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We propose to solve such problems with algorithms derived from the splitting theory of maximalmonotone operators. Section 1 reviews relevant portions of this theory in a tutorial manner,although it contains some minor new results that are used later in the paper. It is distinguished fromprior expositions (e.g. [20] and [11, Chapter 3]) in that it emphasizes the fundamental connectionbetween monotone operators and nonexpansive mappings, inspired by [17]. We feel this approachis more intuitive than treatments based on proximal mappings, and it serves to unify the treatmentof \Douglas-Rachford" and \Peaceman-Rachford" schemes [20, 12].Section 2 applies the theory in two di�erent ways to monotone a�ne variational inequality(MAVI) problems and derives two classes of MAVI algorithms. The �rst class is quite simple andis not entirely new, overlapping with special cases of the dual methods proposed in [14]. Despitetheir simplicity, these methods have remained virtually unknown; for example, they are absent fromrecent reference works such as [6]. We show that they take a very simple form indeed in the caseof the LCP (3); see (27) below.The second class of MAVI methods we derive appears to be entirely new, although it resemblesclassical matrix splitting [26, 27, 28], with the usual under-relaxation step replaced by the solutionof a certain linear system. The new class of methods has a stronger convergence theory that doesnot depend on symmetry.Section 3 takes an algorithm from this latter class and applies it to discrete-time optimal controlproblems formulated as extended linear-quadratic programs [40, 41] (see also [7, Section 3.6]). Thepurpose of this exercise is twofold: �rst, to demonstrate the methods of Section 2 are not merelytheoretical, but can be successfully applied to di�cult, large-scale problems; second, to provide anexample of how splitting methods can be used to produce parallel algorithms. Essentially, if onecan express a problem as the superposition of two structures, each by itself amenable to parallelcomputing, then splitting will furnish an iterative parallel algorithm that deals alternately with onestructure and then the other.We then describe a massively data-parallel implementation of our proposed splitting method forextended linear-quadratic programming on the CM{5 family of parallel computers. Computationalresults show that the parallel splitting implementation greatly outperforms standard serial codeson all but the smallest test problems.Section 4 gives some concluding remarks.1 Summary of Monotone Operator Splitting Theory1.1 Monotone OperatorsIn this paper, an operator T on <n is simply some subset of <n � <n. For every such T , we letT (x) := fy j (x; y) 2 T g, thus de�ning a point-to-set mapping on <n; in fact, we make no distinctionbetween this point-to-set mapping and its graph T . Thus, the statements y 2 T (x) and (x; y) 2 Tare completely equivalent.The inverse of any operator T is the operator T�1 = f(y; x) j (x; y) 2 T g, which will alwaysexist. The sum T1 + T2 of two operators T1 and T2 is de�ned byT (x) = (T1 + T2)(x) = T1(x) + T2(x) := fy + z j y 2 T1(x); z 2 T2(x)g ; (4)and for any c 2 <, cT := f(x; cy) j (x; y) 2 T g. We de�ne domT := fx j T (x) 6= ;g and imT :=dom(T�1) = fy j 9 (x; y) 2 T g. When T (x) is necessarily a singleton set fyg for all x, that is, Tis the graph of a function <n ! <n, we say that T is single-valued, and we may write T (x) = yinstead of T (x) = fyg. 2



