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Repeated local measurements of quantum many-body systems can induce a phase transition in
their entanglement structure. These measurement-induced phase transitions (MIPTs) have been
studied for various types of dynamics, yet most cases yield quantitatively similar critical exponents,
making it unclear how many distinct universality classes are present. Here, we probe the properties
of the conformal field theories governing these MIPTs using a numerical transfer-matrix method,
which allows us to extract the effective central charge, as well as the first few low-lying scaling
dimensions of operators at these critical points for (1 + 1)-dimensional systems. Our results provide
convincing evidence that the generic and Clifford MIPTs for qubits lie in different universality classes
and that both are distinct from the percolation transition for qudits in the limit of large on-site
Hilbert space dimension. For the generic case, we find strong evidence of multifractal scaling of
correlation functions at the critical point, reflected in a continuous spectrum of scaling dimensions.

The dynamics of an open quantum system can be
viewed as unitary evolution interspersed with events
where an environment measures the system. This compe-
tition between entangling dynamics and collapsing mea-
surements leads to a measurement-induced phase transi-
tion (MIPT) between phases with distinct entanglement
structure [1–13]. By increasing the frequency of measure-
ments, the system goes from a volume-law phase where
the entanglement entropy of a subsystem scales with its
volume to an area-law phase where it scales with its
boundary. This transition occurs in the individual “tra-
jectories” but is invisible in the mixed state averaged over
measurement outcomes.

MIPTs exist in various classes of dynamics [14–27],
have been observed experimentally [28], and are analyti-
cally tractable in certain limits, interpreted as a percola-
tion transition [1, 8, 9]. Even away from tractable limits,
the numerically extracted critical exponents of the MIPT
are close to the values for percolation [7]. These obser-
vations raise the question: Are MIPTs resulting from
different dynamics in distinct universality classes?

Beyond classifying the universal nature of MIPTs, de-
veloping precise characterizations of this class of critical
phenomena has motivations in quantum information and
computational complexity theory. In particular, an en-
tanglement transition potentially signifies a phase tran-
sition in the resources required to represent the quantum
state on a classical computer [29, 30]. Such quantum

information-theoretic observables lack natural counter-
parts in the conventional framework of statistical physics.
Consequently, our understanding of the “relevant” de-
grees of freedom in describing the related critical phe-
nomena remains nascent.

This work presents evidence that MIPTs in different
classes of random circuits belong to distinct universal-
ity classes beyond percolation. These conclusions are
supported by a numerical exploration of the non-unitary
conformal field theories (CFTs) with central charge c = 0
governing the MIPTs for three classes of dynamics—
generic (Haar), dual-unitary, and Clifford random cir-
cuits, each with random single-site measurements of
Pauli operators. The emergence of conformal invari-
ance at MIPTs is suggested by mappings onto statisti-
cal models [8, 9, 31] and confirmed in previous numerical
work [11]. We probe the properties of these CFTs by
numerically computing several leading Lyapunov expo-
nents of the transfer matrix. The Lyapunov exponents
are related to the scaling dimensions characterizing the
scaling of typical [32] observables of the CFT, the first
of which is related to the “effective central charge” ceff

[33] – a universal number [34] distinguishing CFTs with
central charge c = 0.

We find evidence that the MIPT for generic circuits
belongs to a different universality class than that for Clif-
ford circuits, while both differ from percolation. The ef-
fective central charge is distinct in the two cases: cHeff ≈
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0.25(3) and cCeff ≈ 0.37(1), respectively. We compare
these numerical values to the predictions of large on-
site Hilbert space (d → ∞) mappings onto percolation:

cH,d→∞eff ≈ 0.291 for Haar and cC,d=2n→∞
eff ≈ 0.365 for

Clifford qudit circuits. Dual-unitary circuits have a tran-
sition in the generic universality class, but their sym-
metries allow us to extract the effective central charge
cDU
eff = 0.24(2) and the leading Lyapunov exponents with

higher precision. We also find evidence that the spec-
tra of operators at MIPTs are distinct from those in the
percolation CFT. Thus the generic and Clifford MIPTs
appear to be governed by two distinct CFTs and differ
from any previously known instances. Last, we demon-
strate multifractality in the generic MIPT in a chain of
qubits.

From quantum channels to CFTs.— Consider a quan-
tum circuit with a fixed set of unitary gates and
measurement locations and times. The hybrid uni-
tary/measurement dynamics is described through the
quantum channel

Nt(ρ) =
∑
m

KmρK
†
m, (1)

where ρ is the system’s density matrix, and Km =
Kmt
t K

mt−1

t−1 . . .Km1
1 is a Kraus operator. The opera-

tors Kms
s = Pms

s Us consist of random unitary gates
Us and random projectors Pms

s onto measurement out-
comes ms. Each summand KmρK

†
m in Eq. (1) repre-

sents a “quantum trajectory” of the system. Moreover,
Tr(KmρK

†
m) = pm(ρ), is the probability of the set of

outcomes m. We suppress the argument ρ since at late
times the probabilities pm become independent of the
initial density matrix at the critical point.

Following Ref. [11], we posit that each trajectory can
be identified with a (1 + 1)-dimensional statistical me-
chanics model, defined implicitly through the identifi-
cation that its partition function Zm ≡ pm. Without
defining an explicit model, we note that the partition
functions of canonical statistical mechanics models can
be written as tensor networks with a similar structure to
the single-trajectory circuit [35], so this identification is
natural. The trajectories making up a particular chan-
nel form an ensemble of statistical mechanics models with
quenched spacetime randomness due to the measurement
outcomes. Each model’s weight in the ensemble is set by
its Born probability pm.

It follows from these observations that, for a circuit
of fixed length L, a layer of time evolution for a par-
ticular trajectory (i.e., the map ρ → TtρT †t , where
Tj = K

m2j

2j K
m2j−1

2j−1 is depicted in Fig. 1a) acts as a trans-
fer matrix for the statistical mechanics model describing
that trajectory. Note that one can write Zm =

∑
i(σ

m
i )2,

where (σm
i )2 are the eigenvalues of KmK

†
m, i.e., the

squares of the singular values of Km. Equivalently, these
are the eigenvalues of an initially completely mixed den-
sity matrix that is purified by the evolution [5]. At late

times, Km is given by a large product of the opera-
tors Tj and σm

i decays exponentially, as the state pu-
rifies. This exponential decay motivates the definition
of trajectory dependent exponents [32, 36] λmi , through

[σm
i (t)]

2
= eλ

m
i t as t → ∞; note that λmi < 0, and we

compute them as specified in [37]. We then average λmi
over trajectories (using the Born weights pm) to yield the
Lyapunov exponents λ0, λ1, λ2, . . . in descending order.

