Operator Splitting Methods for Monotone Affine Variational
Inequalities, with a Parallel Application to Optimal Control*

Jonathan Eckstein®
Michael C. Ferrist

July 30, 1996

Abstract

This paper applies splitting techniques developed for set-valued maximal monotone operators
to monotone affine variational inequalities, including as a special case the classical linear comple-
mentarity problem. We give a unified presentation of several splitting algorithms for monotone
operators, and then apply these results to obtain two classes of algorithms for affine variational
inequalities. The second class resembles classical matrix splitting, but has a novel “under-
relaxation” step, and converges under more general conditions. In particular, the convergence
proofs do not require the affine operator to be symmetric. We specialize our matrix-splitting-
like method to discrete-time optimal control problems formulated as extended linear-quadratic
programs in the manner advocated by Rockafellar and Wets. The result 1s a highly parallel
algorithm, which we implement and test on the Connection Machine CM-5 computer family.

The affine variational inequality problem is to find a vector z lying in a closed convex set B
such that

Mz +qw—2)>0 YweRB, (1)

where M is a given n X n matrix and ¢ is a vector from R”. We denote this problem avi(M, ¢, B).
A common and important special case occurs when B is a box, that is,

B:H{$Z’€§R|f¢§$¢§ui}, (2)

=1

with {; € [—00,00), u; € (—00,00], and ; < u;. It is well known that when ¢ = 0 and u = oo, the
problem reduces to the linear complementarity problem (LCP) [5, 6, 24] of finding some 2 € R”
satisfying

x>0 Mz+¢>0 (z,Mz+¢)=0. (3)

This paper is restricted to the monotone case of avi(M, ¢, B), where M is positive semidefinite,
although not necessarily symmetric.

*This work is partially supported by the National Science Foundation under grants CCR-9157632 and CDA-
9024618, the Air Force Office of Scientific Research under grant F49620-94-1-0036 and the Department of Energy
grant DE-FG03-94ER61915.

tSchool of Business and RUTCOR, Rutgers University, New Brunswick, NJ 08903

{Computer Sciences Department, University of Wisconsin, Madison, WI 53706

We propose to solve such problems with algorithms derived from the splitting theory of maximal
monotone operators. Section 1 reviews relevant portions of this theory in a tutorial manner,
although it contains some minor new results that are used later in the paper. It is distinguished from
prior expositions (e.g. [20] and [11, Chapter 3]) in that it emphasizes the fundamental connection
between monotone operators and nonexpansive mappings, inspired by [17]. We feel this approach
is more intuitive than treatments based on proximal mappings, and it serves to unify the treatment
of “Douglas-Rachford” and “Peaceman-Rachford” schemes [20, 12].

Section 2 applies the theory in two different ways to monotone affine variational inequality
(MAVI) problems and derives two classes of MAVI algorithms. The first class is quite simple and
is not entirely new, overlapping with special cases of the dual methods proposed in [14]. Despite
their simplicity, these methods have remained virtually unknown; for example, they are absent from
recent reference works such as [6]. We show that they take a very simple form indeed in the case
of the LCP (3); see (27) below.

The second class of MAVI methods we derive appears to be entirely new, although it resembles
clagsical matrix splitting [26, 27, 28], with the usual under-relaxation step replaced by the solution
of a certain linear system. The new class of methods has a stronger convergence theory that does
not depend on symmetry.

Section 3 takes an algorithm from this latter class and applies it to discrete-time optimal control
problems formulated as extended linear-quadratic programs [40, 41] (see also [7, Section 3.6]). The
purpose of this exercise is twofold: first, to demonstrate the methods of Section 2 are not merely
theoretical, but can be successfully applied to difficult, large-scale problems; second, to provide an
example of how splitting methods can be used to produce parallel algorithms. Essentially, if one
can express a problem as the superposition of two structures, each by itself amenable to parallel
computing, then splitting will furnish an iterative parallel algorithm that deals alternately with one
structure and then the other.

We then describe a massively data-parallel implementation of our proposed splitting method for
extended linear-quadratic programming on the CM-5 family of parallel computers. Computational
results show that the parallel splitting implementation greatly outperforms standard serial codes
on all but the smallest test problems.

Section 4 gives some concluding remarks.

1 Summary of Monotone Operator Splitting Theory

1.1 Monotone Operators

In this paper, an operator T on R" is simply some subset of R™ x R™. For every such T, we let
T(z) =A{y | (z,y) € T'}, thus defining a point-to-set mapping on R"; in fact, we make no distinction
between this point-to-set mapping and its graph 7'. Thus, the statements y € T'(z) and (z,y) € T
are completely equivalent.

The inverse of any operator T is the operator T™! = {(y,) | (z,y) € T}, which will always
exist. The sum T4 4+ T3 of two operators Ty and T is defined by

IT(z) = (T + To) () = Ti(2) + Ta(z) ={y + = [y € Ti(2), 2 € Ta(2) } (4)

and for any ¢ € R, ¢T = {(z,cy) | (x,y) € T}. We define domT = {z | T(2)#0} and imT =
dom(T7Y) = {y |3 (z,y) € T}. When T(z) is necessarily a singleton set {y} for all z, that is, T
is the graph of a function R" — R”, we say that 7" is single-valued, and we may write T'(z) = y
instead of T'(z) = {y}.

An operator T is said to be monotone if

(22 y—y) >0 V(). (@ y)el . (5)

A monotone operator T is said to be maximal if no strict superset of 1" is monotone, that is,
T CT' CR" x K™ with T/ monotone implies that T/ = T.

Finding a zero of a maximal monotone operator 7', that is, some 2 € R™ with 0 € T'(z), is
a fundamental problem [1, 30, 39] that generalizes not only all of lower semicontinuous convex
optimization, but also monotone variational inequalities.

Some salient facts regarding monotone and maximal monotone operators on R™ are collected
below.

Proposition 1

1. For any scalar ¢ > 0, ¢TI’ is (mazimal) monotone if and only if T is (maximal) monotone; T
and ¢TI’ have the same set of zeroes.

2. Suppose T is monotone, then T is maxzimal monotone if and only if im(I +7T) = R™.

3. Given any monotone operator T on R™ and z € R™, z can be written in at most one way as
x+vy, where y € T(x). If T' is mazimal, then such a representation must exist.

4. If 2R = R U {400} is a lower semi-continuous convex function, then the subgradient
operator O f (see for example [36]) is mazimal monotone.

5. If Th and Ty are monotone operators, then Ty + T4 is also monotone. If T1 and Ty are both
mazimal and ri(dom Ty) Nri(dom T3) # 0, where “ri” denotes the relative interior (see for
example [36]), then Ty + Ty is also mazimal.

6. If Q) is an invertible matriz, then the operator

QTQ={(Q+.Q"y) | (z,y) €T}
is (mazimal) monotone if and only if T is (maximal) monotone.

Proof. Statement 1 is trivial. Statement 2 is shown in [1, 23]. For the first part of state-
ment 3, suppose z = x +y = a' + ¢, where (z,y), (¢/,y') € T. Then 0 < (x —2',y—y) =
(g —a' (z—2) = (z—2")) = — ||z — 2'||*, implying 2 = 2’ and y = y’. The rest of the statement
follows from statement 2 (see also [23] for an equivalent result). The next statement is standard
and can be found in [35, 36]. The result about the maximality of sums of operators is proven in
[37]. Statement 6 can be established directly or may be found in [11, Proposition 3.1(iv)]. O

We now consider another, more familiar class of operators. An operator N on R" is said to be
nonexpansive if
[w—w'|| <|z=Z VY(zw),(zw)eN . (6)

Considering the case z = 2/, it is immediate that nonexpansive operators must be single-valued,
and (6) may be simplified to

ING) =N <z =2 vz e R (7)

It is also immediate that nonexpansive operators are Lipschitz continuous, and a composition of
nonexpansive mappings is nonexpansive.

We now develop some observations from [17, 23] that reveal a deep connection between monotone
and nonexpansive operators. Let T' be any operator and consider the related operator A/ [T] given
by

NI =A{@+y,2-y) | (z,y) €T}

This transformation is invertible, via

so that N7L N [T =T.

Proposition 2 Suppose N = N'[T] (or equivalently T = N~Y[N]). Then T is monotone if and
only if N is nonexpansive. T is maximal monotone if and only if N is a nonexpansive mapping
defined on all of R™. Finally, 0 € T'(x) if and only if x is a fized point of N, that is, € N(x).

Proof. Choose any (z,y),(2',y') € T and (z,w), (2/,w’) € N related by z +y = 2, z — y = w,
' +y =2, and ' — ¢y = w'. Then

Jw—w'|* = ||z —y) - @' =)’
= @+y) - @ +y) -4 -2 y—y)
= lz=2|"—4¢a—a"y—y) . (8)

It follows that N is nonexpansive if and only if (x — 2’,y — ¢’} > 0 for all (z,y), (2/,y) € T. This
proves the first equivalence. Combining this observation with Proposition 1, statement 2, we obtain
the second equivalence. For the last assertion, note that

0eT(z) < (z40,2-0)=(z,2)eN

d

Thus, for every monotone operator T', there is a corresponding nonexpansive mapping N =
N [T]. The zeroes of T are the fixed points of N. Conversely, for every nonexpansive mapping N,
there is a corresponding monotone operator T = N~ [N] whose zeroes are the fixed points of N.

