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Abstract 

Many stream-based applications have sophisticated 

data processing requirements and real-time 

performance expectations that need to be met under 

asynchronous, time-varying data streams. In order to 

address these challenges, we propose novel operator 

scheduling approaches that specify (1) which 

operators to schedule (2) in which order to schedule 

the operators, and (3) how many tuples to process at 

each execution; and study them in the context of the 

Aurora data stream manager.  

    We argue and provide experimental evidence that a 

fine-grained scheduling approach in combination 

with various scheduling techniques (such as batching 

of operators and tuples) can significantly improve the 

efficiency by reducing various system overheads. We 

also discuss application-aware extensions that 

address Quality of Service (QoS) issues by making 

scheduling decisions according to tuple processing 

delays and per-application QoS specifications. 

Finally, we present prototype-based experimental 

results that characterize the efficiency and 

effectiveness of our approaches under various stream 

workloads and processing scenarios. 

1 Introduction 

Applications that deal with potentially unbounded, 

continuous streams of data are becoming increasingly 

popular due to a confluence of advances in real-time, 

wide-area data dissemination technologies and the 

emergence of small-scale computing devices (such as 

GPSs and micro-sensors) that continually emit data 

obtained from their physical environment. Example 

applications include sensor networks, position tracking, 

fabrication line management, network management, and 

financial portfolio management. All these applications 

require timely processing of large volumes of continuous, 

potentially rapid and asynchronous data streams. 

Hereafter, we refer to such applications as stream-based 

applications. 

We have designed a system called Aurora [6], a data 

stream manager that addresses the performance and 

processing requirements of stream-based applications. 

Aurora supports multiple concurrent continuous queries, 

each of which produces results to one or more stream-

based applications. Each continuous query consists of a 

directed acyclic graph of a well-defined set of operators 

(or boxes in Aurora terminology). Applications define 

their service expectations using Quality-of-Service (QoS) 

specifications, which guide Aurora’s resource allocation 

decisions. We provide an overview of Aurora in Section  

2.  

A key component of Aurora, or any data stream 

management system for that matter, is the scheduler that 

controls processor allocation. The scheduler is 

responsible for multiplexing the processor usage to 

multiple continuous queries according to application-

level performance or fairness goals. Simple processor 

allocation can be achieved by assigning a thread per 

operator or per query. This technique does not scale since 

no system that we are aware of can adequately deal with a 

very large number of threads. More importantly, for 

stream processing purposes, any such approach would 

abdicate the details of scheduling to the operating system. 

This paper shows that having finer-grained control of 

processor allocation can make a significant difference to 

overall system performance by cutting down various 

system overheads associated with continuous query 

execution. 

Figure 1 depicts the cost components of a continuous 

query execution (where the individual operators are 

scheduled using a random and a round-robin scheduling 

policy). The query used for this experiment models an 

intelligent data routing application (provided by MITRE 

Corp.), where data gathered by a next generation 

reconnaissance aircraft are routed to appropriate ground 

stations. The query basically consists of 40 stream-based 

operators, most of which are simple filter, project, and 

union operators (for our purposes the exact form of the 

query is not important). The figure reveals that the actual 

time spent for processing is smaller than 5% of the 

overall execution time in both cases. The remainder 

consists of three basic overheads incurred by the 
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scheduler, the buffer manager (i.e., loading/unloading 

tuple queues), and the worker thread that executes the 

operator (we discuss these components in more detail in 

the remainder of the paper). Note that this particular 

query consisted mostly of low cost operators; in general 

one might expect that queries include operators with 

higher processing costs (such as aggregates, joins, and 

user-defined functions). In such cases, processing costs 

will clearly become more pronounced. On the other hand, 

we believe that the result is representative in that 

overheads will always be non-negligible and will 

frequently dominate the overall execution time.  

Motivated by this key observation, this paper studies 

operator scheduling for stream processing systems with 

the goal of reducing system overheads. We propose a set 

of novel scheduling techniques that reduce various 

system overheads by batching (of operators and tuples), 

incremental state tracking, approximation, and pre-

computation. 

In particular, we describe the design and 

implementation of the Aurora scheduler, which performs 

the following tasks: 

1. Dynamic scheduling-plan construction: The 

scheduler develops a scheduling plan that specifies, 

at each scheduling point, (1) which boxes to 

schedule, (2) in which order to schedule the boxes, 

and (3) how many tuples to process at each box 

execution. 

2. Latency-based priority assignment: The Aurora 

scheduler strives to maximize the overall QoS 

delivered to the client applications. At a high level, 

our scheduling decisions are based on a novel box 

priority assignment technique that uses the latencies 

of queued tuples and application-specific QoS 

information. For improved scalability, we also use an 

approximation technique, based on bucketing and 

pre-computation, which trades scheduling quality 

and scheduling overhead. 

We also evaluate and experimentally compare these 

algorithms on our Aurora prototype under various stream 

processing and workload scenarios. Through the 

implementation of our techniques on the prototype rather 

than a simulator, we were better able to understand the 

actual costs associated with system overhead. 

The rest of the paper is organized as follows: Section  2 

provides an overview of the Aurora data stream manager. 

Section 3 describes the state-based execution model used 

by Aurora. Section  4 discusses in detail Aurora’s 

scheduling algorithms. Section  5 discusses our prototype-

based experimental study that provides quantitative 

evidence regarding the efficiency and effectiveness of 

Aurora’s scheduling algorithms. Section  6 extends our 

basic approaches to address QoS, describing queue-based 

priority assignment and an approximation technique for 

improving the scalability of the system. Section  7 

describes related work, and Section  8 concludes the 

paper. 

