for Example 2.2. The ranks Bf, . . ., Fy at N7 are 400,
800, 2600, and5000 respectively. The rank @ isl; = 700. Thus
Fiischosen a§F1}. The ranks of, .. ., Fy at N> are obtained
by scaling down the ranks dt; by ~1, so they arel60, 520, and
1000. Only ranksz) < Iz, thusF> = {F:}. Continuing in this
fashion, we obtaiFs = {Fs} and 7, = {F4}. For this plan, we
findc(P) = 792.8 by (3). O

The greedy algorithm makes very local decisions. Thus it is not
surprising that the greedy algorithm does not always produce the
globally optimal solution. For instance(P) = 792.8 in Example

3.3 is greater than(P) = 777.8 in Example 2.2.

3.2 Optimal Algorithm

In the greedy algorithm of Section 3.1, network links are modeled
as filters with selectivity 0. This approach enables us to capture the
transmission cost of the link, but the remainder of the tuple process-
ing cost (at nodes further up in the hierarchy) is not captured. Thus
we can only get an expression fgfP, 1) in terms of the execution
cost of a sequence of filters (Lemma 3.1), but not an expression
for the entirec(P). The optimal algorithm we present relies on
obtaining an analogous expression éGP).

Assumey; < 1 for eachi (y; > 1 is handled in Section 3.2.2).
Sincec(F,i + 1) = vy;c(F, 1), transmitting data on the link from
node N; to N;1; cuts down by a factoty; the per-tuple cost of
any filter applied subsequently. In terms of cost per unit time, this
cost scale-down is equivalent to the stream rate slowing down by
a factor~;, but the filter costs themselves remaining unchanged.
Hence the link from nod&’; to N;11 can be modeled as a filtét

with s(F}) = ~,. Additionally, we set:(F}, 1) = li(H;ﬁ;ll T
Intuitively, the per-tuple cost of traversing the linklis even af-

ter the previous network links have been traversed. Thus the term
(H;;ll ;)" ! is present to compensate for the scale-down produced

by the filtersFY, ..., F/_,. We can now write:(P) in terms of the
execution cost of a sequence of filters (assume all ranks are calcu-
lated atiVy).

LEMMA 3.4. Fori € {1,...,m—1} constructF} with s(F}) =
Yire(F{,1) = L(TTiZy 75) " - Then:

J

c(P) = c(r(]ﬁ) oFle r(Fa)e...e F._ o (Fm), 1)

wheree denotes concatenation of sequences.

PROOF Sincec(F,:+ 1) = v;c(F, i) forany F € F, we have

c(r(Fi),i) = ;=) vielr(F:),1). From (3),¢(P) is given by
(assumey, = 1):

> I

F|P(F)<t

s(F) (- 1+ij r(F).1))

N H%(L D+mae(r(F), 1))

=1 F|P(F)<i

=3 T st T stED (el 1y bs(E elr(7). 1))
i=1 F|P(F)<i j=1

:c(r(fl)OFllor(}"g)o...oFTln,lor(]-"m),l) 0

Suppose for now that the ranks of the sequence of fifgrs. ., F!,_;
(modeling links) are in non-decreasing order. Then the following
result and its proof are analogous to Theorem 3.2.

THEOREM 3.5. Suppose rank}) < rank(F}+1) for eachi €
{1,...,m — 2}. Denote byF’ the filter sequence? e r(F U
{F!,...,F,,_,}) e F.,.. Thenc(P) is minimized when:

F; = {F | F occurs betweett;_, and F} in F'}

PrROOF Consider a plarP in which eachF; is chosen accord-
ing to the theorem statement. By Lemma 3.4,

co(P) = c(r(F1) e Fior(F2)e...0 Fpyyor(Fu),1) (6)
Now suppose for contradiction that there is a different assign-
ment of filtersF;, 7, ..., F,, to the nodes and a corresponding
in-network query plar®’ such that(P’, 1) < ¢(P, 1). Similar to
(6), we can write:
c(P'\1) = c(r(Fi) e Fler(F})e...0 F), 7):1) (7)