This equivalence suggests that an iteration of the form z¥+1 = A/ [T] (2¥) might be able to locate
the zeroes of T. Unfortunately, the nonexpansiveness of A [T] does not guarantee convergence
of such a {zF}, but only that it will remain within a bounded distance of any solution point.
Furthermore, A [T](z) may be difficult to evaluate, since it involves finding the unique (z,y) € T
with + y = z, which is in many cases as hard as solving T'(z) 5 0. Fortunately, it is possible to

apply the following proposition, where a x b is a shorthand for [ja — b]| < §:

Proposition 3 Let N be any nonexpansive mapping defined on all of R™, possessing at least one
fized point. Let the sequence {z*} C R conform to the recursion

ZFHl ~ AN (%) + (1= Ap)2" 9)

where {A;} is a sequence of scalars with 0 < A\, < 1. If 0 < inf{A;}72, < sup{Ax}i2, < 1 and
%20 0k < 0o then {28} converges to a fived point of N. If N is a contraction, that is, there exists
some « € [0,1) such that

IN(z) = NE)| < a|z=7| V2,2 eRr” | (10)
then convergence is guaranteed under the weaker assumption that Y 72, A\, = oo and i—i — 0.

Proof. In view of Proposition 2, the first case is implied by [12, Theorem 3] applied to the maximal
monotone operator T = NTL[N], where p; = 2X; and ¢ = 1 for all &k (note: this theorem
generalizes many prior results, including [25, Theorem 3] and [38, Theorem 1]).

The second case follows from direct application of [33, Lemma 3, page 45]. O

Note that
A N[={(z+y,2) | (z,y)eT}=T+T)""

Thus, if we leave Ay fixed at 1/2, we are executing the iteration
L (TN
iy
which is a form of the well-known proxzimal point algorithm [38]. The general form of the proximal

point algorithm differs only in allowing iterations of the form

2+ ~ (I + 1) MY

k

where {c1} is a sequence of positive scalars bounded away from zero.
If sup{A;z}72, = 1, Proposition 3 requires N to be a contraction. The following lemma gives
sufficient conditions on T for this to occur for N = N [T].

Lemma 4 Suppose the operator T is strongly monotone with modulus o, and Lipschitz with mod-
ulus w, that is, there exist some o,w > 0 such that for all (z,y), (z',y') € T,

oz — | (11)
olae—a] (12

(e—2"y—y) >
ly =yl <

Then N = N'[T] is a contraction.

Proof. Applying the Cauchy-Schwarz inequality, (11) implies

ly =y zelle =2 V(y), @\ y)eT

[1—20 + w?
= . 1
@ 1420 + w? (13)

Since o > 0, it follows that the denominator in (13) is positive. Furthermore, since 0 < ¢ < w, we
have 1 — 20 + w? > (1 —w)? > 0, so the numerator is nonnegative and a € [0, 1).
Substituting the definition of & on both sides now establishes the validity of the equation

It follows that o < w. Let

20(0* +1)=(1-a?)(1+w?) . (14)

Take any (z,y), (¢/,y') € T. Multiplying both sides of (14) by ||z — 2'||*, we have

20(0 +1) o —o'|* = (1= @*) ([l = &'+ * o —2|") . (15)
Since T is Lipschitz, (15) implies

20(a” + 1) o = ' 2 (1= *) (o = '|* + |y - ¢/||) - (16)

By the strong monotonicity of 7', (16) implies
200* + 1) (e =o'y —y) 2 (L=) (e = 2"+ = o)
or equivalently
le =o' =2(= y=y)+ ly =y <@ [Jo = + 2 =/ sy =) + |y —vI*]
which is in turn equivalent to
[z =) = @' =) <@ +y) = " +0° (17)

Now, statement 3 of Proposition 1 states that every z in the domain of N may be expressed as
x4 y for some (z,y) € T, in which case N(z) = @ — y. Therefore, taking square roots, (17) implies
IN(z) = N(Z")|| < ||z = 2'|| for every z,z" € dom N. O

Conditions (11)-(12) are the same as those employed in the rate of convergence results in works
such as [20] and [21].

1.2 Rachford-Class Splitting Theory

In many cases, the operator N [T], or essentially equivalently (I 4+ 7)~!, may be too difficult to
evaluate to make direct application of Proposition 3 practical. Suppose that this is the case, but
that 7" has the special structure 7' = Ty + T3 given in (4), where 77 and T3 are both maximal
monotone but have simple enough structure to permit practical evaluation of both Ny = N [TY]
and N2 = N[TQ]

Now, Ny and Ny defined in this manner are both nonexpansive maps, so their functional com-
position N = Ny o Ny = A [T1] o A/ [T%] is also nonexpansive. Furthermore, the following property
holds:

Lemma 5 Let 11,15 be maximal monotone operators on R™. Then z € R” is a fived point of
N = N [T1] o N[T3] if and only if it is of the form x +y, where y € Ty(x) and —y € Ty(x). This
property in turn implies that x = Lz + N [13] (z) = (I + T2) 7' (2) is a zero of Ty + Tp.

Proof. First suppose z = 2 +y, y € Ty(z), and —y € Ty (x). Then N(z) = N [T1] (N [T2] (z)) =
N[T] (z—y) = 2—(~y) = 2 +y = 2. Conversely, suppose z is a fixed point of N. Then there must
exist (z,y) € Ty with 4+ y = z. Then N [T3] (2) = @ — y. Similarly, there must exist (2,y') € T}
such that ' +y' = @ —y. Then N [T}] (z — y) = 2’ — y/. By hypothesis, 2’ —y' = z = 2 + y, so we
have the system of equations

d4y = z—y
o -y = a4y

Adding these two equations yields 2’ = x, and subtracting them yields 3’ = —y. It follows that z is
of the specified form and that Ty (z) 4+ T(z) 3 —y +y = 0, implying that = is a zero of T} + T5. U

Thus, finding a fixed point of N is tantamount to finding a zero of T = T; + T5. As N is
nonexpansive, we can directly apply Proposition 3. For simplicity of notation, suppose that é; = 0.
The iteration suggested by Proposition 3,

A= NN 4 (1 - A (25 (18)
= ANV (%) 4+ (1= A () (19)

can be efficiently carried out as follows. Let (2*,0%) € T, be such that 2% = 2% + b* for all k and
iterate using the ensuing two steps:

(i) Find the unique (y**!, a**1) € Ty such that

yk-l—l + ak-l—l — xk _ bk . (20)

ii) Find the unique (2", p%+1) € T, such that
(i) q 7
xk-l—l T bk-l—l — /\k(yk-l—l _ ak-l—l) T (1 _ /\k)(xk T bk)
— /\k (yk-l—l _ ($k _ bk _ yk—l—l)) T (1 _ /\k)($k T bk)
= 2005+ (1= 20p)2k 4+ b

The case Ay = 1 is known as “Peaceman-Rachford” splitting, while the case Ay = 1/2 is
traditionally known as “Douglas-Rachford” splitting [20]. The more general case 0 < inf{A;}72, <
sup{A;}72, < 1is addressed in [12].

If one allows Peaceman-Rachford steps, that is, one permits Ay to equal or approach 1, then
N must be a contraction for Proposition 3 to guarantee convergence. Such a property can be
guaranteed if either Ny = N [T}] or Ny = N [T,] is a contraction, and in particular, by Lemma 4,
if either T or T3 is both strongly monotone and Lipschitz.

We also note that Proposition 3 will permit approximate evaluation of N in (18), which means
that either Ny and/or Ny may be evaluated approximately. We thus arrive at the following propo-
sition:

Proposition 6 Let 11,1y be maximal monotone operators on R such that 0 € Ty(x) + Ta2(x) has
some solution. Let {ap},{fr}, {1} be sequences of nonnegative scalars with ¢; < Ay < 1 — €,
where ¢, > 0 and €3 > 0. Suppose {(z%,b¥)} C Ty and {(y*,a*)} C T} conform to the recursions

=3
gkl phtt ~ AL (1= 20p) 2k 4 b (22)
k

for all k > 0. Then, if either of the following two conditions hold, {x*} converges to some solution
* of 0 € Ty(x) 4+ Ta(x):

1. €2>0, Y p2gap <oo, and Y12, B < o0.
2. One of Ty or Ty is both strongly monotone and Lipschitz, B/ i, — 0, and a, — 0.
Proof. Let z* = 2F 4+ b* and w* = y* + o* for all k > 0. Then, defining Ny, N, as above, we have
wh o~ Ny(2H)

PAREI /\kNl(wk) + (1= Ag) &

which implies by the nonexpansiveness of N, that

k+1 k k
z =~ ANT(N2(27) + (1 = Ap)z
Bt kN1(N2(27)) + (k)

First, consider case 1. Since {a*} and {3;} are summable, and {\;} is bounded, {8) + A\po}

is also summable. Therefore, Proposition 3 implies that {2*} converges to a fixed point of the

nonexpansive map Ny o Ny = N, that is, some 2* + b* such that b* € Ty(z*), —b* € Ty(2*), and

thus 0 € Ty(2*) + Tz(2z*). Now, a% = (1/2)(Nq(2*) + z;) for all k; since Ny is nonexpansive, it is
1

Lipschitz continuous, and hence limj_ oo 2 = limj_ oo % (Ng(zk) + zk) = 5Ny(2") + %z* =z*

Now consider case 2. As outlined above, NV is now guaranteed to be a contraction. B/A; — 0
and aj — 0 collectively imply that (8x + Arar)/ Ak = Be/Arx + ax — 0. Therefore, we can apply
the contraction case of Proposition 3, and proceed as in case 1. O

Note that the theory we have just presented covers only Peaceman- and Douglas-Rachford
splitting, and does not subsume forward-backward [4, 14, 31, 49], or “double-backward” [19, 31, 22]
splitting schemes. These methods have a different and generally less attractive convergence theory.