2 Aurora Overview 

2.1 Basic Model 

Aurora data is assumed to come from a variety of data 

sources such as computer programs that generate values 

(at regular or irregular intervals) or hardware sensors. We 

will use the term data source for either case. In addition, 

a data stream is the term we will use for the collection of 

data values that are presented by a data source. Each data 

source is assumed to have a unique source identifier and 

Aurora timestamps every incoming tuple to monitor the 

QoS being provided. 

The basic job of Aurora is to process incoming streams 

in the way defined by an application administrator. 

Aurora is fundamentally a data-flow system and uses the 

popular boxes and arrows paradigm found in most 

process flow and workflow systems. Hence, tuples flow 

through a loop-free, directed graph of processing 

operations (a.k.a. boxes). Ultimately, output streams are 

presented to applications, which must be programmed to 

deal with output tuples that are generated 

asynchronously. Aurora can also maintain historical 

storage, primarily in order to support ad-hoc queries.  

Tuples generated by data sources arrive at the input 

and are queued for processing. The scheduler selects 

boxes with waiting tuples and executes them on one or 

more of their input tuples. The output tuples of a box are 

queued at the input of the next box in sequence. In this 
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way, tuples make their way from the inputs to the 

outputs. Each output is associated with one or more QoS 

specifications, which define the utility of stale or 

imprecise results to the corresponding application. Figure 

2 illustrates this high-level system model. 

The primary performance-related QoS is based on the 

notion of the latency (i.e., delay) of output tuples—output 

tuples should be produced in a timely fashion, otherwise, 

QoS will degrade as latencies get longer. In this paper, 

we will only deal with latency-based QoS graphs; for a 

discussion of other types of QoS graphs and how they are 

utilized, please refer to [1, 6]. Aurora assumes that all 

QoS graphs are normalized, and are thus quantitatively 

comparable. Aurora further assumes that the QoS 

requirements are feasible; i.e., unless the system is 

overloaded, an idealized scheduler will be able to deliver 

maximum possible QoS for each individual output. 

Aurora contains built-in support for eleven primitive 

operations for expressing its stream processing 

requirements. Some operators just transform individual 

items in the stream to other items, while other operators, 

such as the aggregate operators (e.g., moving average), 

apply a function across a window of values in a stream. A 

description of the operators is outside the scope of this 

paper and can be found in [1, 6]. 

2.2 Architecture 

Figure 3 illustrates the architecture of the basic Aurora 

run-time engine. Here, inputs  from data sources and 

outputs from boxes are fed to the router, which forwards 

them either to external applications or to the storage 

manager to be placed on the proper queues. The storage 

manager is responsible for maintaining the box queues 

and managing the buffer, properly making tuple queues 

available for read and write by operators. Conceptually, 

the scheduler picks a box for execution, ascertains what 

processing is required and how many tuples to process 

from the corresponding queue, and passes a pointer to the 

box description (together with a pointer to the box state) 

to the multi-threaded box processor. The box processor 

executes the appropriate operation and then forwards the 

output tuples to the router.  The scheduler then ascertains 

the next processing step and the cycle repeats. 

The QoS monitor continually monitors system 

performance and activates the load shedder when it 

detects an overload situation and poor system 

performance. The load shedder then sheds load till the 

performance of the system reaches an acceptable level. 

The catalog contains information regarding the network 

topology, inputs, outputs, QoS information, and relevant 

statistics (e.g., selectivity, average box processing costs), 

and is essentially used by all components. 

3 Basic Execution Model 

The traditional model for structuring database servers is 

thread-based execution, which is supported widely by 

traditional programming languages and environments. 

The basic approach is to assign a thread to each query or 

operator. The operating system (OS) is responsible for 

providing a virtual machine for each thread and 

overlapping computation and I/O by switching among the 

threads. The primary advantage of this model is that it is 

very easy to program, as OS does most of the job. On the 

other hand, especially when the number of threads is 

large, the thread-based execution model incurs significant 

overhead due to cache misses, lock contention, and 

switching. More importantly for our purposes, the OS 

handles the scheduling and does not allow the overlaying 

software to have fine-grained control over resource 

management.  

Instead, Aurora uses a state-based execution model. In 

this model, there is a single scheduler thread that tracks 

system state and maintains the execution queue. The 

execution queue is shared among a small number of 

worker threads responsible for executing the queue 

entries (as we discuss below, each entry is a sequence of 

boxes). This state-based model avoids the mentioned 

limitations of the thread-based model, enabling fine-

grained allocation of resources according to application-

specific targets (such as QoS). Furthermore, this model 

also enables effective batching of operators and tuples, 

which we show has drastic effects on the performance of 

the system as it cuts down the scheduling and box 

execution overheads. 

An important challenge with the state-based model is 

that of designing an intelligent but low-overhead 

scheduler. In this model, the scheduler becomes solely 

responsible for keeping track of system context and 

deciding when and for how long to execute each operator. 

In order to meet application-specific QoS requirements, 

the scheduler should carefully multiplex the processing of 

multiple continuous queries. At the same time, the 

scheduler should try to minimize the system overheads, 

time not spent doing “useful work” (i.e., processing), 

with no or acceptable degradation in its effectiveness. 
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4 Two-Level Scheduling 

Aurora uses a two-level scheduling approach to address 

the execution of multiple simultaneous queries. The first-

level decision involves determining which continuous 

(sub-)query to process. This is followed by a second-level 

decision that then decides how precisely the selected 

query should be processed. This former decision entails 

dynamically assigning priorities to operators at run-time, 

according to QoS specifications, whereas the latter 

decision entails choosing the order in which the 

component operators will be executed. The outcome of 

these decisions is a sequence of operators, referred to as a 

scheduling plan, to be executed one after another. The 

scheduling plan is inserted into the execution queue to be 

later picked up and executed by one of the worker 

threads. 