An operator T is said to be monotone if
x� x0; y � y0� � 0 8(x; y); (x0; y0) 2 T : (5)A monotone operator T is said to be maximal if no strict superset of T is monotone, that is,T � T 0 � <n �<n with T 0 monotone implies that T 0 = T .Finding a zero of a maximal monotone operator T , that is, some x 2 <n with 0 2 T (x), isa fundamental problem [1, 30, 39] that generalizes not only all of lower semicontinuous convexoptimization, but also monotone variational inequalities.Some salient facts regarding monotone and maximal monotone operators on <n are collectedbelow.Proposition 11. For any scalar c > 0, cT is (maximal) monotone if and only if T is (maximal) monotone; Tand cT have the same set of zeroes.2. Suppose T is monotone, then T is maximal monotone if and only if im(I + T ) = <n.3. Given any monotone operator T on <n and z 2 <n, z can be written in at most one way asx+ y, where y 2 T (x). If T is maximal, then such a representation must exist.4. If f :<n ! < [ f+1g is a lower semi-continuous convex function, then the subgradientoperator @f (see for example [36]) is maximal monotone.5. If T1 and T2 are monotone operators, then T1 + T2 is also monotone. If T1 and T2 are bothmaximal and ri(dom T1) \ ri(dom T2) 6= ;, where \ri" denotes the relative interior (see forexample [36]), then T1 + T2 is also maximal.6. If Q is an invertible matrix, then the operatorQ>TQ := n(Q�1x;Q>y) j (x; y) 2 T ois (maximal) monotone if and only if T is (maximal) monotone.Proof. Statement 1 is trivial. Statement 2 is shown in [1, 23]. For the �rst part of state-ment 3, suppose z = x + y = x0 + y0, where (x; y); (x0; y0) 2 T . Then 0 � hx� x0; y � y0i =hx� x0; (z � x)� (z � x0)i = �kx� x0k2, implying x = x0 and y = y0. The rest of the statementfollows from statement 2 (see also [23] for an equivalent result). The next statement is standardand can be found in [35, 36]. The result about the maximality of sums of operators is proven in[37]. Statement 6 can be established directly or may be found in [11, Proposition 3.1(iv)]. 2We now consider another, more familiar class of operators. An operator N on <n is said to benonexpansive if 

w� w0

 � 

z � z0

 8(z; w); (z0; w0) 2 N : (6)Considering the case z = z0, it is immediate that nonexpansive operators must be single-valued,and (6) may be simpli�ed to

N(z)�N(z0)

 � 

z � z0

 8z; z0 2 <n : (7)3



It is also immediate that nonexpansive operators are Lipschitz continuous, and a composition ofnonexpansive mappings is nonexpansive.We now develop some observations from [17, 23] that reveal a deep connection between monotoneand nonexpansive operators. Let T be any operator and consider the related operator N [T ] givenby N [T ] = f(x+ y; x� y) j (x; y) 2 T g :This transformation is invertible, viaN�1 [N ] = ��z + w2 ; z � w2 � j (z; w) 2 N� ;so that N�1 [N [T ]] = T .Proposition 2 Suppose N = N [T ] (or equivalently T = N�1 [N ]). Then T is monotone if andonly if N is nonexpansive. T is maximal monotone if and only if N is a nonexpansive mappingde�ned on all of <n. Finally, 0 2 T (x) if and only if x is a �xed point of N , that is, x 2 N(x).Proof. Choose any (x; y); (x0; y0) 2 T and (z; w); (z0; w0) 2 N related by x + y = z, x � y = w,x0 + y0 = z0, and x0 � y0 = w0. Then

w � w0

2 = 

(x� y)� (x0 � y0)

2= 

(x+ y)� (x0 + y0)

2 � 4 
x� x0; y � y0�= 

z � z0

2 � 4 
x� x0; y � y0� : (8)It follows that N is nonexpansive if and only if hx� x0; y � y0i � 0 for all (x; y); (x0; y0) 2 T . Thisproves the �rst equivalence. Combining this observation with Proposition 1, statement 2, we obtainthe second equivalence. For the last assertion, note that0 2 T (x) , (x+ 0; x� 0) = (x; x) 2 N : 2Thus, for every monotone operator T , there is a corresponding nonexpansive mapping N =N [T ]. The zeroes of T are the �xed points of N . Conversely, for every nonexpansive mapping N ,there is a corresponding monotone operator T = N�1 [N ] whose zeroes are the �xed points of N .This equivalence suggests that an iteration of the form zk+1 = N [T ] (zk) might be able to locatethe zeroes of T . Unfortunately, the nonexpansiveness of N [T ] does not guarantee convergenceof such a fzkg, but only that it will remain within a bounded distance of any solution point.Furthermore, N [T ] (z) may be di�cult to evaluate, since it involves �nding the unique (x; y) 2 Twith x+ y = z, which is in many cases as hard as solving T (x) 3 0. Fortunately, it is possible toapply the following proposition, where a �� b is a shorthand for ka� bk � �:Proposition 3 Let N be any nonexpansive mapping de�ned on all of <n, possessing at least one�xed point. Let the sequence fzkg � <n conform to the recursionzk+1 ��k �kN(zk) + (1� �k)zk ; (9)4