2 Relating Monotone Affine Variational Inequalities to Monotone
Operators

We now relate the monotone operator theory we have just presented to monotone affine variational
inequality problems. Recall the problem avi(M, ¢, B) given in (1), with M positive semidefinite but
possibly asymmetric, and let sol(M, ¢, B) denote its solution or, if there is more than one, the set
of all solutions. The feasible region of avi(M, ¢, B) is defined as

feas(M,q,B) = {z | Mz + q € (recB)",z € B},
where rec C' denotes the recession cone of a set C' defined by
recC={deR" |z+edeCVaxel,c>0},
and “*” denotes the dual cone operation defined by
K ={y | (y,v)>0,Yve K}.

By way of illustration, in the special case of the LCP (3) the feasible set is {# | Mz +¢ > 0,2 > 0},
while the solution set consists of all elements of the feasible set that also satisfy the complementarity
condition (z, Mz + ¢q) = 0.

2.1 Simple Splitting Schemes

We now introduce two operators that constitute splitting of avi(M, ¢, B). Let W denote the operator
Wi(z) ={Maz+q} VYzeR".

It is simple to confirm that an operator of this form must be Lipschitz, is monotone if and only if M
is positive semidefinite, and is strongly monotone if and only if M is positive definite. Furthermore,
Proposition 1 implies W is maximal, because I + M is positive definite, and hence

im(I+W)={{I+M)z+q|zeR"}=R".

Let Ng denote the point-to-set normal cone operator of B defined by

NB(x):'{ é?|<y7w—w>§0Vw€B}7 i;g.

Since B is closed and convex, Ng is the subgradient mapping of the closed proper convex function

og: R — R U {400} given by
S (x) = { 0, reB

+oo, z¢B.

Np is therefore maximal monotone by Proposition 1, statement 4.
The problem avi(M, ¢, B) is equivalent to requiring that —(Ma + ¢) € Ng(z), that is,

0€ Mz+q+ Np(z) . (23)

By the above definitions this is equivalent to finding some zero z of the operator W + Ny, namely
solving 0 € (W + Ng)(z). Since dom W = R", W 4+ N is maximal monotone by Proposition 1,
statement 5.
We may therefore envision solving MAVI’s by applying one of the splitting schemes outlined in
Section 1, setting
Ti(z)=W(z)={Mz+q} VzeR",
Ty = Ng .

Generalizing slightly, we introduce a positive scalar multiplier ¢:

Ty(z) = cW(z) ={cMz +cq} VazeR",

Ty =cNp=Ng. (24)

Consider applying Proposition 6 to the identifications (24). For simplicity, we will let oy =

Br = 0 for all k. For all v € R", define (v)z to be the projection of v onto B. A critical observation
is that

z=a+40b, (2,b) e Ng <= z=(2)g, b=2z—2. (25)

In this case, it follows that
r—b=z—(2—2)=2(2)g—2=rp(z).

The operation rg is a reflection through the set B.
To apply the iteration (i)-(ii), define z¥ = 2% + b* for all k. Under (24), (25) permits us to
rewrite (i) as

g = (I eM) ™ (rs(=) — cq)
In terms of zF+! = zh+1 L pF+1 where (2*+1 bF+1) € T, = Np, (ii) is
FARRIES D R R (1 —2Xg) (Zk)B + (zk - (zk) B)
Using (25) and some simplification, one obtains
PARE L) ¥} {(I—I— eM)™! (rB(zk) — cq) — (Zk)B} . (26)

The following result is obtained by applying Proposition 6 and remarking that avi(M, ¢, B) must
have a solution if M is positive semidefinite and feas(M, ¢, B) # § [2].

Proposition 7 Consider the problem avi(M, q, B) of (1), where M is positive semidefinite, ¢ € R"
and B is a closed conver set, and assume feas(M, q,B) # 0. Take any scalar ¢ > 0 and sequence
{Ak} CR™ with 0 < inf {\}oey < sup{M}iey < 1. Then any sequence {z*} C R™ conforming
to (26) will converge to some z* such that x* = (2*)gz solves avi(M, ¢, B), and (=1/c)(z* — 2*) =
Ma* +q. If sup {Ar}r—y = 1, the same convergence is guaranteed provided M is positive definite.

We further note that by letting 8 > 0 in Proposition 6, the iteration (26) will still converge
even if (I + CM)_l(rB(zk) — ¢q) is computed inexactly, provided the accuracy improves sufficiently
with k.

Consider briefly the special case of the LCP (3), where B = 7. It is clear that rz(z) = |2|, the
component-wise absolute value of z. Setting Ay = 1/2, we obtain the very simple method

= (T4 eM)™ (‘zk‘ — cq) + (zk) , (27)

where (zk)_ is the component-wise negative part of z¥. Proposition 7 shows this recursion con-
verges to some z* = 2* —c(Ma*+q), where 2* solves (3), subject only to positivity of ¢ and positive

semidefiniteness of M. From such a z*, one can compute z* as the component-wise positive part
of z*, 2% = (#%)7.

2.2 Matrix Splitting Schemes

Another possibility is to take two n x n positive semidefinite matrices My and My with M, + M, =
M, and two vectors ¢!, ¢> € R” such that ¢! + ¢? = ¢, and let

Ti(z) = {Miz+q'} + Ng(z) Vo e R

Ty(zx) = {Myzx+ ¢} Ve e R™ . (28)

Then we have

(T +T)(2) 50 & {Miz+g"}+{Mr+¢*}+ Ns(z) 30
< {Mz+q}+Np(x)>0,

and (17 + 13)(z) > 0 if and only if z solves (23), and hence avi(M,q,B). Ty and T, are both
maximal monotone by the same arguments used above.

However, we will consider a generalization of (28) with the same change of variables applied
simultaneously to T} and T5:

T1(2) = {Q"TMQi+Q7¢'} + QT Np(Q) Vi € R 2
T#) = QM7 +QT¢) ViR (29)
where () is an arbitrary nonsingular matrix. In this case, & is a zero of Ty + 75 if and only if z = Q&
solves avi(M, ¢, B). The identifications (29) will give different algorithms than those arising from
(24) unless M; =0 and Q = 1.

Now consider applying Proposition 6 to the identifications (29). We start from (i)-(ii), but in
terms of variables (#%,b%) € Ty and (§*,d*) € T). The form of T gives b¥ = QT (MoQz" + ¢?).

~k+1

Thus, (i) involves solving for "1 in the inclusion

P4 QT (MiQM + ¢! + Ns(Q7FH)) 3 &% - Q7 (MaQa* + ¢?)

10

Premultiplying by Q™7 and substituting z* = Q#* and y* = Q¢* for all k, we then have

Q—TQ—lyk-I—l _I_Mlyk-l—l _I_ql _I_NB(yk-I—l) N Q_TQ_1$k _ M2$k _ (]2
& HyF 4 Myy*+ 4 g + (My — H)a% + N(y1) 30

= yktt Esol(H—l—Ml,q—l—(Mg—H)xk,B) ,

where H = @Q~7Q~!. Since H is positive definite and M; is positive semidefinite, H 4 M; is positive
definite, and the “sol” denotes a unique point [34, Theorem 4.3] (this result also confirms that y*+!
must exist).

After a similar change of variables, (ii) reduces to

e M = (H 4 My)™! (H (2/\kyk+1 +(1- 2/\k)xk) + ngk) .

Note that if M is positive definite, then 7% will be strongly monotone and Lipschitz (the same
cannot be said about M; and 77 because N is not Lipschitz). The following result is now immediate
from Proposition 6.

Proposition 8 Let My and My be n X n real positive semidefinite matrices, define M = My + Mo,
and take any q € R*. Let H any symmetric positive definite matriz and suppose {(z*,y*)} €
R™ x R"™ conforms to the recursions

gt = sol(H—l—Ml,q—l—(Mg—H)xk,B) (30)
U = (H 4 M) (H (2/\kyk+1 +(1- 2/\k)ack) 1 sz’“) . (31)

If feas(M,q,B) # 0 and 0 < inf {\}72, < sup{Ai}iey < 1, then {a*} converges to a solution
of avi(M, ¢, B). The same convergence is also guaranteed if feas(M,q,B) # 0, 0 < inf {A\;};2, <
sup {Ar}reg < 1, and M, is positive definite.