The leading Lyapunov exponent of the transfer matrix
has an appealing interpretation. In general, this quantity
is the free energy of the statistical mechanics model up
to a factor of time, i.e., tλm0 = ln pm. Averaging the free
energy with Born weights gives us that F/t = −λ0 where

F = −
∑
m

pm ln pm. (2)

This averaged free energy is the Shannon entropy of the
measurement record, see Fig. 1a.

As in more conventional disordered systems, the aver-
aged free energy can be computed within a replica for-
malism. Introducing the annealed average replicated par-
tition function Z̄r =

∑
m pmZ

r
m where r is the replica

index, the corresponding annealed average free energy is
Fr = − ln Z̄r. The quenched average free energy from
Eq. (2) is then given by F = limr→0

dFr

dr in the replica
limit r → 0. The annealed average replicated statistical
model has a phase transition for finite r > 0, which we
assume is described by a CFT whose properties approach
those of the MIPT in the r → 0 limit.

Effective central charge and operator spectrum.— The
central charge c(r) of the CFT describing the replicated
model Z̄r goes to c(r) → 0 in the replica limit r → 0;
this follows from the trivial partition function Z̄r→0 = 1.
However, standard CFT results on a cylinder of circum-
ference L and length t (in the limit t� L) imply that the
averaged free energy density F (L, t)/A = f(L) [33, 36]
scales as

f(L) = f(L =∞)− πceff

6L2
+ . . . (3)

where ceff = limr→0
dc(r)
dr is a universal number called

the effective central charge, and A ≡ αLt is the effective
spacetime area. Since the statistical mechanics model is
only defined implicitly, its intrinsic space and time scales
(and the anisotropy α between them) must be extracted
numerically, as we discuss below.

We now turn to the subleading Lyapunov exponents.
In the statistical mechanics picture, the difference of the
two leading Lyapunov exponents controls the decay of
correlations along the direction of the transfer matrix,
i.e., it determines the scale on which initial conditions
are forgotten. The next-to-leading Lyapunov exponent
thus corresponds to the most relevant (i.e., longest-lived)
operator while higher Lyapunov exponents correspond to
faster-decaying operators. Conformal invariance dictates
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FIG. 1. (a) The cylindrical geometry of the random circuit model for a system of qubits of length L with periodic boundary
conditions. The blue rectangles represent the entangling gates and the green dots are the location of measurements. The time
evolution can be viewed as a product of transfer matrices denoted by Tj whose leading Lyapunov exponent is given by the
entropy of the measurement record F . (b) The free energy density displays the 1/L2 dependence expected from Eq. (3) allowing
us to extract ceff . Darker blue indicates increasing Lmin = 8 → 14. (Inset) To improve our estimate we successively remove
the smallest system size from the fit and find m0(Lmin) which contains the leading order correction to Eq. (3). The dotted line
corresponds to the fit m0(L) = −0.13 + 0.98

L2 . (c) The differences of the generalized free energy densities, fi(L) − f(L), shows

the 1/L2 behavior expected from Eq. (4). The dotted lines correspond to the extrapolated values mi(Lmin → ∞). The data
shown is for the dual unitary model at p = pc ≈ 0.14 and 25 000 samples for L = 8, 10, 12, 14, 16 and 10 000 for L = 18.

how these quantities behave at critical points:

fi(L)− f(L) = 2πxtyp
i /L2, (4)

where fi(L) = −λi/(αL) is obtained from the Lyapunov
exponents (i = 1, 2, . . . ) and xtyp

i is the scaling dimension
of the ith most relevant operator characterizing the decay
of typical [32] correlators, defined only in the generic case
— averaged correlators will be discussed below.

Circuit models.— We consider two main ensembles
of random circuits: Haar random circuits with two-
qubit gates chosen from the Haar measure and stabi-
lizer circuits with gates chosen from the Clifford group.
Stabilizer circuits have an efficient classical algorithm
for the simulation of the single-circuit observables stud-
ied in this work [38]. Additionally, we consider sub-
classes of Haar and Clifford circuits in which all gates
are “dual-unitary” [39, 40], i.e., unitary in both space
and time directions. The most generic dual unitary
gates are given by U = eiφ(u+ ⊗ u−) · V [J ] · (v− ⊗
v+), where φ, J ∈ R, u±, v± ∈ SU(2), and V [J ] =
exp[−i

(
π
4σ

x ⊗ σx + π
4σ

y ⊗ σy + Jσz ⊗ σz
)
] [39]. We

present evidence that the dual unitary Haar (Clifford)
circuits lie within the same universality class as Haar
(Clifford) circuits (to within our numerical precision, see
below). However, these circuits allow for a more accurate
estimate of the critical properties since their statistical
self-duality under spacetime rotations forces α = 1 and
the associated rescaling factors are known exactly [37].
Below, all results are taken at the critical point deter-
mined using the ancilla order parameter described in
Ref. [10]. We find pHc = 0.17(1), pDUc = 0.14(1), pCc =
0.1596(3) and pDCc = 0.205(1) for the Haar, dual unitary,
Clifford, and dual Clifford models, respectively [7, 37].

The anisotropy parameters for the Haar and Clifford
models are estimated by comparing the correlation func-

tions along the space and time directions. These corre-
lation functions are determined in the quantum circuit
by computing the mutual information between two an-
cilla qubits separated in space and time [7, 10]. In the
Haar model, αH = 0.81(9) while for the stabilizer model
αC = 0.62(3). As a check, we compute the anisotropy
for the dual unitary variants and find αDU = 1.0(1) in
agreement with the known value α = 1 [37].

Numerical Approach.—We now discuss our algorithm
for finding the leading Lyapunov exponents in the Haar
and dual unitary models (see [37] for the approach used
for Clifford and percolation models). The first few sin-
gular values σm

i (t) are computed by picking a random
initial state, generating a set of mutually orthogonal vec-
tors to the initial state, and iteratively applying the same
set of transfer matrices Tj (depicted in Fig. 1a) to the set.
Each projector in Tj is chosen based on the Born prob-
ability of the time-evolved initial state and after each
application of Tj the set is re-orthogonalized. This allow
us to estimate F in Eq. (2) and fi(L) = −λi/(αL) in
Eq. (4) [37] through a Monte Carlo sampling of the Born
probabilities [37]. We note that our results are sensitive
to the initial state at early times; to achieve results inde-
pendent of initial conditions, we wait an “equilibration”
time of τ = 4L and average over different initial states
(see supplement [37]). This approach agrees well with a
direct evaluation of the spectrum of the transfer matrix
on small system sizes [37].