In order to reduce the scheduling and operator 

overheads, Aurora heavily relies on batching (i.e., 

grouping) during scheduling. We developed and 

implemented algorithms that batch both operators and 

tuples. In both cases, we observed significant 

performance gains over the non-batching counterparts. 

We now describe in detail our batching approaches for 

constructing scheduling plans. 

4.1 Operator Batching - Superbox Processing 

A superbox is a sequence of boxes that is scheduled as an 

atomic group. Superboxes are useful for decreasing the 

overall execution costs and improving scalability as (1) 

they significantly reduce the scheduling overhead by 

scheduling multiple boxes as a single unit; (2) they 

eliminate the need to access the storage manager for each 

individual box execution by having the storage manager 

allocate memory for the entire superbox at once1. 

Conceptually, a superbox can be an arbitrary 

connected subset of the Aurora network. However, we do 

constrain the form of superboxes such that each is always 

a tree of boxes rooted at an output box (i.e., a box whose 

output tuples are forwarded to an external application). 

The reasons that underlie this constraint are twofold. 

First, only the tuples that are produced by an output box 

provide any utility value to the system. Second, even 

though allowing arbitrary superboxes will provide the 

most flexibility and increase opportunities for 

optimization, it will also make the search space for 

superbox selection intractable for large Aurora networks.  

The following subsections discuss the two key issues 

to deal with when scheduling superboxes, namely 

superbox selection and superbox traversal. 

                                                           
1 Another benefit of superbox scheduling, which we do not 

address in this paper, is that it improves effective buffer 

utilization by consuming as many tuples as possible once the 

tuples are in memory. This potentially reduces the number of 

times each tuple is swapped between memory and disk. 

4.1.1 Superbox Selection 

The first-level scheduling issue involves determining 

superboxes to schedule. Fundamentally, there are two 

different approaches to superbox selection: static and 

dynamic. Static approaches identify potential superboxes 

statically before run-time, whereas the dynamic 

approaches identify useful superboxes at run-time. We 

implemented two representative superbox selection 

algorithms in Aurora. 

• Application-spanner (AS). This approach statically 

defines one superbox for each query tree. As a result, 

the number of superboxes is always equal to the 

number of continuous queries (or applications) in the 

Aurora network. Figure 4 illustrates a simple query 

tree that consists of six boxes (the tree is rooted at 

box b1). 

• Top-k-spanner (TKS). This algorithm identifies, at 

run-time, the tree that is rooted at an output box and 

that spans the top k highest priority boxes for a given 

application. The priorities are assigned to boxes 

based on the latencies of tuples on each box’s input 

queues and on application-specific QoS 

specifications (Section  5). A high priority box’s 

input tuples need to be processed as soon as possible 

if the system were to gather any utility. Consider 

again the query tree in Figure 4. Assuming that b2 

and b6 are the top two highest priority boxes, the top-

2-spanner of the query tree includes the shaded 

boxes. Note that TKS also includes all the 

intermediate boxes that lie on the path between any 

of the top k boxes and the root box. TKS is 

equivalent to an application tree when k is equivalent 

to the number of boxes in the application tree. 

4.1.2 Superbox Traversal 

Once it is determined which boxes need to be executed, a 

second-level decision process needs to specify the 

ordering of these boxes in the scheduling plan. This is 

accomplished by traversing the superbox. The goal of 

superbox traversal is to process all the tuples that are 

queued within the superbox (i.e., those tuples that reside 

on the input queues of all boxes that constitute the 

superbox). 

We describe three traversal algorithms that primarily 

differ in the performance-related metric for which they 

strive to optimize: throughput, latency, and memory 

requirements. 

Min-Cost (MC). The first traversal technique attempts 

to optimize per-output-tuple processing costs (or average 

throughput) by minimizing the number of box calls per 

output tuple. This is accomplished by traversing the 

superbox in post order, where a box is scheduled for 

execution only after all the boxes in its sub-tree are 

scheduled. Notice that a superbox execution based on an 

MC traversal consumes all tuples while executing each 

box only once. 

Consider the query tree shown in Figure 4 and assume 

for illustration purposes that a superbox that covers the 
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entire tree is defined. Assume that each box has a 

processing cost per tuple of p, a box call overhead of o, 

and a selectivity equal to one. Furthermore, assume that 

each box has an input queue that consists of a single 

tuple. An MC traversal of the superbox consists of 

executing each box only once: 

b4 → b5 → b3 → b2 → b6 → b1 

This traversal consists of six box calls. A simple back-

of-the-envelope calculation tells us that the total 

execution cost of the superbox (i.e., the time it takes to 

produce all the output tuples) is 15p + 6o and the average 

output tuple latency is 12.5p + o. 

Min-Latency (ML). Average latency of the output 

tuples can be reduced by producing initial output tuples 

as fast as possible. In order to accomplish this, we define 

a cost metric for each box b, referred to as the output cost 

of b, output_cost(b). This value is an estimate of the 

latency incurred in producing one output tuple using the 

tuples at b’s queue and processing them downstream all 

the way to the corresponding output.  

