
Operator Placement for Snapshot Multi-Predicate

Queries in Wireless Sensor Networks

Georgios Chatzimilioudis #1, Huseyin Hakkoymaz #2, Nikos Mamoulis ∗3, Dimitrios Gunopulos #4

#Computer Science Department, University of California, Riverside

Riverside, California 92507, USA
1
gchatzim@cs.ucr.edu

2
huseyin@cs.ucr.edu

4
dg@cs.ucr.edu

∗Computer Science Department, Hong Kong University

Pokfulam Road, Hong Kong
3
nikos@cs.hku.hk

Abstract—This work aims at minimize the cost of answering
snapshot multi-predicate queries in high-communication-cost
networks. High-communication-cost (HCC) networks is a family
of networks where communicating data is very demanding in
resources, for example in wireless sensor networks transmitting
data drains the battery life of sensors involved. The important
class of multi-predicate queries in horizontally or vertically
distributed databases is addressed. We show that minimizing the
communication cost for multi-predicate queries is NP-hard and
we propose a dynamic programming algorithm to compute the
optimal solution for small problem instances. We also propose
a low complexity, approximate, heuristic algorithm for solving
larger problem instances efficiently and running it on nodes with
low computational power (e.g. sensors). Finally, we present a
variant of the Fermat point problem where distances between
points are minimal paths in a weighted graph, and propose
a solution. An extensive experimental evaluation compares the
proposed algorithms to the best known technique used to evaluate
queries in wireless sensor networks and shows improvement of
10% up to 95%. The low complexity heuristic algorithm is also
shown to be scalable and robust to different query characteristics
and network size.

I. INTRODUCTION

There is a need for intersecting lists of horizontally or

vertically distributed data in various high communication cost

(HCC) network applications. The intersection can take place

at the sink or in-network, while the lists are routed towards

the sink. Advances in the most commonly researched HCC

networks, namely Wireless Sensor Networks, have made it

possible to store large amounts of data on the sensors and

reduce communication by transmitting data in batch [1][2].

Multi-Predicate Queries (MP-queries) are queries that con-

sist of different predicates and are answered by the intersection

of the individual answers for each predicate. In Figure 1 we

can see a visual example of a sink issuing an MP-query whose

predicates are answered by some source nodes. An instance of

an MP-query: ”Find the timestamps for which the temperature

in region A and region B was 100, and the humidity in region C

was 90%”. More complex instances of MP-Queries are Spatio-

Temporal Pattern (STP) queries, proposed and analyzed in [3]:

“Find object IDs that crossed through region A at time T1,

came through area B at a later time T2 and then stopped

inside circle C some time during interval (T3,T4)”.

We focus on snapshot instances of MP-Queries and the opti-

mization of their in-network processing. A Dynamic Program-

ming algorithm (DPopt) is proposed that does an exhaustive

search for the possible routing trees and intersection operator

placement and always finds the optimal solution. An optimal

heuristic to branch and bound on the search space of DPopt

is proposed. This heuristic is based on a variant of the Fermat

point problem that has many practical application in various

network problems. Due to its high complexity, DPopt is not

useful for large problem instances and especially not for sinks

with low computational power. For this reason we developed a

low complexity suboptimal heuristic algorithm 2PH which is

shown to perform very close to the optimal solution. The basic

intuition is that the transmission of big lists should be avoided

and smaller lists should be used to intersect with them.

The goal of this paper is to minimize energy expendi-

ture needed to perform in-network evaluation of snapshot

multi-predicate queries in HCC networks. We take a holistic

approach looking at all operators and optimize both their

sequence and their placement. Our contributions:

• We address the important class of multi-predicate queries

for high communication cost networks

• We analyze the complexity of identifying the optimal plan

for executing a multi-predicate query and prove that the

problem is NP-hard.

• We propose a dynamic programming algorithm DPopt to

compute the optimal plan

• We present an important variant of the Fermat point

problem, propose a solution and use it as a branch and

bound method to reduce the search space and improve

the efficiency of the dynamic programming algorithm.

• We propose a fast suboptimal heuristic algorithm with

performance very close to the optimal.

• An extensive experimental evaluation compares our al-

gorithms to the best known technique used to evaluate

queries in wireless sensor networks, and shows that

savings from 10% up to 95% are possible. Our simple,

heuristic algorithm is also shown to be scalable and robust

to different query characteristics and network sizes.
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Our algorithms are general in the sense that they can be

used for any kind of query involving a set of intersections.

Also, they can easily be used within the core of previously

proposed query optimizers for WSN (e.g. tinyDB [4]). To

our knowledge, this is the first work to propose, develop and

analyze algorithms for optimizing in-network processing of

multi-predicate queries in high communication-cost networks.

The paper is organized as follows. Section II describes some

of the related research and section III presents the problem

definition, the assumptions and the cost model used. Sections

IV and V discuss the complexity of the problem and present

an algorithm for the optimal solution. Section VI describes the

suboptimal heuristic algorithm and its optimization, whereas

section VII presents the variant of the Fermat point problem

and our strategy of using it to improve the efficiency of both

optimal and suboptimal algorithms. Next, a combination of the

algorithms is used to create a hybrid for better results in section

VIII. The algorithms we compare to and the experimental

evaluation follow in section IX. Section X summarizes and

concludes the paper.

