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ABSTRACT
In sensor networks, data acquisition frequently takes place at low-
capability devices. The acquired data is then transmitted through a
hierarchy of nodes having progressively increasing network band-
width and computational power. We consider the problem of ex-
ecuting queries over these data streams, posed at the root of the
hierarchy. To minimize data transmission, it is desirable to perform
“in-network” query processing: do some part of the work at inter-
mediate nodes as the data travels to the root. Most previous work on
in-network query processing has focused on aggregation and inex-
pensive filters. In this paper, we address in-network processing for
queries involving possibly expensive conjunctive filters, and joins.
We consider the problem of placing operators along the nodes of
the hierarchy so that the overall cost of computation and data trans-
mission is minimized. We show that the problem is tractable, give
an optimal algorithm, and demonstrate that a simpler greedy op-
erator placement algorithm can fail to find the optimal solution.
Finally we define a number of interesting variations of the basic
operator placement problem and demonstrate their hardness.

1. INTRODUCTION
We consider query processing in environments where data is col-
lected at “edge devices” with limited capabilities, such as sensors.
Collected data is transmitted through a hierarchy of network nodes
and links with progressively increasing computational power and
network bandwidth, as shown in Figure 1. The “high fan-in” envi-
ronment addressed by the BerkeleyHiFi project [10] is one exam-
ple, but other scenarios that involve data acquisition and subsequent
processing, e.g., network monitoring [6], may exhibit similar gen-
eral characteristics.

Typically, queries are posed and results collected at the root of the
hierarchy. One simple approach is to transmit all data acquired at
the sensors through the hierarchy to the root, then perform all query
processing at the root. However, if queries produce significantly
less data than they consume—because of filtering, aggregation, or
low-selectivity joins—then this approach may pose considerable
unnecessary burden on network bandwidth.In-network query pro-
cessingpushes some or all of the query execution task to nodes
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Figure 1: Sensor Data Processing

lower in the hierarchy, in order to reduce overall network costs
[14]. In general, finding the best point in the hierarchy at which
to perform specific processing is a difficult problem: Placing work
lower in the hierarchy reduces transmission costs but imposes more
burden on lower-capability devices. The goal is to properly balance
these opposing effects to minimize overall cost.

Previous work on in-network query processing has focused on queries
in which data reduction occurs because of aggregation operators [14],
or inexpensive filters. Since CPU costs are typically much lower
than communication costs, it is common in such cases to perform
all operations as low down in the hierarchy as possible. For ex-
ample, a common heuristic is to push down all filters to the leaf
nodes or sensors. In this paper, we consider queries that may in-
volve expensive predicates, such as text, image, or video filtering,
or lookups to remote sources. In these cases, it may not be best (or
even possible) to filter at the low-capability leaf nodes or sensors.

As a concrete example, consider a video surveillance application
running over a hierarchy of nodes, with the sensors capturing the
raw images. Suppose the user is looking for images in which the
monitored area is dimly lit and there is a lot of motion between
successive frames (indicating potentially suspicious activity). This
query involves two filters. The first and relatively cheap filter (say
F1) checks for dim images by calculating the average pixel inten-
sity. The second filter (sayF2) checks for “sufficient” motion, and
may be a complicated image processing algorithm that is best not
run on the low-capability image-gathering sensor. In this case, the
preferred plan would be to executeF1 at the sensor, and then trans-
mit filtered images up the hierarchy to a node with sufficient com-
putational power to executeF2.

In general, our objective is to place each filter operator at the “best”
node in the hierarchy for that filter, based on its selectivity and
cost, so that the total cost of computation and communication is
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Figure 2: Basic Scenario and Cost Model

minimized. We refer to this problem as theoperator placement
problem. Intuitively, the main tradeoff that needs to be considered
is the lower computational costs at nodes higher up in the hierar-
chy against the transmission cost of getting the data up to those
nodes. Suppose we have anm-level hierarchy andn filters in our
query. Then there aremn possible filter placements for processing
the data as it travels to the root. We show that nevertheless the op-
erator placement problem has a polynomial-time optimal solution.
We provide an optimal algorithm, and show that a simpler greedy
algorithm can fail to find the optimal solution.

A key idea in our work is to model network links as filters. Then we
can address our overall problem as one of filter ordering on a sin-
gle node, but with precedence constraints for those filters that are
modeling links. We start by consideringuncorrelatedfilters, i.e.,
filters whose selectivity is independent of the other filters, and then
extend our algorithm to correlated filters. In both cases, we show
how the precedence constraints can be dealt with so that known
results on filter ordering [13, 16] can be reused. After addressing
queries with filters alone, we extend our algorithm to include mul-
tiway joins, showing how to decide where a join operator should be
placed optimally with respect to the query’s filter operators.

The overall contributions of this paper are:

• We define the problem of operator placement for in-network
processing of queries with expensive filters (Section 2).

• We describe a greedy algorithm that can fail to find the glob-
ally optimal solution to the operator placement problem, then
present a polynomial-time optimal algorithm for uncorrelated
filters. We extend our algorithm to provide the best possible
approximation for correlated filters (Section 3).

• We extend our algorithm to include operator placement for a
multiway stream join together with filters (Section 4).

• We identify several variations on the problem and in some
cases show their hardness (Section 5). We consider nodes
with resource constraints, load balancing across nodes, and
a more complex cost model for how filter costs may vary
across different nodes.

We finally present related work in Section 6 and conclusions in
Section 7.