The nonexpansiveness (and hence Lipschitz continuity) of the operator (I + Ty)™! can be used
to show that the auxiliary sequence {y*} converges to the same limit z* as {2"}.

Now suppose we are given a positive semidefinite M and consider any splitting of M into
M = B+ C, where B is positive definite, but C' = M — B is arbitrary. Suppose that we set

H =sym(B), My = skew(B), My = M — skew(B) , (32)

where sym(B) = £(B + BT) and skew(B) = B —sym(B) = (B — BT) denote the symmetric and
skew-symmetric parts of B, respectively.

Under (32), H is symmetric positive definite, and both M; and M; are positive semidefinite.
Applying (30)-(31) and simplifying, we immediately obtain

Yt = sl (B7 Ca* + ¢, B) (33)
= (2sym(B) +O) (2 sym(B) (/\kyk-l—l +(1- /\k)xk) + ka) . (34)

These recursions cause {z*} to converge to a solution of (1) subject only to positive definiteness
of B, positive semidefiniteness of M = B + ', and {\;} being bounded away from 0 and 1. The
method may be construed as standard matrix splitting (see e.g. [26, 27, 28]), with the computation
(34) replacing the usual under-relaxation step. Proposition 8 also guarantees convergence when
{Ar} is allowed to approach 1, so long as M, and hence My = M — skew(B), is positive definite.

To close this section, we note that the calculations in (30)-(31) or (33)-(34) may be performed
approximately in the manner described in Proposition 6. Also, although it is beyond the scope
of this paper, the techniques employed here may also be applied to produce splitting methods for
nonlinear monotone variational inequalities.

11

3 Parallel Application to Optimal Control

We now present a case study indicating that splitting methods can be an effective computational
tool for difficult MAVI problems. In particular, one can use splitting to dissect a problem into
comparatively simple substructures that can be solved using highly parallel techniques. We draw
an example of this kind of decomposition from the field of discrete-time optimal control. Our

formulation is based on the notion of extended linear-quadratic programming as introduced by
Rockafellar [40, 41].

3.1 Discrete-Time Optimal Control as an Extended Linear-Quadratic Problem
Many optimal control problems have essentially linear dynamics that evolve over a fixed time
interval |77, Tr] according to an underlying differential equation
dw
dr
with various auxiliary conditions specified at each instant in the time interval. The function w :
(7L, TrR] — R* represents the state of the system at any time instant, while

u(r) €U(r) CR" Vr € (r1,R) (36)

(1) = fl(r)w(r) + B(T)U(T) + IN)(T) Vr € (t0,TR) (35)

are the control variables at each time instant, and
ul e U, C R (37)

represents an initial control. Table 1 summarizes all the relevant problem data. The matrices and
sets parametrized by 7 are usually assumed to vary continuously with 7. Initial state conditions
can be specified using
w(ry) = BRuP 408 (38)

a fixed initial state can be generated by choosing B = 0.

The beauty of the formulation advocated by Rockafellar is its ability to easily model constraints
on the states and the controls at both intermediate and terminal times. This capability stems from
monitoring functions pyq defined via

o (2) = sup {(v,2) = $ (v, Qu) |
veVY
Here V is a subset of R™ and () is a positive semidefinite m X m matrix. The function puyg acts
as a (linear-quadratic) penalty function and is allowed to take the value +o0o. Many different
penalizations of the state and control “constraints” can be added using particular choices of V and
Q. For example, if V = R} and @ = 0, then puyg(2) = 0if z < 0, and +oo otherwise, effectively
generating inequality constraints. [40] gives a variety of choices of V and @, showing how to model
terminal state conditions and linear-quadratic regulator problems.
The general problem formulation is to choose u(7) and u” to minimize the functional

TR

Flul,u) = / Br)u(r) + L (u(r), P(r)u(r)) - (@(r), w(r)) dr

+ <<2L>7 P+ 5 ((uh), PPul) — (), w(rr))

)) (39)
+ Hy(1)a(r) (f(T) - C(r)w(r) - D(T)U(T)) dr

Data Type of Data

s, h,hr, m,mg Positive integers

7L, TR] A closed real interval

U, C RV C RR Closed convex sets

U(t) TR V(r) CjR™ Closed convex set functions of 7 € [z, TR]
pr, € RPL b e R B e RmR Real vectors

Pl ¢ Rpoxhe QR ¢ Rrmrxme Positive semidefinite matrices

Bl e jexhe OF ¢ pmrxs Arbitrary real matrices

p(r) € RPE(r),b(r) € R*, 7+ (1) € R™ Real vector functions of 7 € [z, 7R]
P(r) € R0 Q(1) € Rmxm Positive semidefinite matrix functions of 7 € [r7, 7R]
A(1) € R5%5 B(1) € Ro¥™,
C(

. Arbitrary real matrix functions of 7 € [, Tr|.
7_) c %mXS,D(T) c %mxh y [L R]

Table 1: Data describing an instance of an optimal control problem.

subject to the constraints (35)-(38).
In order to solve such a problem, we consider a discretization of (35)-(39) using N time points

N-—t t—1
TL = TLyeeos Tt = (m)TL+ (m)TR7...7TN:TR.

The integrals in (39) are approximated by finite sums, and the derivative in (35) is modeled using
a finite-difference formula. For further details, refer to [7, Section 3.6]. If we relabel the discretized
variables using

uny = ut up = U(Tt—1)7 t=2,....,N
wy = w(Tt), t=1,...,N—1 w) = w 7

min) <<P[t17 U[t]> t5 <U[t17 P[t]ﬂ[t]> - <C[t17 W[t]> + v (1 — Crwp — D[t]ﬂ[t+1]>)
t=1
40
S.T. Wy = A[t—l]w[t—l] + B[t]u[t] + b[t] t=1,...,N (40)
ufg € Uy t=1,...,N

Note the time shift in the definition of wyy and uyy. Py, Uy Qs Vigy Ay By Crgs Dl
P> by s and cpy are chosen to correspond to the continuous problem. For example, letting
§ = (tr — 71)/(N — 1), we have Py = Pl Uy = Ur, Py = 5]5(7}_1) and Uy = U(r—q) for
t=2,...,N, ¢ = 0é(ry) fort =1,...,N — 1, and ¢y = ¢, Note that Py and Q) are square
positive semidefinite matrices, while Ay, By, Cpy, and Dy are arbitrary, and possibly nonsquare
and dense. We assume implicitly that wy and u[yq) are identically zero.

13

This discretized problem is also an extended linear-quadratic programming problem, for which
there is an elegant duality theory based on saddle-point theory for a Lagrangian

N
Llu,y,v,w) = <P[t]7U[t]>+%<u[t]vp[t]“[t]>
(41)

where ufg € Upy and v € Vi fort=1,...,N.

The primal problem (40) arises from maximizing this Lagrangian over v and y; the corresponding
dual problem results from minimizing the Lagrangian over u and w. Essentially, this dual problem
is also a control problem where v are the (discretized) dual control variables and y are the dual
state variables,

It is well-known that determining a saddle point of (41) is equivalent to solving (40) under a
suitably mild qualification [40]. After some simplifications, the discretized saddle-point problem in
the variables g = (ugq, ypg, 01 wpg), t = 1,2, ..., N is equivalent to avi(M, ¢, B), with

oy 17, -
Ly My —Lp
L M, L
M _ [2] [3] [3] , (42)
Liveyy Minv—yy —Liy_y
L Linoyp My
T
q = [qu] 92 4N } ; (43)
N
B = H (U[t] X RF x V[t] X 3?5) , (44)
t=1

where the submatrices My, Ly, and g take the respective forms

[My B
B -1
My = |71 7 (45)
1 Qu Cn
-Dpy |
Ly = o, (46)
a = vy oy~) (47)

The matrices M| are square, with M;; having dimension Ay, + 2s + m, M|y] having dimension
h+ 2s+ mp, and the rest having dimension h + 2s + m.

We generated test problems having precisely this structure using techniques already developed
for MCPLIB [7], which is based on the code written by Wright [50] at the University of Washington.
This procedure generates affine variational inequalities of the form (42)-(47) with the property that

14

Uy and Vi are products of bounded closed intervals, Py and Qp, are diagonal, and fl(r), B(T)7
C(r), D(r), P(1), Q(1), U(7), and V(1) do not vary with 7. Although this last property makes all
the matrices M|y identical, except for Mp;; and M|y, this characteristic does not appear to make
the generated problems particularly easy to solve, and our code takes no advantage of it.

Thus, all of out test problems have the dynamical structure that is described in [43]. Only
the parameters referred to within this structure have been randomized. Furthermore, the assumed
structure is very general, and includes many standard problems occurring in optimal control.

3.2 Parallel Application of Splitting

Consider the application of splitting algorithms to MAVI’s with the structure described in (42)-(47).
If the Py and ([are all positive definite, then algebraically eliminating the free variables yields a
more compact positive definite AVI of dimension (N —1)(h+m)+hr, +mp. However, the resulting
matrix no longer has the block tridiagonal structure of (42), but is instead block lower triangular,
and very much denser. Instead, we chose to maintain the original problem structure, and adopt the
approach of (30)-(31), with sup {\x},—, < 1. An approach based on forward-backward splitting is
also possible [4], but is subject to relatively stringent stepsize restrictions.