II. RELATED WORK

Motivated by boolean queries in text database systems,

works [5][6][7][8] consider minimizing the comparisons

needed to intersect a collection of sorted lists. Lower and

upper bounds for intersecting two lists have been analyzed,

but those bounds correspond to intersecting lists by exchanging

individual elements. We stay at the granularity of exchanging

whole lists amongst nodes, which is shown by our experiments

to be more cost efficient.

A. Distributed Databases

Semi-joins are by far the most widely studied and used

technique in the area of distributed query processing with

focus on minimizing communication cost. Semi-joins are

shown to be of benefit only for relations with very large tuples

[9][10]. Chang in [11] proposes heuristic rules for considering

the optimal sequence of joining distributed relations. However,

his heuristics account only for uniform networks and do not

account for single attribute relations. The work of [12] is

also using joins to reduce transmitted data. Their divide and

conquer heuristic algorithm is developed for uniform networks

and requires queries that involve both ’data reducing’ and ’data

increasing’ join operators on different attributes in order to

work. In our case we deal only with intersections which is

always ’data-reducing’ and which is defined between the same

common attribute over all relations. Using their algorithm in

our problem would return a random query tree.

Optimization techniques for queries have also been studied

by Hellerstein [13] where an algorithm is proposed for the

optimal ordering of selections. Like theirs, our algorithms are

also motivated by the Least-Cost Fault Detection problem [14],

which puts selection predicates in inversely proportional order

of their selectivity. The heuristic proposed in [13], however,

can not be straightforwardly applied in our setup since the

differential cost in our case depends on the path chosen so far

for computing the intersection.

B. Wireless Sensor Networks

Meliou et al. [15] consider gathering data from a small sub-

set of sensors, where they propose a new query routing scheme

where the query dissemination and the query evaluation are

combined in one step. A fixed-size packet with the query is

routed over all nodes of interest gathering their readings, and

returned to the sink. The assumption that the size of the data

gathered from each source is known is only viable in very

specific applications. Furthermore, their algorithm does not

account for the reduction imposed by intersecting two sets of

data from different sources, thus it is not optimally applicable

in our scenario.

Coman et al. [16] propose heuristics to optimize the place-

ment of only a single binary join operator. In general, they pick

the closest node to the optimal Euclidean location of joining.

As we will show in this paper this heuristic is very dependent

on the network layout and can result in a very costly plan. Yu

et al. [17] are also interested in minimizing communication

cost for a single binary equi-join of tuples coming from two

different neighborhoods. They use synopsis to cut down on

the data sent from each local neighborhood to the actual join

operator and they compare against a method identical to what

Coman et al. proposed in [16]. In our paper we want to

optimize queries with more than one operator, thus we need to

take a holistic approach looking at all operators and optimize

both their sequence and their placement. If we assume that

each predicate is answered by a neighborhood and not just

by one node then we can incorporate the synopsis method by

[17] in our framework for every operator placement.

III. ASSUMPTIONS, NOTATION AND DEFINITIONS

Several assumptions on the high-communication-cost net-

work are needed to better analyze the theoretical aspect of

the problem and study the behavior of the proposed methods.

We consider that the nodes in the network are stationary

throughout the query injection and answer retrieval. Also, the

network is symmetric, which means that if a node u is able

to listen to node v then v can also listen to u.
The basestation or querying node (called also sink) has full

knowledge of the network which is a valid assumption if we

use Link State routing (for example [18]). This assumption can

be dropped in the case the nodes are aware of their location

and the query consists of spatial predicates, since we can use

geographic routing [19]. The way each site collects the data

it needs is orthogonal to this work. Also, techniques to store

and index data [20][21] are complementary to this work.

We assume that we are able to estimate the selectivity

of each intersection operator. The efficiency of the proposed

query optimization techniques depend on the accuracy of this

estimation. A zero cost solution is to use past query answers to

estimate the selectivity of new intersections. Another solution

is using end-biased samples [22] that provide high accuracy

with small communication cost for correlated data. Techniques
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like histograms [23], sketches [24] and Bloom filters [25] have

also been proposed and applied to estimate the selectivities of

operators in a distributed system. Nevertheless, dealing with

large datasets the cost of estimating the intersection selectivity

is very low compared to the cost of query processing.

We will stay at the granularity of exchanging lists and

not elements. As experiments show our algorithms always

outperform exchanging elements.

TABLE I

NOTATION

N set of all nodes in the wireless sensor network

n number of nodes in the network n = |N |

Q multi-predicate query

P set of the predicates p1, p2, ..., pm in query Q

m number of predicates in query Q, m = |P |

q querying node (sink)

S set of source nodes, each holding a single predicate
answer Ai. S ⊂ N

Ai set of values held in source node si that is the answer to
some predicate pj

Bu Bytes to be sent from node u

Hops(u, v) Hops of shortest path from node u to node v

D(u, v) Distance function used as a heuristic in our algorithms

Multi-predicate snapshot queries: Our techniques target

applications that make use of multi-predicate snapshot queries.