2. PRELIMINARIES
We begin by considering data acquired by only one of the leaf
nodes of Figure 1 and focus on in-network query processing over

this data. As this data is transmitted up the hierarchy, the basic net-
work topology we need to consider (shown in Figure 2) consists
of a linear chain of nodesN1, N2, . . . , Nm, wherem is the num-
ber of levels in the hierarchy. In relation to Figure 1, the leftmost
nodeN1 corresponds to the point of acquisition, while the right-
most nodeNm corresponds to the root of the hierarchy. Each node
Nj transmits only to nodeNj+1. We consider the linear hierar-
chy merely for ease of presentation; in Section 3.4 we show how
our algorithms extend in a straightforward manner to general tree
hierarchies.

Let streamS denote the data acquired by nodeN1. Let F =
{F1, F2, . . . , Fn} be a set ofn filters. We first consider in-network
processing for the following basic query posed at the root nodeNm.

SELECT ∗ FROM S WHERE F1 ∧ F2 ∧ . . . ∧ Fn (1)

In Section 4 we extend our algorithms to deal with queries that
involve a multiway join of streams in addition to conjunctive filters.
In this paper we do not consider multiple queries together: The
possibility of shared computation among multiple queries yields an
even more complex operator placement problem that we leave as
future work.

An in-network query planfor the query in (1) is simply a mapping
of each filter inF to exactly one node. Figure 3 shows a sample
in-network query plan for executing a query withn = 4 filters on
m = 4 nodes. Figure 3 also shows the data that is transmitted along
each network link. Each link transmits only those tuples that have
passed all filters executed so far. The cost of an in-network query
plan consists of two parts: the cost of executing the filters on the
various nodes, together with the cost of transmitting the tuples over
the network links. The exact model used to evaluate the cost of an
in-network query plan is explained in the next section.

2.1 Cost Model
The cost of an in-network query plan is calculated using the fol-
lowing three quantities:

1. Selectivity of filters: Associated with each filterF is a se-
lectivity s(F ) that is defined as the fraction of the tuples in
streamS that are expected to satisfyF . We assume for now
that the filters are independent, i.e., selectivity of a filter re-
mains the same irrespective of which filters have been ap-
plied earlier. Correlated filters are dealt with in Section 3.3.

2. Cost of filters: Each filterF has a per-tuple costc(F, i) of
execution on nodeNi. To model the fact that the nodes in the
hierarchy have increasing computational power, we assume
that the cost of any filter scales down by a factorγi < 1
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Figure 3: Running Example

on moving from nodeNi to Ni+1 (see Figure 2). That is,
c(F, i + 1) = γjc(F, i). Note that even though we are sup-
posing scale-down, a decrease in computational power on
moving from nodeNi to Ni+1 is captured byγi > 1 and
can be incorporated into our approach directly.

3. Cost of network transmission: The cost of transmitting a
tuple on the network link from nodeNi to Ni+1 is li (see
Figure 2). We assume thatli includes an appropriate mul-
tiplicative factor to convert transmission cost into a quantity
that can be treated at par with computational cost.

Consider an in-network query planP for the query in (1). Let
P(F ) denote the index number of the node at which filterF is
executed under planP. LetFi be the set of filters executed at node
Ni, i.e.,Fi = {F | P(F ) = i}. We assume that at each nodeNi,
the set of filtersFi are executed in the optimal sequence given by
the following theorem [13].

THEOREM 2.1. The optimal sequence to execute a set of inde-
pendent filters on a single node is in increasing order ofrank, where
rank of a filterF is given by rank(F ) = cost(F )

1−selectivity(F )
.

Consider a sequence ofn′ filtersF ′ = F ′
1, . . . , F

′
n′ . Let c(F ′, i)

denote the cost per tuple of executing this sequence at nodeNi. It
is given by:

c(F ′, i) =
n′

∑

j=1

(

c(F ′
j , i)

j−1
∏

k=1

s(F ′
k)

)

(2)

Let r(Fi) denote the sequence of filters inFi in rank order.1 With-
out loss of generality assume that the data in streamS is acquired
at the rate of one tuple per some unit time. Then the cost per unit
time of the in-network planP is given by (assumel0 = 0):

c(P) =
m

∑

i=1

∏

F |P(F )<i

s(F )
(

li−1 + c
(

r(Fi), i
)

)

(3)

EXAMPLE 2.2. Consider the in-network query plan shown in
Figure 3. Let the selectivity of each filter be1/2, and let the costs
at nodeN1 of the filters be:

F F1 F2 F3 F4

c(F, 1) 200 400 1300 2500

1Since the filters have different costs at different nodes, the actual
rank of a filter is node-dependent. However, since the cost of each
filter scales by the same factor going from one node to the next, the
rank order of filters remains the same at every node. In Section 5.2
we discuss a more general model in which each filter’s cost may
scale differently across nodes.

The cost scaling factors and the transmission costs are as shown in
Figure 3. Assume stream tuples are acquired atN1 at unit rate.

Using equation(2), the execution cost of the sequenceF1, F2 of
filters at nodeN1 is200+ 1

2
·400 = 400. Since two filters each with

selectivity1/2 have been applied, the rate of data transmitted from
N1 to N2 and fromN2 to N3 is 1/4 of the unit rate each. Thus the
total transmission cost up to nodeN3 is 1

4
(700+500) = 300. The

per-tuple execution cost ofF3 at N3 is c(F3, 3) = γ1γ2c(F3, 1) =
130. Since the rate intoN3 is 1/4, the execution cost ofF3 is
1
4
· 130 = 32.5. Similarly the transmission cost fromN3 to N4

and the execution cost ofF4 are calculated to be37.5 and 7.8
respectively. Thus the total cost isc(P) = 400 + 300 + 32.5 +
37.5 + 7.8 = 777.8.

