
 Open access Book Chapter DOI:10.1016/B978-012722442-8/50079-3

Operator scheduling in a data stream manager — Source link

Don Carney, Uğur Çetintemel, Alexander Rasin, Stan Zdonik ...+2 more authors

Institutions: Brown University, Brandeis University, Massachusetts Institute of Technology

Published on: 09 Sep 2003 - Very Large Data Bases

Topics: Fair-share scheduling, Two-level scheduling, Dynamic priority scheduling, Data stream mining and
Scheduling (computing)

Related papers:

 Chain: operator scheduling for memory minimization in data stream systems

 Load shedding in a data stream manager

 Aurora: a new model and architecture for data stream management

 TelegraphCQ: Continuous Dataflow Processing for an Uncertain World.

 Monitoring streams: a new class of data management applications

Share this paper:

View more about this paper here: https://typeset.io/papers/operator-scheduling-in-a-data-stream-manager-
4fo6xvpswo

https://typeset.io/
https://www.doi.org/10.1016/B978-012722442-8/50079-3
https://typeset.io/papers/operator-scheduling-in-a-data-stream-manager-4fo6xvpswo
https://typeset.io/authors/don-carney-2d17kt7koj
https://typeset.io/authors/ugur-cetintemel-3r3e2231ls
https://typeset.io/authors/alexander-rasin-59ob3xmw2c
https://typeset.io/authors/stan-zdonik-4ucg5tpvma
https://typeset.io/institutions/brown-university-1ylslb96
https://typeset.io/institutions/brandeis-university-1cpsbyy3
https://typeset.io/institutions/massachusetts-institute-of-technology-1y5l0xk3
https://typeset.io/conferences/very-large-data-bases-hqmyzr0f
https://typeset.io/topics/fair-share-scheduling-31irrx99
https://typeset.io/topics/two-level-scheduling-2azc8q1h
https://typeset.io/topics/dynamic-priority-scheduling-37r1rl8z
https://typeset.io/topics/data-stream-mining-1fzzxw4y
https://typeset.io/topics/scheduling-computing-3elthrty
https://typeset.io/papers/chain-operator-scheduling-for-memory-minimization-in-data-3lhw74qkab
https://typeset.io/papers/load-shedding-in-a-data-stream-manager-jz2fz7gp4h
https://typeset.io/papers/aurora-a-new-model-and-architecture-for-data-stream-32yb8rzs0r
https://typeset.io/papers/telegraphcq-continuous-dataflow-processing-for-an-uncertain-1ezlmlxdin
https://typeset.io/papers/monitoring-streams-a-new-class-of-data-management-59yymz2awd
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/operator-scheduling-in-a-data-stream-manager-4fo6xvpswo
https://twitter.com/intent/tweet?text=Operator%20scheduling%20in%20a%20data%20stream%20manager&url=https://typeset.io/papers/operator-scheduling-in-a-data-stream-manager-4fo6xvpswo
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/operator-scheduling-in-a-data-stream-manager-4fo6xvpswo
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/operator-scheduling-in-a-data-stream-manager-4fo6xvpswo
https://typeset.io/papers/operator-scheduling-in-a-data-stream-manager-4fo6xvpswo

 1

Operator Scheduling in a Data Stream Manager

Don Carney┼, Uğur Çetintemel┼, Alex Rasin┼, Stan Zdonik┼

Mitch Cherniack§, Mike Stonebraker±

┼Department of Computer Science, Brown University
§Department of Computer Science, Brandeis University

±Laboratory for Computer Science & Department of EECS, Massachusetts Institute of Technology

Abstract

Many stream-based applications have sophisticated

data processing requirements and real-time

performance expectations that need to be met under

asynchronous, time-varying data streams. In order to

address these challenges, we propose novel operator

scheduling approaches that specify (1) which

operators to schedule (2) in which order to schedule

the operators, and (3) how many tuples to process at

each execution; and study them in the context of the

Aurora data stream manager.

 We argue and provide experimental evidence that a

fine-grained scheduling approach in combination

with various scheduling techniques (such as batching

of operators and tuples) can significantly improve the

efficiency by reducing various system overheads. We

also discuss application-aware extensions that

address Quality of Service (QoS) issues by making

scheduling decisions according to tuple processing

delays and per-application QoS specifications.

Finally, we present prototype-based experimental

results that characterize the efficiency and

effectiveness of our approaches under various stream

workloads and processing scenarios.

1 Introduction

Applications that deal with potentially unbounded,

continuous streams of data are becoming increasingly

popular due to a confluence of advances in real-time,

wide-area data dissemination technologies and the

emergence of small-scale computing devices (such as

GPSs and micro-sensors) that continually emit data

obtained from their physical environment. Example

applications include sensor networks, position tracking,

fabrication line management, network management, and

financial portfolio management. All these applications

require timely processing of large volumes of continuous,

potentially rapid and asynchronous data streams.

Hereafter, we refer to such applications as stream-based

applications.

We have designed a system called Aurora [6], a data

stream manager that addresses the performance and

processing requirements of stream-based applications.

Aurora supports multiple concurrent continuous queries,

each of which produces results to one or more stream-

based applications. Each continuous query consists of a

directed acyclic graph of a well-defined set of operators

(or boxes in Aurora terminology). Applications define

their service expectations using Quality-of-Service (QoS)

specifications, which guide Aurora’s resource allocation

decisions. We provide an overview of Aurora in Section

2.

A key component of Aurora, or any data stream

management system for that matter, is the scheduler that

controls processor allocation. The scheduler is

responsible for multiplexing the processor usage to

multiple continuous queries according to application-

level performance or fairness goals. Simple processor

allocation can be achieved by assigning a thread per

operator or per query. This technique does not scale since

no system that we are aware of can adequately deal with a

very large number of threads. More importantly, for

stream processing purposes, any such approach would

abdicate the details of scheduling to the operating system.

This paper shows that having finer-grained control of

processor allocation can make a significant difference to

overall system performance by cutting down various

system overheads associated with continuous query

execution.