Snapshot queries are instant queries that require their answer

at the specific time of the query expression. Multi-predicate

queries consist of different predicates, that are simple queries

like selections, range, skylines, etc. The answer to the multi-

predicate query is computed by the intersection of the predi-

cate answers.

Query evaluation cost: We follow the same energy model

as Coman et al [16] which can be applied even for the case

where each predicate is answered by a region and not just

one source node. The cost of transmitting data from node i to
node j is c(i, j) = c ∗Hops(i, j) ∗Bi. The term c is network

specific and independent of the query Q and the nodes i,j.
We define k(i, j) as the function that returns 1 whenever

the edge (i, j) is used in the query evaluation:

k(i, j) =

(

1 if communication edge (i, j) is used

0 otherwise
(1)

The total communication cost CQ of getting the answer of
query Q will be:

CQ =

m,m
X

i=1,j=1

c ∗ k(i, j) ∗ Bi (2)

where nodes i, j ∈ V . This does not include the cost of

disseminating the query. We are only concerned about the cost

of returning the results to the sink rather than the cost of

disseminating the query itself.

We are trading communication cost for computation cost.

It has been well documented though that computational cost

is orders of magnitude lower than communication cost. The

energy consumption for transmitting 1 bit of data using the

MICA mote (http://www.xbow.com/) is approximately equiv-

alent to processing 1000 CPU instructions. Also, in many

real world applications WSN are multi-tier, thus trading cheap

computational tasks at some high tier node for a low energy

query plan that will be executed on low tier nodes of high

energy constraints is very preferable.

Problem Definition: Consider a wireless sensor network

with a set N of n nodes n1, n2, ..., nn. We have a multi-

predicate query Q – consisting a set P of m predicates –

injected at node q ∈ N . Each predicate is assigned to one

node, so there is a subset S of N with m nodes that can

answer the query. Each node ni ∈ S is called source and

holds a predicate answer Ai. Our goal is to minimize the cost-

function (2) of computing
⋂m

i=1 Ai and sending the result to

the sink q.

IV. NP-HARDNESS

Consider the simple case where all predicate answers are

identical, thus any intersection of two sets will result in the

same set again. In this case all the edges in our virtual graph

will have static weight since the load transmitted over it will

always be the same.

The definition of the Steiner Tree problem in graphs:

Steiner Tree in Graphs

Instance: Graph G = (V, E), a weight w(e) ∈ Z+
0

for each e ∈ E, a subset R ⊆ V , and a positive

integer bound B.

Question: Is there a subtree of G that includes all the

vertices of R and such that the sum of the weights

of the edges in the subtree is no more than B?

Thus, a special case of our problem is already reducible to the

Steiner Tree problem, which is proved to be NP-hard by Karp

[26]. Thus, our problem is NP-hard also.

V. OPTIMAL SOLUTION

The optimal solution can be constructively found by a

Dynamic Programming algorithm that we will call DPopt.

During DPopt, we need to compute a (2m − 1) ∗ n matrix

C. Every row of this matrix corresponds to a subset of S
(S has m source nodes), and every column is a node in N
(N has n nodes). Each cell ci,j of the matrix C contains

the minimum communication cost to get the intersection of

subset i at node j. For example, c{s1s2},n6 corresponds to

the minimum cost needed to compute the intersection of

A1 and A2 and get the result at n6. As another example,

c{s1s2s3},n4 corresponds to the minimum possible cost to get

the intersection of A1, A2, and A3 at node n4. In this case,

n4 could receive A1 ∩ A2 = A12 from one node and A3

from another and compute A12 ∩ A3, or n4 could receive

A1 ∩ A3 = A13 from one node and A2 from another and

compute A13 ∩A2, or n4 could receive A2 ∩A3 = A23 from

one node and A1 from another and compute A23∩A1, or could

even receive the whole intersection A1∩A2∩A3 = A123 from

a different node. The goal of DPopt is to find which of the

above ways is the cheapest and store its cost at c{s1s2s3},n4
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Fig. 1: An instance of a Sensor Network Fig. 4: Another instance of a Sensor Network
Fig. 2: The optimal query evaluation tree given by the DPopt algorithm Fig. 5: Query plan produced by Phase 2 for evaluation tree of Figure 7
Fig. 3: The query evaluation tree given by the Naivealgorithm Fig. 6: Query plan produced by by Phase 2 for evaluation tree of Figure 8

(and the corresponding sub-plan). How to create the Dynamic

Programming matrix C for DPopt is described in detail later.

Assume that C has been completed. The last row of this

matrix will store, for each node in N , the minimum cost of that

node being the final recipient of the complete intersection. The

cost in c{s1s2s3},q will correspond to the cost of the optimal

plan for answering the MP-Query Q.

In matrix C each row corresponds to a subset Si ⊂ S
and is constructed as follows. For each cell cSi,v we consider

each possible split of Si into two sets Si1 and Si2. We access

the corresponding rows for Si1 and Si2, and we measure the

cost that these two nodes send the partial intersections to v.
We also consider the whole set Si being sent directly from

a different node. Thus we need to consider all columns of

the same row which might not yet be filled out. We compute

the minimum of these costs and store it to cSi,v (together

with the corresponding sub-plan in a separate data structure).