2.2 Problem Statement
Since each of then filters can be placed at any of them nodes, there
aremn possible in-network query plans. The problem of operator
placement for in-network query processing is to efficiently choose
the least-cost plan among the exponential number of alternatives.

DEFINITION 2.3 (OPERATORPLACEMENT PROBLEM). For
each filterF ∈ F , chooseP(F ) ∈ {1, . . . , m} such thatc(P)
given by(3) is minimized.

3. FILTER PLACEMENT
In this section, we consider solutions to the operator placement
problem given by Definition 2.3. We first assume independent fil-
ters and specify a local greedy operator placement algorithm (Sec-
tion 3.1). We show that this algorithm does not always find the
globally optimal solution. We then provide an optimal operator
placement algorithm (Section 3.2), and extend this algorithm for
correlated filters (Section 3.3) and tree hierarchies (Section 3.4).

3.1 Greedy Algorithm
For an in-network query planP, let c(P, i) denote the part of the
total costc(P) that is incurred at nodeNi. This cost includes
not only the execution of filters at nodeNi, but also the transmis-
sion of the filtered tuple stream from nodeNi to Ni+1. c(P) =
∑m

i=1 c(P, i), and notice thatc(P, i) depends only onF1, . . . ,Fi

and not onFi+1, . . . ,Fm.

A simple but reasonable way to approach the operator placement
problem is the following greedy algorithm. Start with nodeN1 and
choose a set of filtersF1 so thatc(P, 1) is minimized (explained
in the next paragraph). Then apply the approach recursively with
nodes{N2, . . . , Nm} and the set of filtersF − F1. Our global
objective is to minimize

∑m

i=1 c(P, i); the greedy algorithm min-
imizes eachc(P, i) individually in increasing order ofi. In other
words, the greedy algorithm decides which filters to apply by bal-
ancing filtering cost against the cost of transmitting unfiltered data



to the next node, but it does not take into account how much cheaper
it would be to filter the data further up the hierarchy.

For minimizingc(P, 1) in the base case of the recursion, we intro-
duce a key idea behind all our algorithms: modeling network links
as filters. Logically, we construct a filter corresponding to each net-
work link, such that transmitting a tuple over the link is equivalent
in terms of cost to executing the constructed filter over the tuple.
For cost evaluation, the entire in-network query plan can then be
treated as executing a sequence of filters on a single node, enabling
us to leverage previous work on filter ordering [3, 13, 16].

To minimizec(P, 1), we model the network link from nodeN1 to
N2 as a filterF l

1 with costc(F l
1, 1) = l1 (as the cost of transmitting

a tuple over the link isl1), and selectivitys(F l
1) = 0. Choosing a

selectivity of 0 forF l
1 factors away the cost of the plan processing

at nodesN2, . . . , Nm, and thus enables the greedy algorithm to
optimize only forC(P, 1) separately. We now show thatc(P, 1)
can be written as the cost of executing the filters inF1 followed by
the filterF l

1 at nodeN1.

LEMMA 3.1. ConstructF l
1 with s(F l

1) = 0, c(F l
1, 1) = l1.

Thenc(P, 1) = c
(

r(F1) • F l
1, 1

)

where• denotes concatenation
of sequences.

Proof. From (3),

c(P, 1) = c
(

r(F1), 1
)

+
∏

F∈F|P(F )<2

s(F )l1

= c
(

r(F1), 1
)

+
∏

F∈F1

s(F )c(F l
1, 1)

= c
(

r(F1) • F l
1, 1

)

We then orderF l
1 and the filters inF based on rank (recall The-

orem 2.1) and choose asF1 all the filters that occur beforeF l
1 in

rank order. Note that since rank(F l
1) = l1, effectively we simply

choose asF1 all filters that have rank< l1.

THEOREM 3.2. c(P, 1) is minimized when:

F1 = {F | F occurs beforeF l
1 in r(F ∪ {F l

1})}

PROOF. Consider a planP in which F1 is chosen according
to the theorem statement. By Lemma 3.1,c(P, 1) = c

(

r(F1) •

F l
1, 1

)

. Sinces(F l
1) = 0, we can append any number of filters

afterF l
1 without changing the cost of executing the sequence. Thus

we can write:

c(P, 1) = c
(

r(F1) • F l
1 • r(F − F1), 1

)

(4)

Now suppose for contradiction that there is a different set of fil-
tersF ′

1 to be executed at nodeN1 and a corresponding in-network
query planP ′ such thatc(P ′, 1) < c(P, 1). Similar to (4), we can
write:

c(P ′, 1) = c
(

r(F ′
1) • F l

1 • r(F − F ′
1), 1

)

(5)

The right sides of (4) and (5) give the execution cost of the same
set of filtersF ∪ {F l

1} but in different sequences. By the choice of
F1, the sequence in (4) is rank ordered, but that in (5) is not. By
Theorem 2.1,c(P, 1) ≤ c(P ′, 1). Thus we get a contradiction.

ProcedureRECURSIVE(F , {N1, . . . , Nm})
1. if (m = 1) Fm = F ; return
2. ConstructF l

1 with s(F l
1) = 0 andc(F l

1, 1) = l1
3. Calculater(F ∪ {F l

1}) for ranks at nodeN1

4. F1 = {F | F occurs beforeF l
1 in r(F ∪ {F l

1})}
5. RECURSIVE(F − F1, {N2, . . . , Nm})

Algorithm GREEDY
1. RECURSIVE(F , {N1, . . . , Nm})

Figure 4: Greedy Algorithm: O((m + n) log(n))

A summary of the greedy algorithm is shown in Figure 4. We illus-
trate the operation of the greedy algorithm by an example.