Figure 1 depicts the cost components of a continuous

query execution (where the individual operators are

scheduled using a random and a round-robin scheduling

policy). The query used for this experiment models an

intelligent data routing application (provided by MITRE

Corp.), where data gathered by a next generation

reconnaissance aircraft are routed to appropriate ground

stations. The query basically consists of 40 stream-based

operators, most of which are simple filter, project, and

union operators (for our purposes the exact form of the

query is not important). The figure reveals that the actual

time spent for processing is smaller than 5% of the

overall execution time in both cases. The remainder

consists of three basic overheads incurred by the

2

scheduler, the buffer manager (i.e., loading/unloading

tuple queues), and the worker thread that executes the

operator (we discuss these components in more detail in

the remainder of the paper). Note that this particular

query consisted mostly of low cost operators; in general

one might expect that queries include operators with

higher processing costs (such as aggregates, joins, and

user-defined functions). In such cases, processing costs

will clearly become more pronounced. On the other hand,

we believe that the result is representative in that

overheads will always be non-negligible and will

frequently dominate the overall execution time.

Motivated by this key observation, this paper studies

operator scheduling for stream processing systems with

the goal of reducing system overheads. We propose a set

of novel scheduling techniques that reduce various

system overheads by batching (of operators and tuples),

incremental state tracking, approximation, and pre-

computation.

In particular, we describe the design and

implementation of the Aurora scheduler, which performs

the following tasks:

1. Dynamic scheduling-plan construction: The

scheduler develops a scheduling plan that specifies,

at each scheduling point, (1) which boxes to

schedule, (2) in which order to schedule the boxes,

and (3) how many tuples to process at each box

execution.

2. Latency-based priority assignment: The Aurora

scheduler strives to maximize the overall QoS

delivered to the client applications. At a high level,

our scheduling decisions are based on a novel box

priority assignment technique that uses the latencies

of queued tuples and application-specific QoS

information. For improved scalability, we also use an

approximation technique, based on bucketing and

pre-computation, which trades scheduling quality

and scheduling overhead.

We also evaluate and experimentally compare these

algorithms on our Aurora prototype under various stream

processing and workload scenarios. Through the

implementation of our techniques on the prototype rather

than a simulator, we were better able to understand the

actual costs associated with system overhead.

The rest of the paper is organized as follows: Section 2

provides an overview of the Aurora data stream manager.

Section 3 describes the state-based execution model used

by Aurora. Section 4 discusses in detail Aurora’s

scheduling algorithms. Section 5 discusses our prototype-

based experimental study that provides quantitative

evidence regarding the efficiency and effectiveness of

Aurora’s scheduling algorithms. Section 6 extends our

basic approaches to address QoS, describing queue-based

priority assignment and an approximation technique for

improving the scalability of the system. Section 7

describes related work, and Section 8 concludes the

paper.

2 Aurora Overview

2.1 Basic Model

Aurora data is assumed to come from a variety of data

sources such as computer programs that generate values

(at regular or irregular intervals) or hardware sensors. We

will use the term data source for either case. In addition,

a data stream is the term we will use for the collection of

data values that are presented by a data source. Each data

source is assumed to have a unique source identifier and

Aurora timestamps every incoming tuple to monitor the

QoS being provided.

The basic job of Aurora is to process incoming streams

in the way defined by an application administrator.

Aurora is fundamentally a data-flow system and uses the

popular boxes and arrows paradigm found in most

process flow and workflow systems. Hence, tuples flow

through a loop-free, directed graph of processing

operations (a.k.a. boxes). Ultimately, output streams are

presented to applications, which must be programmed to

deal with output tuples that are generated

asynchronously. Aurora can also maintain historical

storage, primarily in order to support ad-hoc queries.

Tuples generated by data sources arrive at the input

and are queued for processing. The scheduler selects

boxes with waiting tuples and executes them on one or

more of their input tuples. The output tuples of a box are

queued at the input of the next box in sequence. In this

0

10

20

30

40

50

60

70

80

90

100

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

scheduling overhead
box overhead
load/unload queues
box processing cost

Random Round−Robin
Figure 1: Where the time goes in query execution

Input data

streams
Output to

applications

Continuous & ad hoc

queries

Operator boxes
Historical

Storage

QoS specs

Figure 2: Aurora system model

3

way, tuples make their way from the inputs to the

outputs. Each output is associated with one or more QoS

specifications, which define the utility of stale or

imprecise results to the corresponding application. Figure

2 illustrates this high-level system model.

The primary performance-related QoS is based on the

notion of the latency (i.e., delay) of output tuples—output

tuples should be produced in a timely fashion, otherwise,

QoS will degrade as latencies get longer. In this paper,

we will only deal with latency-based QoS graphs; for a

discussion of other types of QoS graphs and how they are

utilized, please refer to [1, 6]. Aurora assumes that all

QoS graphs are normalized, and are thus quantitatively

comparable. Aurora further assumes that the QoS

requirements are feasible; i.e., unless the system is

overloaded, an idealized scheduler will be able to deliver

maximum possible QoS for each individual output.

Aurora contains built-in support for eleven primitive

operations for expressing its stream processing

requirements. Some operators just transform individual

items in the stream to other items, while other operators,

such as the aggregate operators (e.g., moving average),

apply a function across a window of values in a stream. A

description of the operators is outside the scope of this

paper and can be found in [1, 6].

2.2 Architecture

Figure 3 illustrates the architecture of the basic Aurora

run-time engine. Here, inputs from data sources and

outputs from boxes are fed to the router, which forwards

them either to external applications or to the storage

manager to be placed on the proper queues. The storage

manager is responsible for maintaining the box queues

and managing the buffer, properly making tuple queues

available for read and write by operators. Conceptually,

the scheduler picks a box for execution, ascertains what

processing is required and how many tuples to process

from the corresponding queue, and passes a pointer to the

box description (together with a pointer to the box state)

to the multi-threaded box processor. The box processor

executes the appropriate operation and then forwards the

output tuples to the router. The scheduler then ascertains

the next processing step and the cycle repeats.

The QoS monitor continually monitors system

performance and activates the load shedder when it

detects an overload situation and poor system

performance. The load shedder then sheds load till the

performance of the system reaches an acceptable level.

The catalog contains information regarding the network

topology, inputs, outputs, QoS information, and relevant

statistics (e.g., selectivity, average box processing costs),

and is essentially used by all components.

3 Basic Execution Model

The traditional model for structuring database servers is

thread-based execution, which is supported widely by

traditional programming languages and environments.

The basic approach is to assign a thread to each query or

operator. The operating system (OS) is responsible for

providing a virtual machine for each thread and

overlapping computation and I/O by switching among the

threads. The primary advantage of this model is that it is

very easy to program, as OS does most of the job. On the

other hand, especially when the number of threads is

large, the thread-based execution model incurs significant

overhead due to cache misses, lock contention, and

switching. More importantly for our purposes, the OS

handles the scheduling and does not allow the overlaying

software to have fine-grained control over resource

management.