where f�kg is a sequence of scalars with 0 < �k � 1. If 0 < inff�kg1k=0 � supf�kg1k=0 < 1 andP1i=0 �k <1 then fzkg converges to a �xed point of N . If N is a contraction, that is, there existssome � 2 [0; 1) such that 

N(z)�N(z0)

 � � 

z � z0

 8z; z0 2 <n ; (10)then convergence is guaranteed under the weaker assumption that P1k=0 �k =1 and �k�k ! 0.Proof. In view of Proposition 2, the �rst case is implied by [12, Theorem 3] applied to the maximalmonotone operator T = N�1 [N ], where �k = 2�k and ck = 1 for all k (note: this theoremgeneralizes many prior results, including [25, Theorem 3] and [38, Theorem 1]).The second case follows from direct application of [33, Lemma 3, page 45]. 2Note that 12I + 12N [T ] = f(x+ y; x) j (x; y) 2 T g = (I + T )�1 :Thus, if we leave �k �xed at 1=2, we are executing the iterationzk+1 ��k (I + T )�1(zk) ;which is a form of the well-known proximal point algorithm [38]. The general form of the proximalpoint algorithm di�ers only in allowing iterations of the formzk+1 ��k (I + ckT )�1(zk) ;where fckg is a sequence of positive scalars bounded away from zero.If supf�kg1k=0 = 1, Proposition 3 requires N to be a contraction. The following lemma givessu�cient conditions on T for this to occur for N = N [T ].Lemma 4 Suppose the operator T is strongly monotone with modulus �, and Lipschitz with mod-ulus !, that is, there exist some �; ! > 0 such that for all (x; y); (x0; y0) 2 T ,
x� x0; y � y0� � � 

x� x0

2 (11)

y � y0

 � ! 

x� x0

 : (12)Then N = N [T ] is a contraction.Proof. Applying the Cauchy-Schwarz inequality, (11) implies

y � y0

 � � 

x� x0

 8 (x; y); (x0; y0) 2 T :It follows that � � !. Let � = s1� 2� + !21 + 2� + !2 : (13)Since � > 0, it follows that the denominator in (13) is positive. Furthermore, since 0 < � � !, wehave 1� 2� + !2 � (1� !)2 � 0, so the numerator is nonnegative and � 2 [0; 1).Substituting the de�nition of � on both sides now establishes the validity of the equation2�(�2 + 1) = (1� �2)(1 + !2) : (14)5



Take any (x; y); (x0; y0) 2 T . Multiplying both sides of (14) by kx� x0k2, we have2�(�2 + 1) 

x� x0

2 = (1� �2)(

x� x0

2 + !2 

x� x0

2) : (15)Since T is Lipschitz, (15) implies2�(�2 + 1) 

x� x0

2 � (1� �2)(

x� x0

2 + 

y � y0

2) : (16)By the strong monotonicity of T , (16) implies2(�2 + 1) 
x� x0; y � y0� � (1� �2)(

x� x0

2 + 

y � y0

2) ;or equivalently

x� x0

� 2 
x� x0; y � y0�+ 

y � y0

2 � �2 h

x� x0

+ 2 
x � x0; y � y0�+ 

y � y0

2i ;which is in turn equivalent to

(x� y)� (x0 � y0)

2 � �2 

(x+ y)� (x0 + y0)