EXAMPLE 3.3. Consider operator placement using the greedy
algorithm for Example 2.2. The ranks ofF1, . . . , F4 at N1 are400,
800, 2600, and5000 respectively. The rank ofF l

1 is l1 = 700. Thus
F1 is chosen as{F1}. The ranks ofF2, . . . , F4 at N2 are obtained
by scaling down the ranks atN1 by γ1, so they are160, 520, and
1000. Only rank(F2) < l2, thusF2 = {F2}. Continuing in this
fashion, we obtainF3 = {F3} andF4 = {F4}. For this plan, we
find c(P) = 792.8 by (3).

The greedy algorithm makes very local decisions. Thus it is not
surprising that the greedy algorithm does not always produce the
globally optimal solution. For instance,c(P) = 792.8 in Example
3.3 is greater thanc(P) = 777.8 in Example 2.2.

3.2 Optimal Algorithm
In the greedy algorithm of Section 3.1, network links are modeled
as filters with selectivity 0. This approach enables us to capture the
transmission cost of the link, but the remainder of the tuple process-
ing cost (at nodes further up in the hierarchy) is not captured. Thus
we can only get an expression forc(P, 1) in terms of the execution
cost of a sequence of filters (Lemma 3.1), but not an expression
for the entirec(P). The optimal algorithm we present relies on
obtaining an analogous expression forc(P).

Assumeγi ≤ 1 for eachi (γi > 1 is handled in Section 3.2.2).
Sincec(F, i + 1) = γic(F, i), transmitting data on the link from
nodeNi to Ni+1 cuts down by a factorγi the per-tuple cost of
any filter applied subsequently. In terms of cost per unit time, this
cost scale-down is equivalent to the stream rate slowing down by
a factorγi, but the filter costs themselves remaining unchanged.
Hence the link from nodeNi to Ni+1 can be modeled as a filterF l

i

with s(F l
i ) = γi. Additionally, we setc(F l

i , 1) = li(
∏i−1

j=1 γj)
−1.

Intuitively, the per-tuple cost of traversing the link isli, even af-
ter the previous network links have been traversed. Thus the term
(
∏i−1

j=1 γj)
−1 is present to compensate for the scale-down produced

by the filtersF l
1, . . . , F

l
i−1. We can now writec(P) in terms of the

execution cost of a sequence of filters (assume all ranks are calcu-
lated atN1).

LEMMA 3.4. For i ∈ {1, . . . , m−1} constructF l
i withs(F l

i ) =

γi, c(F l
i , 1) = li(

∏i−1
j=1 γj)

−1 . Then:

c(P) = c
(

r(F1) • F l
1 • r(F2) • . . . • F l

m−1 • r(Fm), 1
)



where• denotes concatenation of sequences.

PROOF. Sincec(F, i + 1) = γic(F, i) for anyF ∈ F , we have
c(r(Fi), i) =

∏i−1
j=1 γjc(r(Fi), 1). From (3),c(P) is given by

(assumeγ0 = 1):

m
∑

i=1

∏

F |P(F )<i

s(F )
(

li−1 +

i−1
∏

j=1

γjc
(

r(Fi), 1
)

)

=
m

∑

i=1

∏

F |P(F )<i

s(F )

i−2
∏

j=1

γj

(

c(F l
i−1, 1)+γi−1c

(

r(Fi), 1
)

)

=

m
∑

i=1

∏

F |P(F )<i

s(F )

i−2
∏

j=1

s(F l
j )

(

c(F l
i−1, 1)+s(F l

i−1)c
(

r(Fi), 1
)

)

= c
(

r(F1) • F l
1 • r(F2) • . . . • F l

m−1 • r(Fm), 1
)

Suppose for now that the ranks of the sequence of filtersF l
1, . . . , F

l
m−1

(modeling links) are in non-decreasing order. Then the following
result and its proof are analogous to Theorem 3.2.

THEOREM 3.5. Suppose rank(F l
i ) < rank(F l

i+1) for eachi ∈
{1, . . . , m − 2}. Denote byF ′ the filter sequenceF l

0 • r(F ∪
{F l

1, . . . , F
l
m−1}) • F l

m. Thenc(P) is minimized when:

Fi = {F | F occurs betweenF l
i−1 andF l

i in F ′}

PROOF. Consider a planP in which eachFi is chosen accord-
ing to the theorem statement. By Lemma 3.4,

c(P) = c
(

r(F1) • F l
1 • r(F2) • . . . • F l

m−1 • r(Fm), 1
)

(6)

Now suppose for contradiction that there is a different assign-
ment of filtersF ′

1,F
′
2, . . . ,F

′
m to the nodes and a corresponding

in-network query planP ′ such thatc(P ′, 1) < c(P, 1). Similar to
(6), we can write:

c(P ′, 1) = c
(

r(F ′
1) • F l

1 • r(F ′
2) • . . . • F l

m−1 • r(F ′
m), 1

)

(7)

The right sides of (6) and (7) give the execution cost of the same
set of filters∪m−1

i=1 F l
i ∪F but in different sequences. By the choice

of F1,F2, . . . ,Fm, the sequence in (6) is rank ordered, but that in
(7) is not. By Theorem 2.1,c(P, 1) ≤ c(P ′, 1). Thus we get a
contradiction.