This value can be computed using the following 

formulas: 

( )

_ ( ) ( )
k D b

o sel b sel k
∈

= ∏  

( )

_ ( ) ( ) / _ ( )
k D b

output cost b cost k o sel k
∈

= ∑  

where D(b) is, as before, the set of boxes downstream 

from b including b, and sel(b) is the estimated selectivity 

of b. In Figure 4, D(b3) is b3 → b2 → b1, and D(b1) is b1. 

The output selectivity of a box b, o_sel(b), estimates how 

many tuples should be processed from b’s queue to 

produce one tuple at the output.  

To come up with the traversal order, the boxes are first 

sorted in increasing order of their output costs. Starting 

from an empty traversal sequence and box b with the 

smallest such value, we can then construct the sequence 

by appending D(b) to the existing sequence. 

An ML traversal of the superbox of Figure 4 described 

above is: 

b1 → b2 → b1 → b6 → b1 → b4 → b2 → b1 → b3 → b2 → 

b1 → b5 → b3 → b2 → b1 

The ML traversal incurs nine extra box calls over an 

MC traversal (which only incurs six box calls). In this 

case, the total execution cost is 15p + 15o, and the 

average latency is 7.17p + 7.17o. 

Notice that MC always achieves a lower total 

execution time than ML (in this case by 6o). This is an 

important improvement especially when the system is 

under CPU stress, as it effectively increases the 

throughput of the system. ML may achieve lower latency 

depending on the ratio of box processing costs to box 

overheads. In this example, ML yields lower latency if p / 

o ≥ 1.16. 

Min-Memory (MM). This traversal is used to 

maximize the consumption of data per unit time. In other 

words, we schedule boxes in an order that yields the 

maximum increase in available memory (per unit time). 

( ) (1 ( ))
_ ( )

( )

tsize b selectivity b
mem rr b

cost b

× −
=  

The above formula is the expected memory reduction 

rate for a box b (tsize(b) is the size of a tuple that reside 

on b’s input queue). Once the expected memory 

reduction rates are computed for each box, the traversal 

order is computed as in the case of ML.  

Let’s now consider the MM traversal of the superbox 

in Figure 4, this time with the following box selectivities 

and costs: b1 = (0.9, 2), b2 = (0.4, 2), b3 = (0.4, 3), b4 = 

(1.0, 2), b5 = (0.4, 3), b6 = (0.6, 1). Assuming that all 

tuples are of size one, mem_rr for all the boxes, b1 

through b6 respectively, are computed as follows: 0.5, 

0.3, 0.5, 0, 0.2, 0.4. Therefore, the MM traversal is: 

b3 → b6 → b2 → b5 → b3 → b2 → b1 → b4 → b2 → b1 

Note that this traversal might be shorter at run time: for 

example, if b5 consumes all of its input tuples and 

produces none on the output, the execution of b3 after b5 

will clearly be unnecessary. In this example, the average 

memory requirements for MM, MC, and ML turn out to 

be approximately 36, 39, and 40 tuples, respectively 

(memory requirements are computed after the execution 

of each box and averaged by the number of box 

executions).   

It is clear that different traversal approaches are 

effective at optimizing for the metrics that they address. 

4.2 Tuple Batching - Train Processing 

A tuple train (or simply a train) is a sequence of tuples 

executed as a batch within a single box call. The goal of 

tuple train processing is to reduce overall tuple 

processing costs. This happens due to several reasons: 

First, given a fixed number of tuples to process, train 

processing decreases the total number of box executions 

required to process those tuples, thereby cutting down 

low-level overheads such as scheduling overhead 

(including maintenance of the execution queue and 

memory management), calls to the box code, and context 

switch. Second, train processing has the effect of 

improving memory utilization by reducing the number of 

times a tuple gets shuttled back and forth between 

memory and disk throughout its lifetime. This affect 

becomes apparent if system operates under memory 

stress. A third reason, which we do not directly explore in 

this paper, is that some operators may optimize their 

b2b4

b5 b3

b6

b1
app

output box 

(root)

query tree

 
Figure 4: Sample query tree 
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execution better with larger number of tuples available in 

their queues. For instance, a box can materialize 

intermediate results and reuse them in the case of 

windowed operations, or use merge-join instead of nested 

loops in the case of joins. 

The Aurora scheduler implements train processing by 

telling each box when to execute and how many queued 

tuples to process (unlike traditional blocking operators 

that wake up and process new input tuples as they arrive). 

This approach somewhat complicates the implementation 

and increases the load of the scheduler, but is necessary 

for creating and processing trains, which significantly 

decrease overall execution costs. 

Aurora allows an arbitrary number of tuples to be 

contained within a train. And, presently, train sizes in 

Aurora are fixed at a percentage of the queue size 

(usually 100%). In general, the size of a train can be 

decided by constraining a specific attribute such as the 

number of tuples, variance in latencies, total expected 

processing cost, and total memory footprint. We leave the 

investigation of more sophisticated train construction 

policies to future work. 

5 Experimental Evaluation 

5.1 Experimental Testbed 

We will use the Aurora prototype system to study our 

operator scheduling techniques. The reference run-time 

architecture is defined in Section  2.2. 

The prototype is implemented on top of Debian 

GNU/Linux using C++. In the experiments, we used a 

dedicated Linux workstation with dual 1.5Ghz Pentium 

IV processors and 1GB of RAM. The machine is isolated 

from the network to avoid external interference.  

Due to the fact that the domain of stream-based 

applications is still emerging and that there are no 

established benchmarks, we decided to artificially 

generated data streams and continuous queries to 

characterize the performance of our algorithms, as 

described below. 