_1er(F

i-1
on short—circuit

of node N

Figure 5: Short-Circuiting

PROOF Suppose rank’;_,) > rank(F}) and in the optimal
in-network query plarP, F; # 0. Consider the alternate query
plansP’ andP” which are the same &8 except that the filters in
F; have been moved to nod€,_; and N, respectively. We have

c(P)=a (li—l +c(r(Fi), i) + a21i> +as

wherea; = HF\P(F)<7; s(F), a2 = HF‘FGE s(F), andas de-
notes the sum of the other termsd() from (3). Similarly:

a1 <C(T(Fi),i)w[_11 + az(li—1 + li)) +as

a1 <li—1 + Ui + yic(r(Fy), Z)) +as

Since P is optimal, we must have(P) < ¢(P") andc(P) <
c(P"). Substituting forc(P), c(P’), andc(P’) and simplifying,
we get:

li
(8) implies that rankF}_,) < rank(F}), a contradiction. [J

Lic1vie
el
1—vi1

8)

If F; is guaranteed to be empty in the optimal query plan,
can modify the network topology by “short-circuiting” nodé as
shown in Figure 5. Logically, nod#&; is removed,N;_; is con-
nected to nodeV;, by a link having cost;_, + l;, and the cost
scale-down factor from nod#/;_; to N;41 is set toy;—17y;. At
each short-circuit the number of nodesdecreases by 1.

we

We can continue short-circuiting on the modified topology until

The right sides of (6) and (7) give the execution cost of the same there does not exist anyfor which rank F}_,) > rank(F}). At

set of filtersu7 ;' F} U F but in different sequences. By the choice
of 71, Fa, ..., Fm, the sequence in (6) is rank ordered, but that in
(7) is not. By Theorem 2.15(P,1) < ¢(P’,1). Thus we get a
contradiction. [J

In general the ranks df}, . . ., F',_; may not be in non-decreasing

order. To deal with such cases, we introduce the concept of “short-

circuiting”.

3.2.1 Short-Circuiting

Suppose ranf&’_;) > rank(F}) for somei. We show that in the
optimal in-network query plan in this scenario, no filter is executed
at nodeN;.

LEMMA 3.6. Ifrank(F}_,) > rank(F})forsome € {2,...
1}, then in the optimal platF; = 0.

s =

that point, Theorem 3.5 can be applied to yield the optimal solution.

3.2.2 Handling Cost Scaleup

So far we have assumed < 1 for eachi. If 4; > 1, itis easy

to see that in the optimal solutiaf;+; = @, as follows. If any
filters are executed at nod¥; ;1 they can be moved to nod¥;.

The new plan will reduce the computational cost (singg, i) <
c(F, i+ 1)) as well as the transmission cost (since more filters are
applied earlier reducing the amount of data transmitted). Thus, just
as in Section 3.2.1, if; > 1, we can short-circuit nod&/; (if
Ym—1 > 1 we can simply delete nod¥,,). We can continue short-
circuiting untily; < 1 for eachs.

3.2.3 Summary and Example

A summary of the entire algorithm is given in Figure 6. Its running
time isO((m + n) log(m + n)) due to the sorting of filters in rank
order in line 9.

Algorithm OPT_FILTER

1. while @ | v > 1)

2. short-circuit nodeV;1

3. while (true)

4. fori=1tom—1

5. s(F) = ande(F, 1) = L(IT;2 %)
6. if (3i | rank(F{_,) > rank(F}))

7. short-circuit nodeV;

8.
9.

else break
F =Fler(FU{Fi,...,F._1})eF,
10. fori = 1tom
11. F; = {F | F occurs betweer}_; andF} in F'}

Figure 6: Optimal Operator Placement Algorithm

Figure 7: Optimal Plan for Example 2.2 (short-circuits N3)

EXAMPLE 3.7. Continue with Example 2.2. We first construct
a filter for each network link (line 5):

i 1 2 3
c(F},1) | 700 | 2500 | 3000
s(F)) [1/5] 172 | 1/4
rank(F}) | 875 | 5000 | 4000