2 : (17)Now, statement 3 of Proposition 1 states that every z in the domain of N may be expressed asx+ y for some (x; y) 2 T , in which case N(z) = x� y. Therefore, taking square roots, (17) implieskN(z)�N(z0)k � � kz � z0k for every z; z0 2 domN . 2Conditions (11)-(12) are the same as those employed in the rate of convergence results in workssuch as [20] and [21].1.2 Rachford-Class Splitting TheoryIn many cases, the operator N [T ], or essentially equivalently (I + T )�1, may be too di�cult toevaluate to make direct application of Proposition 3 practical. Suppose that this is the case, butthat T has the special structure T = T1 + T2 given in (4), where T1 and T2 are both maximalmonotone but have simple enough structure to permit practical evaluation of both N1 := N [T1]and N2 := N [T2].Now, N1 and N2 de�ned in this manner are both nonexpansive maps, so their functional com-position N := N1 �N2 = N [T1] � N [T2] is also nonexpansive. Furthermore, the following propertyholds:Lemma 5 Let T1; T2 be maximal monotone operators on <n. Then z 2 <n is a �xed point ofN = N [T1] � N [T2] if and only if it is of the form x + y, where y 2 T2(x) and �y 2 T1(x). Thisproperty in turn implies that x = 12z + 12N [T2] (z) = (I + T2)�1(z) is a zero of T1 + T2.Proof. First suppose z = x + y, y 2 T2(x), and �y 2 T1(x). Then N(z) = N [T1] (N [T2] (z)) =N [T1] (x�y) = x�(�y) = x+y = z. Conversely, suppose z is a �xed point of N . Then there mustexist (x; y) 2 T2 with x + y = z. Then N [T2] (z) = x � y. Similarly, there must exist (x0; y0) 2 T1such that x0 + y0 = x� y. Then N [T1] (x� y) = x0 � y0. By hypothesis, x0 � y0 = z = x+ y, so wehave the system of equations x0 + y0 = x� yx0 � y0 = x+ y :Adding these two equations yields x0 = x, and subtracting them yields y0 = �y. It follows that z isof the speci�ed form and that T1(x) + T2(x) 3 �y + y = 0, implying that x is a zero of T1+ T2. 26



Thus, �nding a �xed point of N is tantamount to �nding a zero of T = T1 + T2. As N isnonexpansive, we can directly apply Proposition 3. For simplicity of notation, suppose that �k � 0.The iteration suggested by Proposition 3,zk+1 = �kN(zk) + (1� �k)(zk) (18)= �kN1(N2(zk)) + (1� �k)(zk) ; (19)can be e�ciently carried out as follows. Let (xk; bk) 2 T2 be such that zk = xk + bk for all k anditerate using the ensuing two steps:(i) Find the unique (yk+1; ak+1) 2 T1 such thatyk+1 + ak+1 = xk � bk : (20)(ii) Find the unique (xk+1; bk+1) 2 T2 such thatxk+1 + bk+1 = �k(yk+1 � ak+1) + (1� �k)(xk + bk)= �k �yk+1 � (xk � bk � yk+1)�+ (1� �k)(xk + bk)= 2�kyk+1 + (1� 2�k)xk + bk :The case �k � 1 is known as \Peaceman-Rachford" splitting, while the case �k � 1=2 istraditionally known as \Douglas-Rachford" splitting [20]. The more general case 0 < inff�kg1k=0 �supf�kg1k=0 < 1 is addressed in [12].If one allows Peaceman-Rachford steps, that is, one permits �k to equal or approach 1, thenN must be a contraction for Proposition 3 to guarantee convergence. Such a property can beguaranteed if either N1 = N [T1] or N2 = N [T2] is a contraction, and in particular, by Lemma 4,if either T1 or T2 is both strongly monotone and Lipschitz.We also note that Proposition 3 will permit approximate evaluation of N in (18), which meansthat either N1 and/or N2 may be evaluated approximately. We thus arrive at the following propo-sition:Proposition 6 Let T1; T2 be maximal monotone operators on <n such that 0 2 T1(x) + T2(x) hassome solution. Let f�kg; f�kg; f�kg be sequences of nonnegative scalars with �1 � �k � 1 � �2,where �1 > 0 and �2 � 0. Suppose f(xk; bk)g � T2 and f(yk; ak)g � T1 conform to the recursionsyk+1 + ak+1 ��k xk � bk (21)xk+1 + bk+1 ��k 2�kyk+1 + (1� 2�k)xk + bk (22)for all k � 0. Then, if either of the following two conditions hold, fxkg converges to some solutionx� of 0 2 T1(x) + T2(x):1. �2 > 0, P1k=0 �k <1, and P1k=0 �k <1.2. One of T1 or T2 is both strongly monotone and Lipschitz, �k=�k ! 0, and �k ! 0.Proof. Let zk = xk + bk and wk = yk + ak for all k � 0. Then, de�ning N1; N2 as above, we havewk ��k N2(zk)zk+1 ��k �kN1(wk) + (1� �k) zk ;7