In general the ranks ofF l
1, . . . , F

l
m−1 may not be in non-decreasing

order. To deal with such cases, we introduce the concept of “short-
circuiting”.

3.2.1 Short-Circuiting
Suppose rank(F l

i−1) > rank(F l
i ) for somei. We show that in the

optimal in-network query plan in this scenario, no filter is executed
at nodeNi.

LEMMA 3.6. If rank(F l
i−1) > rank(F l

i ) for somei ∈ {2, . . . , m−
1}, then in the optimal planFi = ∅.

Ni−1
γi−1 N i Ni+1

γ i

l i−1 l i

Ni−1

l i−1 l i+

N i+1
γiγi−1

ion short−circuit     of node N

Figure 5: Short-Circuiting

PROOF. Suppose rank(F l
i−1) > rank(F l

i ) and in the optimal
in-network query planP, Fi 6= ∅. Consider the alternate query
plansP ′ andP ′′ which are the same asP except that the filters in
Fi have been moved to nodeNi−1 andNi respectively. We have

c(P) = a1

(

li−1 + c(r(Fi), i) + a2li
)

+ a3

wherea1 =
∏

F |P(F )<i
s(F ), a2 =

∏

F |F∈Fi
s(F ), anda3 de-

notes the sum of the other terms inc(P) from (3). Similarly:

c(P ′) = a1

(

c(r(Fi), i)γ
−1
i−1 + a2(li−1 + li)

)

+ a3

c(P ′′) = a1

(

li−1 + li + γic(r(Fi), i)
)

+ a3

SinceP is optimal, we must havec(P) < c(P ′) and c(P) <
c(P ′′). Substituting forc(P), c(P ′), andc(P ′′) and simplifying,
we get:

li−1γi−1

1 − γi−1
<

li
1 − γi

(8)

(8) implies that rank(F l
i−1) < rank(F l

i ), a contradiction.

If Fi is guaranteed to be empty in the optimal query plan, we
can modify the network topology by “short-circuiting” nodeNi as
shown in Figure 5. Logically, nodeNi is removed,Ni−1 is con-
nected to nodeNi+1 by a link having costli−1 + li, and the cost
scale-down factor from nodeNi−1 to Ni+1 is set toγi−1γi. At
each short-circuit the number of nodesm decreases by 1.

We can continue short-circuiting on the modified topology until
there does not exist anyi for which rank(F l

i−1) > rank(F l
i ). At

that point, Theorem 3.5 can be applied to yield the optimal solution.

3.2.2 Handling Cost Scaleup
So far we have assumedγi ≤ 1 for eachi. If γi > 1, it is easy
to see that in the optimal solutionFi+1 = ∅, as follows. If any
filters are executed at nodeNi+1 they can be moved to nodeNi.
The new plan will reduce the computational cost (sincec(F, i) <
c(F, i + 1)) as well as the transmission cost (since more filters are
applied earlier reducing the amount of data transmitted). Thus, just
as in Section 3.2.1, ifγi > 1, we can short-circuit nodeNi+1 (if
γm−1 > 1 we can simply delete nodeNm). We can continue short-
circuiting untilγi ≤ 1 for eachi.

3.2.3 Summary and Example
A summary of the entire algorithm is given in Figure 6. Its running
time isO((m+n) log(m+n)) due to the sorting of filters in rank
order in line 9.



Algorithm OPT FILTER
1. while (∃i | γi > 1)
2. short-circuit nodeNi+1

3. while (true)
4. for i = 1 to m − 1

5. s(F l
i ) = γi andc(F l

i , 1) = li(
∏i−1

j=1 γj)
−1

6. if
(

∃i | rank(F l
i−1) > rank(F l

i )
)

7. short-circuit nodeNi

8. else break
9. F ′ = F l

0 • r(F ∪ {F l
1, . . . , F

l
m−1}) • F l

m

10. for i = 1 to m
11. Fi = {F | F occurs betweenF l

i−1 andF l
i in F ′}

Figure 6: Optimal Operator Placement Algorithm
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Figure 7: Optimal Plan for Example 2.2 (short-circuits N3)

EXAMPLE 3.7. Continue with Example 2.2. We first construct
a filter for each network link (line 5):

i 1 2 3

c(F l
i , 1) 700 2500 3000

s(F l
i ) 1/5 1/2 1/4

rank(F l
i ) 875 5000 4000

We find that rank(F l
2) > rank(F l

3). Thus, we can short-circuitN3

(line 7). On short-circuiting, we obtain a new link with transmis-
sion cost800 and scale-down factor1/8 (Figure 7). The filter cor-
responding to this link (denote it byF l

2,4) has cost4000, selectiv-
ity 1/8 and hence rank4571.4. Since rank(F l

1) < rank(F l
2,4), no

more short-circuiting is required. The ranks ofF1, . . . , F4 are400,
800, 2600, and5000. Thus the rank order of filters isF1, F2, F

l
1,

F3, F
l
2,4, F4 (line 9). HenceF1 = {F1, F2}, F2 = {F3}, and

F4 = {F4} (line 11). SinceN3 has been short-circuited,F3 = ∅.
For this plan,c(P) = 747.8, that is lower than the costs in Exam-
ples 2.2 and 3.3, and can be verified to be optimal.

3.3 Correlated Filters
We now consider operator placement when the filters inF may be
correlated, i.e., the selectivity of a filter on a stream may depend
on the filters that have already been applied. We define thecondi-
tional selectivityof a filterF given a set of filtersQ ⊆ F , denoted
s(F |Q), as the fraction of tuples that satisfyF given that they sat-
isfy all the filters inQ. Note that ifF ∈ Q, s(F |Q) = 1.