We find that rankF3) > rank(F}). Thus, we can short-circuivs
(line 7). On short-circuiting, we obtain a new link with transmis-
sion cosB800 and scale-down factor/8 (Figure 7). The filter cor-
responding to this link (denote it b‘512’74) has cost1000, selectiv-
ity 1/8 and hence rank571.4. Since rankF}) < rank(F} 4), no
more short-circuiting is required. The ranksBf, . . ., F, are400,
800, 2600, and5000. Thus the rank order of filters &1, F», FY,
Fs, F} 4, Fy (line 9). HenceF, = {Fy, I}, F» = {F3}, and
Fi = {F4} (line 11). SinceVs has been short-circuitedts = 0.
For this plan,c(P) = 747.8, that is lower than the costs in Exam-
ples 2.2 and 3.3, and can be verified to be optimall

3.3 Correlated Filters
We now consider operator placement when the filtetg imay be

Algorithm CORRELATED

F. Set of correlated filters to be ordered

1. Q = set of filters executed so far

2. while (Q # F)

3. conditional rankF) = % VFecF

4, Fh.n = F € Fthat has smallest conditional rank
5. chooser,i» to be executed next2 = Q U {Finin }

Figure 8: 4-approximation to Ordering of Correlated Filters

times the optimal cost. The algorithm defines the conditional rank
for each filter (line 3) and at each step, picks the filter having the
smallest conditional rank to be executed next. It is also shown that
this approximation ratio of is the best possible unlegs= N P.

Our problem of optimally executing a set of correlated filters at
multiple nodes is clearly at least as difficult as the single-node prob-
lem, and hence is NP-hard. We show in this section that the same
approximation ratio oft can be obtained for our problem setting
too. Since algorithm CORRELATED (Figure 8) gives the best or-
dering for correlated filters that can be found efficiently, we assume
that in any in-network query plan, the set of filters at any particular
node are executed in the order given by Figure 8, i.e., the set of
filters at any node are executed in order of conditional rank (condi-
tioned on the set of filters that have already been executed).

We again model the network links as filters with cost and selectiv-
ity as before (given by Lemma 3.4). Additionally, the filters that
model network links aréndependenof all filters, i.e., for each,
s(F}|Q) = s(FY}) for any Q such thatF} ¢ Q. Assume as in
Section 3.2 that all ranks are calculated at ndde First we show
that even in the presence of correlated filters, short-circuiting (Sec-
tion 3.2.1) is still valid.

LEMMA 3.8. If rank(F}_,) > rank(F}) for somei € {2,
...,m — 1}, then in the optimal plarF; = () even if the filters
in F are correlated.

PROOF SupposeF; # 0. Replace the filters itF; by a single
filter F' having equivalent per-tuple cost and selectivity as the filter
sequence at nod®;. Now consider ran"), which may depend
on the filters executed at nodas, . . ., N;_1. Since rankE}_;) >
rank(F}), either rankF) > rank(F}) (in which case move to
N,41) or rank F)) < rank(F/_,) (in which case mové” to N;_1).
Note that this movement df' does not change the rank of any fil-
ter since the ranks of_, and I} are independent of all filters
and the rank ofFf' depends only on the filters executed at nodes
Ni,...,N;_1 which remain the same. Now using a similar argu-

correlated, i.e., the selectivity of a filter on a stream may depend ment as in the proof of Lemma 3.6, we see that this movement of

on the filters that have already been applied. We defineahei-
tional selectivityof a filter ' given a set of filter©2 C F, denoted
s(F|Q), as the fraction of tuples that satisfygiven that they sat-
isfy all the filters inQ. Note thatifF" € Q, s(F|Q) = 1.

F cannot increase the total cost of the solution. TAus= @ in the
optimal solution. [

So far, for a set of filters¥’, we have used(F’) to denote the

When filters are correlated, Theorem 2.1 no longer holds. In fact, sequence of filters itF’ in rank order. For this section, we modify
the problem of optimal ordering of correlated filters at a single node the interpretation of-(F’) to denote the sequence of filters i
has been shown to be NP-hard [9, 16]. The same work also givesin order of conditional rank, i.e., according to algorithm CORRE-
a natural greedy algorithm based on conditional selectivity (Fig- LATED (Figure 8). With this new interpretation of '), we have
ure 8) that is guaranteed to find an ordering having a cost at4nost the following result.