Instead, Aurora uses a state-based execution model. In

this model, there is a single scheduler thread that tracks

system state and maintains the execution queue. The

execution queue is shared among a small number of

worker threads responsible for executing the queue

entries (as we discuss below, each entry is a sequence of

boxes). This state-based model avoids the mentioned

limitations of the thread-based model, enabling fine-

grained allocation of resources according to application-

specific targets (such as QoS). Furthermore, this model

also enables effective batching of operators and tuples,

which we show has drastic effects on the performance of

the system as it cuts down the scheduling and box

execution overheads.

An important challenge with the state-based model is

that of designing an intelligent but low-overhead

scheduler. In this model, the scheduler becomes solely

responsible for keeping track of system context and

deciding when and for how long to execute each operator.

In order to meet application-specific QoS requirements,

the scheduler should carefully multiplex the processing of

multiple continuous queries. At the same time, the

scheduler should try to minimize the system overheads,

time not spent doing “useful work” (i.e., processing),

with no or acceptable degradation in its effectiveness.

…Q1

…Q2
.

.

.

…Qi

Buffer manager

…Qj

…Qn

.

.

.

Storage

Manager

Persistent Store

Scheduler

Router

Catalogs

s

m
.

.

.

Box Processors

inputs outputs

Load

Shedder

QoS

Monitor

><

Figure 3: Aurora run-time engine

4

4 Two-Level Scheduling

Aurora uses a two-level scheduling approach to address

the execution of multiple simultaneous queries. The first-

level decision involves determining which continuous

(sub-)query to process. This is followed by a second-level

decision that then decides how precisely the selected

query should be processed. This former decision entails

dynamically assigning priorities to operators at run-time,

according to QoS specifications, whereas the latter

decision entails choosing the order in which the

component operators will be executed. The outcome of

these decisions is a sequence of operators, referred to as a

scheduling plan, to be executed one after another. The

scheduling plan is inserted into the execution queue to be

later picked up and executed by one of the worker

threads.

In order to reduce the scheduling and operator

overheads, Aurora heavily relies on batching (i.e.,

grouping) during scheduling. We developed and

implemented algorithms that batch both operators and

tuples. In both cases, we observed significant

performance gains over the non-batching counterparts.

We now describe in detail our batching approaches for

constructing scheduling plans.

4.1 Operator Batching - Superbox Processing

A superbox is a sequence of boxes that is scheduled as an

atomic group. Superboxes are useful for decreasing the

overall execution costs and improving scalability as (1)

they significantly reduce the scheduling overhead by

scheduling multiple boxes as a single unit; (2) they

eliminate the need to access the storage manager for each

individual box execution by having the storage manager

allocate memory for the entire superbox at once1.

Conceptually, a superbox can be an arbitrary

connected subset of the Aurora network. However, we do

constrain the form of superboxes such that each is always

a tree of boxes rooted at an output box (i.e., a box whose

output tuples are forwarded to an external application).

The reasons that underlie this constraint are twofold.

First, only the tuples that are produced by an output box

provide any utility value to the system. Second, even

though allowing arbitrary superboxes will provide the

most flexibility and increase opportunities for

optimization, it will also make the search space for

superbox selection intractable for large Aurora networks.

The following subsections discuss the two key issues

to deal with when scheduling superboxes, namely

superbox selection and superbox traversal.

1 Another benefit of superbox scheduling, which we do not

address in this paper, is that it improves effective buffer

utilization by consuming as many tuples as possible once the

tuples are in memory. This potentially reduces the number of

times each tuple is swapped between memory and disk.

4.1.1 Superbox Selection

The first-level scheduling issue involves determining

superboxes to schedule. Fundamentally, there are two

different approaches to superbox selection: static and

dynamic. Static approaches identify potential superboxes

statically before run-time, whereas the dynamic

approaches identify useful superboxes at run-time. We

implemented two representative superbox selection

algorithms in Aurora.

• Application-spanner (AS). This approach statically

defines one superbox for each query tree. As a result,

the number of superboxes is always equal to the

number of continuous queries (or applications) in the

Aurora network. Figure 4 illustrates a simple query

tree that consists of six boxes (the tree is rooted at

box b1).

• Top-k-spanner (TKS). This algorithm identifies, at

run-time, the tree that is rooted at an output box and

that spans the top k highest priority boxes for a given

application. The priorities are assigned to boxes

based on the latencies of tuples on each box’s input

queues and on application-specific QoS

specifications (Section 5). A high priority box’s

input tuples need to be processed as soon as possible

if the system were to gather any utility. Consider

again the query tree in Figure 4. Assuming that b2

and b6 are the top two highest priority boxes, the top-

2-spanner of the query tree includes the shaded

boxes. Note that TKS also includes all the

intermediate boxes that lie on the path between any

of the top k boxes and the root box. TKS is

equivalent to an application tree when k is equivalent

to the number of boxes in the application tree.

4.1.2 Superbox Traversal

Once it is determined which boxes need to be executed, a

second-level decision process needs to specify the

ordering of these boxes in the scheduling plan. This is

accomplished by traversing the superbox. The goal of

superbox traversal is to process all the tuples that are

queued within the superbox (i.e., those tuples that reside

on the input queues of all boxes that constitute the

superbox).

We describe three traversal algorithms that primarily

differ in the performance-related metric for which they

strive to optimize: throughput, latency, and memory

requirements.

Min-Cost (MC). The first traversal technique attempts

to optimize per-output-tuple processing costs (or average

throughput) by minimizing the number of box calls per

output tuple. This is accomplished by traversing the

superbox in post order, where a box is scheduled for

execution only after all the boxes in its sub-tree are

scheduled. Notice that a superbox execution based on an

MC traversal consumes all tuples while executing each

box only once.

Consider the query tree shown in Figure 4 and assume

for illustration purposes that a superbox that covers the

5

entire tree is defined. Assume that each box has a

processing cost per tuple of p, a box call overhead of o,

and a selectivity equal to one. Furthermore, assume that

each box has an input queue that consists of a single

tuple. An MC traversal of the superbox consists of

executing each box only once:

b4 → b5 → b3 → b2 → b6 → b1

This traversal consists of six box calls. A simple back-

of-the-envelope calculation tells us that the total

execution cost of the superbox (i.e., the time it takes to

produce all the output tuples) is 15p + 6o and the average

output tuple latency is 12.5p + o.