We generated an artificial Aurora network as a 

collection of continuous queries, each feeding output 

tuples to individual applications. We modeled a 

continuous query as a tree of boxes rooted at an output 

box (i.e., a box whose outputs are fed to one or more 

applications). We refer to such a query tree as an 

application tree. Each query is then specified by two 

parameters: depth and fan-in. Depth of a query specifies 

the number of levels in the application tree and fan-in 

specifies the average number of children for each box. 

For ease of experimentation, we implemented a 

generic, universal box whose per-tuple processing cost 

and selectivity can be set. Using this box, we can model a 

variety of stateless stream-based operators such as filter, 

map, and union. For purposes of this paper, we chose not 

to model stateful operators as their behavior is highly-

dependent on the semantics they implement, which would 

introduce another dimension to our performance 

evaluation. This would complicate the understanding of 

the results without making a substantial contribution to 

the understanding of the relative merits of the algorithms.  

An Aurora network consists of a given number of 

query trees. All queries are then associated with latency-

based QoS graphs, each of which is specified by three 

points: (1) maximum utility at time zero, (2) the latest 

latency value where this maximal utility can be achieved, 

and (3) the deadline latency point after which output 

tuples provides zero utility.  

To meaningfully compare different queries with 

different shapes and costs, we use an abstract capacity 

parameter that specifies the overall load as an estimated 

fraction of the ideal capacity of the system. For example, 

a capacity value of .9 implies that 90% of all system 

cycles are required for processing the input tuples. Once 

the target capacity value is set, the corresponding input 

rates are determined using a straightforward open-loop 

computation. Because of various system overheads, the 

CPU will saturate much below a capacity of one. 

The graphs presented in the rest of the paper provide 

average figures of six independent runs, each producing 

10000 output tuples. 

5.2 Operator Batching – Superbox Scheduling 

We investigate the benefits of superbox scheduling by 

looking at the performance of several approaches: the 

random (RANDOM), round-robin (RR), and the p-tuple 

(P-TUPLE) algorithms run in the default box-at-a-time 

(BAAT) mode, and the ML and MC traversal algorithms 

applied to superboxes that correspond to entire 

applications (i.e., application-at-a-time or AAAT). Figure 

5 shows the average tuple latencies of these approaches 

as a function of the input rate (as defined relative to the 

capacity of the system). Also shown is an intermediate 

approach, the top-5-spanner, which uses ML as the 

traversal scheme. As the arrival rate increases, the queues 

eventually saturate and latency increases arbitrarily. The 

interesting feature of the graphs in the figure is the 

location of the inflection point. RANDOM-BAAT and 

RR-BAAT do particularly badly. In these cases, the 

scheduling overhead of both of the box-at-a-time 

approaches is very evident. This overhead effectively 

steals processing capability from the normal network 

processing, causing saturation at much earlier points. The 

curve for P-TUPLE-BAAT illustrates the use of the 

slope-slack technique. Notice that it does better than the 

other BAAT algorithms at low input rates, as it takes into 

account the tuple latencies. As the input rates increase, it 

saturates early just as the other BAAT algorithms do; 

however, when saturation occurs, it manages to maintain 

a reasonable latency for value over a much broader range. 

On the other hand, both the ML_AAAT and the 

MC_AAAT algorithms perform quite well in the sense 

that they are very resistant to high load. The AAAT 

techniques experience fewer scheduler calls and, thus, 
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have more processing capacity. These algorithms are able 

to hang on at input rates of over 90% of the theoretical 

capacity. Recall that the top-5-spanner algorithm picks a 

spanning tree that includes the top 5 highest priority 

boxes. While it is categorized as an AAAT algorithm, it 

will in general only traverse a subset of the entire 

application. As k is increased, the top-k-spanner 

algorithm approaches application at-a-time scheduling. 

Thus, top-k-spanner is an intermediate approach that can 

be tuned to behave somewhere between the BAAT and 

the AAAT approaches. The graph in Figure 5 bears this 

out. The curve for top-5-spanner starts out with an 

average latency that tracks the AAAT algorithms and 

then quickly deteriorates to track the BAAT cases. 

5.3 Superbox Traversal 

We first investigate the performance characteristics of the 

Min-Cost (ML) and Min-Latency (MC) superbox 

traversal algorithms. In this experiment, we use a single 

application tree with a box selectivity of one, a fan-in of 

1.2, a depth of ten, and a CPU utilization of 0.9.  

Figure 7 shows the average output tuple latency as a 

function of per-tuple box processing cost. As expected, 

both approaches perform worse with increasing 

processing demands. For most of the cost value range 

shown, ML not surprisingly performs better than MC as it 

is designed to optimize for output latency. Interestingly, 

we also observe that MC performs better than ML for 

relatively small processing cost values. The reason is due 

to the relationship between the box processing cost and 

box call overhead, which is the operational cost of 

making a box call. The box call overhead is a measure of 

how much time is spent outside the box versus inside the 

box (processing tuples and doing real work). As we 

decrease the box processing costs, box call overheads 

become non-negligible and, in fact, they start to dominate 

the overall costs incurred by the algorithms. As we 

explained in Section  4.1.2, an MC traversal always 

requires less number of box calls than ML does. We thus 

see a cross-over effect: for smaller box processing costs, 

box call overheads dominate overall costs and MC wins. 

For larger processing costs, ML wins as it optimizes the 

traversal for minimizing output latency. 