If this new cost affects other columns in the same row we

update them. The computational cost of evaluating query Q
according to our DPopt is mainly:

cSi,v = cSi1,u + cSi2,w + BuHops(u, v) + BwHops(w, v)

where Si1 and Si2 the non-overlapping splits of Si and

u, v, w ∈ S.
Table II shows the Dynamic Programming matrix C for

our example in Figure 1 where the sources s1,s2,s3 have

cardinality 20 and every time we intersect we get 1/2 of

the smallest input elements. The first two rows are easy to

TABLE II

DYNAMIC PROGRAMMING MATRIX C FOR DPopt

n1 n2 n3 n4 n5 n6 n7

{s1} 40 0 40 40 40 20 20

{s2} 20 20 20 20 20 0 20

{s3} 40 40 40 20 0 20 40

{s1s2} 30 20 30 30 30 20 30

{s1s3} 50 40 50 50 40 40 50

{s2s3} 30 30 30 30 20 20 30

{s1s2s3} 45 30 40 30 30 35 35

complete: there are no possible splits of the single-element

sets thus for each set we compute the cost of sending it to the

node in each column. For instance, cell (1, 1) represents cost

c{s1},n1 of sending set {s1} to node n1, 20 bytes traveling

over 2 hops n2 → n6 → n1 makes 40. In the same manner

the other cells of rows 1-3 are computed. For rows 4-6 we

can split the two-element sets only one way. For instance, set

{s1s3} can be only split into set {s1} and set {s2}. c{s1s2},n1

represents the optimal cost of sending the result of set {s1s2}
to node n1. To find this optimal cost we need to test all

possible ways of computing the result of {s1s2}. The optimal

solution is sending both to node n1 with costs c{s1},n1 = 40
and c{s2},n1 = 20 read from cells (1, 1) and (2, 1) respectively.
This gives a total of 60 which is written into cell (4, 1). The
rest of the cells in rows 4-6 are computed in the same way. For

row 7, where we have the 3-element set {s1s2s3}, we follow

the same steps, only this time we have 3 possible splits {s1s2}-
{s3}, {s1s3}-{s2}, and {s2s3}-{s1}. For each possible split

we need to test all scenarios of getting the result of each subset

and send it to the appropriate node x, write the minimum cost

into cell (7, x) and store the plan used in a separate structure

for reference. For x = n3, which is the sink, we can get subset

{s1s2} with cost 30 as indicated by c{s1s2},n3 and subset {s3}
with cost 40 as indicated by c{s3},n3 for a total cost of 70.

An alternative is to get subset {s1s3} with cost 50 and subset

{s2} with cost 20 for a total cost of 70. Another possible split

is getting subset {s2s3} with cost 30 and subset {s1} with

cost 40. We can also get the whole set {s1s2s3} from node

n2 with a total cost of 40, which is also the optimal solution

that is written in c{s1s2s3},n2. We can see that there are two

optimal solutions: s3 → s2 → s1 → s2 → q and the one

shown on figure 2 both with cost 40.

It is easy to prove that DPopt is an optimal algorithm

for our problem definition, since it searches the solution

space systematically and exhaustively. We can also show that

the computational cost of DPopt is given by the following

expression:
m
X

i=1

i

2
X

k=1

"

n
3

 

m

i

! 

i

k

!#

(3)

where m is the number of predicates in the query and n is

the number of nodes in the network. That is, for each i-length
combination Si of source nodes, one row of the matrix has

to be constructed, and for each of the n cells in this row, for

each of the splits of Si into two sets Si1 and Si2, n2 pairs of

cells must be examined from the corresponding previous rows

of the matrix. It holds that

m
∑

i=1

(

m

i

)

= 2m − 1 and

i

2
∑

k=1

(

i

k

)

<

i
∑

k=1

(

i

k

)
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we can simplify the complexity expression of our DPopt with

the upper bound

m
∑

i=1

i
∑

k=1

[

n3

(

m

i

)(

i

k

)]

= n3

m
∑

i=1

[(

m

i

)

(2i − 1)

]

= n3 ∗ (3m − 2m − 1)

Thus, the time complexity of DPopt is O(n3 ∗3m). The space
complexity is equivalent to the size of the matrix O(n ∗ 2m).

VI. HEURISTIC APPROXIMATE ALGORITHM

DPopt is too slow and computationally demanding for large

problems. In this section, we propose a suboptimal 2-phase

heuristic algorithm (2PH) that operates much faster and in

most of the cases finds a solution very close to the optimal.

This algorithm is breaking up the problem into two phases: 1)

find an evaluation tree that dictates the operator sequence,

and 2) iteratively optimize the operator placement on this

evaluation tree.
Distance Function: Our distance function is based on the

cost function (2) given in section III and is the following:

D(u, v) = Huv ∗ Bu (4)

, where Huv is the hop-distance between nodes u and v, and
Bu are the number of bits to be transmitted from u.
Phase 1: Simple bottom-up (agglomerative) hierarchical

clustering is used. First, for each source-node a single-element

cluster is initialized containing the source (note that the sink

is not involved in the clustering process). Each cluster C has a

load BC , which is the estimated result size of the intersection

of the lists of its children C1 and C2.