Min-Latency (ML). Average latency of the output

tuples can be reduced by producing initial output tuples

as fast as possible. In order to accomplish this, we define

a cost metric for each box b, referred to as the output cost

of b, output_cost(b). This value is an estimate of the

latency incurred in producing one output tuple using the

tuples at b’s queue and processing them downstream all

the way to the corresponding output.

This value can be computed using the following

formulas:

()

_ () ()
k D b

o sel b sel k
∈

= ∏

()

_ () () / _ ()
k D b

output cost b cost k o sel k
∈

= ∑

where D(b) is, as before, the set of boxes downstream

from b including b, and sel(b) is the estimated selectivity

of b. In Figure 4, D(b3) is b3 → b2 → b1, and D(b1) is b1.

The output selectivity of a box b, o_sel(b), estimates how

many tuples should be processed from b’s queue to

produce one tuple at the output.

To come up with the traversal order, the boxes are first

sorted in increasing order of their output costs. Starting

from an empty traversal sequence and box b with the

smallest such value, we can then construct the sequence

by appending D(b) to the existing sequence.

An ML traversal of the superbox of Figure 4 described

above is:

b1 → b2 → b1 → b6 → b1 → b4 → b2 → b1 → b3 → b2 →

b1 → b5 → b3 → b2 → b1

The ML traversal incurs nine extra box calls over an

MC traversal (which only incurs six box calls). In this

case, the total execution cost is 15p + 15o, and the

average latency is 7.17p + 7.17o.

Notice that MC always achieves a lower total

execution time than ML (in this case by 6o). This is an

important improvement especially when the system is

under CPU stress, as it effectively increases the

throughput of the system. ML may achieve lower latency

depending on the ratio of box processing costs to box

overheads. In this example, ML yields lower latency if p /

o ≥ 1.16.

Min-Memory (MM). This traversal is used to

maximize the consumption of data per unit time. In other

words, we schedule boxes in an order that yields the

maximum increase in available memory (per unit time).

() (1 ())
_ ()

()

tsize b selectivity b
mem rr b

cost b

× −
=

The above formula is the expected memory reduction

rate for a box b (tsize(b) is the size of a tuple that reside

on b’s input queue). Once the expected memory

reduction rates are computed for each box, the traversal

order is computed as in the case of ML.

Let’s now consider the MM traversal of the superbox

in Figure 4, this time with the following box selectivities

and costs: b1 = (0.9, 2), b2 = (0.4, 2), b3 = (0.4, 3), b4 =

(1.0, 2), b5 = (0.4, 3), b6 = (0.6, 1). Assuming that all

tuples are of size one, mem_rr for all the boxes, b1

through b6 respectively, are computed as follows: 0.5,

0.3, 0.5, 0, 0.2, 0.4. Therefore, the MM traversal is:

b3 → b6 → b2 → b5 → b3 → b2 → b1 → b4 → b2 → b1

Note that this traversal might be shorter at run time: for

example, if b5 consumes all of its input tuples and

produces none on the output, the execution of b3 after b5

will clearly be unnecessary. In this example, the average

memory requirements for MM, MC, and ML turn out to

be approximately 36, 39, and 40 tuples, respectively

(memory requirements are computed after the execution

of each box and averaged by the number of box

executions).

It is clear that different traversal approaches are

effective at optimizing for the metrics that they address.

4.2 Tuple Batching - Train Processing

A tuple train (or simply a train) is a sequence of tuples

executed as a batch within a single box call. The goal of

tuple train processing is to reduce overall tuple

processing costs. This happens due to several reasons:

First, given a fixed number of tuples to process, train

processing decreases the total number of box executions

required to process those tuples, thereby cutting down

low-level overheads such as scheduling overhead

(including maintenance of the execution queue and

memory management), calls to the box code, and context

switch. Second, train processing has the effect of

improving memory utilization by reducing the number of

times a tuple gets shuttled back and forth between

memory and disk throughout its lifetime. This affect

becomes apparent if system operates under memory

stress. A third reason, which we do not directly explore in

this paper, is that some operators may optimize their

b2b4

b5 b3

b6

b1
app

output box

(root)

query tree

Figure 4: Sample query tree

6

execution better with larger number of tuples available in

their queues. For instance, a box can materialize

intermediate results and reuse them in the case of

windowed operations, or use merge-join instead of nested

loops in the case of joins.

The Aurora scheduler implements train processing by

telling each box when to execute and how many queued

tuples to process (unlike traditional blocking operators

that wake up and process new input tuples as they arrive).

This approach somewhat complicates the implementation

and increases the load of the scheduler, but is necessary

for creating and processing trains, which significantly

decrease overall execution costs.

Aurora allows an arbitrary number of tuples to be

contained within a train. And, presently, train sizes in

Aurora are fixed at a percentage of the queue size

(usually 100%). In general, the size of a train can be

decided by constraining a specific attribute such as the

number of tuples, variance in latencies, total expected

processing cost, and total memory footprint. We leave the

investigation of more sophisticated train construction

policies to future work.

5 Experimental Evaluation

5.1 Experimental Testbed

We will use the Aurora prototype system to study our

operator scheduling techniques. The reference run-time

architecture is defined in Section 2.2.

The prototype is implemented on top of Debian

GNU/Linux using C++. In the experiments, we used a

dedicated Linux workstation with dual 1.5Ghz Pentium

IV processors and 1GB of RAM. The machine is isolated

from the network to avoid external interference.

Due to the fact that the domain of stream-based

applications is still emerging and that there are no

established benchmarks, we decided to artificially

generated data streams and continuous queries to

characterize the performance of our algorithms, as

described below.

We generated an artificial Aurora network as a

collection of continuous queries, each feeding output

tuples to individual applications. We modeled a

continuous query as a tree of boxes rooted at an output

box (i.e., a box whose outputs are fed to one or more

applications). We refer to such a query tree as an

application tree. Each query is then specified by two

parameters: depth and fan-in. Depth of a query specifies

the number of levels in the application tree and fan-in

specifies the average number of children for each box.