which implies by the nonexpansiveness of N2 thatzk+1 ��k+�k�k �kN1(N2(zk)) + (1� �k)zk :First, consider case 1. Since f�kg and f�kg are summable, and f�kg is bounded, f�k + �k�kgis also summable. Therefore, Proposition 3 implies that fzkg converges to a �xed point of thenonexpansive map N1 �N2 = N , that is, some x� + b� such that b� 2 T2(x�), �b� 2 T1(x�), andthus 0 2 T1(x�) + T2(x�). Now, xk = (1=2)(N2(zk) + zk) for all k; since N2 is nonexpansive, it isLipschitz continuous, and hence limk!1 xk = limk!1 12 �N2(zk) + zk� = 12N2(z�) + 12z� = x� :Now consider case 2. As outlined above, N is now guaranteed to be a contraction. �k=�k ! 0and �k ! 0 collectively imply that (�k + �k�k)=�k = �k=�k + �k ! 0. Therefore, we can applythe contraction case of Proposition 3, and proceed as in case 1. 2Note that the theory we have just presented covers only Peaceman- and Douglas-Rachfordsplitting, and does not subsume forward-backward [4, 14, 31, 49], or \double-backward" [19, 31, 22]splitting schemes. These methods have a di�erent and generally less attractive convergence theory.2 Relating Monotone A�ne Variational Inequalities to MonotoneOperatorsWe now relate the monotone operator theory we have just presented to monotone a�ne variationalinequality problems. Recall the problem avi(M; q;B) given in (1), with M positive semide�nite butpossibly asymmetric, and let sol(M; q;B) denote its solution or, if there is more than one, the setof all solutions. The feasible region of avi(M; q;B) is de�ned asfeas(M; q;B) := fx jMx+ q 2 (recB)�; x 2 Bg ;where recC denotes the recession cone of a set C de�ned byrecC := fd 2 <n j x+ cd 2 C 8 x 2 C; c � 0g ;and \�" denotes the dual cone operation de�ned byK� := fy j hy; vi � 0; 8 v 2 K g :By way of illustration, in the special case of the LCP (3) the feasible set is fx jMx+ q � 0; x � 0g,while the solution set consists of all elements of the feasible set that also satisfy the complementaritycondition hx;Mx+ qi = 0.2.1 Simple Splitting SchemesWe now introduce two operators that constitute splitting of avi(M; q;B). LetW denote the operatorW (x) := fMx+ qg 8x 2 <n :It is simple to con�rm that an operator of this form must be Lipschitz, is monotone if and only if Mis positive semide�nite, and is strongly monotone if and only if M is positive de�nite. Furthermore,Proposition 1 implies W is maximal, because I +M is positive de�nite, and henceim (I +W ) = f(I +M)x+ q j x 2 <n g = <n :8