Results. — The data for the leading Lyapunov expo-
nent at long times provides an estimate of F (t → ∞)
and is shown in Fig. 1b. We find that this displays a
clear linear behavior as a function of 1/L2 with slope m0

related to the effective central charge as expected from
Eq. (3). To improve our estimate of m0, we can suc-
cessively remove smaller system sizes, L < Lmin, from
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the fit and write m0(Lmin) = m0(∞) + b
L2

min
which ac-

counts for the leading order correction to Eq. (3). The
procedure is illustrated in Fig. 1b and its inset. Using

ceff = − 6m0(∞)
π , we find cHeff = 0.25(3) for the Haar

model with an improved estimate of cDU
eff = 0.24(2) from

the dual unitary variant. Similarly, cCeff = 0.37(1) for
the stabilizer circuit [37]. A rudimentary analysis of
ceff as a function of p displays a broad maximum near
pc suggesting deviations within the uncertainty of pc
should not significantly affect the quoted values (results
not shown). These values can be compared to the ex-
act predictions for large onsite Hilbert space dimension
d→∞, where the MIPT maps onto percolation. Follow-
ing methods developed in prior work [8, 9, 31, 41, 42], we

find cH,d→∞eff = 5
√

3(1−γ)
4π = 0.291 . . . in the Haar case

and, using additional properties of the Clifford group
proved in Ref. [43], cC,d=2n→∞

eff = 0.365 . . . for stabi-
lizer circuits [37]. Our numerical estimate of cCeff for
qubits (d = 2) is consistent with the percolation value
(d = 2n → ∞), thus more exponents (or universal data)
are needed to distinguish those two universality classes.

The differences between Lyapunov exponents, fi(L)−
f(L) ∼ 1/L2, as expected (Fig. 1c); the slope of the fitted
line, mi(Lmin) can then be used to determine xtyp

i . The
scaling dimension xtyp

1 is related to the (typical) bulk ex-
ponent of the ‘order parameter’, xtyp

1 = η/2 [10]. Our
estimates for the Haar model ηH/2 = 0.14±0.02 and the
dual unitary variant ηDU/2 = 0.122±0.001 are consistent
with the result η/2 ≈ 0.125 for the mutual information
computed in Ref. [7], for Renyi indices n > 1, and are
close to, but outside of error bars from, the percolation
value η/2 = 5

48 ≈ 0.104. The next lowest scaling dimen-

sions are given by xtyp
2 = 0.18(2) and xtyp

3 = 0.23(3) for
the Haar model and xtyp

2 = 0.163(1) and xtyp
3 = 0.202(1)

for the dual unitary model. It is unclear at present which
operators these correspond to. The error bars in ceff and
xtyp
i only include the uncertainty in the averaged mea-

surement record (estimated via bootstrapping) and α as
discussed in the supplement [37].

Haar Dual Clifford Dual d =∞
Unitary Clifford Haar/Clifford

ceff 0.25(3) 0.24(2) 0.37(1) 0.2914/0.3652

x1 0.14(2)† 0.122(1)† 0.120(5) 0.111(1) 0.1042

MF X X × × ×

TABLE I. Critical data for the various models: effective cen-
tral charge ceff , order-parameter exponent x1, and whether
order-parameter correlations exhibit multifractality (MF).
For critical points exhibiting multifractality, we have quoted
the order-parameter exponent governing typical correlations
(marked with †). This is not strictly comparable to the expo-
nent governing average correlations quoted for the three other
models.
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FIG. 2. The scaling collapse of the data onto a universal
multifractal scaling function H(s), given by Eq. (5), demon-
strates multifractality at the critical point of the Haar tran-
sition and corresponds to a continuum of critical exponents.
Data is shown for the dual unitary model (a similar quality of
collapse also holds for Haar gates [37]) where darker red in-
dicates larger system sizes (L = 8→ 18, t = 24L) and darker
blue indicates later times (t = 3L → 24L,L = 16). (inset)
The first two cumulants ki of lnG1(t) divided by tL show the
expected 1/L2 behavior.

In the stabilizer circuit models, we have also extracted
the order parameter exponent using an improved numer-
ical method with the results given in Table I. Further
details are provided in the supplement [37], where we
also generalize the order parameter exponent to an infi-
nite hierarchy of “purification” exponents with distinct
behavior from the minimal-cut percolation model. We
further improve our precision in extracting the order pa-
rameter exponent by using a dual-unitary Clifford model,
where each two-qubit gate is drawn randomly from the
uniform set of dual-unitary Clifford gates. The critical
pc = 0.205(1) of this model violates a conjectured bound
on pc ≤ 0.1893 in 1+1-dimensions arising from the Hash-
ing bound for the depolarizing channel [13]. In this dual-
unitary Clifford model, we observe a significant difference
from the percolation value for the order parameter expo-
nent, providing convincing evidence that these models lie
in different universality classes.

Multifractality.—The exponent xtyp
1 captures how the

correlation function of the order parameter, Gm
1 (t)—

defined through lnGm
1 (t) = t(λm1 − λm0 ) — decays as

t→∞ in a typical trajectory m. Specifically, lnGm
1 (t) ∼

−(2πt/L)xtyp
1 , when t � L, see Eq. (4), where (. . .) de-

notes an average over trajectories. Below, we suppress
the trajectory index m. Quantities such as lnG1(t) are
self-averaging and can be extracted numerically. How-
ever, the decay of the sample-averaged correlation func-
tion G1(t) and its moments, G1(t)n ∼ exp [−2πtx1(n)/L]
(in the limit t� L), are governed by a continuous family
of critical exponents x1(n) due to multifractal scaling at
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the critical point of the Haar transition. We characterize
the multifractal scaling through the distribution func-
tion P [Y (t)] where Y (t) ≡ − lnG1(t). If this correlation
function exhibits multifractal scaling, its distribution will
follow the universal scaling form [32]

P [Y (t)] ∼
(

2παt

L

)−1/2

exp

[
−2παt

L
H

(
Y (t)

2παt/L

)]
,

(5)
for some (universal) function H(s). As shown in Fig. 2,
our numerical results for various system sizes and times,
when rescaled according to Eq. (5) collapse onto a single
curve, demonstrating multifractality at the Haar critical
point. This observation is one of the central results of
our work.