For ease of experimentation, we implemented a

generic, universal box whose per-tuple processing cost

and selectivity can be set. Using this box, we can model a

variety of stateless stream-based operators such as filter,

map, and union. For purposes of this paper, we chose not

to model stateful operators as their behavior is highly-

dependent on the semantics they implement, which would

introduce another dimension to our performance

evaluation. This would complicate the understanding of

the results without making a substantial contribution to

the understanding of the relative merits of the algorithms.

An Aurora network consists of a given number of

query trees. All queries are then associated with latency-

based QoS graphs, each of which is specified by three

points: (1) maximum utility at time zero, (2) the latest

latency value where this maximal utility can be achieved,

and (3) the deadline latency point after which output

tuples provides zero utility.

To meaningfully compare different queries with

different shapes and costs, we use an abstract capacity

parameter that specifies the overall load as an estimated

fraction of the ideal capacity of the system. For example,

a capacity value of .9 implies that 90% of all system

cycles are required for processing the input tuples. Once

the target capacity value is set, the corresponding input

rates are determined using a straightforward open-loop

computation. Because of various system overheads, the

CPU will saturate much below a capacity of one.

The graphs presented in the rest of the paper provide

average figures of six independent runs, each producing

10000 output tuples.

5.2 Operator Batching – Superbox Scheduling

We investigate the benefits of superbox scheduling by

looking at the performance of several approaches: the

random (RANDOM), round-robin (RR), and the p-tuple

(P-TUPLE) algorithms run in the default box-at-a-time

(BAAT) mode, and the ML and MC traversal algorithms

applied to superboxes that correspond to entire

applications (i.e., application-at-a-time or AAAT). Figure

5 shows the average tuple latencies of these approaches

as a function of the input rate (as defined relative to the

capacity of the system). Also shown is an intermediate

approach, the top-5-spanner, which uses ML as the

traversal scheme. As the arrival rate increases, the queues

eventually saturate and latency increases arbitrarily. The

interesting feature of the graphs in the figure is the

location of the inflection point. RANDOM-BAAT and

RR-BAAT do particularly badly. In these cases, the

scheduling overhead of both of the box-at-a-time

approaches is very evident. This overhead effectively

steals processing capability from the normal network

processing, causing saturation at much earlier points. The

curve for P-TUPLE-BAAT illustrates the use of the

slope-slack technique. Notice that it does better than the

other BAAT algorithms at low input rates, as it takes into

account the tuple latencies. As the input rates increase, it

saturates early just as the other BAAT algorithms do;

however, when saturation occurs, it manages to maintain

a reasonable latency for value over a much broader range.

On the other hand, both the ML_AAAT and the

MC_AAAT algorithms perform quite well in the sense

that they are very resistant to high load. The AAAT

techniques experience fewer scheduler calls and, thus,

7

have more processing capacity. These algorithms are able

to hang on at input rates of over 90% of the theoretical

capacity. Recall that the top-5-spanner algorithm picks a

spanning tree that includes the top 5 highest priority

boxes. While it is categorized as an AAAT algorithm, it

will in general only traverse a subset of the entire

application. As k is increased, the top-k-spanner

algorithm approaches application at-a-time scheduling.

Thus, top-k-spanner is an intermediate approach that can

be tuned to behave somewhere between the BAAT and

the AAAT approaches. The graph in Figure 5 bears this

out. The curve for top-5-spanner starts out with an

average latency that tracks the AAAT algorithms and

then quickly deteriorates to track the BAAT cases.

5.3 Superbox Traversal

We first investigate the performance characteristics of the

Min-Cost (ML) and Min-Latency (MC) superbox

traversal algorithms. In this experiment, we use a single

application tree with a box selectivity of one, a fan-in of

1.2, a depth of ten, and a CPU utilization of 0.9.

Figure 7 shows the average output tuple latency as a

function of per-tuple box processing cost. As expected,

both approaches perform worse with increasing

processing demands. For most of the cost value range

shown, ML not surprisingly performs better than MC as it

is designed to optimize for output latency. Interestingly,

we also observe that MC performs better than ML for

relatively small processing cost values. The reason is due

to the relationship between the box processing cost and

box call overhead, which is the operational cost of

making a box call. The box call overhead is a measure of

how much time is spent outside the box versus inside the

box (processing tuples and doing real work). As we

decrease the box processing costs, box call overheads

become non-negligible and, in fact, they start to dominate

the overall costs incurred by the algorithms. As we

explained in Section 4.1.2, an MC traversal always

requires less number of box calls than ML does. We thus

see a cross-over effect: for smaller box processing costs,

box call overheads dominate overall costs and MC wins.

For larger processing costs, ML wins as it optimizes the

traversal for minimizing output latency.

Figure 6 presents a complementary result by plotting

the overall box call overheads for different application

tree depths for MC and ML. As argued before, MC incurs

less overall box overhead as it minimizes the number of

box calls. The difference increases as the applications

become deeper and increase in the number of boxes. In

fact, the overhead difference between the two traversals is

proportional to the depth of the traversed tree. Consider a

complete application tree with a fan-out of f and a depth

of d. Then the additional number of box calls needed to

be made when the depth of the tree is incremented is

roughly:
1()dO df + and 1()dO f +

for ML and MC, respectively.

This result can be utilized statically and/or

dynamically for improving scheduling and overall system

performance. It is possible to statically examine an

Aurora network, obtain box-processing costs, and then

compare them to the (more or less fixed) box processing

overheads. Based on the comparison and using the above

result, we can then statically determine which traversal

algorithm to use for improved QoS. A similar finer-

grained approach can be taken dynamically. Using a

Figure 5: Application vs. Box Scheduling

Figure 6: Box overheads for ML and MC

Figure 7: Processing Costs vs. Average Latency

8

simple cost model, it is straightforward to compute which

traversal algorithm should do better given a particular

superbox.

Figure 8 demonstrates the amount of memory used

over the time of superbox run. The curves are normalized

with respect to MM values. ML is most inefficient in its

use of memory with MC performing second. MC

minimizes the amount of box overhead. As a result MC

discards more tuples per unit of time than ML.

MM loses its advantage towards the end since all three

traversals are executed on a common query network.

Even though each chooses a different execution sequence

and incurs different overhead, all of them push the same

tuples through the same sequence of boxes. The

crossover towards the end of the time period is a

consequence of the fact that different traversals take

different times to finish. In general, MC has the smallest

total execution time−the reason why it catches up with

MM at 4 seconds.