Our approach is motivated by the existence of parallel solvers for block-tridiagonal systems
of linear equations having structure like (42). Unfortunately, these techniques do not generalize
directly to variational inequality problems, because it is no longer always possible to use one row
to “eliminate” another. However, one can isolate the block tridiagonal structure of the problem by
taking the approach of Proposition 8 with

i OéM[l]
_ OéM[Q]
Ml — . j (48)
I aMin)
(-l -L7
L 1 — a)M, -7
My = [1] (1 —) Mp G | (19)
I Linoyy (1=)My

and « being some scalar in the range [0, 1]. If we choose H to be block diagonal conformally with M,
then H 4 M is also block diagonal. Because of the separable structure of B in (44), step (30) now
decomposes into N independent, smaller AVI problems, each one over a box By = U xR x Vg x Re.
These problems may be solved independently and in parallel. Similarly, with H block diagonal,
the matrix H + M, in (31) will be block tridiagonal. Thus, (31) may be solved by block-oriented
versions of the parallel cyclic reduction and substructuring methods described in [15, Section 5.4]
and [16]. Briefly, block cyclic reduction involves using block Gaussian elimination to eliminate
every other block of rows. The remaining, uneliminated rows form a block tridiagonal system half
the size of the original one. Eliminating every other block of rows from this system and proceeding
recursively, one may factor the system in log, N parallel steps.

When o = 1, a much simpler procedure is possible with some further assumptions on H. In

15

addition to H being block diagonal, that is,

Hy = . i : (51)
|3

4

Hy

with the blocks conforming to those of Mp;. Then H + M; takes the form

Hy, -
il
Hp, Dy
. Hpy o —Ap)
—Dpy 2
Ap) Hp,
Hp, , Do
. Hpy . —Af
—Dpy 2]
Ap He)

This matrix is also block diagonal, and the linear system of (31) thus decomposes into many smaller,
independent linear systems. Note, however, that the system’s block structure does not align exactly
with that of M in (42); instead, its blocks are “offset.”

We now have a parallel means for implementing both steps (30) and (31) of our splitting
iteration. In practice, we also need some procedure for terminating the algorithm. Given that B is
a “box” defined by (€ [—00,4+00)" and u € (—o0,400]” asin (2), we may define, for any z,¢ € R,

Yi(®iy gis by ug) = max {0, 0; — x4, 2; — ug, min {z; — {5, ¢;}, min {u; — x5, —g;}} (52)
Pz, gibu) = max {yi(i, 955 6y wi)} - (53)

Then the problem avi(M, ¢, B) given in (1) is equivalent to finding some 2 such that I'(z, Mz 4+
q;l,u) = 0. In practice, we will settle for I'(z, Ma + ¢;{,u) < €, where € is some small tolerance;
a simple way to terminate (30)-(31) is to periodically compute v* = I'(x*, M2* + ¢;1,u), and
terminate if v¥ < e.

However, we advocate a somewhat more complicated procedure designed to detect exact solu-
tions to (1) that might lie near the current iterate. Define % = ¢+ (My— H)2* and suppose we solve
each subproblem avi(Hpy + aMy, 055],3[,5]) making up (30) by a standard pivotal method [5, 18].

Then for each of these subproblems there will be a final complementary basis y[’;]. Consider their

16

concatenation Y* = (y[’;], y[’;], .. .,y[lj\,]). Eventually, as {y*} and {z*} converge to some solution z*
of avi(M, ¢, B), Y* should stabilize at some complementary basis corresponding to z*. We propose
to take advantage of the possibility that this basis might be encountered long before v < e.
Suppose Y* does not change over y consecutive iterations. Then by setting the nonbasic vari-
ables at their corresponding bounds and solving for the remaining basic variables, we may be able
to“jump” to some solution z*. We use following procedure to attempt such “jumps”: let 7*+1 ¢ R

be defined by

k1 _ { yf"'l yf"'l nonbasic in Y* (54)

Yi 0 yf"’l basic in V¥ ,

and let g*t! = ¢ + My*t!. Define " to be M with each nonbasic column in V¥ replaced by the

corresponding canonical unit vector. Now, we solve the system ngk"'l = —gF*! for g*t1. This
system is block tridiagonal, so it is again amenable to the same parallel techniques as (31). Let
§*t1 € R™ be defined by

N { yf"’l yf"’l nonbasic in Y* (55)

! @f"’l yf"’l basic in Y* .

It is a simple matter to compute §, = F(@k"'l, MyEtt + g1, u) from yFtland gFTLIf 4y < €, we
terminate with the solution §*+1.
As a heuristic acceleration technique, we propose checking whether 4*+t1 < o, where o € [0, 1)

is a parameter. If so, we redefine y*t! « §*+1 before proceeding to step (31).

We are now ready to state a complete algorithm for an AVI with the structure (42)-(47):

0. If @ < 1, factor the block tridiagonal system H + Ms. Set k& = 0, choose some arbitrary
starting point z° € R, and compute 7° = Myz°.

1. Compute 8% = ¢+ n* — Ha*. Then, for all t = 1,..., N, compute
y[];]-l_l = sol (H[t] + 041\4[,5]7 Oﬁ], B[t]) (56)

using a standard pivoting algorithm. If k& > 0, use the prior complementary basis y[’;]—l as a

starting point. When done, save the final complementary basis y[’;].

2. If no y[’;] has changed in the last y iterations, go to step 7.
3. Compute

oF = H (20" + (1= 200)2%) + Maoa® = H (20 + (1= 20)0%) +9F . (57)

Then solve the block tridiagonal system
(H + Ma)a™ 1 = ¢* . (58)

4. Compute p*t1 = Myah+t,
5. Compute g"t! = Ma*+! 4 ¢ = 1 4 Mya**t! + ¢ Then find vy = D@5, g¥ 11).
6. If yp41 < €, terminate with the solution 25!, Otherwise, set k + k 4+ 1 and go to step 1.

7. Compute "' = ¢+ M7**!. Form Mk, solve the block tridiagonal system ngk"'l = —grtt,
and form g**! using (55).

17

8.

Compute 4% = I'(§*TY, Mg* ! 4 ¢; 1, u). If 4 < ¢, halt with the solution §*+1. Otherwise, if

Ak < oy, overwrite y* ! «— g5t Proceed to step 3.

Now suppose that we have a computer system consisting of V' < N processors; if we have more
than N processors available, we only use the first V. We allocate the time steps t = 1,..., N to
the processors in contiguous groups of roughly N/V. Each processor stores all data associated with
the rows of M and ¢ corresponding to its allocated time steps. All working vectors in the algorithm
are partitioned similarly.

Given this simple data distribution, we now describe, step by step, how to construct a data-
parallel implementation of the algorithm 0-8:

0.

. Finding ¢

If @ < 1, we must factor H 4+ My, which can be done using standard parallel techniques (e.g.
block versions of the cyclic reduction method of [16]). Computing 7° = Myz° requires an
exchange of data between processors holding adjacent groups of time steps.

. Because H is block-diagonal, the computation of % decomposes by the time step ¢. Similarly,

the computation of y*! via (56) decomposes into a collection of N independent problems,
one for each time step, each of which may be solved by local application of a standard pivoting
algorithm. Thus, no interprocessor communication is needed in this step.

. Here, we must determine if any y[’;] has changed in the last y iterations. Each processor can

locally determine whether any of its y[’;] have so changed. Then, the processors do a global
“or” reduction/broadcast operation to globally determine if any y[’;] has changed.

. Since n* = Myz* has already been computed, (57) decomposes by timestep and requires only

local computation. If a < 1, solving (58) is a parallel back-solve based on the factorization
already computed in step 0. If & = 1, the system can be solved using only local computation
and data exchange between consecutive processors.

. Computing 7*+! requires data exchange between consecutive processors.

k+1 decomposes by time step, and requires only local computation. To find 4y,

each processor first computes and finds the maximum of the values %(acfﬂ,gf‘i'l;&,ui)
(see (52)) for the indices ¢ that it “owns”. Then a single scalar interprocessor “reduction”

operation finds and broadcasts the global maximum.

. Since yg41 has just been broadcast in the previous step, no communication is required.

. Computing §**! again requires an exchange of data between consecutive processors. Forming

k41 pequires a factor and back-

M" requires a similar data exchange. Solving M+l = —7
solve using standard parallel block cyclic reduction techniques. Finally, forming #**! using

(55) requires only local computation.

. Computing 4 requires some local computation and a single reduction/broadcast operation,

as in step 5. After the broadcast of 4y, no further communication is needed.

The communication requirements of the algorithm are those implicit in the block tridiagonal
factor and solve operations (steps 0, 3, and 7), along with global scalar reduction (steps 2, 5, and
8) and simple one-dimensional “shift” operations (steps 0, 3, 4, and 7) for data exchange between
consecutive processors. The computation and communication requirements of the algorithm are

k+1

highly regular, with the possible exception of finding Y1 in step 1.