Finally, the exponents x1(n) are connected to the scal-
ing function H(s); one can use the standard relation be-
tween moments and cumulants

lnG1(t)n = nlnG1(t) +
n2

2!

(
lnG1(t)− lnG1(t)

)2

+ . . . ,

(6)
where all terms are self-averaging, to find an expansion

for the nth moment exponent x1(n) = nx
(1)
1 +n2

2! x
(2)
1 +. . .,

valid at small n. (Here, x
(1)
1 = xtyp

1 .) In the inset of
Fig. 2, we see that the first two cumulants k1,2 of lnG1(t)
have, when divided by tL, the expected ∼ 1/L2 scaling.

We estimate x
(1)
1 = 0.14(2), x

(2)
1 = 0.15(2) for the Haar

model and x
(1)
1 = 0.122(1), x

(2)
1 = 0.145(2) for the dual

unitary model. The substantial value of x
(2)
1 indicates

that multifractality is strong: the average and typical
exponents are appreciably different.

Concluding, we studied the effective central charge and
critical exponents for a variety of random circuit mod-
els of measurement-induced criticality. We found strong
evidence that the transitions in the Haar, Clifford, and
percolation problems belong to three distinct universality
classes. Using the dual unitary variation of these mod-
els, we extracted accurate values for the aforementioned
quantities. Additionally, we have clear evidence of multi-
fractal scaling and thus a continuous spectrum of scaling
dimensions at the transition in the Haar model.
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Supplemental Material: Operator scaling dimensions and multifractality at
measurement-induced transitions

EQUILIBRATION TIME

In this section, we describe our numerical method of computing the free-energy of the implicit statistical mechanics
model describing MIPTs in the generic models. We introduce a method to cleanly distinguish bulk and boundary
contributions to the free-energy.

The entropy of the measurement record F can be viewed as an average of the logarithm of the probability of a
given trajectory, i.e., F = −

∑
m pm ln pm = −

∑
m〈ln pm〉. Here, the expectation value is taken over an ensemble

where each trajectory is weighted by its Born probability. Since the probability of a given trajectory depends on the
product of the Born probabilities of all the measurements we can write

F = −
Nmeas∑
i=1

〈ln p(mi|mi−1, ...,m1)〉, (S1)

where p(mi|mi−1, ...,m1) is the conditional probability of the set of measurement outcomes mi given the previous series
of measurement outcomes. This result shows that we can perform a Monte Carlo sampling of the Born probabilities
obtained during the simulation to compute F . The entropy is quite sensitive to the initial conditions at early times
as we now describe.

To compute the entropy density, we record the entropy accumulated as a function of time, F (t), and obtain
the density from the slope of the linear fit of the infinite time limit entropy density of the measurement record
F (t → ∞)/L vs t. As an integral, this quantity, at late times takes the form F (t → ∞)/L = F bdry + tF bulk where
F bdry comes from the choice of initial state and F bulk comes from the steady state wave function. As a result,
F (t → ∞)/tL = F bdry/t + F bulk indicating a convergence of 1/t as indicated in Fig. S1a by the solid lines. To
uncover when the boundary effects are saturated, we can take two different initial states, a Haar random initial state
and a random product state, and compute ∆F (t) ≡ FHaar(t)−F product(t) which saturates when the boundary effects
saturate; we observe exactly this in Fig. S1b. Once saturation is achieved, we can effectively deduce that the wave
function has reached the steady state and the average (green) is saturated. This saturation criteria agrees well with
the half-cut entropy shown in the inset of Fig. S1a, and we conservatively obtain τHaar ∼ τproduct . 2L suggesting
we should wait a time τ > 2L before we begin recording the entropy of the measurement record. For our data we
have chosen τ = 4L and recorded the data for an additional time tf = 24L, where one time step consists of either an
even or odd layer of gates and a layer of measurements. To further improve results, after averaging over the random
Haar and product initial states separately, the results are averaged together. The error in the entropy density of
the measurement record is estimated by computing the entropy density for individual trajectories and performing a
bootstrap analysis [44]. The two initial states are bootstrapped separately over 1000 samples and their errors are
combined using

σ =
1

2

√
σ2

Product + σ2
Haar. (S2)

ANISOTROPY PARAMETER

In this section, we describe the arguments based on conformal invariance that allow us to efficiently extract the
anisotropy parameter at critical points of random circuits with measurements in 1+1 dimensions.

To estimate the area, A = αtL, that arises in the free energy density, it is necessary to calculate the anisotropy
parameter, α, that relates space and time, i.e., L = αt. This parameter can be estimated by comparing the correlation
functions along the space and time directions as we describe below. Using the conformal mapping z′ = f(z) = L

2π ln z
(see Fig. S2), we can relate the correlation functions on the infinite cylinder, g′(z′1, z

′
2), to correlation functions on the

plane, g(z1, z2), through

g′(z′1, z
′
2) = |f ′(z1)|−∆|f ′(z2)|−∆g(z1, z2), (S3)

where ∆ is the conformal dimension. For a 1+1 dimensional CFT,



S2

0 2 4 6 8 10

t/L

0.106

0.109

0.112

0.115
F
(t

)/
tL

random Haar state

random product state

average

0 1 2

t/L

0

2

4

6

S
1
(t

)

(a)

0 2 4 6 8 10

t/L

0.6

1.2

1.8

∆
F
(t

)/
L

[1
0
−

2
]

(b)

FIG. S1. (a) Average entropy density of the measurement record after a time t. Due to boundary effects, the entropy density
of the measurement record averaged separately over random Haar and random product initial states saturates slowly to their
common asymptotic value. To limit these effects, we wait an equilibration time τ = 4L before recording the entropy of the
measurement record and then average the two results together. Data is shown for L = 16, p = 0.17 and 25 000 samples. In the
inset, we show that this saturation criteria agrees well with the half-cut von Neumann entanglement entropy, S1(t). (b) The
difference between the entropy of the measurement records ∆F (t) = FHaar(t)− F product(t).