When filters are correlated, Theorem 2.1 no longer holds. In fact,
the problem of optimal ordering of correlated filters at a single node
has been shown to be NP-hard [9, 16]. The same work also gives
a natural greedy algorithm based on conditional selectivity (Fig-
ure 8) that is guaranteed to find an ordering having a cost at most4

Algorithm CORRELATED
F : Set of correlated filters to be ordered
1. Q = set of filters executed so far
2. while (Q 6= F )

3. conditional rank(F ) = cost(F )
1−s(F |Q)

∀F ∈ F

4. Fmin = F ∈ F that has smallest conditional rank
5. chooseFmin to be executed next;Q = Q ∪ {Fmin}

Figure 8: 4-approximation to Ordering of Correlated Filters

times the optimal cost. The algorithm defines the conditional rank
for each filter (line 3) and at each step, picks the filter having the
smallest conditional rank to be executed next. It is also shown that
this approximation ratio of4 is the best possible unlessP = NP .

Our problem of optimally executing a set of correlated filters at
multiple nodes is clearly at least as difficult as the single-node prob-
lem, and hence is NP-hard. We show in this section that the same
approximation ratio of4 can be obtained for our problem setting
too. Since algorithm CORRELATED (Figure 8) gives the best or-
dering for correlated filters that can be found efficiently, we assume
that in any in-network query plan, the set of filters at any particular
node are executed in the order given by Figure 8, i.e., the set of
filters at any node are executed in order of conditional rank (condi-
tioned on the set of filters that have already been executed).

We again model the network links as filters with cost and selectiv-
ity as before (given by Lemma 3.4). Additionally, the filters that
model network links areindependentof all filters, i.e., for eachi,
s(F l

i |Q) = s(F l
i ) for anyQ such thatF l

i /∈ Q. Assume as in
Section 3.2 that all ranks are calculated at nodeN1. First we show
that even in the presence of correlated filters, short-circuiting (Sec-
tion 3.2.1) is still valid.

LEMMA 3.8. If rank(F l
i−1) > rank(F l

i ) for somei ∈ {2,
. . . , m − 1}, then in the optimal planFi = ∅ even if the filters
in F are correlated.

PROOF. SupposeFi 6= ∅. Replace the filters inFi by a single
filter F having equivalent per-tuple cost and selectivity as the filter
sequence at nodeNi. Now consider rank(F ), which may depend
on the filters executed at nodesN1, . . . , Ni−1. Since rank(F l

i−1) >
rank(F l

i ), either rank(F ) > rank(F l
i ) (in which case moveF to

Ni+1) or rank(F ) < rank(F l
i−1) (in which case moveF to Ni−1).

Note that this movement ofF does not change the rank of any fil-
ter since the ranks ofF l

i−1 andF l
i are independent of all filters

and the rank ofF depends only on the filters executed at nodes
N1, . . . , Ni−1 which remain the same. Now using a similar argu-
ment as in the proof of Lemma 3.6, we see that this movement of
F cannot increase the total cost of the solution. ThusFi = ∅ in the
optimal solution.

So far, for a set of filtersF ′, we have usedr(F ′) to denote the
sequence of filters inF ′ in rank order. For this section, we modify
the interpretation ofr(F ′) to denote the sequence of filters inF ′

in order of conditional rank, i.e., according to algorithm CORRE-
LATED (Figure 8). With this new interpretation ofr(F ′), we have
the following result.



THEOREM 3.9. Algorithm OPTFILTER (Figure 6) gives a 4-
approximation to the optimal operator placement for correlated fil-
ters.

PROOF. With the new interpretation ofr(F ′) it is easy to see
that Lemma 3.4 holds in the presence of correlated filters. Af-
ter short-circuiting, the ranks of the filtersF l

, . . . , F l
m−1 are non-

decreasing. Hence when the filters are ordered (by algorithmCOR-
RELATED) in line 9 of algorithmOPT FILTER, the filters corre-
sponding to the network links automatically occur in the desired
order, and no ordering restrictions on the filters need to be im-
posed. Since algorithmCORRELATEDis a 4-approximation to the
optimal ordering in the case when there are no ordering restric-
tions [16], the result follows.

3.4 Extension to Tree Hierarchies
So far we have restricted our attention to the data acquired by only
one of the leaf nodes or sensors of Figure 1. LetSi denote the
stream of data from theith sensor. We have shown how to optimize
the query (1) over any single streamSi. In reality, query (1) may be
posed over data gathered by any number of sensors, i.e., the query
is σF (S1∪ . . .∪Sk) for k sensors. This query can be written as the
unionσF (S1) ∪ . . . ∪ σF (Sk). Each of the queries in this union
operates on different data, so there is no opportunity for sharing
computation or transmission among these queries. Hence optimiz-
ing their combined execution is equivalent to optimizing each of
them separately, for which we use the algorithm of Section 3.2.

4. JOINS
Recall the network topology of Figure 2. Now suppose the data ac-
quired by sensor nodeN1 is in the form ofk different data streams
(e.g., a temperature stream, a light stream, a vibration stream, and
so on). In this section, we consider in-network processing for queries
that involve a sliding-window join [2] of these streams. We assume
that the join of allk streams is performed at a single node by the
MJoin operator [18]; consideration of join trees is left as future
work. For ease of presentation, we assumek = 2; extension to
generalk is straightforward.