THEOREM 3.9. Algorithm OPTFILTER (Figure 6) gives a 4-
approximation to the optimal operator placement for correlated fil-
ters.

PrROOF With the new interpretation of(F’) it is easy to see
that Lemma 3.4 holds in the presence of correlated filters. Af- StreamS;
ter short-circuiting, the ranks of the filtef§' ..., F}, , are non-
decreasing. Hence when the filters are ordered (by algo@HiR-
RELATED in line 9 of algorithmOPT_FILTER the filters corre-
sponding to the network links automatically occur in the desired

Stream S,

order, and no ordering restrictions on the filters need to be im- Peft Pmid Right

posed. Since algorith@ORRELATEDs a 4-approximation to the S"emm' ””””””””””””” ST

optimal ordering in the case when there are no ordering restric- 1 1r2 2h e e ‘{ s(R2) |_-25r1r2 R

tions [16], the result follows. [] StreamS, “Node N NodeNie
©B

3.4 Extension to Tree Hierarchies

So far we have restricted our attention to the data acquired by only
one of the leaf nodes or sensors of Figure 1. Egidenote the Figure 9: Proof of Theorem 4.1

stream of data from thi&h sensor. We have shown how to optimize

the query (1) over any single stream In reality, query (1) may be

posed over data gathered by any number of sensors, i.e., the query (thereforea;r1 + a2r2), and similarly a constant amount of

is z_ff(Sl U...USy) for k sensors. This query can be_writt_en as the work to output every join tuple (therefoegsrirs). Just as
uniono#(S1) U ... U ox(Sk). Each of the queries in this union the filter costs, the join cost also scales down by a fagtor
operates on different data, so there is no opportunity for sharing on moving from nodeV; to N 1.

computation or transmission among these queries. Hence optimiz-

ing their combined execution is equivalent to optimizing each of

them separately, for which we use the algorithm of Section 3.2. Given cost and selectivity for the join operator, an expression anal-
ogous to (3) for the total cost of an in-network query plan for query

4. JOINS (9) can be written.

Recall the network topology of Figure 2. Now suppose the dataac- i . ,

quired by sensor nod¥, is in the form ofk different data streams ~ Divide the set of filters7 into 7", 72, and . Fori = 1,2, 7'

(e.g., a temperature stream, a light stream, a vibration stream, andcOnsists of those filters that may be applied eitheSobefore ltr;e

soon). In this section, we consider in-network processing for queried0in or on the join result after the join (denof&"| by n). 7+

that involve a sliding-window join [2] of these streams. We assume €an be applied only on the join result. We assume that the join and

that the join of allk streams is performed at a single node by the the filters are independent, i.e., th_e selec_tlwty of any operator dc_)es

MJoin operator [18]; consideration of join trees is left as future Notdepend on the operators applied earlier. We have the following

work. For ease of presentation, we assume- 2; extension to result (similar to Theorem 5.4 in [3]).

generalk is straightforward.

THEOREM 4.1. Given join cost of the forr(iL0), in the optimal
in-network query plan fo(9), the filters inF* (or F2) must be
executed in rank order.

Let S; and S2 be the streams acquired by sensor ndde We
consider the query:

SELECT * FROM (Sy[W1] X S2[W2])