FIG. S2. The conformal mapping from a plane to a cylinder.

g(z1, z2) =
1

|z1 − z2|2∆
(S4)

and after applying the transformation to Eq. (S4) we have

g′(z′1, z
′
2) =

(π
L

)2∆ 1∣∣sinh
[
π
L (z′1 − z′2)

]∣∣2∆
. (S5)

We can extract α from the ratio of the correlation functions

g′space = g′(0, iL/2) =
(π
L

)2∆

(S6)

g′time = g′(0, αt) =
(π
L

)2∆
(

2eπαt/L

e2παt/L − 1

)2∆

(S7)

g′time

g′space

=

(
2eπαt/L

e2παt/L − 1

)2∆

. (S8)

To eliminate the dependence on ∆, we look for the matching time, t∗, at which the space and time correlation functions
acquire the same value. Setting g′time/g

′
space = 1 in Eq. (S8), the resulting quadratic equation can be solved for the

anisotropy parameter

e2παt∗/L − 2eπαt∗/L − 1 = 0

=⇒ α = ln
(

1 +
√

2
) L

πt∗
.

(S9)
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To compute this numerically, we calculate the mutual information between two initially locally entangled reference
qubits. We run the unitary-measurement dynamics out to τ1 = 4L, measure site x1 and entangle this site with a
reference qubit. We then run the dynamics out to τ2, measure site x2 and entangle this site with another reference
qubit. After this second event, we follow the mutual information I12(x1, x2, τ1, τ2) between the two reference qubits
as a probe of the order parameter correlations. We use a space like separation of δx = |x2 − x1| = L/2 with δτ = 0
to determine g′space and time like separation of δτ = τ2 − τ1 with δx = 0 to determine g′time.

LYAPUNOV EXPONENTS

In this section, we describe a procedure that only requires storing a set of vectors that are iterated upon in order
to compute the Lyapunov exopnents.

The Lyapunov exponents of the transfer matrix can be related to the free energy densities that are used in the
calculation of the scaling dimensions of operators in the theory. However, working with the full transfer matrix
becomes exponentially difficult in the system size and an alternative approach is needed.

We are interested in characterizing the large m behavior of the application of i.i.d. random transfer matrices
Tj ∈ Cd×d to a vector |v0〉 ∈ Cd with j = 1, 2, . . . ,m. This evolution can be described by the recurrence

|v(j)
0 〉 = Tj |v(j−1)

0 〉, j = 1, 2, ...,m (S10)

for some initial normalized vector |v0〉. The randomness of the matrices Tj implies the choice of the probabily measure
on Cd×d. The large m behavior can be characterized by considering the leading Lyapunov exponent found by the
Furstenberg method

λ0(L) = lim
m→∞

1

m
E log

∥∥∥|v(m)
0 〉

∥∥∥ (S11)

where E denotes the expectation over the random matrices. Equation (S11) is independent of the initial vector |v0〉
for almost all realizations of the matrices Tj . An alternative definition that makes the independence on |v0〉 explicit
is

λ0(L) = lim
m→∞

1

m
E log

∥∥∥∥∥∥
m∏
j=1

Tj

∥∥∥∥∥∥ (S12)

where the matrix norm is the 2-norm, so that
∥∥∥∏m

j=1 Tj
∥∥∥ is the largest singular value of

∏m
j=1 Tj . The average free

energy per site is related to the leading Lyapunov exponent by

f(L) = − 1

αL
λ0(L). (S13)

Similarly, the generalized free energies can be related to the higher order Lyapunov exponents through fi(L) =
− 1
αLλi(L). In order to numerically compute λi, we can consider of a set of n orthogonal vectors {|vk〉} , k = 0, 1, . . . , n−

1 and iteratively apply the transfer matrices, Tj . After each application of Tj , the set must be orthogonalized again.
In Fig. S3 we show that the value of the free energy density obtained from the Lyapunov spectrum approaches that
from the entropy of the measurement record. At small system sizes, the Gram-Schmidt orthogonalization procedure
quickly zeros out the orthogonal vectors making it difficult to sample at late times. Note that for the vectors k > 0,
the entropy of the measurement record, Fk, must be slightly modified to account for the orthogonalization procedure
and is given by

Fk = −
m∑
j=1

ln
∥∥∥P (j)

GS,kP
(j)
M |v

(j−1)
k 〉

∥∥∥2

, (S14)

where P
(j)
GS,k is a projector from the Gram-Schmidt process and P

(j)
M is a projector onto the meaurement outcomes in

Tj .
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FIG. S3. Comparison of the free energy density obtained using the entropy of the measurement record based on the orthogonal
vectors with the free energy density obtained using the Lyapunov spectrum based on the singular values of the transfer matrix.
At small system sizes, the Gram-Schmidt orthogonaliztion procedure quickly zeros out the higher order orthogonal vectors
making it difficult to sample at late times. The tilde in the free energy density denotes that α is not taken into account in the
area.
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FIG. S4. Haar model space and time correlation functions at pc = 0.170 for L = 16. The matching time, t∗, lies between
t = 5L/16 and t = 6L/16. Using a linear interpolation we estimate the true matching time to be t∗ = 5.55 and, therefore,
α = 0.81(9).

HAAR RANDOM CIRCUIT

In this section, we estimate the anisotropy parameter for the Haar random circuit and use it to compute the effective
central charge and scaling dimensions of operators in theory. We also show evidence of multifractal scaling at the
critical point.

We can compute the anisotropy parameter for the Haar random circuit using the procedure described in Sec. . The
correlation functions along the space and time directions are shown in Fig. S4. Numerically computing the correlation
functions shows that the matching time is between t = 5L/16 and t = 6L/16. Performing a linear interpolation

t∗ = t5 + [Ispace − I(t5)]
t6 − t5

I(t6)− I(t5)
(S15)

which gives t∗ = 5.55 and α = 0.81± 0.09 with the error bar spanning the range t∗ ∈ [t5, t6].
This anisotropy parameter can be incorporated with the results of the free energy density scaling shown in Fig. S5 to

estimate ceff = 0.25(3). Note that we have introduced a tilde into the notation of the free energy density, f̃ , to indicate
that it does not contain α in the area. The fit to the slope of f̃(L) in the inset is given by m0(L) = −0.105 + 0.958

L2 .