Let NB denote the point-to-set normal cone operator of B de�ned byNB(x) := ( fy j hy; w� xi � 0 8w 2 Bg ; x 2 B;; x =2 B :Since B is closed and convex, NB is the subgradient mapping of the closed proper convex function�B:<n ! <[ f+1g given by �B(x) := ( 0; x 2 B+1; x =2 B :NB is therefore maximal monotone by Proposition 1, statement 4.The problem avi(M; q;B) is equivalent to requiring that �(Mx+ q) 2 NB(x), that is,0 2Mx+ q +NB(x) : (23)By the above de�nitions this is equivalent to �nding some zero x of the operator W +NB, namelysolving 0 2 (W + NB)(x). Since domW = <n, W + NB is maximal monotone by Proposition 1,statement 5.We may therefore envision solving MAVI's by applying one of the splitting schemes outlined inSection 1, setting T1(x) = W (x) = fMx+ qg 8x 2 <n;T2 = NB :Generalizing slightly, we introduce a positive scalar multiplier c:T1(x) = cW (x) = fcMx+ cqg 8x 2 <n;T2 = cNB = NB : (24)Consider applying Proposition 6 to the identi�cations (24). For simplicity, we will let �k =�k = 0 for all k. For all v 2 <n, de�ne (v)B to be the projection of v onto B. A critical observationis that z = x+ b; (x; b) 2 NB () z = (x)B ; b = z � x : (25)In this case, it follows that x � b = x� (z � x) = 2 (z)B � z := rB(x) :The operation rB is a re
ection through the set B.To apply the iteration (i)-(ii), de�ne zk := xk + bk for all k. Under (24), (25) permits us torewrite (i) as yk+1 = (I + cM)�1 �rB(zk)� cq� :In terms of zk+1 = xk+1 + bk+1, where (xk+1; bk+1) 2 T2 = NB, (ii) iszk+1 = 2�kyk+1 + (1� 2�k) �zk�B + �zk � �zk�B� :Using (25) and some simpli�cation, one obtainszk+1 = zk + 2�k h(I + cM)�1 �rB(zk)� cq�� �zk�Bi : (26)The following result is obtained by applying Proposition 6 and remarking that avi(M; q;B) musthave a solution if M is positive semide�nite and feas(M; q;B) 6= ; [2].9



Proposition 7 Consider the problem avi(M; q;B) of (1), where M is positive semide�nite, q 2 <nand B is a closed convex set, and assume feas(M; q;B) 6= ;. Take any scalar c > 0 and sequencef�kg � <n with 0 < inf f�kg1k=0 � sup f�kg1k=0 < 1. Then any sequence fzkg � <n conformingto (26) will converge to some z� such that x� := (z�)B solves avi(M; q;B), and (�1=c)(z� � x�) =Mx� + q. If sup f�kg1k=0 = 1, the same convergence is guaranteed provided M is positive de�nite.We further note that by letting �k > 0 in Proposition 6, the iteration (26) will still convergeeven if (I + cM)�1(rB(zk)� cq) is computed inexactly, provided the accuracy improves su�cientlywith k.Consider brie
y the special case of the LCP (3), where B = <n+. It is clear that rB(z) = jzj, thecomponent-wise absolute value of z. Setting �k � 1=2, we obtain the very simple methodzk+1 = (I + cM)�1 ����zk���� cq�+ �zk�� ; (27)where �zk�� is the component-wise negative part of zk. Proposition 7 shows this recursion con-verges to some z� = x��c(Mx�+q), where x� solves (3), subject only to positivity of c and positivesemide�niteness of M . From such a z�, one can compute x� as the component-wise positive partof x�, x� = (z�)+.2.2 Matrix Splitting SchemesAnother possibility is to take two n�n positive semide�nite matrices M1 and M2 with M1+M2 =M , and two vectors q1; q2 2 <n such that q1 + q2 = q, and letT1(x) = �M1x+ q1	 +NB(x) 8x 2 <nT2(x) = �M2x+ q2	 8x 2 <n : (28)Then we have (T1 + T2)(x) 3 0 , nM1x+ q1o+ nM2x+ q2o+NB(x) 3 0, fMx+ qg+NB(x) 3 0 ;and (T1 + T2)(x) 3 0 if and only if x solves (23), and hence avi(M; q;B). T1 and T2 are bothmaximal monotone by the same arguments used above.However, we will consider a generalization of (28) with the same change of variables appliedsimultaneously to T1 and T2:T1(~x) = �Q>M1Q~x+Q>q1	+ Q>NB(Q~x) 8~x 2 <nT2(~x) = �Q>M2Q~x+Q>q2	 8~x 2 <n ; (29)where Q is an arbitrary nonsingular matrix. In this case, ~x is a zero of T1+T2 if and only if x = Q~xsolves avi(M; q;B). The identi�cations (29) will give di�erent algorithms than those arising from(24) unless M1 = 0 and Q = I .Now consider applying Proposition 6 to the identi�cations (29). We start from (i)-(ii), but interms of variables (~xk; bk) 2 T2 and (~yk; ak) 2 T1. The form of T2 gives bk = Q>(M2Q~xk + q2).Thus, (i) involves solving for ~yk+1 in the inclusion~yk+1 +Q> �M1Q~yk+1 + q1 +NB(Q~yk+1)� 3 ~xk � Q> �M2Q~xk + q2� :10