Figure 6 presents a complementary result by plotting 

the overall box call overheads for different application 

tree depths for MC and ML. As argued before, MC incurs 

less overall box overhead as it minimizes the number of 

box calls. The difference increases as the applications 

become deeper and increase in the number of boxes. In 

fact, the overhead difference between the two traversals is 

proportional to the depth of the traversed tree. Consider a 

complete application tree with a fan-out of f and a depth 

of d. Then the additional number of box calls needed to 

be made when the depth of the tree is incremented is 

roughly: 
1( )dO df + and 1( )dO f +  

for ML and MC, respectively. 

This result can be utilized statically and/or 

dynamically for improving scheduling and overall system 

performance. It is possible to statically examine an 

Aurora network, obtain box-processing costs, and then 

compare them to the (more or less fixed) box processing 

overheads. Based on the comparison and using the above 

result, we can then statically determine which traversal 

algorithm to use for improved QoS. A similar finer-

grained approach can be taken dynamically. Using a 

 
Figure 5: Application vs. Box Scheduling 

 
Figure 6: Box overheads for ML and MC 

 
Figure 7: Processing Costs vs. Average Latency 
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simple cost model, it is straightforward to compute which 

traversal algorithm should do better given a particular 

superbox. 

Figure 8 demonstrates the amount of memory used 

over the time of superbox run. The curves are normalized 

with respect to MM values. ML is most inefficient in its 

use of memory with MC performing second. MC 

minimizes the amount of box overhead. As a result MC 

discards more tuples per unit of time than ML. 

MM loses its advantage towards the end since all three 

traversals are executed on a common query network. 

Even though each chooses a different execution sequence 

and incurs different overhead, all of them push the same 

tuples through the same sequence of boxes. The 

crossover towards the end of the time period is a 

consequence of the fact that different traversals take 

different times to finish. In general, MC has the smallest 

total execution time−the reason why it catches up with 

MM at 4 seconds. 

5.4 Tuple Batching - Train Scheduling 

Train scheduling is only relevant in cases in which 

multiple tuples are waiting at the inputs to boxes. This 

does not happen when the system is very lightly loaded. 

In order to see how train scheduling affects performance, 

we needed to create queues without saturating the system. 

We achieved this by creating a bursty (or clustered) 

workload that simply gathers tuples in our previously 

studied workloads and delivers them as a group. In other 

words, if our original workload delivered n tuples evenly 

spaced in a given time interval T, the bursty version of 

this delivers n tuples as a group and then delivers nothing 

more for the next T time units. Thus, the bursty workload 

is the same in terms of average number of tuples 

delivered, but the spacing is different. The graph in 

Figure 9 shows how the train scheduling algorithm 

behaves for several bursty workloads. The train size (x-

axis) is given as a percentage of the queue size. As we 

move to the right, the trains bite off a larger and larger 

portion of the queues. With burst size of one, all tuples 

are evenly spaced. This is equivalent to the normal 

workload. Notice that the curve for this workload is flat. 

If there are no bursts, train scheduling has no effect. For 

the other two curves, however, as the burst size increases, 

the effect gets more pronounced. With small a train size 

of 0.2, the effect on latency of increasing the burst size is 

substantial. For a burst size of 4, we quadruple the 

average latency. Now as we increase the train size, we 

markedly reduce the average latency for the bursty cases. 

In fact, when the train size is equal to one (the whole 

queue), the average latency approaches the latency for the 

non-bursty case. Trains improve the situation because 

tuples do not wait at the inputs while other tuples are 

being pushed through the network. It is interesting to note 

that the bursty loads do not completely converge to the 

non-bursty case even when the train size is one (i.e., the 

whole queue). This is because the tuples still need to be 

processed in order. Since the bursty workload generation 

delivers n-1 of the tuples early, their latency clock is 

ticking while the tuples in front of them are being 

processed. In the non-bursty case, the tuples arrive spaced 

out in time, and a fair amount of processing can be done 

on queued tuples before more tuples arrive. 

5.5 Overhead Distribution 

If we turn our attention to Figure 11, we will see a 

comparison of the execution times and how they are 

distributed for BAAT, ML, and MC for three different 

Aurora networks consisting of 10, 20, and 30 applications 

(i.e., continuous queries). The y-axis is total time 

execution time spent when processing these applications. 

Each bar is divided into the four fundamental cost 

components. 

The first thing to notice is that BAAT is significantly 

worse than the other two methods, and the difference 

increases with increasing number of applications. This 

again underscores our conclusion that train and superbox 

scheduling are important techniques for minimizing 

scheduler overheads. 

Additionally, this graph shows clearly that scheduler 

overhead and box call overhead dominate the effects of 

 
Figure 8: Memory requirements over time 

 

Figure 9: Train size vs. latency 
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loading and unloading queues, as well as the processing 

costs. The difference between MC and ML is due to the 

fact that ML typically incurs more box calls and that MC 

achieves higher tuple batching. As a result, MC achieves 

smaller total execution times and reduced total 

scheduling and box overheads. 

As suggested in the introduction, we were able to 

significantly cut down system overheads using a 

combination of operator and tuple batching, as 

exemplified by MC and ML. 

6 QoS-Driven Priority Assignment 

We first discuss how we compute box priorities and, at a 

coarser level, output priorities using application-specific 

QoS information and tuple latencies. We first describe 

our basic approach and then propose an approximation 

technique, based on bucketing and pre-computation, 

which is used to improve scalability by trading off 

scheduling overhead with scheduling quality. The latter is 

our main contribution in this section. 

6.1 Computing Priorities 

The basic approach is to keep track of the latency of 

tuples that reside at the queues and pick for processing 

the tuples whose execution will provide the most 

expected increase in overall QoS. Taking this approach 

per tuple is not scalable. We therefore maintain latency 

information at the granularity of individual boxes and 

define the latency of a box as the averaged latencies of 

the tuples in its queue.  