WHERE F1 A...AF, 9 PROOF. Let F; and F» be two filters inF*, and rankF;) <
rank(F>). Suppose for contradiction that in the optimal p‘@@pt,
F3 is executed (at nod#;) before F} (at nodeN; ., z > 0) as
shown in Figure 9(a). Then iWopt, the join operator must have
been executed betwedh andF; . Otherwise we could apply algo-
rithm OPTFILTER to the subplan starting & and ending af,
thus obtaining a lower-cost plan in whidh and F; are executed
1. Selectivity: The selectivitys(x) of the join is defined as the N rank order (according to line 9 of algorithm OFFILTER).
fraction of the cross product that occurs in the join result. i
Thus if streamss; and.S2 have rates of, andrs tuples per Let Pleft: Pmid» Pright be the subplans before filtéf,, between
unit time coming into the join operator, the output of the join filters F> and 1, and after filterry, respectively. Let; andr2 be
is at rates(X)rrs. the rates of streamsS; and.S; on enteringPp,ig, andrgyt be the
rate of the joined stream on exitirByjg. Thenrgoyt = 71728
2. Cost The cost per unit time of performing the join is given where s is a constant depending on the selectivity of the filters
by: and the join operator ifP,;g. Since filter costs and transmission
(10) costs are both linear in the stream rate, and the join cost is as given
by (10), the total cost OPmId iS bir1 + bare + biarire Where
whereas, a2, and as are constants. This form arises be- by, bz, b12 are constants depending upon the costs of the filters and
cause a constant amount of work must be done per input tuple the join in Pig- Lety be the scaledown in computational cost

where W; and W5 represent the lengths of the windows (time-
based or tuple-based) on streafhsandS,, andF = {Fi,..., F,}

is a set of filters. We extend the cost model of Section 2.1 to include
the selectivity and cost of the join operator.

COS(N) =air1 + asre + azrirs

Algorithm OPT_FILTER_JOIN
1.P* = NULL, ¢(P*) = >0
2.fori=0tony,j=0tonz, k=1tom

3. Construct newP with join at nodeNy,

4. Optimally placeFt, ..., F! atnodesVi, ..., Ny
5. Optimally placer?, ..., F; atnodesVy,. .., Ni
6. Optimally place remaining filters &, ..., Ny,
7. if (c(P) <c(P*))P* =P

8. returnP*

Figure 10: Operator Placement for Queries with Joins

from nodeN; to nodeN;... Then the total cost dPgpt (exclud-
ing the costs 0P| a”dpright) is:

s(F»)

. C(FQ, Z) —+r1 (bl + blg’r’g) + bors + T17‘25’)/C(F1, ’L) (11)

Now consider two variation®; andP of Popt as shown in Fig-
ures 9(b) and 9(c) where eithék or F> has been moved adjacent
to the other, all other operators remaining the same. For Both
andP., the rate of strearfiz enteringPp,iq remains the same as in
Popt (= r2) sinceF; andF» operate only on streais, . However,
the rate of strean$, enteringPpy,jq is s(F1)r1 for P1 and 75
for 2. Excluding the costs 0P|t a“dPright since they remain

the same as iPgpt, the cost ofP, is:

T1

s(Ih)
and that ofP; is:

- c(Fa, 1) + ric(F1,4) + s(F1)r1(by + biara) + bara (12)

C(Fg,i)
s(Fz2)

T1

s(1%)

(b1 + biara) + bara + 7"17“25’7(+ C(Flyi)> (13)

SincePopt is optimal, we must have (1¥)(12) which on simpilifi-
cation gives:

rosy <1-— %1(7};)1)(61 + b1ar2) (14)
Similarly, we must have (1%)(13) which gives:
rosy > 1— 16%2(’};)2)(1)1 + bi272) (15)
Combining (14) and (15) we get:
c(Fa,1) c(F1,1)
1—s(F2) ~1—s(F1)

which implies that rankF:) < rank(F}), a contradiction. [

LetFy, ..., F,, bethefiltersinF" inrank order. By Theorem 4.1,
in the optimal plan there exists arsuch that firstFy , ..., F are
executed on streassy, followed by the join, and theR}, ,, ..., F,\,
on the join result (similarly forF?). Additionally, the join can be
executed at each of the nodes. Our algorithm (Figure 10) finds

5. EXTENSIONS

In this section, we define some interesting variations of the basic
filter placement problem as future work, and we demonstrate their
hardness.

5.1 Constrained Nodes

In some scenarios we may have constraints on the total amount of
filter execution and transmission cost that certain nodes can incur.
Given cost constraints at each node, a new problem is to find a fea-
sible in-network query plan that satisfies these constraints, if such
a plan exists. Recall the definition ofP, i) from Section 3.1.