18

3.3 Implementation for the CM—-5 Family

We implemented the algorithm on the CM—5 family of parallel computers [46]. The modified “fat
tree” communication topology of the CM-5 is well-suited to parallel tridiagonal factorization, shift
operations, and global reductions.

Due to the algorithm’s computational and communication regularity, we chose to implement it
using the global data-parallel CM Fortran (CMF) language [47] and the CMSSL collection of nu-
merical/scientific subroutines [48], which already contains sophisticated block-tridiagonal routines
based on [16]. Under the global CMF/CMSSL programming environment, the CM-5 functions
essentially synchronously, like a giant array processor or SIMD computer [13]. The elemental pro-
cessing units are not the “processing nodes”, but the individual vector arithmetic units (VU’s).
Each processing node has four of these vector units. The vector units function synchronously, each
performing similar operations on different data. The environment is “tuned” principally for speed
of operations on long vectors.

CMF and CMSSL do not support “ragged arrays” in which the valid extent of one subscript
depends on the value of another. This restriction limits our implementation to the case that all
the M, have the same dimension, namely /i, = h and mpr = m. Thus the dimension of the square
matrix M simplifies to n = N(2s+ h + m).

The implementation also assumes that the matrices F;) and [y are diagonal, as are the scal-
ing/stepsize matrices H[{L], ..
moved very easily. Ay, By, CJy, and Dy, are represented as dense matrices.

CMF and the CMSSL made most of the implementation straightforward. The CMSSL already
contained the necessary block tridiagonal routines, and most of the local calculations were easily
written in CMF or were simple applications of the CMSSL’s “multiple instance” dense linear algebra
functions. CMFE’s ANY, MAXVAL and EOSHIFT intrinsic functions provided the required global
reductions and data exchanges between consecutive processors.

The main difficulty was in solving the local subproblems avi(H + oMy, 0y, Bfg) in step 1.
Our approach was to first algebraically eliminate each subproblem’s unbounded variables, trans-
forming it into a fully dense AVI of dimension i +m on a bounded box Uy X V. To this collection
of problems, we then applied our own special, multiple-instance, synchronous implementation of
Lemke’s algorithm, written in CMF, with calls to the CMSSL. Essentially, we synchronously per-
form Lemke pivots on every subproblem instance t = 1,..., N. Instances that have already located

.,Hﬁ]. These additional restrictions are inessential, and could be re-

a complementary solution perform trivial basis-preserving pivots until all instances have reached
termination. We use explicit representations of the basis inverses, with outer-product updates and
periodic reinversion.

This approach was the easiest available to us, but has two potential drawbacks. First, after
each pivot, the code must perform a fundamentally unnecessary global communication operation
to determine whether all instances have terminated. Fortunately, these operations are extremely
efficient on the CM-5. Second, when N > V| the algorithm may perform a large number of
unnecessary flops, since each processor pivots on all its instances at each Lemke iteration, as
opposed to only those that have not terminated. In a less inherently synchronous programming
environment, both these inefficiencies could be removed; however, implementing the rest of the
algorithm might prove considerably more complicated.

3.4 Computational Results on CM—5E Systems

For purposes of comparison, we attempted to solve the problems using standard serial codes for
affine variational inequalities on a SPARCStation 10/51 workstation with 32 megabytes of RAM.

19

The serial codes consisted of PATH [8], which implements a generalization of the SQP method
with a piecewise-linear path search, SMOOTH [3], a differentiable approximation method, and
MILES [45], which implements a standard pivotal algorithm of the Lemke class. All the above
codes are designed for nonlinear box-constrained variational inequalities, but can be applied to
linear problems. By reformulating the test problems as quadratic programs [42], we also attempted
to solve some of the problems with the generalized reduced gradient nonlinear programming code
CONOPT [10]. The generated quadratic programs are convex, but they are guaranteed not to be
strictly convex.

Other techniques for the parallel solution of ELQP problems arising in optimal control have
been described in the literature. Wright [51] develops an interior point SQP approach with special
adaptation of the (banded) linear algebra for solving the generated subproblems. Pantoja and
Mayne [29] also use an SQP approach, but exploit the structure at a higher level. Both of these
techniques are essentially comparable to the PATH method, but with special implementation to
exploit the problem structure. None of these authors report results on the structured ELQP’s
outlined in Section 3.1.

Zhu and Rockafellar [52, 53] consider the problem as an ELQP and apply forward-backward
splitting techniques exploiting the underlying duality structure. Although they report results for
problems similar to the well-conditioned ones that we consider, their implementation is serial. No
parallel implementations of the above methods available for the CM-5, so we report only represen-
tative serial times for those codes that were accessible within GAMS.

We ran the parallel code on three different CM-5E configurations, with a total of 16, 128, and
256 vector units, respectively. The CM-5E is a variant of the basic CM-5 in which each processing
node consists of a 40-MHz SPARC-10 and four 40-MHz vector units. In all cases, each vector unit
had access to 32 megabytes of local RAM.

We created two sets of test problems. To conform with the assumptions of our CM-5 implemen-
tation, we restricted the MCPLIB procedure (as described in Section 3.1) to the case h;, = h and
mp = m and limited the scope of our experiments by considering only the case h = m = s. The
dimension of the problems simplifies to n = 4N s and within each set of problems, the data is param-
eterized by N and s. The GAMS source file that was used to generate the test problems is available
by anonymous ftp from ftp://ftp.cs.wisc.edu/math-prog/mcplib/gams/opt_cont.gms.

In the first set, the condition numbers of the matrices P and [y are in the range of 2 to
3. We generated such problems with s = 8, 16, 24, 32, and 40. In the second set, the condition
numbers of P and (J[q were much higher, in the range of 10* to 10°. For these more ill-conditioned
problems, we generated instances with s = 8, 16, and 24. For both sets, we considered all values of
N between 16 and 1024, stepping by powers of 2. For a few problems, we also tried N = 2048.

After some careful but far from exhaustive experimentation on a subset of test problems, we
arrived at the following parameter settings, where H = vI:

v = max{8/N,0.025} e = 1077
A = 0.9 o = 09 (59)
a = 0.05 x = 950.

Only v (and hence H) varies with the problem to be solved. Since M is not positive definite,
we were constrained to keep Ap bounded away from 1. Thus, the algorithm implemented is a form
of “Douglas-Rachford” (DR) splitting as described in [12].

We set x to be fairly large because the effort involved in factoring the block tridiagonal matrix
M s considerable, and in particular much greater than that needed in the block tridiagonal back-
solves of step 3. In practice, the algorithm always terminates in step 8. There were typically

20

between 1 and 4 heuristic “jumps” (when the test 93 < o7y was passed), and they tended to be
concentrated towards the end of each run.

For well-conditioned problems with small s, & = 1 worked very well, cutting the time per iter-
ation approximately in half without much penalty in iteration count. For more difficult problems,
however, the algorithm is very sensitive to the value of a. Values of o near 1 inflated iteration
counts by an order of magnitude or more; in general, it seemed important to use a value of « at or
near 0.

The sensitivity of the algorithm to the other parameters is much milder. Setting v to within a
factor of 4 or so of the value specified in (59) resulted in only modest run time variations. Similarly,
sensitivity to Ay is limited as long as it is not close to 0, although values near 1 do tend to work
best. Sensitivity to the termination tolerance € is minimal unless the parameter is very large, since
the algorithm always terminates with a step 8 “jump” to a solution that is accurate to at least 10
digits of precision.

Table 2 gives run times for the well-conditioned test problems. The solutions obtained by all our
methods agreed to seven significant digits. In Table 2, “Memory” means that a given problem would
not fit in physical memory, and “7Time” indicates that the specified code could not solve the problem
within 14,400 seconds (4 hours). The results are also plotted graphically in Figures 1 through 5.
It should be noted that the per-timestep memory requirements of the CM-5 implementation are
considerably higher than the serial implementations’. This disparity is partly due to the large
temporary data structures allocated by CMSSL, and partly to our decision to use dense linear
algebra in our CM-5 Lemke subroutine. The latter choice made implementation considerably
easier, and probably did not require any sacrifice in speed, due to the CM-5’s preference for long
vector operations.

Of the serial codes, PATH appears to be the most efficient for these problems, followed (some-
what distantly) by SMOOTH. CONOPT and MILES could only solve the easiest instances. How-
ever, the parallel splitting implementation is markedly faster than any of the serial codes for almost
all the problems. The exceptions are that PATH is competitive with the parallel code when N = 16,
and also for the s = 8 problems that have N < 256. Depending on s, the parallel code could solve
problems 2 to 8 times larger than PATH.

Comparison of the timings for the 16, 128, and 256 vector unit configurations illustrate how the
splitting approach is able to take advantage of parallelism. Our code can use at most N vector units,
even if more are available, so the 128- and 256-VU timings are essentially the same for N < 128.
In fact, the 128-VU system gives slightly better performance in these cases, because it is controlled
by a SPARC-10 “front end” processor, whereas other systems are controlled by SPARC-2 front
ends. For N = 16, all the CM-5E configurations yield similar timings, except for the effects caused
by front end performance.