Let S1 andS2 be the streams acquired by sensor nodeN1. We
consider the query:

SELECT ∗ FROM (S1[W1] 1 S2[W2])

WHERE F1 ∧ . . . ∧ Fn (9)

whereW1 and W2 represent the lengths of the windows (time-
based or tuple-based) on streamsS1 andS2, andF = {F1, . . . , Fn}
is a set of filters. We extend the cost model of Section 2.1 to include
the selectivity and cost of the join operator.

1. Selectivity: The selectivitys(1) of the join is defined as the
fraction of the cross product that occurs in the join result.
Thus if streamsS1 andS2 have rates ofr1 andr2 tuples per
unit time coming into the join operator, the output of the join
is at rates(1)r1r2.

2. Cost: The cost per unit time of performing the join is given
by:

cost(1) = a1r1 + a2r2 + a3r1r2 (10)

wherea1, a2, and a3 are constants. This form arises be-
cause a constant amount of work must be done per input tuple
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Figure 9: Proof of Theorem 4.1

(thereforea1r1 + a2r2), and similarly a constant amount of
work to output every join tuple (thereforea3r1r2). Just as
the filter costs, the join cost also scales down by a factorγi

on moving from nodeNi to Ni+1.

Given cost and selectivity for the join operator, an expression anal-
ogous to (3) for the total cost of an in-network query plan for query
(9) can be written.

Divide the set of filtersF into F1,F2, andF1,2. For i = 1, 2, F i

consists of those filters that may be applied either onSi before the
join or on the join result after the join (denote|F i| by ni). F1,2

can be applied only on the join result. We assume that the join and
the filters are independent, i.e., the selectivity of any operator does
not depend on the operators applied earlier. We have the following
result (similar to Theorem 5.4 in [3]).

THEOREM 4.1. Given join cost of the form(10), in the optimal
in-network query plan for(9), the filters inF1 (or F2) must be
executed in rank order.

PROOF. Let F1 andF2 be two filters inF1, and rank(F1) <
rank(F2). Suppose for contradiction that in the optimal planPopt,
F2 is executed (at nodeNi) beforeF1 (at nodeNi+x, x ≥ 0) as
shown in Figure 9(a). Then inPopt, the join operator must have
been executed betweenF2 andF1. Otherwise we could apply algo-
rithm OPTFILTER to the subplan starting atF2 and ending atF1,
thus obtaining a lower-cost plan in whichF1 andF2 are executed
in rank order (according to line 9 of algorithm OPTFILTER).

Let Pleft,Pmid,Pright be the subplans before filterF2, between
filtersF2 andF1, and after filterF1, respectively. Letr1 andr2 be
the rates of streamsS1 andS2 on enteringPmid, androut be the
rate of the joined stream on exitingPmid. Thenrout = r1r2s
wheres is a constant depending on the selectivity of the filters
and the join operator inPmid. Since filter costs and transmission
costs are both linear in the stream rate, and the join cost is as given
by (10), the total cost ofPmid is b1r1 + b2r2 + b12r1r2 where
b1, b2, b12 are constants depending upon the costs of the filters and
the join inPmid. Let γ be the scaledown in computational cost



Algorithm OPT FILTER JOIN
1. P∗ = NULL , c(P∗) = ∞
2. for i = 0 to n1, j = 0 to n2, k = 1 to m
3. Construct newP with join at nodeNk

4. Optimally placeF 1
1 , . . . , F 1

i at nodesN1, . . . , Nk

5. Optimally placeF 2
1 , . . . , F 2

j at nodesN1, . . . , Nk

6. Optimally place remaining filters atNk, . . . , Nm

7. if
(

c(P) < c(P∗)
)

P∗ = P
8. returnP∗

Figure 10: Operator Placement for Queries with Joins

from nodeNi to nodeNi+x. Then the total cost ofPopt (exclud-
ing the costs ofPleft andPright) is:

r1

s(F2)
· c(F2, i) + r1(b1 + b12r2) + b2r2 + r1r2sγc(F1, i) (11)

Now consider two variationsP1 andP2 of Popt as shown in Fig-
ures 9(b) and 9(c) where eitherF1 or F2 has been moved adjacent
to the other, all other operators remaining the same. For bothP1

andP2, the rate of streamS2 enteringPmid remains the same as in
Popt (= r2) sinceF1 andF2 operate only on streamS1. However,
the rate of streamS1 enteringPmid is s(F1)r1 for P1 and r1

s(F2)

for P2. Excluding the costs ofPleft andPright since they remain
the same as inPopt, the cost ofP1 is:

r1

s(F2)
· c(F2, i) + r1c(F1, i) + s(F1)r1(b1 + b12r2) + b2r2 (12)

and that ofP2 is:

r1

s(F2)
(b1 + b12r2) + b2r2 + r1r2sγ

( c(F2, i)

s(F2)
+ c(F1, i)

)

(13)

SincePopt is optimal, we must have (11)<(12) which on simplifi-
cation gives:

r2sγ < 1 −
1 − s(F1)

c(F1, i)
(b1 + b12r2) (14)

Similarly, we must have (11)<(13) which gives:

r2sγ > 1 −
1 − s(F2)

c(F2, i)
(b1 + b12r2) (15)

Combining (14) and (15) we get:

c(F2, i)

1 − s(F2)
<

c(F1, i)

1 − s(F1)

which implies that rank(F2) < rank(F1), a contradiction.