DEFINITION 5.1 (FEASIBLE OPERATORPLACEMENT). Given
cost constraintC; at nodelN;, find an in-network query pla®
such thate(P, i) < C; for eachi or return NOis no suchP ex-
ists. [

THEOREM 5.2. The feasible operator placement problem is NP-
hard.

PROOF The proof is by a reduction from tHRARTITIONprob-
lem which is known to be NP-hard [11]. The PARTITION problem
is to decide, given a set of numbe$s= {a1, ..., a.}, whether
there exists a subsét of Ssuchthab®, .o ai=3", 5 o ai-
Based on such a given instance of PARTITION, we can construct
an equivalent instance of the feasible operator placement problem.
Constructm = 2 nodes and: filters Fi, ..., F,, with ¢(F;,1) =
a;. Let the computational cost be equal at both nodespiie= 1,
and the transmission cost between the nodes be 0,;i.e.0. Let
the cost constraints at the nodes@e = C> = "7 | a:/2. It
is easily seen that a feasible operator placement for this instance
exists iff the desired subsét for the PARTITION problem exists.
This polynomial time reduction shows that the feasible operator
placement problem is NP-hard[]

In cost-constrained environments, a further desirable property might
be load balancing: We might prefer a plan having overall higher
cost if it places roughly equal load on each node, as compared to a
plan that has lower cost but loads a few nodes very heavily or up to
capacity. Load balancing may be particularly applicable when the
system is required to support a number of concurrent queries.

DEFINITION 5.3 (LOAD-BALANCING). Given cost constraint
C; at nodeN;, find the in-network query plaf® that minimizes
maxi<;<m{c(P,1)/C;}. O

Clearly, the load balancing problem is at least as hard as the feasible
operator placement problem, sincenibix{c(P,)/C;} < 1 we

have found a feasible operator placement. Thus, the load balancing
problem is NP-hard.

5.2 Per-Filter Cost Scaling

So far we have assumed that the cost of each filter scales down by
a factor; from nodeN; to N;y;. However, the cost of differ-

ent filters may change differently from one node to the next, i.e.,

the optimal plan by an exhaustive search through these options.c(F, i 4+ 1)/c(F,) may be different for differenf’. For example,

Lines 4-6 are each an invocation of algorit@PT_FILTER Hence

if a filter F' accesses external data that resides close to Npdie

the algorithm is polynomial, and a simple implementation runs in may be more expensive to execufeat nodeN;; than at node

O(ninam(n + m)log(n +m)) time.

N;. Meanwhile, other filters may be cheaper at néde simply

becauséV; 1 has higher computational power. When we have per- [4] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A

filter cost scaling, the technique we used of modeling network links scalable continuous query system for internet databases. In
as filters no longer applies. Whether the problem becomes NP-hard Proc. of the 2000 ACM SIGMOD Intl. Conf. on Management
with per-filter cost scaling remains an open question. of Data, pages 379-390, May 2000.

6. RELATED WORK [5] M. Cherniack et al. Scalable distributed stream processing.

A considerable amount of work has focused on extending cen- In Proc. First Biennial Conf. on Innovative Data Systems
. - o Research (CIDR)Jan. 2003.
tralized data stream query processing systems [2] to a distributed

setting, e.g., Borealis [1], HourGlass [17], IrisNet [7], and Nia- [6] C. Cranor et al. Gigascope: high performance network

garaCQ [4]. Most of this work considers internet-style network monitoring with an SQL interface. IRroc. of the 2002 ACM
topologies consisting of nodes with ample computational power. SIGMOD Intl. Conf. on Management of Daage 623,
Consequently, the work focuses on optimizing network usage and May 2002.