BC = |
\

{C1, C2}| (5)

Each cluster also has a representative node denoted as C.repr
with a representative load BC . This node plays the role of

the sink for the sources in the cluster. C.repr is chosen over

the sources composing cluster C only, and is the source that

minimizes the cost

x = Hops(C1.repr, s) ∗ BC1
+ Hops(C2.repr, s) ∗ BC2

The result of Phase 1 is the evaluation tree where each of the

m leaves holds a single-element cluster containing a source

and the root holds a cluster composed of all sources. For

example the evaluation tree for the network in Figure 4 can

be seen in Figure 7.

The distance of two clusters is determined by the distance

of their representative nodes expressed by function (4). For

resolving ties we propose some heuristic tie breaking rules:

1) Prefer the pair that is farthest from the sink. Data is

likely to travel from the outer sources towards the sink.

2) Prefer the pair that will result in the smallest intersection.

This way the next transmission is going to be cheaper.

Clusters are merged according to single linkage and the

dimensionality of the problem space is low, thus the time

complexity for Phase 1 is O(m2) [27], where m is the number

of predicates in the query.

repr = s4
B = 13

{s1, s2, s3, s4}

repr = s4
B = 30
{s1, s4}

repr = s4
B = 50
{s4}

repr = s1
B = 40
{s1}

repr = s3
B = 25
{s2, s3}

repr = s2
B = 40
{s2}

repr = s3
B = 50
{s3}

Fig. 7. Evaluation tree returned from Phase 1 without the optimization for
network in Figure 4

reprSensor = s4
B = 13

{s1, s2, s3, s4}

reprSensor = s4
B = 50
{s4}

reprSensor = s1
B = 17

{s1, s2, s3}

reprSensor = s1
B = 40
{s1}

reprSensor = s3
B = 25
{s2, s3}

reprSensor = s2
B = 40
{s2}

reprSensor = s3
B = 50
{s3}

Fig. 8. Evaluation tree returned from Phase 1 with the optimization for
network in Figure 4

Phase 2: The task here is to optimize operator placement

given the evaluation tree of Phase 1. The evaluation tree

is traversed top-down to optimize the operator placement

for each internal tree-node. At each step we consider two

source nodes s1, s2 and one destination node dest and try

to find the optimal operator placement node f that minimizes

Hops(s1, f) ∗ Bs1 + Hops(s2, f) ∗ Bs2 + Hops(f, dest) ∗ Bf .

Starting from the root of the evaluation tree we decide where

to place the operator for the current tree-node. The algorithm

can be seen in Algorithm 1.

Algorithm 1 2PH Phase2(dest)

1: for each child C of dest do
2: C1 = left child of C
3: C2 = right child of C
4: find node f that minimizes

Hops(C1.repr, f) ∗ BC1 + Hops(C2.repr, f) ∗ BC2 +
Hops(f, dest) ∗ Bf

5: set node f as operNode of C
6: call 2PH Phase2(C)
7: end for
8: return

The algorithm scans the whole tree to determine operNode
for each internal node of the tree which takes O(log m) for

balanced trees and O(m) for unbalanced trees. To perform step

3 in Algorithm 1 we need to check all network nodes which

is O(n). The time complexity for Phase 2 is thus O(n ∗ m),
where n is the number of nodes in the network and m is the

number of predicates in the query Q. The total complexity of

2PH is O(n ∗ m).
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A. Optimization by Forcing Deep Trees

The algorithm described above has a major drawback: the

evaluation tree it produces is very often bushy whereas the

optimal solution is usually a left-deep tree connecting all the

sources in a chain and fully exploiting the reducibility of

the intersection operator. To take this into consideration we

propose an optimization for Phase 1 of the 2PH algorithm.

Before merging two clusters C1 and C2 we first check if it is

more profitable to put one cluster C1 as a child of the other

cluster C2 instead of having them as siblings (see Algorithm

2). Assume that BC1 < BC2 where BC1 is the load of

Algorithm 2 2PH Merge(C1,C2)

1: if BC1 < BC2 then
2: siblingCost = BC1 ∗ Hops(C1.repr,C2.repr)

+ BC ∗ Hops(C2.repr, q)
3: else
4: siblingCost = BC2 ∗ Hops(C2.repr,C1.repr)

+ BC ∗ Hops(C1.repr, q)
5: end if
6: if BC1 < BC2 then
7: descendantCost = Descendant Cost(C1,C2)

8: else
9: descendantCost = Descendant Cost(C2,C1)
10: end if
11: if siblingCost > descendantCost then
12: C = make C1 child of C2

13: else
14: C = merge C1 and C2 as siblings
15: end if
16: return

cluster C1 and BC2 is the load of cluster C2. Then the cost

siblingCost of the resulting plan when two clusters are made

siblings is

siblingCost = BC1 ∗ Hops(C1.repr, C2.repr)

+BC ∗ Hops(C2.repr, q)

where C is the cluster resulting from merging C1 and C2, BC

is the size of the intersected lists given by Equation 5, and q
is the sink.