Our priority assignment approach is to order the boxes 

in terms of their utility and urgency. We define the 

importance of a box b in terms of its expected slope 

value, slope(b), and define its urgency in terms of its 

expected slack time, slack(b). 

Utility computation: We compute the utility of b as 

follows:  

( ) ( ( ))utility b gradient eol b=  

This value is the gradient of the QoS-latency curve for 

b’s corresponding output at the latency value eol(b), 

where eol(b) is the expected output latency of b. This 

value is an estimation of where b’s tuples currently are on 

the QoS-latency curve at the corresponding output. In 

other words, this value provides a lower bound on the 

expected latency of the corresponding tuples at the output 

(assuming that the tuples are pushed all the way to the 

output without further delay). The value eol(b) is 

computed by adding the current latency value to the 

expected computation time for a given output as follows: 

( ) ( ) ( ( ))eol b latency b cost D b= +  

( )

( ( )) ( )
k D b

cost D b cost k
∈

= ∑  

where D(b) is the set of boxes downstream from and b 

(i.e.,  D(b) is the sequence of boxes that lie on the path 

that start at b and end at the root box) and sel(b) is the 

selectivity of box b. 

The intuition behind this utility function is that it 

measures the expected QoS (per unit time) that will be 

lost if the box is not chosen for execution. 

Urgency computation: The expected slack time, est(b), 

is an indication of how close a box is to a critical point; 

i.e., a point where QoS sharply changes. Urgency can be 

trivially computed by subtracting the expected output 

latency from the latency value that corresponds to the 

critical point. If there are multiple critical points, est(b) 

always corresponds to the distance to the closest critical 

point. 

These concepts are illustrated in Figure 10, where the 

QoS is specified as a piece-wise linear function of latency 

with three critical points. 

Combining utility and urgency: At each scheduling 

point in time, we can order the boxes with respect to their 

priority tuple, or p-tuple: 

( ) ( ( ), ( ))priority b utility b est b= −  

In other words, we first choose for execution those boxes 

that have the highest utility, and then choose from among 

those that have the same utility, the ones that have the 

minimum (i.e., least) slack time. 
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Figure 10: Critical points and expected output delay 
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Figure 12 shows a comparison of Aurora’s QoS-aware 

scheduling approach and a simple round-robin scheduling 

policy. Both algorithms perform BAAT scheduling. The 

graph reveals a significant difference between the average 

QoS values achieved by the algorithms. The difference is 

pretty much stable up to a capacity value of 0.7, after 

which the system becomes overloaded and the 

performances of both algorithms decrease drastically and 

will eventually drop to zero (note that they remain above 

zero due to the finite amount of time experiments were 

run). 

A straightforward implementation of this approach 

requires, at each scheduling point, computing the p-tuple 

for each box and then sorting the boxes with respect to 

their p-tuples, which is an O(n × logn) operation, where n 

is the number of boxes. 

6.2 Approximation for Scalability 

We improve upon the basic algorithm using a 

combination of (1) approximation (via bucketizing) and 

(2) pre-computation. Our approach is to partition the 

utility-urgency space into discrete buckets, and efficiently 

assign boxes to individual buckets based on their p-tuple 

values at run time. During scheduling, buckets can be 

traversed in the order of decreasing p-tuples (illustrated in 

Figure 13), and the corresponding boxes are placed in the 

execution queue. Given a latency value, our first goal is 

to compute the corresponding bucket assignment in O(1). 

To do this, we make use of two auxiliary graphs, 

gradient- and slack-latency graphs. 

Gradient buckets: We divide the range of the gradient 

(i.e., utility) values into g buckets (Figure 14 shows an 

example with four buckets). All gradient values in the 

same bucket are treated as the same. The width of each 

bucket, thus, defines a bound on the inaccuracy (or 

variance) that we are willing to tolerate in terms of the 

potential deviation from the highest possible gradient 

value. In other words, the width of a bucket is a measure 

of the bound on the quantitative deviation from the 

optimal (with respect to the heuristic) scheduling 

decision. 

Slack buckets: Similarly, we divide the slack values 

into s buckets (Figure 15) and treat all the slack values 

within a single bucket as equal. Again, the width of a 

bucket is an indication of the level of approximation we 

make with regards to the slack values. 

Given pre-computed gradient-latency graphs, it is 

possible to pre-compute the application-specific latency 

ranges that correspond to each bucket. For example, b1 

will be in bucket2 beyond latency = 5 and in bucket3 

beyond latency = 15; whereas b3 will be in bucket1 till 

latency = 12 and in bucket4 afterwards. Slack-latency 

graphs can be interpreted in a similar fashion as 

illustrated in the figure: b1 falls in bucket2 when latency is 

between 5 and 10, and in bucket1 for other latency values. 

When the execution queue is about to become empty, 

the scheduler performs bucket assignment by going 

through the boxes and assigning them into their current 

buckets. A straightforward implementation of bucket 

assignment takes O(n) time by going through all the 

boxes, computing the bucket for each box in O(1). This 

approach has the potential drawback of redundantly 

reassigning buckets for each box, even if the box’s bucket 

has not been changed since the last assignment. In 

particular, we want the bucket assignment overhead to be 

proportional to the number of boxes that made a 

transition to another bucket. In order to accomplish this, 

we use a calendar queue [5], which is a multi-list priority 

queue that exhibits O(1) amortized time complexity for 

the relevant operations (insertion, deletion, and extract-

 

Figure 12: QoS-aware scheduling 
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min) under popular event distributions. As a result, we 

can implement all phases of bucket assignment in 

constant amortized time. 