We can also compute the critical exponents, xtyp
i , from the differences of the generalized free energy densities as
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in agreement with the dual unitary result placing the two models into the same universality class. The tilde in the free energy
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FIG. S6. Scaling of the generalized free energies in the Haar model. The differences between the free energy densities
can be related to the scaling dimension, xtyp

i , of operators in the theory. In the figure, the tilde, e.g. f̃i, denotes that we
have no included the anisotropy parameter into the area and it will be introduced in the final result. Using a similar double
fitting procedure as for the effective central charge, the typical values of the first three scaling dimensions are estimated to be
xtyp

1 = 0.14(2), xtyp
2 = 0.18(2), xtyp

3 = 0.23(3). Darker blue indicates larger values of Lmin = 8→ 14.

shown in Fig. S6. Performing the double fitting procedure and incorporating α into the result we find xtyp
1 = 0.14(2),

xtyp
2 = 0.18(2), xtyp

3 = 0.23(3). The fits in the inset are given by m1(L) = 0.703 + 1.30
L2 , m2(L) = 0.924 + 15.5

L2 , and
m3(L) = 1.14 + 25.9

L2 . Additionally, we find evidence of multifractality at the critical point based on the data collapse
of H(s) as well as the scaling of the cumulants of lnG1(t), see Fig. S7.

DUAL UNITARY

In this section, we determine the critical point of the dual unitary model using the entanglement transition order
parameter. At the critical point, we verify that α = 1 and use it to compute the effective central charge and scaling
dimensions of operators in theory.

As argued in the main text, the transition in the dual unitary model lies in the same universality class as that of
the generic Haar model and is used to provide a more accurate estimate of the quantities calculated as it constrains
α = 1.
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The dual unitary circuit model we consider consists of 2-qubit gates of the form [39]

U = eiφ(u+ ⊗ u−) · V [J ] · (v− ⊗ v+) (S16)

where φ, J ∈ R, u±, v± ∈ SU(2) and

V [J ] = exp[−i
(π

4
σx ⊗ σx +

π

4
σy ⊗ σy + Jσz ⊗ σz

)
]. (S17)

With this choice, U is unitary in both the space and time directions, i.e., U†U = Ũ†Ũ = 1 where

〈k| ⊗ 〈l|Ũ |i〉 ⊗ |j〉 = 〈j| ⊗ 〈l|U |i〉 ⊗ |k〉. (S18)

In the numerical simulations we choose φ, J uniformly from [0, 2π). To find the critical point we look at the order
parameter as a function of the measurement probability p. This is the best measure of the critical point since there
is a strong even/odd effect in the tripartite mutual information (I3) data. In Fig. S8a we see a clear crossing of the
order parameter at pc = 0.14(1). Using this critical point we can estimate the anisotropy parameter α by measuring
correlation functions along the space and time dimensions as described in Sec. . Numerically computing the correlation
functions shows that the matching time is between t = 4L/16 and t = 5L/16, see Figs. S8b and S8c. We can get a
better estimate of this time by performing a linear interpolation

t∗ = t4 + [Ispace − I(t4)]
t5 − t4

I(t5)− I(t4)
(S19)

which gives t∗ = 4.44 and α = 1.0± 0.1 with the error bar spanning the range t∗ ∈ [t4, t5]. This result is in agreement
with our expectation that α = 1 by the construction of the gates. In what follows, we take α to be exactly one,
thereby, eliminating the parameter from the calculations and reducing the error bars in the estimates of all quantities
for this model.

The free energy density is shown in the main text where we extract the effective central charge, ceff = 0.24(2).
This value is consistent with the result for the Haar random circuit (see below) but with much smaller error bars.
Additionally, in the main text, we estimated the scaling dimensions, xtyp

i , of operators in the theory by computing the
differences between the free energy densities. The system size dependence used for the double fitting procedure is shown
in Fig. S9 and the equation for each of the fits in the insets are given by m1(L) = 0.766 + 2.16

L2 , m2(L) = 1.03 + 16.1
L2 ,

and m3(L) = 1.27 + 28.5
L2 .

STABILIZER CIRCUITS

In this section, we estimate the anisotropy parameter and ceff for the 1+1D random Clifford model [4].
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FIG. S8. (a) Dual unitary order parameter SQ as a function of the measurement probability, p. The critical point is indicated
by the crossing at pc = 0.14(1). (b) and (c) Dual unitary space and time correlation functions at pc = 0.140 for L = 16. The
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linear interpolation we can estimate the true matching time to be t∗ = 4.44 and, therefore, α = 1.0(1) in agreement with the
expectation that α = 1.
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FIG. S9. Scaling of the generalized free energies in the dual unitary model. The differences between the free energy densities
can be related to the scaling dimension, xtyp

i , of operators in the theory. Using a similar double fitting procedure as for the
effective central charge, the typical values of the first three scaling dimensions are estimated to be xtyp

1 = 0.122(1), xtyp
2 =

0.163(1), xtyp
3 = 0.202(1). Darker blue indicates larger values of Lmin = 8→ 14.

In the case of a stabilizer circuits, it turns out one can compute the entropy of the measurement record for a fixed
circuit without any sampling by simply counting the number of deterministic measurement outcomes Ndet out of all
measurements

F = (Nmeas −Ndet) log 2, (S20)

which follows from the dynamical update rules for stabilizer circuits [38].
In Fig. S10, we show numerical data we have used to estimate α up to system sizes L = 128. In Fig. S10a, we show

the mutual information between two initially locally entangled reference qubits for space and time-like separations
between the reference qubits.

To perform the time-like interpolation we use δx = 0 with the separation δτ = τ2 − τ1 = 6L/16 and 7L/16 that is
close to the point where r = 1. As shown in Fig. S10b, at our largest value of L = 128, we find

α = 0.616± 0.021 (stat.)± 0.0037 (interp.) = 0.616± 0.025 (S21)

We have estimated the interpolation error arising from a linear interpolation approximation using the formulas

r(τ) ≈ 1− 2
√

2πα∆(τ − t∗) + π2α2∆(1 + 4∆)(τ − t∗)2, (S22)

t∗
L

=
τ1
L

+
[1− r(τ1)]δτ

[r(τ2)− r(τ1)]L
+ Error ≈ 0.4579± 0.0028 (interp), (S23)

where we used the estimates t∗ = 0.4579, α = 0.616, and ∆ = 0.1042 to approximate the error term arising from the
quadratic correction to r(τ).
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FIG. S10. (a) Scaled mutual information between two reference qubits for different space and time like separations at p = 0.1596
for L = 128 with the percolation value η = 5/24. We averaged over 12 · 105 circuits. (b) Extracted α(p, L) for p = 0.1596 up
to L = 128.