The cost of making cluster C1 child of cluster C2 is equal

to:
descendantCost1 = BC1 ∗ Hops(C1.repr, s)

+costDifference + BC ∗ Hops(C2.repr, q) (6)

where costDifference is the difference in cost of creat-

ing cluster C2 since now its members that lie on the path

from s to C2.repr are going to be intersected with the list

C1, thus transmitting less data amongst them. This makes

costDiffernece always negative. The cost of equation 6 is

computed by function Descendant Cost() shown in algorithm

3. The node containing source s that minimizes the cost of

transferring the data from C1.repr to C2 is used as parent of

C1.repr (line 1). Then, the evaluation tree of C2 is updated

so that the nodes on the path from s to C2.repr get merged

with the new attached cluster C1 and their load recalculated

(lines 4-7). During this update the cost difference achieved

from the updated loads is computed as costDifference (line

7). For example, the evaluation tree for the network in Figure

Algorithm 3 Descendant Cost(C1,C2)

1: s = source from C2 that minimizes
BC1 ∗ Hops(C1.repr, s)

2: treenode = leaf node containing s
3: costDifference = 0
4: while treenode is not the root do
5: oldB = Btreenode.cluster

6: merge C1 to treenode.cluster
7: costDifference+ = (oldB − Btreenode.cluster)

∗ Hops(treenode, treenode.parent)
8: end while
9: return BC1 ∗ Hops(C1.repr, s) + costDifference

+ BC ∗ Hops(C2.repr, q)

4 can be seen in Figure 7 and the corresponding query plan

in Figure 6. This heuristic greatly improves performance as

experiments show. We call this version 2PHdeep.

The complexity of Descendant Cost() depends on step 1 and

the while loop of steps 4-6. The while loop is a bottom-up tree

traversal from one leaf to the root which takes O(log m) time

and Step 1 is O(m). We can maintain a kd-tree for the source

nodes and get s in O(log m) instead.

Lemma 1: The overall time complexity for the 2PHdeep

algorithm is O(m2 log m).

VII. GENERAL FERMAT POINT IN GRAPH

In both algorithms proposed so far we deal with the same

subproblem: given two source nodes s1, s2 and a sink node

q in a graph find the optimal node f to place the intersection

operator in order to minimize the communication cost. So far

in our algorithms we have been using exhaustive search to find

node f . In this section we will propose some heuristics to cut

down on the search space for f and accelerate all proposed

algorithms.

The subproblem mentioned above is the building block of

both our algorithms and we will call it General Fermat Point

in a Graph and the optimal node will be called Fermat node.

To the best of our knowledge the General Fermat Point in

Graphs has not been identified prior to this work.

General Fermat Point in Graphs (GFPG)

Instance: Graph G = (V, E), three nodes n1, n2, n3

with weights w1, w2, w3 respectively and a positive

integer bound B.

Question: Is there a node f of G that connects to

each of the three nodes n1, n2, n3 over a multi-hop

path and such that the sum of the weighted hop-

distance from each of the three nodes to f is no

more than B?

Works [28][29][16] deal with the same subproblem and as a

solution they use the closest node to the general Fermat point

in Euclidian space [30]. This is a straightforward heuristic

with an approximate solution. For this method to be efficient

the network has to be dense, nodes need to have equal

communication range and they need to be evenly distributed.
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If those characteristics do not hold then the proposed heuristic

can easily end up with a very bad choice for f as can be seen

in Figure 9.

For our heuristic algorithm 2PH the above proposed sub-

optimal heuristic is good enough since it does not need to

guarantee optimality and it is easy to implement. To find

the general Fermat point in Euclidian space it takes constant

time and using the a k-d tree we can find the closest node

to the point in O(logn) time. This replaces the exhaustive

search for the optimal Fermat node that had a complexity

of O(n) and makes the time complexity of Phase 2 be just

O(logn ∗ m). Thus the time complexity of algorithm 2PH

becomes O(logn ∗ m + m2).

q

f

s1

Bs1
s2

Bs2

EFP

Fig. 9. The general Fermat Point for
triangle uvq in Euclidian space is at
the X mark denoted as EFP . The best
node f to place the intersection operator
however is not even close.

For our DPopt algorithm we need to use a heuristic that will

guarantee optimality. We propose a method to find the optimal

solution for the GFPG problem by cutting down drastically the

initial search space of size n. Assuming that Fermat node is

f , and x = Hops(u, f), y = Hops(v, f), z = Hops(q, f) we
use the following integer programming:

Given Bu, Bv , Buv , Hops(u, q), Hops(u, v),
Hops(v, q) find x, y, z that minimize

Bu ∗ x + Bv ∗ y + Buv ∗ z

such that:

z + x ≥ Hops(u, q), z + y ≥ Hops(v, q),

x + y ≥ Hops(u, v), where x, y, z are integers

x, y, z, Bi, Hops(i, j) > 0 , ∀i, j ∈ {u, v, q}

Bu∗x+Bv∗y+Buv∗z < Bu∗Hops(u, v)+Buv∗Hops(v, q) (7)

Bu∗x+Bv∗y+Buv∗z < Bv∗Hops(u, v)+Buv∗Hops(u, q) (8)

Bu∗x+Bv ∗y+Buv ∗z < Bu∗Hops(u, q)+Bv ∗Hops(v, q) (9)

For node f to be different from s1,s2,q it needs to satisfy

inequalities 7,8 and 9. Assume a solution λ exists for the

above integer programming problem thus there might be a

node outside the sources and the sink that satisfies GFPG. All

integer points P that lie in 3D space in the area formed by

the hyperplanes of the constraints and the constraint Bu ∗x+
Bv ∗ y + Buv ∗ z ≥ λ are possible hop-distance combinations

for our Fermat node f . For each (x, y, z) ∈ P we try to find

a node f in our network (graph) that is exactly x hops away

from node u, y hops away from node v and z hops away from

node q. This is performed by taking all x-hop neighbors of u,
all y-hop neighbors from v and all z-hop neighbors from q. All
nodes that satisfy this condition are candidate Fermat nodes.