Table 3 gives run times for the more ill-conditioned problems. The format is the same as for
Table 2, except that there are some “Fuilure” entries in the CONOPT column. These entries
indicate that, once the problems were converted to quadratic programs, CONOPT rejected them
as having no feasible solution. Figures 6 through 8 show the same data graphically. The relative
performance of the various codes remains quite similar to the well-conditioned problems, except
that parallel implementation’s advantage over PATH is even more dramatic for s > 16. For the
same values of s, NV, and number of vector units V', the splitting method does take longer to solve
the ill-conditioned problems than the well-conditioned ones, apparently due to a slowing in the
convergence rate of the underlying splitting procedure. There was an increase in the number of
splitting iterations, mitigated by decrease in the number of Lemke pivots per iteration.

The tuning of the CM-5/CMF /CMSSL environment for long vector operations makes it difficult

21

Serial Codes (SPARCStation 10/51)

Parallel Splitting (CM—5E)

s N PATH SMOOTH CONOPT MILES 16 VU 128 VU 256 VU

8 16 0.91 7.57 5.85 7.03 9.74 6.40 13.00

8 32 2.04 16.33 37.76 36.47 8.47 4.11 6.21

8 64 4.08 40.07 180.45 292.6 7.90 3.98 7.75

8 128 8.47 134.14 2688.14 1486 11.45 5.04 6.87

8 256 19.04 217.74 Time Time 22.94 9.63 11.66

8 512 35.93 Memory 7.30 2.58 3.06

8 1024 93.56 12.74 3.30 3.42

8 2048 Memory 26.15 4.95 4.10
16 16 11.56 44.73 33.65 42.44 11.31 8.23 12.75
16 32 32.75 133.49 176.57 352.5 13.07 7.69 9.10
16 64 65.29 191.31 2717.86 3042.00 18.70 9.58 10.97
16 128 168.84 649.61 Time Time 25.64 10.26 12.37
16 256 455.04 Memory 65.93 19.53 17.70
16 512 1005.45 80.95 19.09 18.48
16 1024 Memory Memory 49.37 35.69
16 2048 100.33 63.12
24 16 47.88 126.05 18.81 14.16 19.64
24 32 152.5 388.12 24.62 15.5 17.23
24 64 418.2 1029.32 85.57 25.93 25.14
24 128 1169.46 4765.17 102.08 34.25 40.72
24 256 2814.20 Memory 292.85 72.83 61.51
24 512 Memory Memory 167.26 131.27
24 1024 1042.09 621.88
32 16 54.79 280.68 58.67 45.54 47.10
32 32 178.85 989.64 81.37 52.74 59.04
32 64 536.18 2815.9 104.95 48.61 53.90
32 128 1208.22 Memory 455.56 114.12 129.08
32 256 Memory Memory 320.96 262.7
32 512 822.42 560.02
32 1024 3982.53 2227.42
40 16 118.65 3221.21 53.68 45.44 49.62
40 32 384.40 Memory 119.64 80.95 86.25
40 64 1405.47 451.28 200.89 211.58
40 128 3305.78 1448.10 228.86 247.63
40 256 Memory Memory 712.84 555.95
40 512 2393.79 1497.73
40 1024 Memory 5711.72

Table 2: Elapsed CPU time in seconds for the well-conditioned problems.

22

Serial Codes (SPARCStation 10/51) Parallel Splitting (CM-5E)

s N PATH SMOOTH CONOPT MILES 16 VU 128 VU 256 VU
8 16 2.02 13.96 19.36 6.10 10.91 9.38 9.27
8 32 3.85 23.79 74.53 25.81 14.48 7.04 13.83
8 64 13.96 70.37 344.48 3384.00 23.41 11.52 17.24
8 128 44.12 161.31 Time 7541.00 34.10 15.82 23.24
8 256 129.45 950.20 Time 107.63 50.42 62.24
8 512 1275.12 Memory 901.75 270.01 347.84
8 1024 Time 4368.97 1028.12 1039.53
16 16 20.81 138.05 Failure 24.44 17.62 22.71
16 32 97.62 392.03 Failure 32.45 20.20 31.03
16 64 284.26 774.29 Failure 100.06 54.88 64.33
16 128 1243.79 1857.06 Failure 111.39 39.74 47.04
16 256 7386.99 Memory Failure 322.94 94.44 95.14
16 512 Time 1396.56 264.86 275.60
16 1024 Memory Memory 1137.17 843.17
16 2048 7225.26 3905.98
24 16 66.85 528.18 67.68 51.75 60.02
24 32 203.28 1477.76 139.57 84.45 98.66
24 64 1645.27 3969.28 494.02 82.51 93.29
24 128 8239.70 Memory 966.21 256.65 274.48
24 256 Time 1811.61 414.18 380.50
24 512 Memory Memory 1493.27 1085.49
24 1024 6682.58 3434.09

Table 3: Elapsed CPU time in seconds for the ill-conditioned problems.

to draw empirical conclusions about our algorithm’s abstract speedup potential from the runtime
data in Tables 2 and 3. For example, suppose that we wish to compare the 16- and 256-VU data
for N = 256. One must keep in mind that, even though all the VU’s are occupied in both cases,
the 16-VU configuration is operating on much longer vectors, and so runs more efficiently. Another
way of looking at the situation is that the implementation continues to extract a kind of parallelism
from the algorithm even as N increases past the number of processors V', because increasing vector
length allows it to increase its use of pipelining internal to each processor. This phenomenon leads
to an appearance of sublinear speedup, especially for small s. Larger values of s lead to larger
average vector lengths, and thus tend to mitigate the effect somewhat.

4 Conclusion

Sections 1 and 2 have presented a unified approach to set-valued monotone operator splitting the-
ory, and applied it to generate two classes of iterative algorithms for monotone affine variational
inequalities. The analysis of these methods does not depend on symmetry, and creates a number of
theoretical connections to existing matrix splitting methods. In particular, the iteration (33)-(34)
resembles standard matrix splitting interspersed with solutions of certain systems of linear equa-

23

tions, and converges under quite general conditions.

Section 3 has demonstrated that splitting methods are interesting for more than their theoretical
connections alone. Splitting allows one to “pull apart” the structure of some problems so they can
be attacked in a highly parallel manner. This approach is consonant with the general philosophy of
splitting methods, dating back at least to 1950’s alternating direction methods for banded systems
of linear equations [9, 32]: one expresses the structure of ones problem as a composition of two less
complicated structures, each simple enough to be attacked with the technology at hand.

Finally, with careful implementation aimed at circumventing “tail convergence” difficulties, we
have demonstrated that these techniques can lead to parallel algorithms that significantly outper-
form state-of-the-art general solvers on a class of difficult, large-scale affine variational inequality
problems. There are many other application areas for which the techniques described in this pa-
per would be appropriate. A particular class of applications for future research is the field of
linear-quadratic problems arising in stochastic programming [42, 44].

Acknowledgements: We would like to thank Paul Bay, formerly of Thinking Machines Cor-
poration, for helping us with the CMSSL block tridiagonal linear system routines. Some of the
research described here was performed while the first author was employed at Thinking Machines;
we would like to thank the firm for the use of their computational facilities.

References

[1] H. Brézis. Opérateurs Maximauxz Monotones et Semi-Groupes de Contractions dans les Espaces
de Hilbert. North-Holland, 1973.

[2] M. Cao and M. C. Ferris. Lineality removal for copositive—plus normal maps. Communications
on Applied Nonlinear Analysis, 2:1-10, 1995.

[3] C. H. Chen and O. L. Mangasarian. Smoothing methods for convex inequalities and linear
complementarity problems. Mathematical Programming, 78:51-70, 1995.

[4] G. H.-G. Chen. Forward-Backward Splitting Techniques: Theory and Applications. PhD thesis,
University of Washington, 1994.

[5] R. W. Cottle and G. B. Dantzig. Complementary pivot theory of mathematical programming.
Linear Algebra and Its Applications, 1:103-125, 1968.

[6] R. W. Cottle, J. S. Pang, and R. E. Stone. The Linear Complementarity Problem. Academic
Press, Boston, 1992.

[7] S. P. Dirkse and M. C. Ferris. MCPLIB: A collection of nonlinear mixed complementarity
problems. Optimization Methods and Software, 5:319-345, 1995.

[8] S. P. Dirkse and M. C. Ferris. The PATH solver: A non-monotone stabilization scheme for
mixed complementarity problems. Optimization Methods and Software, 5:123-156, 1995.

[9] J. Douglas and H. H. Rachford. On the numerical solution of heat conduction problems in two
and three space variables. Transactions of the American Mathematical Society, 82:421-439,
1956.

[10] A. Drud. CONOPT: A GRG code for large sparse dynamic nonlinear optimization problems.
Mathematical Programming, 31:153-191, 1985.

24

[11] J. Eckstein. Splitting Methods for Monotone Operators, with Applications to Parallel Opti-
mization. PhD thesis, Massachusetts Institute of Techonology, Cambridge, MA, 1989. Report
LIDS-TH-1877, Laboratory for Information and Decision Systems, M.I.T.