The anisotropy parameter as we have defined it will also have corrections due to uncertainty in pc, which leads
to the finite size scaling form α(L/ξ), where ξ ≈ X±/|p − pc|ν . We previously obtained a quantitative estimate for
the prefactor X± = 0.18/0.12 above and below the critical point [5], which implies that with the currently available
precision on pc = 0.1593(5), the expected correlation length is several hundred to several thousand lattice sites within
this uncertainty window. Numerically, we do not observe any statistically significant dependence of α(p) over this
range of p.

FIG. S11. (a) Average entropy density of the measurement record vs 1/L2 for Lmin = 6. (b) Dependence of the extracted slope
vs 1/L2 as a function of the cutoff Lmin.

With the anisotropy parameter calibrated, we can now numerically compute the average free energy of the underlying
statistical mechanics model. The numerical results are shown for p = 0.1596 in Fig. S11a, where we see the predicted
scaling behavior with L. By successively removing smaller sizes L < Lmin from the fit we can obtain a sequence of
values ceff(Lmin). Performing the fit

ceff(Lmin) = ceff(∞)− b

L2
min

, (S24)

allows a reliable method to extract the asymptotic value ceff(∞) [36]. The results of this analysis are shown in
Fig. S11b. To determine the variations with ceff(∞) for different values of p we have scanned several values near the
critical point and find the maximum occurs near p = 0.1596, which we use as our estimate of the critical point (see
Table S1). The variation with p throughout this region is close to the uncertainty in the fits.
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TABLE S1. Extracted value of ceff for different values of p near the estimated critical point.

p 0.1594 0.1596 0.1598

ceff(∞) 0.3716± 0.0007 0.3729± 0.0016 0.3705± 0.0009

Overall, we obtain the estimate for ceff including statistical errors and the error in the anisotropy parameter

cseff = 0.3729± 0.0016 (stat.)± 0.016 (anis.) = 0.373± 0.018 (S25)

PURIFICATION EXPONENTS IN STABILIZER CIRCUITS AND MINIMAL-CUT PERCOLATION
MODELS

In this section, we compare the order parameter exponent between the minimal-cut/Haar-Hartley percolation
universality class and the stabilizer circuit universality class. We also describe the numerical method we used to more
accurately extract the order parameter exponent for the stabilizer circuit models.

Purification exponents

The von Neumann entropy dynamics S(ρ) of a mixed state ρ = Kρ0K
†
m/pm evolved under a stabilizer circuit

has qualitatively the same behavior as the Hartley entropy S0(ρ) in the Haar random model. The latter of which
has an exact mapping to a percolation problem through the minimal-cut procedure developed in Ref. [1]. For this
reason, we first benchmark our method on the Haar-Hartley percolation model. In both models, the relevant entropy
changes in discrete steps of log 2. At the critical point, we have found that the late time decay rate for the relevant
entropy changing from n log 2 to a value < n log 2 saturates to a constant. This behavior is consistent with a late
time exponential decay behavior for the probability of a circuit maintaining entropy n log 2. We define the average
quantity

∆λn(t) =
1

αL

# Circuits for which S(ρ) goes from n log 2 to a value < n log 2 at time t

# Circuits with S(ρ) = n log 2 at time t− 1
, (S26)

Here, α is the anisotropy parameter. In the Haar-Hartley percolation model α = 1. For stabilizer circuits, we focus on
the random dual Clifford model where each two-site gate is chosen uniformly randomly from the set of dual-unitary
Clifford gates. This model is expected to have α = 1 for each circuit, which we have verified numerically using the
method described in the previous section. This property makes it convenient for numerical analysis similar to the
dual-unitary Haar random model.

To connect this quantity ∆λn(t) to more conventional observables at the critical point, we note that, if we start
with a mixed state with one bit of entropy, then

∆λ1(t) = − 1

αL〈S(ρ)〉
∆〈S(ρ)〉

∆t
, (S27)

is just the logarithmic time derivative of the entropy of the mixed state. Within the conformal field theory picture
for percolation and the stabilizer circuit models, we have the relation [11]

lim
t→∞

∆λ1(t) =
2π

L2
x1, (S28)

where x1 is the order parameter exponent. Our definition of ∆λn allows us to generalize this exponent to an infinite
family of “purification” exponents. This spectrum of exponents serves as a more precise comparison between the
stabilzer circuit and Haar-Hartley percolation universality class.

Our numerical results for λn for n = 1 and n = 2 are summarized in Table S2. For the random Clifford model using
these methods, we find xp1 = 0.120(5) and xp2 = 0.240(5) with an uncertainty limited mostly by the uncertainty in
the anisotropy parameter. In this case, we observe a significant difference from Haar-Hartley percolation values only
for xp2. On the other hand, for the random dual Clifford model, we observe that it also has a significant difference in
the value of xp1 due to the smaller numerical uncertainties in the estimated value. This large relative difference in xp1
between the two models is a strong indication that they lie in separate universality classes.
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TABLE S2. The first two purification exponents in the random dual Clifford model and the Haar-Hartley percolation model.
To our knowledge, xp2 has not been previously studied in percolation.

Clifford Dual Clifford Haar-Hartley Exact Haar-Hartley Numerics

xp1 0.120(5) 0.111(1) 5/48 = 0.1042 . . . 0.104(1)

xp2 0.240(5) 0.230(1) ??? 0.366(3)

Numerical method

Our numerical method used for extracting the purification exponents is illustrated in Fig. S12 for the Haar-Hartley
percolation model and the random dual Clifford model. To improve the numerical precision for xp1, we choose different
initial conditions whereby the decay rate approaches its late time plateau from either above or below the plateau value.
By averaging these two results, we can reduce systematic errors in our numerical estimate of the plateau value.
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FIG. S12. (a) Scaled purification rate for the Hartley entropy of the reference system in the Haar random model at the critical
point p = 0.5. The decay rate from entropy n to < n allows us to extract the purification exponent xpn from the late time

plateau. xp1 = x
(1)
1 coincides with the order parameter exponent. (b) Scaled purification rates for the entropy of the reference

system in the random dual Clifford model at p = 0.205 ≈ pc.

For the Haar-Hartley percolation model shown in Fig. S12a, we took an initial state with Hartley entropy S0(ρ) = 2
or 1, fully scrambled the system with a Haar random circuit, and then turned on the measurements at the critical rate
p = 0.5. In the percolation mapping, the scrambling layer corresponds to taking a fully connected bottom boundary.
To compute S0(ρ), we used the max-flow/min-cut algorithm applied to a percolating network. With this method, we
were able to extract a value of xp1 that is with 1% of the known percolation value of 5/48. To our knowledge, the
exact values of xpn for n > 1 are not known within the minimal cut picture for the Haar-Hartley entropy. We provide
the first numerical estimate of xp2 here.