5.4 Tuple Batching - Train Scheduling

Train scheduling is only relevant in cases in which

multiple tuples are waiting at the inputs to boxes. This

does not happen when the system is very lightly loaded.

In order to see how train scheduling affects performance,

we needed to create queues without saturating the system.

We achieved this by creating a bursty (or clustered)

workload that simply gathers tuples in our previously

studied workloads and delivers them as a group. In other

words, if our original workload delivered n tuples evenly

spaced in a given time interval T, the bursty version of

this delivers n tuples as a group and then delivers nothing

more for the next T time units. Thus, the bursty workload

is the same in terms of average number of tuples

delivered, but the spacing is different. The graph in

Figure 9 shows how the train scheduling algorithm

behaves for several bursty workloads. The train size (x-

axis) is given as a percentage of the queue size. As we

move to the right, the trains bite off a larger and larger

portion of the queues. With burst size of one, all tuples

are evenly spaced. This is equivalent to the normal

workload. Notice that the curve for this workload is flat.

If there are no bursts, train scheduling has no effect. For

the other two curves, however, as the burst size increases,

the effect gets more pronounced. With small a train size

of 0.2, the effect on latency of increasing the burst size is

substantial. For a burst size of 4, we quadruple the

average latency. Now as we increase the train size, we

markedly reduce the average latency for the bursty cases.

In fact, when the train size is equal to one (the whole

queue), the average latency approaches the latency for the

non-bursty case. Trains improve the situation because

tuples do not wait at the inputs while other tuples are

being pushed through the network. It is interesting to note

that the bursty loads do not completely converge to the

non-bursty case even when the train size is one (i.e., the

whole queue). This is because the tuples still need to be

processed in order. Since the bursty workload generation

delivers n-1 of the tuples early, their latency clock is

ticking while the tuples in front of them are being

processed. In the non-bursty case, the tuples arrive spaced

out in time, and a fair amount of processing can be done

on queued tuples before more tuples arrive.

5.5 Overhead Distribution

If we turn our attention to Figure 11, we will see a

comparison of the execution times and how they are

distributed for BAAT, ML, and MC for three different

Aurora networks consisting of 10, 20, and 30 applications

(i.e., continuous queries). The y-axis is total time

execution time spent when processing these applications.

Each bar is divided into the four fundamental cost

components.

The first thing to notice is that BAAT is significantly

worse than the other two methods, and the difference

increases with increasing number of applications. This

again underscores our conclusion that train and superbox

scheduling are important techniques for minimizing

scheduler overheads.

Additionally, this graph shows clearly that scheduler

overhead and box call overhead dominate the effects of

Figure 8: Memory requirements over time

Figure 9: Train size vs. latency

9

loading and unloading queues, as well as the processing

costs. The difference between MC and ML is due to the

fact that ML typically incurs more box calls and that MC

achieves higher tuple batching. As a result, MC achieves

smaller total execution times and reduced total

scheduling and box overheads.

As suggested in the introduction, we were able to

significantly cut down system overheads using a

combination of operator and tuple batching, as

exemplified by MC and ML.

6 QoS-Driven Priority Assignment

We first discuss how we compute box priorities and, at a

coarser level, output priorities using application-specific

QoS information and tuple latencies. We first describe

our basic approach and then propose an approximation

technique, based on bucketing and pre-computation,

which is used to improve scalability by trading off

scheduling overhead with scheduling quality. The latter is

our main contribution in this section.

6.1 Computing Priorities

The basic approach is to keep track of the latency of

tuples that reside at the queues and pick for processing

the tuples whose execution will provide the most

expected increase in overall QoS. Taking this approach

per tuple is not scalable. We therefore maintain latency

information at the granularity of individual boxes and

define the latency of a box as the averaged latencies of

the tuples in its queue.

Our priority assignment approach is to order the boxes

in terms of their utility and urgency. We define the

importance of a box b in terms of its expected slope

value, slope(b), and define its urgency in terms of its

expected slack time, slack(b).

Utility computation: We compute the utility of b as

follows:

() (())utility b gradient eol b=

This value is the gradient of the QoS-latency curve for

b’s corresponding output at the latency value eol(b),

where eol(b) is the expected output latency of b. This

value is an estimation of where b’s tuples currently are on

the QoS-latency curve at the corresponding output. In

other words, this value provides a lower bound on the

expected latency of the corresponding tuples at the output

(assuming that the tuples are pushed all the way to the

output without further delay). The value eol(b) is

computed by adding the current latency value to the

expected computation time for a given output as follows:

() () (())eol b latency b cost D b= +

()

(()) ()
k D b

cost D b cost k
∈

= ∑

where D(b) is the set of boxes downstream from and b

(i.e., D(b) is the sequence of boxes that lie on the path

that start at b and end at the root box) and sel(b) is the

selectivity of box b.

The intuition behind this utility function is that it

measures the expected QoS (per unit time) that will be

lost if the box is not chosen for execution.

Urgency computation: The expected slack time, est(b),

is an indication of how close a box is to a critical point;

i.e., a point where QoS sharply changes. Urgency can be

trivially computed by subtracting the expected output

latency from the latency value that corresponds to the

critical point. If there are multiple critical points, est(b)

always corresponds to the distance to the closest critical

point.

These concepts are illustrated in Figure 10, where the

QoS is specified as a piece-wise linear function of latency

with three critical points.

Combining utility and urgency: At each scheduling

point in time, we can order the boxes with respect to their

priority tuple, or p-tuple:

() ((), ())priority b utility b est b= −

In other words, we first choose for execution those boxes

that have the highest utility, and then choose from among

those that have the same utility, the ones that have the

minimum (i.e., least) slack time.

Q
o
S

Latency

0

critical points

eol(b)

est(b)

1

latency(b)

cost(D(b))

Figure 10: Critical points and expected output delay

0

10

20

30

40

50

60

70

80

90

100

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

scheduling overhead
box overhead
load/unload queues
box processing cost

10 20 30

Number of Applications

BAAT

ML MC

ML ML
MC

MC

BAAT

BAAT

Figure 11: Distribution of overheads

10

Figure 12 shows a comparison of Aurora’s QoS-aware

scheduling approach and a simple round-robin scheduling

policy. Both algorithms perform BAAT scheduling. The

graph reveals a significant difference between the average

QoS values achieved by the algorithms. The difference is

pretty much stable up to a capacity value of 0.7, after

which the system becomes overloaded and the

performances of both algorithms decrease drastically and

will eventually drop to zero (note that they remain above

zero due to the finite amount of time experiments were

run).