We now only need to search amongst those candidate nodes,

instead of all the nodes in the network, to get the Fermat node.

Taking Figure 9 as an example with Bs1 = 10, Bs2 = 10
and Bs1s2 = 5 then the solution for the integer programming

is x = 2, y = 2, z = 2 with cost 50. All the integer (x, y, z)
points in the area between the solution and the constraints

are (2, 2, 2), (2, 2, 3), (1, 3, 3), (3, 1, 3). In the network there is

only one node f satisfying x = Hops(u, f), y = Hops(v, f),
z = Hops(q, f) for any of the above points, thus this is our

Fermat node.

VIII. HYBRID ALGORITHM

The proposed heuristic algorithm 2PHdeep can be combined

with the DPopt optimal algorithm to form a hybrid. We use

the heuristic algorithm 2PHdeep to produce a fixed operator

sequence to consider when running the DPopt algorithm. This

way DPopt does not need to compute the cost of all possible

combinations of splits, but just of the fixed, predefined splits.

The output then is the optimal operator placement for the given

fixed operator sequence. In other words we run Phase 1 of the

2PHdeep algorithm and use the produced evaluation tree to cut

down search space of DPopt. The solution will be suboptimal

and the total complexity of the hybrid method is dominated

by the complexity of the dynamic programming phase.

Lemma 2: The complexity of Hybrid is

O(m2 ∗ n3), where m is the number of predicates in

the query and n is the number of nodes in the network.

Proof: During the Hybrid algorithm the sets to be con-

sidered and their splits are already set by the evaluationtree.
For each set size there are at most m sets in the tree and

for each set there is only 1 split defined. This makes the
∑

i

2

k=1

(

i

k

)

part of equation 3 become 1 and the
(

m

i

)

part of

the equation become m. Now the equation can be transformed

into
∑m

i=1 n3 ∗ m ∗ 1 and simplified into m2 ∗ n3.

IX. EVALUATION

First, we present two algorithms that will be used as

comparison in our experiments.

A. Naive Algorithm

The routing algorithms for wireless sensor networks that

have been proposed in literature are not sophisticated enough

to exploit the characteristics of multi-predicate queries to

reduce communication cost effectively. The best routing al-

gorithms proposed in literature use opportunistic aggregation

while streaming data to the sink [31] [32] [33]. This technique

is also used for any type of aggregation query in the query

optimizer of tinyDB [4]. First, the sink disseminates the

query to all nodes of the network and during this process

a communication (routing) tree is established (Figure 3). In

the second phase, in a level-wise fashion, nodes send to their

parents information which is then relayed to the level above,

until all information reaches the sink. If a node receives two or

more sets of values from its children or is a source, it computes

the intersection of these sets before sending to its parent. As an

example, consider the network of Figure 1 and the resulting
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communication tree of Figure 3, established after the query

has been disseminated to the network. First, nodes s1, s2 and

s3 transmit to their parents. s2 intersects A1 (received from

s1) with A2 (i.e., its own set) to produce A1∩A2. This is sent

to its parent q (the sink). n4 relays A3 to its parent and at the

sink the final intersection is computed.

We will call this existing algorithm Naive. All proposed
algorithms will be compared to Naive which represents the

state of the art technique used in WSNs to answer multi-

predicate queries.

B. Element Exchange

Another method to answer MP-Queries in a network is to

communicate elements instead of communicating whole lists.

Based on this idea there are algorithms to minimize the needed

number of comparisons in order to get the intersection [5]. We

adapted the so called Adaptive algorithm presented in [8] to

be run distributed by the source nodes inside the network.

In our implementation each source si that receives an

element ej from the previous source either forwards it if it

is common with one of its own elements, or sends out the

element ek from its own list that has an immediate larger value

than ej . This is done cyclicly over all sources and whenever

an element visits a source twice it is sent straight to the sink.

This continues with the next larger element until a list runs

out of elements. The task of the sink before running the query

is to define the order in which the sources will communicate

in a circle.

We will call this algorithm ElEx and we order the sources

by picking a random source to start with and then picking as

a successor the closest one from the remainding in a greedy

fashion.

C. Experiments

Experiments were run on a network simulator in C++.

We used two network layouts: a uniform grid with varying

number of nodes from 10 to 150 and a random network

with 150 randomly placed nodes in a space of 1000x1000

with communication radius of 125. The first experiments

were run without any objects, only considering list sizes and

a constant selectivity as parameter for the intersections, in

order to see the impact of the intersection selectivity on our

algorithms. This selectivity mostly depends on the size of

the smallest list taking part in the intersection, but also on

the number of all lists involved in the intersection and their

sizes. For further experiments we used two datasets. One

dataset has 1000 objects and for each object random points are

uniformly generated over the whole network space and stored

on appropriate nodes. Datapoints are generated until each

node contains approximately half the objects in order to avoid

early empty intersection which would favor our algorithms.