[12] J. Eckstein and D. P. Bertsekas. On the Douglas-Rachford splitting method and the proximal
point algorithm for maximal monotone operators. Mathematical Programming, 55:293-318,
1992.

[13] M. J. Flynn. Some computer organizations and their effectiveness. IEEE Transactions on
Computers, C-21:948-960, 1972.

[14] D. Gabay. Applications of the method of multipliers to variational inequalities. In M. Fortin
and R. Glowinski, editors, Augmented Lagrangian methods: Applications to the Solution of
Boundary Value Problems. North-Holland, Amsterdam, 1983.

[15] R. W. Hockney and C. R. Jesshope. Parallel Computers 2. Adam Hilger, Bristol, 1988.

[16] S. L. Johnsson. Solving tridiagonal systems on ensemble architectures. SIAM Journal on
Scientific and Statistical Computing, 8:475-489, 1987.

[17] J. Lawrence and J. E. Spingarn. On fixed points of non-expansive piecewise isometric mappings.
Proceedings of the London Mathematical Society, 55(3):605-624, 1987.

[18] C. E. Lemke. On complementary pivot theory. In G. B. Dantzig and A. F. Veinott, editors,
Mathematics of the Decision Sciences: Part 1, volume 11 of Lectures in Applied Mathematics,
pages 95-114. American Mathematical Society, Providence, 1968.

[19] P.-L. Lions. Une Méthode itérative de resolution d’une inequation variationnelle. Israel Journal
of Mathematics, 31(2):204-208, 1978.

[20] P.-L. Lions and B. Mercier. Splitting methods for the sum of two nonlinear operators. SIAM
Journal on Numerical Analysis, 16:964-979, 1979.

[21] P. Mahey, S. Oualibouch, and D. T. Pham. Proximal decomposition on the graph of a maximal
monotone operator. STAM Journal on Optimization, 5:454-466, 1995.

[22] P. Mahey and D. T. Pham. Partial regularization of the sum of two maximal monotone
operators. RAIRO Modélisation et Analyse Numérique, 27:375-392, 1993.

[23] G. J. Minty. Monotone (nonlinear) operators in Hilbert space. Duke Mathematics Journal,
29:341-346, 1962.

[24] K. G. Murty. Linear Complementarity, Linear and Nonlinear Programming. Helderman-
Verlag, Berlin, 1988.

[25] Z. Opial. Weak convergence of the sequence of successive approximations for nonexpansive
mappings. Bulletin of the American Mathematical Society, 73:591-597, 1967.

[26] J. S. Pang. On the convergence of a basic iterative method for the implicit complementarity
problem. Journal of Optimization Theory and Applications, 37:149-162, 1982.

[27] J. S. Pang. Necessary and sufficient conditions for the convergence of iterative methods for the
linear complementarity problem. Journal of Optimization Theory and Applications, 42:1-17,
1984.

25

[28] J. S. Pang. More results on the convergence of iterative methods for the symmetric linear
complementarity problem. Journal of Optimization Theory and Applications, 49:107-134, 1986.

[29] J. F. A. D. Pantojaand D. Q. Mayne. Sequential quadratic programming algorithm for discrete
optimal control problems with control inequality constraints. International Journal on Control,
53:823-836, 1991.

[30] D. Pascali and S. Sburlan. Nonlinear Mappings of Monotone Type. Editura Academeie, 1978.

[31] G. B. Passty. Ergodic convergence to a zero of the sum of monotone operators in Hilbert space.
Journal of Mathematical Analysis and Applications, 72:383-390, 1979.

[32] D. W. Peaceman and H. H. Rachford. The numerical solution of parabolic and elliptic differ-
ential equations. STAM Journal, 3:28-41, 1955.

[33] B. T. Polyak. Introduction to Optimization. Optimization Software, Inc., Publications Division,
New York, 1987.

[34] S. M. Robinson. Normal maps induced by linear transformations. Mathematics of Operations
Research, 17:691-714, 1992.

[35] R. T. Rockafellar. Characterization of the subdifferentials of convex functions. Pacific Journal
of Mathematics, 17(3):497-510, 1966.

[36] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, New Jersey, 1970.

[37] R. T. Rockafellar. On the maximality of sums of nonlinear monotone operators. Transactions
of the American Mathematical Society, 149:75-88, 1970.

[38] R. T. Rockafellar. Monotone operators and the proximal point algorithm. STAM Journal on
Control and Optimization, 14:877-898, 1976.

[39] R. T. Rockafellar. Monotone operators and augmented Lagrangian methods in nonlinear
programming. In O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, editors, Nonlinear
Programming 3, pages 1-26. Academic Press, London, 1978.

[40] R. T. Rockafellar. Linear-quadratic programming and optimal control. SIAM Journal on
Control and Optimization, 25:781-814, 1987.

[41] R. T. Rockafellar. Multistage convex programming and discrete-time optimal control. Control
and Cybernetics, 17(2-3):225-245, 1988.

[42] R. T.Rockafellar and R. J.-B. Wets. A Lagrangian finite generation technique for solving linear-
quadratic problems in stochastic programming. Mathematical Programming Study, 28:63-93,
1986.

[43] R. T. Rockafellar and R. J.-B. Wets. Generalized linear-quadratic problems of deterministic
and stochastic optimal control in discrete time. STAM Journal on Control and Optimization,
28:810-822, 1990.

[44] R. T. Rockafellar and R. J.-B. Wets. Scenarios and policy aggregation in optimization under
uncertainty. Mathematics of Operations Research, 10:119-147, 1991.

26

[45] T. F. Rutherford. MILES: A mixed inequality and nonlinear equation solver. Working Paper,
Department of Economics, University of Colorado, Boulder, 1993.

[46] Thinking Machines Corporation, Cambridge, MA. Connection Machine CM-5 Technical Sum-
mary, 1993.

[47] Thinking Machines Corporation, Cambridge, MA. CM Fortran Language Reference Manual,
1994.

[48] Thinking Machines Corporation, Cambridge, MA. CMSSL for CM Fortran, 1994.

[49] P. Tseng. Applications of a splitting algorithm to decomposition in convex programming and
variational inequalities. STAM Journal on Control and Optimization, 29:119-138, 1991.

[50] S. E. Wright. Dynfgm: Dynamic finite generation method. Technical report, Department of
Mathematics, University of Washington, Seattle, Washington, 1989.

[51] S.J. Wright. Solution of discrete—time optimal control problems on parallel computers. Parallel
Computing, 16:221-238, 1990.

52] C. Y. Zhu. On the primal-dual steepest descent algorithm for extended linear—quadratic
g
programming. STAM Journal on Optimization, 5:114-128, 1995.

[63] C. Y. Zhu and R. T. Rockafellar. Primal-dual projected gradient algorithms for extended
linear-quadratic programming. STAM Journal on Optimization, 3:751-783, 1993.

27

10000

® PATH
SMOOTH
CONOPT
N A MILES
1000 B Splitting: 16 VU's
A
100 °
& ®
|
$
u u
10 : / - - p .
®
°
1 °

N= 16 32 64 128 256 512 1024 2048

Figure 1: Elapsed CPU time in seconds for well-conditioned problems with s = 8.

10000
® PATH
SMOOTH
R CONOPT
7 A MILES
Splitting: 16 VU's
1000 °
[
A
]
100
|
]]
A
L
]
]
]
10 .

N= 16 32 64 128 256 512 1024 2048

Figure 2: Elapsed CPU time in seconds for well-conditioned problems with s = 16.

28

10000

1000

100

10

N =

® PATH
SMOOTH
B Splitting: 16 VU's
]
[]
]
]
[]
u
]
[}
]
]
16 32 64 128 256 512 1024

Figure 3: Elapsed CPU time in seconds for well-conditioned problems with s = 24.

10000

1000

100

)
°
||
°
u ® PATH
" SMOOTH
] B Splitting: 16 VU's
16 32 64 128 256 512 1024

Figure 4: Elapsed CPU time in seconds for well-conditioned problems with s = 32.

29

10000

[J
'y]
1000
|
[]
° - ([] PATH
100 SMOOTH
B Splitting: 16 VU's
[|
N= 16 32 64 128 256 512 1024

Figure 5: Elapsed CPU time in seconds for well-conditioned problems with s = 40.

10000
A
| |
A
1000 .
100]
°
u
A - ® PATH
] ® SMOOTH
10 » CONOPT
R A MILES
Ps B Splitting: 16 VU's
°
1
N= 16 32 64 128 256 512 1024

Figure 6: Elapsed CPU time in seconds for ill-conditioned problems with s = 8.

30

10000

[J
& [

1000

® |

100 o n "
] PATH
SMOOTH
u B Splitting: 16 VU's
e

10

N= 16 32 64 128 256 512 1024 2048

Figure 7: Elapsed CPU time in seconds for ill-conditioned problems with s = 16.

10000
)
° |
1000 []
|
)
" ® PATH
100 SMOOTH
- B Splitting: 16 VU's
N= 16 32 64 128 256 512 1024

Figure 8: Elapsed CPU time in seconds for ill-conditioned problems with s = 24.

31