A straightforward implementation of this approach

requires, at each scheduling point, computing the p-tuple

for each box and then sorting the boxes with respect to

their p-tuples, which is an O(n × logn) operation, where n

is the number of boxes.

6.2 Approximation for Scalability

We improve upon the basic algorithm using a

combination of (1) approximation (via bucketizing) and

(2) pre-computation. Our approach is to partition the

utility-urgency space into discrete buckets, and efficiently

assign boxes to individual buckets based on their p-tuple

values at run time. During scheduling, buckets can be

traversed in the order of decreasing p-tuples (illustrated in

Figure 13), and the corresponding boxes are placed in the

execution queue. Given a latency value, our first goal is

to compute the corresponding bucket assignment in O(1).

To do this, we make use of two auxiliary graphs,

gradient- and slack-latency graphs.

Gradient buckets: We divide the range of the gradient

(i.e., utility) values into g buckets (Figure 14 shows an

example with four buckets). All gradient values in the

same bucket are treated as the same. The width of each

bucket, thus, defines a bound on the inaccuracy (or

variance) that we are willing to tolerate in terms of the

potential deviation from the highest possible gradient

value. In other words, the width of a bucket is a measure

of the bound on the quantitative deviation from the

optimal (with respect to the heuristic) scheduling

decision.

Slack buckets: Similarly, we divide the slack values

into s buckets (Figure 15) and treat all the slack values

within a single bucket as equal. Again, the width of a

bucket is an indication of the level of approximation we

make with regards to the slack values.

Given pre-computed gradient-latency graphs, it is

possible to pre-compute the application-specific latency

ranges that correspond to each bucket. For example, b1

will be in bucket2 beyond latency = 5 and in bucket3

beyond latency = 15; whereas b3 will be in bucket1 till

latency = 12 and in bucket4 afterwards. Slack-latency

graphs can be interpreted in a similar fashion as

illustrated in the figure: b1 falls in bucket2 when latency is

between 5 and 10, and in bucket1 for other latency values.

When the execution queue is about to become empty,

the scheduler performs bucket assignment by going

through the boxes and assigning them into their current

buckets. A straightforward implementation of bucket

assignment takes O(n) time by going through all the

boxes, computing the bucket for each box in O(1). This

approach has the potential drawback of redundantly

reassigning buckets for each box, even if the box’s bucket

has not been changed since the last assignment. In

particular, we want the bucket assignment overhead to be

proportional to the number of boxes that made a

transition to another bucket. In order to accomplish this,

we use a calendar queue [5], which is a multi-list priority

queue that exhibits O(1) amortized time complexity for

the relevant operations (insertion, deletion, and extract-

Figure 12: QoS-aware scheduling

Q
o

S
-g

ra
d

ie
n

t

bucket11 bucket12 bucket13 bucket14

Slack time

bucket21 bucket22 bucket23 bucket24

bucket31 bucket32 bucket33 bucket34

bucket41 bucket42 bucket43 bucket44

Figure 13: Bucket traversal

Q
o
S

-g
ra

d
ie

n
t

Latency

b3

b1

b2

bucket1

5 10 15 20

bucket2

bucket3

bucket4

Figure 14: Gradient-latency graph

S
la

ck
 t

im
e

Latency

b2b1

b3

5 10 15 20

bucket1

bucket2

bucket3

bucket4

Figure 15: Slack-latency graph

11

min) under popular event distributions. As a result, we

can implement all phases of bucket assignment in

constant amortized time.

7 Related Work

There has been extensive research on scheduling tasks

under real-time performance expectations both in

operating systems [11, 13, 15, 18] and database systems

[2, 8, 9, 16, 17]. To the best of our knowledge, Aurora’s

scheduling approach that combines priority assignment

and dynamic scheduling plan construction is the first

comprehensive proposal for scheduling continuous

queries over real-time data streams and QoS expectations.

Our solutions no doubt borrow a lot from the myriad of

existing work on scheduling. Due to lack of space,

however, we only discuss related work that is particularly

relevant to our work and highlight the primary

differences.

Scheduling proposals for real-time systems commonly

considered the issue of priority assignment and

consequent task scheduling based on static (table- or

priority-driven) approaches or dynamic (planning or best-

effort) approaches [17]. Static approaches are inherently

ill suited for the potentially unpredictable, aperiodic

workloads we assume, as they assume a static set of

highly periodic tasks. Dynamic planning approaches

perform feasibility analysis at run-time to determine the

set of tasks that can meet their deadlines, and rejecting

the others that cannot [11]. Our approach is to accept all

new tasks (i.e., incoming tuples) but provide no

guarantees that they will meet their deadlines (or in our

QoS model their topmost critical points). This decision is

based on two key observations: First, our priority

assignment algorithm is based on a variation of Earliest-

Deadline-First (EDF) algorithm [13], which is well

known to have optimal behavior as long as no overloads

occur. Second, Aurora employs a load shedding

mechanism (not described in this paper but can be found

in [6]) that is initiated when an overload situation is

detected and that selectively sheds load to get rid of

excess load in a way that least impacts the QoS. This

allows our scheduling algorithm to focus only on

underload situations. We note here that Haritsa et al. [9]

proposed an extension of EDF that is designed to handle

overloads through adaptive admission control.

Real-time database systems [2, 8, 9, 12, 16, 17]

attempt to satisfy deadlines associates with each

incoming transaction, with the goal of minimizing the

number of transactions that miss their deadlines. These

systems commonly support short-running, independent

transactions, whereas Aurora deals with long-running

continuous queries over streaming data and therefore has

to deal with fine-grained operator-level scheduling (i.e.,

superbox scheduling) and tuple-level processing (i.e.,

train processing). Leaving aside these differences, of

particular relevance to Aurora scheduling is the work of

Haritsa et al. [8] that studied a model where transactions

have non-uniform values (or utilities) that drop to zero

immediately after their deadlines. They studied different

priority assignment algorithms that combine deadline and

value information in various ways, one of which is a

bucketing technique. This technique is similar to ours in

that it assigns schedulable processing units into buckets

based on their utility. The differences are that (1) we use

bucketing to trade off scheduling quality for scheduling

overhead and, consequently, for scalability; and (2) we

also use bucketing for keeping track of slack values.