The second dataset is generated using a network-based data

generator for moving objects [34] in order to evaluate the

algorithms in the case of a realistic dataset with spatial data

correlation. We used the Oldenburg road map and 8000 object

to be generated. Their movement simulated for 1000 timesteps

for a total of 200000 points in space. Random queries were

generated by randomly picking a sink node and sources with

varying number of sources m.

The efficiency of each algorithm is expressed as the per-

centage of the cost needed by the Naive algorithm described

above (IX-A). In our simulator the energy dissipated for

communication is based on the models presented in [35] with

the transmission range set constant. In our simple simulator

fixed costs such as message headers are not considered since

our cost model is not targeted to any particular sensor device

or network protocol. Thus, the number of elements sent over

a link is used to calculate cost units. Ignoring the packet

overhead greatly favors the element exchange algorithm ElEx

since a large amount of packets are used to send little data (1

element per packet). All measurements are averaged over 20

random queries for each different parameter: network size n,
predicate number m, selectivity selec, and dataset used. Table

III summarizes the notations we will use for each individual

algorithm. Note that due to its high complexity DPopt could

not be run for predicates more that 8.

TABLE III

ALGORITHMS TO BE COMPARED

2PH The 2PH algorithm presented in Section VI

2PHdeep The 2PH algorithm that implements the optimization proposed
in Section VI-A

Hybrid Algorithm that combines the evaluation tree returned from
2PHdeep and the Brute Force operator placement given by
DPopt

DPopt The optimal solution as presented in Section V

ElEx The element exchange algorithm (IX-B)

Impact of intersection selectivity: The gain over the

Naive algorithm becomes smaller as the intersections get less

selective. The selectivity value can be translated as multiplying

the smallest input list with it in order to get the size of the

intersection result. Thus, bigger values mean less selective

intersections. We can see in Figure 10 that the less selective the

intersection the smaller the gain compared to Naive. For the

constant selectivity experiments the ElEx algorithm could not

be run because no real objects were used in this experiments,

thus no elements to exchange. The calculation of the cost was

based on list sizes, which were originally assigned in random

to the sources, and the selectivity factor for the intersections.

Impact of query size m: The more predicates we have

in the query the larger the improvement compared to Naive,

as shown in Figures 11, 12, 13. This is expected since the

more predicates the more lists need to be intersected and thus

the more data will be reduced before reaching the sink. Note

that the intersections might even end up in an empty result, in

which case we send an “empty”-element through the rest of

the operator nodes and the sink to convey the empty result. For

the experiments run on the random dataset where no spatial

correlation in the data exists (Figure 12) we can also see

the performance of ElEx. For small number of predicates it

performs even worse than Naive. This is because sources are

highly probable to be far apart and need to exchange many
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Fig. 10. Experiments no objects were used and selectivity was constant Fig. 11. Experiments no objects were used and selectivity was constant.
The selectivity factor has values ranging from .3 to .9

Fig. 12. Experiments with randomly generated data points. Fig. 13. Experiments with spatially correlated data points.

elements in order to reach the intersecting result. With more

sources (predicates) the distance between sources is bound to

be smaller thus resulting in more “local” element exchange.

For the correlated dataset (Figure 13) the performance of ElEx

is better. Even when for small number of sources the data has

to travel further in order to intersect, when it does so, the

intersection is much smaller due to the spatial correlation of

the data: the further away you go the less common elements

you have. This is why for larger values of m the cost of

evaluating a query compared to the Naive cost is very low

because there are many lists to intersect and the probability of

non-common objects is higher.

The heuristic algorithm 2PHdeep performs always better

than the algorithm used so far (Naive). It always outperforms

the element exchange algorithm ElEx even if the latter is

favored by the cost function as mentioned earlier. Even more

notable is the fact that it performs always very close to the

optimal solution (DPopt), showing robustness to the selectivity

and the correlation of the data, to the size of the queries and

the network.

X. SUMMARY AND CONCLUSION

Recent research has focused on processing joins in wireless

sensor networks. None so far has tackled the problem of in-

network processing of queries with multiple intersections in

a holistic manner. We show that the problem of minimizing

communication cost of such queries is NP-hard and develop a

dynamic programming algorithm together with a heuristic to

compute the optimal solution for small problem instances. The

heuristic used is based on a variation of the general Fermat

point problem which is for the first time addressed and solved

here. We also propose a much faster sub-optimal algorithm
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that is almost as efficient as the optimal.

The extensive experimental evaluation compares the pro-

posed algorithms to the most widely used technique used to

evaluate queries in wireless sensor networks and shows that an

improvement of 10% to 95% is possible. The low complexity

heuristic algorithm is also shown to be scalable and robust

to different query characteristics and network size. Also, it is

straightforwardly implementable into the optimizer of TinyDB

[4]. The proposed algorithms, can be applied to any high

communication cost network where there is a need to combine

(intersect) data from different sources.
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