minimizing latency, and is not concerned with computational over-
load. Even when computational overload is considered, e.g, in [5], [7] A. Deshpande, S. Nath, P. Gibbons, and S. Seshan.
only heuristics are provided to move load from one node to another. Cache-and-query for wide area sensor databas&somn of

the 2003 ACM SIGMOD Intl. Conf. on Management of Data
Our paper addresses the considerably different scenario of data ac pages 503-514, 2003.
quisition environments [10], where optimization of both commu-
nication and computation is required. There has been some pre-
vious work on in-network processing in these environments, but
it focuses primarily on aggregation [14], and has not considered 1978 ACM SIGMOD Intl. Conf. on Management of Data
expensive filters or joins. Acquisitional query processing [15] fo- pages 169-180, May 1978.
cusses on where, when, and how often data is physically acquired [9] . Feige, L. Lovasz, and P. Tetali. Approximating min-sum
and delivered to the query operators, but the problem of operator set coverAlgorithmica 2004.
placement is not dealt with.

[8] R. Epstein, M. Stonebraker, and E. Wong. Distributed query
processing in a relational data base systen®rbt. of the

[10] M. Franklin et al. Design Considerations for High Fan-in

In classical relational query optimization, filters are usually as- Systems: The HiFi Approach. Rroc. Second Biennial
sumed to be inexpensive, and a common optimization heuristic is Conf. on Innovative Data Systems Research (C|D&).
to push filters as close to the leaf operators as possible. Query op- 2005.

timization and site selection for distributed databases is also well
studied [8, 12], again assuming inexpensive filters. Expensive fil- [11]
ters have been considered in the context of query optimization with
user-defined predicates [3, 13], but only in a centralized setting.

M. Garey and D. Johnso@omputers and Intractability: A
Guide to the Theory of NP-Completenéds H. Freeman &
Co., 1979.

[12] L. Haas et al. R*: A Research Project on Distributed
7. CONCLUSIONS Relational DBMSIEEE Data Engineering Bulletin
This paper addresses the problem of query processing in sensor 5(4):28-32, 1982.
data environments with progressively increasing computational power
and network bandwidth up a hierarchy of processing nodes. Data is[13] J. Hellerstein and M. Stonebraker. Predicate migration:

acquired at low-capability edge devices and transmitted up the hier- Optimizing queries with expensive predicatesPhoc. of the
archy to the root, where queries are posed and results collected. To 1993 ACM SIGMOD Intl. Conf. on Management of Data
reduce bandwidth, query operators can be executed lower in the hi- pages 267-276, 1993.

erarchy, typically at the expense of higher computational cost. We
address the problem of balancing computational cost against net-
work bandwidth to obtain an optimal operator placement algorithm
that minimizes overall cost. We show that the problem is tractable,
but that a greedy algorithm can be suboptimal. We provide an op-
timal algorithm for uncorrelated filters, then extend our approach [15] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The
to Corl’elated ﬁlters and mU|t|Way Stream jOinS. Fina”y, we pose design of an acquisitiona| query processor for sensor
related open problems for future research. networks. InProc. of the 2003 ACM SIGMOD Intl. Conf. on

Management of Datgpages 491-502, 2003.
8. REFERENCES

[14] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG:
A tiny aggregation service for ad-hoc sensor networks. In
Proceedings of the 5th USENIX Symposium on Q8Bt.
2002.

[1] Y. Ahmad and U. Cetintemel. Network-aware query [16] K. Munagala, S. Babu, R. Motwani, and J. Widom. The
processing for stream-based applicationRioc. of the pipelined set cover problerroc. Intl. Conf. Database
2004 Intl. Conf. on Very Large Data Basgmges 456—467, Theory 2005. (To appear).

Sept. 2004.

[17] P. Pietzuch et al. Path optimization in stream-based overlay
[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. networks. Technical report, Harvard University, 2004.
Models and issues in data stream system®rtrt. of the

2002 ACM Symp. on Principles of Database Syst@mges [18] S. Viglas, J. F. Naughton, and J. Burger. Maximizing the

1-16. June 2002. output rate of multi-join queries over streaming information
' sources. IrProc. of the 2003 Intl. Conf. on Very Large Data
[3] S. Chaudhuri and K. Shim. Optimization of queries with Basespages 285-296, Sept. 2003.

user-defined predicateACM Trans. on Database Systems
24(2):177-228, 1999.