Also related to Aurora scheduling is the work on

adaptive query processing and scheduling techniques [3,

10, 19]. These techniques address efficient query

execution in unpredictable and dynamic environments by

revising the query execution plan as the characteristics of

incoming data changes. Eddies [3] tuple-at-a-time

scheduling provides extreme adaptability but has limited

scalability for the types of applications and workloads we

address. Urhan’s work [19] on rate-based pipeline

scheduling prioritizes and schedules the flow of data

between pipelined operators so that the result output rate

is maximized. This work does not address multiple query

plans (i.e., multiple outputs) or deal with and support the

notion of QoS issues (and neither does Eddies).

Related work on continuous queries by Viglas and

Naughton [20] discusses rate-based query optimization

for streaming wide-area information sources in the

context of NiagaraCQ [7]. Similar to Aurora, the

STREAM project [4] also attempts to provide

comprehensive data stream management and processing

functionality. Their initial scheduling goal involves

minimization of the intermediate queue sizes [14], an

issue that we do not directly address in this paper. Neither

NiagaraCQ nor STREAM has the notion of QoS.

8 Conclusions

This paper has experimentally investigated scheduling

algorithms for stream data management systems. It has

demonstrated that the effect of system overheads (e.g.,

number of scheduler calls) can have a profound impact

on real system performance. We have run our

experiments on the Aurora prototype since simulators do

not reveal the intricacies of system implementation

penalties.

Processor allocation in a stream processor like Aurora

could be achieved by assigning a thread per box. This

technique does not scale since no system that we are

aware of can adequately deal with many thousands of

threads. More importantly, any such approach would

abdicate the details of scheduling to the operating system.

This paper shows that a more application-aware approach

to scheduling can make a significant difference to overall

system performance.

We have further shown that our approaches of train

scheduling and superbox scheduling help a lot to reduce

system overheads. We have also discussed exactly how

these overheads are affected in a running stream data

12

manager. In particular, these algorithms require tuning

parameters like train size and superbox traversal methods.

We also addressed QoS issues and extended our basic

algorithms to address application-specific QoS

expectations. Furthermore, we described an

approximation technique that trades off scheduling

quality with scheduling overhead.

Choices in these areas need to be made carefully based

on knowledge of the workloads and the applications. We

have provided some interesting results in this direction,

and we intend to extend these studies as a guide to

effective scheduler deployment.

References

[1] D. Abbadi, D. Carney, U. Cetintemel, M. Cherniack,

C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and

S. Zdonik. Aurora: A New Model and Architecture

for Data Stream Management. Brown Computer

Science CS-02-10, August 2002.

[2] R. J. Abbott and H. Garcia-Molina. Scheduling real-

time transactions: a performance evaluation. ACM

Transactions on Database Systems (TODS),

17(3):513-560., 1992.

[3] R. Avnur and J. Hellerstein. Eddies: Continuously

Adaptive Query Processing. In Proceedings of the

2000 ACM SIGMOD International Conference on

Management of Data, Dallas, TX, 2000.

[4] S. Babu and J. Widom. Continuous Queries over

Data Streams. SIGMOD Record, 30(3):109-120,

2001.

[5] R. Brown. Calendar Queues: A Fast O(1) Priority

Queue Implementation of the Simulation Event Set

Problem. Communications of the ACM,

31(10):1220-1227, 1988.

[6] D. Carney, U. Cetintemel, M. Cherniack, C. Convey,

S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and

S. Zdonik. Monitoring Streams: A New Class of

Data Management Applications. In proceedings of

the 28th International Conference on Very Large

Data Bases (VLDB'02), Hong Kong, China, 2002.

[7] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.

NiagaraCQ: A Scalable Continuous Query System

for Internet Databases. In Proceedings of the 2000

ACM SIGMOD International Conference on

Management of Data, Dallas, TX, 2000.

[8] J. R. Haritsa, M. J. Carey, and M. Livny. Value-

Based Scheduling in Real-Time Database Systems.

VLDB Journal: Very Large Data Bases, 2(2):117-

152, 1993.

[9] J. R. Haritsa, M. Livny, and M. J. Carey. Earliest

Deadline Scheduling for Real-Time Database

Systems. In IEEE Real-Time Systems Symposium,

1991.

[10] J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran,

A. Deshpande, K. Hildrum, S. Madden, V. Raman,

and M. Shah. Adaptive Query Processing:

Technology in Evolution. IEEE Data Engineering

Bulletin, 23(2):7-18, 2000.

[11] M. B. Jones, D. Rosu, and M.-C. Rosu. CPU

Reservations and Time Constraints: Efficient,

Predictable Scheduling of Independent Activities. In

Symposium on Operating Systems Principles, 1997.

[12] B. Kao and H. Garcia-Molina, “An Overview of

Realtime Database Systems,” in Real Time

Computing, W. A. Halang and A. D. Stoyenko, Eds.:

Springer-Verlag, 1994.

[13] C. D. Locke. Best-Effort Decision Making for Real-

time Scheduling.

[14] R. Motwani., J. Widom, A. Arasu, B. Babcock, S.

Babu, M. Datar, G. Manku, C. Olston, J. Rosenstein,

and R. Varma. Query Processing, Approximation,

and Resource Management in a Data Stream

Management System. Stanford University TR 2002-

41, August 2002.

[15] J. Nieh and M. S. Lam. The Design, Implementation

and Evaluation of SMART: A Scheduler for

Multimedia Applications. In Proc. 16th ACM

Symposium on OS Principles, 1997.

[16] G. Ozsoyoglu and R. T. Snodgrass. Temporal and

Real-Time Databases: A Survey. IEEE Transactions

on Knowledge and Data Engineering (TKDE),

7(4):513-532, 1995.

[17] K. Ramamritham. Real-Time Databases. Distributed

and Parallel Databases, 1(2):199-226, 1993.

[18] K. Ramamritham and J. Stankovic. Scheduling

algorithms and operating systems support for real-

time systems. Proceedings of the IEEE, 82(1):55-67,

1994.

[19] T. Urhan and M. J. Franklin. Dynamic Pipeline

Scheduling for Improving Interactive Query

Performance. In Proceedings of the 27th

International Conference on Very Large Data Bases

(VLDB), Rome, Italy, 2001.

[20] S. Viglas and J. F. Naughton. Rate-Based Query

Optimization for Streaming Information Sources. In

Proceedings of the ACM SIGMOD International

Conference on Management of Data, Madison,

Wisconsin, 2002.