LetF 1
1 , . . . , F 1

n1
be the filters inF1 in rank order. By Theorem 4.1,

in the optimal plan there exists ani such that firstF 1
1 , . . . , F 1

i are
executed on streamS1, followed by the join, and thenF 1

i+1, . . . , F
1
n1

on the join result (similarly forF2). Additionally, the join can be
executed at each of them nodes. Our algorithm (Figure 10) finds
the optimal plan by an exhaustive search through these options.
Lines 4-6 are each an invocation of algorithmOPT FILTER. Hence
the algorithm is polynomial, and a simple implementation runs in
O(n1n2m(n + m)log(n + m)) time.

5. EXTENSIONS
In this section, we define some interesting variations of the basic
filter placement problem as future work, and we demonstrate their
hardness.

5.1 Constrained Nodes
In some scenarios we may have constraints on the total amount of
filter execution and transmission cost that certain nodes can incur.
Given cost constraints at each node, a new problem is to find a fea-
sible in-network query plan that satisfies these constraints, if such
a plan exists. Recall the definition ofc(P, i) from Section 3.1.

DEFINITION 5.1 (FEASIBLE OPERATORPLACEMENT). Given
cost constraintCi at nodeNi, find an in-network query planP
such thatc(P, i) ≤ Ci for eachi or return NO is no suchP ex-
ists.

THEOREM 5.2. The feasible operator placement problem is NP-
hard.

PROOF. The proof is by a reduction from thePARTITIONprob-
lem which is known to be NP-hard [11]. The PARTITION problem
is to decide, given a set of numbersS = {a1, . . . , an}, whether
there exists a subsetS′ of S such that

∑

ai∈S′ ai =
∑

ai∈S−S′ ai.
Based on such a given instance of PARTITION, we can construct
an equivalent instance of the feasible operator placement problem.
Constructm = 2 nodes andn filters F1, . . . , Fn with c(Fi, 1) =
ai. Let the computational cost be equal at both nodes, i.e.,γ1 = 1,
and the transmission cost between the nodes be 0, i.e.,l1 = 0. Let
the cost constraints at the nodes beC1 = C2 =

∑n

i=1 ai/2. It
is easily seen that a feasible operator placement for this instance
exists iff the desired subsetS′ for the PARTITION problem exists.
This polynomial time reduction shows that the feasible operator
placement problem is NP-hard.

In cost-constrained environments, a further desirable property might
be load balancing: We might prefer a plan having overall higher
cost if it places roughly equal load on each node, as compared to a
plan that has lower cost but loads a few nodes very heavily or up to
capacity. Load balancing may be particularly applicable when the
system is required to support a number of concurrent queries.

DEFINITION 5.3 (LOAD-BALANCING ). Given cost constraint
Ci at nodeNi, find the in-network query planP that minimizes
max1≤i≤m{c(P, i)/Ci}.

Clearly, the load balancing problem is at least as hard as the feasible
operator placement problem, since ifmax{c(P, i)/Ci} < 1 we
have found a feasible operator placement. Thus, the load balancing
problem is NP-hard.

5.2 Per-Filter Cost Scaling
So far we have assumed that the cost of each filter scales down by
a factorγi from nodeNi to Ni+1. However, the cost of differ-
ent filters may change differently from one node to the next, i.e.,
c(F, i + 1)/c(F, i) may be different for differentF . For example,
if a filter F accesses external data that resides close to nodeNi, it
may be more expensive to executeF at nodeNi+1 than at node
Ni. Meanwhile, other filters may be cheaper at nodeNi+1 simply



becauseNi+1 has higher computational power. When we have per-
filter cost scaling, the technique we used of modeling network links
as filters no longer applies. Whether the problem becomes NP-hard
with per-filter cost scaling remains an open question.

6. RELATED WORK
A considerable amount of work has focused on extending cen-
tralized data stream query processing systems [2] to a distributed
setting, e.g., Borealis [1], HourGlass [17], IrisNet [7], and Nia-
garaCQ [4]. Most of this work considers internet-style network
topologies consisting of nodes with ample computational power.
Consequently, the work focuses on optimizing network usage and
minimizing latency, and is not concerned with computational over-
load. Even when computational overload is considered, e.g, in [5],
only heuristics are provided to move load from one node to another.

Our paper addresses the considerably different scenario of data ac-
quisition environments [10], where optimization of both commu-
nication and computation is required. There has been some pre-
vious work on in-network processing in these environments, but
it focuses primarily on aggregation [14], and has not considered
expensive filters or joins. Acquisitional query processing [15] fo-
cusses on where, when, and how often data is physically acquired
and delivered to the query operators, but the problem of operator
placement is not dealt with.

In classical relational query optimization, filters are usually as-
sumed to be inexpensive, and a common optimization heuristic is
to push filters as close to the leaf operators as possible. Query op-
timization and site selection for distributed databases is also well
studied [8, 12], again assuming inexpensive filters. Expensive fil-
ters have been considered in the context of query optimization with
user-defined predicates [3, 13], but only in a centralized setting.

7. CONCLUSIONS
This paper addresses the problem of query processing in sensor
data environments with progressively increasing computational power
and network bandwidth up a hierarchy of processing nodes. Data is
acquired at low-capability edge devices and transmitted up the hier-
archy to the root, where queries are posed and results collected. To
reduce bandwidth, query operators can be executed lower in the hi-
erarchy, typically at the expense of higher computational cost. We
address the problem of balancing computational cost against net-
work bandwidth to obtain an optimal operator placement algorithm
that minimizes overall cost. We show that the problem is tractable,
but that a greedy algorithm can be suboptimal. We provide an op-
timal algorithm for uncorrelated filters, then extend our approach
to correlated filters and multiway stream joins. Finally, we pose
related open problems for future research.
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