For the random dual Clifford model shown in Fig. S12b, the boundary conditions were chosen in a similar manner
to the Haar-Hartley model; however, to improve the rate at which the S(ρ0) = 2 initial condition approaches the
plateau, we scrambled the initial condition with a depth L random circuit that also includes measurements at rate
p = pc/1.25. As a result, the quench to the critical point is less dramatic compared to a fully unitary scrambling
circuit. For the initial condition S(ρ0) = 1, the scrambling layer was taken to be a depth 2L random Clifford circuit
in 1D with no measurements. The critical point pc = 0.205(1) for the random dual Clifford model was obtained
using the order parameter crossing method described in our previous work [10]. The extracted value of pc strongly
violates the Hashing bound for a depolarizing channel that was conjectured to be a relevant bound on the critical
measurement rate pc ≤ 0.1893 for unitary-projective circuits in one dimension [13].
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EFFECTIVE CENTRAL CHARGE IN THE LARGE ONSITE HILBERT SPACE DIMENSION LIMIT

In this section, we derive exact expressions for the effective central charge ceff of the MIPT of monitored qudit
circuits for both Haar and Clifford random gates, in the limit d→∞ where d is the dimension of the onsite Hilbert
space. Note that, as already recalled in a footnote in the introductory part of the main text, ceff is not related to the
prefactor of the logarithmic scaling with subsystem size of the entanglement entropy at criticality, which is instead
related to the scaling dimension of boundary condition changing operators [8, 31].

Haar case

In the case of Haar gates drawn from the unitary group U(D = d2), we follow Refs. [8, 9] (see also [31, 41, 42])
to map the anneal averaged replicated partition functions Z̄r =

∑
m pmZ

r
m onto an effective statistical model (recall,

Zm = pm in our formulation), whose degrees of freedom are permutations gi ∈ S1+r. Formally, this follows from
the so-called Schur-Weyl duality, which states that the permutation group S1+r and the unitary group U(D) act on
(CD)⊗(1+r) as a commuting pair. In the limit d → ∞, the statistical mechanics model simplifies dramatically, and
reduces to a Potts model with |Sr+1| = (r+1)! states. In the replica limit r → 0, this gives a MIPT in the percolation
universality class [8, 9].

For a finite number of replicas r, this Potts model has a phase transition described by a CFT with central charge

c(r) = 1− 6

x(x+ 1)
with x+ 1 =

π

arccos

√
(r+1)!

2

. (S29)

In the replica limit, we have c(r → 0) = 0, and we can use this expression to evaluate the effective central charge

cH,d→∞eff = lim
r→0

dc

dr
=

5
√

3(1− γ)

4π
' 0.291367 . . . (S30)

with γ ' 0.577216 . . . Euler’s constant.

Clifford case

We now turn to a similar calculation in the case of Clifford gates. The full derivation of the corresponding statistical
mechanics model (for the Clifford measurement-induced phase transition and random tensor networks [31] with Clifford
tensors) with on-site Hilbert space dimension d = pn and p prime will be reported elsewhere [45], where it will also
be shown that its symmetry depends explicitly on p, implying universality of transitions depending on p. Here we
simply emphasize the key ingredients to compute ceff in the limit of large onsite Hilbert space. In order to average
over Clifford gates to derive a statistical model, we will need a generalization of the Schur-Weyl duality. Let D = d2

with d = pn and p prime. We are interested in the Clifford group C, which is a finite subgroup of the unitary group
U(D) acting on r + 1 replicas. In general, the “commutant” Fr of C acting on this space will be larger than the
symmetric group Sr+1, and was recently analyzed in Ref. [43]. In order to analyze the structure of this algebraic
object, note that the tensor space V = (CD)⊗(r+1) can be decomposed onto the irreps Vλ of C as V =

⊕
λ dλVλ.

The dimension of the commutant Fr+1 of the Clifford group C acting on this replicated space is |Fr+1| =
∑
λ d

2
λ,

and can be computed as follows. Let χV (U) = tr U⊗(1+r) be the character of the representation (CD)⊗(1+r) of the
Clifford group C, where U ∈ C is a Clifford gate acting on CD. Introducing the inner product between characters
〈χ1, χ2〉 = 1

|C|
∑
U∈C χ1(g)χ2(g), we have 〈χV , χV 〉 =

∑
λ d

2
λ. The dimension of the commutant Fr+1 of the Clifford

group – which replaces the symmetric group Sr+1 in the statistical mechanics model – is thus given by

|Fr+1| =
1

|C|
∑
U∈C
|tr U |2(r+1)

. (S31)

This quantity is known as a “frame potential” in the quantum information literature. In general, the structure of FQ
will depend on d = pn. If we focus on d = 2n with large n (we will report on the other cases elsewhere [45]), the
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dimension of the commutant saturates with n to a quantity strictly larger than (r + 1)! [43]

|Fr+1| =
r−1∏
k=0

(
2k + 1

)
= 2r(r−1)/2

∞∏
k=0

(
1 +

1

2k

)
∞∏
k=0

(
1 +

1

2k+r

) , (S32)

where r can be analytically continued to be a real number in the right-hand side. The statistical mechanics model of
monitored Clifford circuits will involve degrees of freedom living in Fr+1, which in general has a complicated algebraic
structure [43], not relevant to us here. In the limit n → ∞, we expect that the statistical mechanics model reduces
once again to a Potts model with |Fr+1| states: this is because any generalization of the Weingarten functions of
Haar calculus will become proportional to delta functions in that limit. This is a large D limit, as in the Haar case
(except there are different ways to approach this limit in the Clifford case, here we set D = p2n and took n → ∞
with p = 2). The central charge as a function of the number of replicas r is now given by c(r) = 1 − 6

x(x+1) with

x+ 1 = π

arccos

√
|Fr+1|

2

. This leads to a closed form expression for the effective central charge

cC,d=2n→∞
eff =

5
√

3

8π

(
2ψ 1

2

(
−iπ
log 2

)
− log 8

)
' 0.365194 . . . (S33)

where ψq(z) is the q-digamma function, which is defined as the derivative of log Γq(z) with respect to z, where Γq(z)
is the q-deformed Gamma function.
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