7 Related Work 

There has been extensive research on scheduling tasks 

under real-time performance expectations both in 

operating systems [11, 13, 15, 18] and database systems 

[2, 8, 9, 16, 17]. To the best of our knowledge, Aurora’s 

scheduling approach that combines priority assignment 

and dynamic scheduling plan construction is the first 

comprehensive proposal for scheduling continuous 

queries over real-time data streams and QoS expectations. 

Our solutions no doubt borrow a lot from the myriad of 

existing work on scheduling. Due to lack of space, 

however, we only discuss related work that is particularly 

relevant to our work and highlight the primary 

differences. 

Scheduling proposals for real-time systems commonly 

considered the issue of priority assignment and 

consequent task scheduling based on static (table- or 

priority-driven) approaches or dynamic (planning or best-

effort) approaches [17]. Static approaches are inherently 

ill suited for the potentially unpredictable, aperiodic 

workloads we assume, as they assume a static set of 

highly periodic tasks. Dynamic planning approaches 

perform feasibility analysis at run-time to determine the 

set of tasks that can meet their deadlines, and rejecting 

the others that cannot [11]. Our approach is to accept all 

new tasks (i.e., incoming tuples) but provide no 

guarantees that they will meet their deadlines (or in our 

QoS model their topmost critical points). This decision is 

based on two key observations: First, our priority 

assignment algorithm is based on a variation of Earliest-

Deadline-First (EDF) algorithm [13], which is well 

known to have optimal behavior as long as no overloads 

occur. Second, Aurora employs a load shedding 

mechanism (not described in this paper but can be found 

in [6]) that is initiated when an overload situation is 

detected and that selectively sheds load to get rid of 

excess load in a way that least impacts the QoS. This 

allows our scheduling algorithm to focus only on 

underload situations. We note here that Haritsa et al. [9] 

proposed an extension of EDF that is designed to handle 

overloads through adaptive admission control. 

Real-time database systems [2, 8, 9, 12, 16, 17] 

attempt to satisfy deadlines associates with each 

incoming transaction, with the goal of minimizing the 

number of transactions that miss their deadlines. These 

systems commonly support short-running, independent 

transactions, whereas Aurora deals with long-running 

continuous queries over streaming data and therefore has 

to deal with fine-grained operator-level scheduling (i.e., 

superbox scheduling) and tuple-level processing (i.e., 

train processing). Leaving aside these differences, of 

particular relevance to Aurora scheduling is the work of 

Haritsa et al. [8] that studied a model where transactions 

have non-uniform values (or utilities) that drop to zero 

immediately after their deadlines. They studied different 

priority assignment algorithms that combine deadline and 

value information in various ways, one of which is a 

bucketing technique. This technique is similar to ours in 

that it assigns schedulable processing units into buckets 

based on their utility. The differences are that (1) we use 

bucketing to trade off scheduling quality for scheduling 

overhead and, consequently, for scalability; and (2) we 

also use bucketing for keeping track of slack values. 

Also related to Aurora scheduling is the work on 

adaptive query processing and scheduling techniques [3, 

10, 19]. These techniques address efficient query 

execution in unpredictable and dynamic environments by 

revising the query execution plan as the characteristics of 

incoming data changes. Eddies [3] tuple-at-a-time 

scheduling provides extreme adaptability but has limited 

scalability for the types of applications and workloads we 

address. Urhan’s work [19] on rate-based pipeline 

scheduling prioritizes and schedules the flow of data 

between pipelined operators so that the result output rate 

is maximized. This work does not address multiple query 

plans (i.e., multiple outputs) or deal with and support the 

notion of QoS issues (and neither does Eddies).  

Related work on continuous queries by Viglas and 

Naughton [20] discusses rate-based query optimization 

for streaming wide-area information sources in the 

context of NiagaraCQ [7]. Similar to Aurora, the 

STREAM project [4] also attempts to provide 

comprehensive data stream management and processing 

functionality. Their initial scheduling goal involves 

minimization of the intermediate queue sizes [14], an 

issue that we do not directly address in this paper. Neither 

NiagaraCQ nor STREAM has the notion of QoS. 

8 Conclusions 

This paper has experimentally investigated scheduling 

algorithms for stream data management systems. It has 

demonstrated that the effect of system overheads (e.g., 

number of scheduler calls) can have a profound impact 

on real system performance. We have run our 

experiments on the Aurora prototype since simulators do 

not reveal the intricacies of system implementation 

penalties. 

Processor allocation in a stream processor like Aurora 

could be achieved by assigning a thread per box. This 

technique does not scale since no system that we are 

aware of can adequately deal with many thousands of 

threads. More importantly, any such approach would 

abdicate the details of scheduling to the operating system. 

This paper shows that a more application-aware approach 

to scheduling can make a significant difference to overall 

system performance. 

We have further shown that our approaches of train 

scheduling and superbox scheduling help a lot to reduce 

system overheads. We have also discussed exactly how 

these overheads are affected in a running stream data 
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manager. In particular, these algorithms require tuning 

parameters like train size and superbox traversal methods. 

We also addressed QoS issues and extended our basic 

algorithms to address application-specific QoS 

expectations. Furthermore, we described an 

approximation technique that trades off scheduling 

quality with scheduling overhead. 

Choices in these areas need to be made carefully based 

on knowledge of the workloads and the applications. We 

have provided some interesting results in this direction, 

and we intend to extend these studies as a guide to 

effective scheduler deployment. 
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