Premultiplying by Q�> and substituting xk = Q~xk and yk = Q~yk for all k, we then haveQ�>Q�1yk+1 +M1yk+1 + q1 +NB(yk+1) 3 Q�>Q�1xk �M2xk � q2, Hyk+1 +M1yk+1 + q + (M2 �H)xk +NB(yk+1) 3 0, yk+1 2 sol�H +M1; q + (M2 �H)xk;B� ;where H := Q�>Q�1. Since H is positive de�nite andM1 is positive semide�nite, H+M1 is positivede�nite, and the \sol" denotes a unique point [34, Theorem 4.3] (this result also con�rms that yk+1must exist).After a similar change of variables, (ii) reduces toxk+1 = (H +M2)�1 �H �2�kyk+1 + (1� 2�k)xk�+M2xk� :Note that if M2 is positive de�nite, then T2 will be strongly monotone and Lipschitz (the samecannot be said aboutM1 and T1 because NB is not Lipschitz). The following result is now immediatefrom Proposition 6.Proposition 8 Let M1 and M2 be n�n real positive semide�nite matrices, de�ne M := M1+M2,and take any q 2 <n. Let H any symmetric positive de�nite matrix and suppose f(xk; yk)g 2<n � <n conforms to the recursionsyk+1 = sol�H +M1; q + (M2 �H)xk ;B� (30)xk+1 = (H +M2)�1 �H �2�kyk+1 + (1� 2�k)xk�+M2xk� : (31)If feas(M; q;B) 6= ; and 0 < inf f�kg1k=0 � sup f�kg1k=0 < 1, then fxkg converges to a solutionof avi(M; q;B). The same convergence is also guaranteed if feas(M; q;B) 6= ;, 0 < inf f�kg1k=0 �sup f�kg1k=0 � 1, and M2 is positive de�nite.The nonexpansiveness (and hence Lipschitz continuity) of the operator (I + T1)�1 can be usedto show that the auxiliary sequence fykg converges to the same limit x� as fxkg.Now suppose we are given a positive semide�nite M and consider any splitting of M intoM = B + C, where B is positive de�nite, but C = M �B is arbitrary. Suppose that we setH = sym(B) ; M1 = skew(B) ; M2 = M � skew(B) ; (32)where sym(B) := 12(B + B>) and skew(B) := B � sym(B) = 12(B � B>) denote the symmetric andskew-symmetric parts of B, respectively.Under (32), H is symmetric positive de�nite, and both M1 and M2 are positive semide�nite.Applying (30)-(31) and simplifying, we immediately obtainyk+1 = sol�B;Cxk + q;B� (33)xk+1 = (2 sym(B) + C)�1 �2 sym(B) ��kyk+1 + (1� �k)xk�+ Cxk� : (34)These recursions cause fxkg to converge to a solution of (1) subject only to positive de�nitenessof B, positive semide�niteness of M = B + C, and f�kg being bounded away from 0 and 1. Themethod may be construed as standard matrix splitting (see e.g. [26, 27, 28]), with the computation(34) replacing the usual under-relaxation step. Proposition 8 also guarantees convergence whenf�kg is allowed to approach 1, so long as M , and hence M2 = M � skew(B), is positive de�nite.To close this section, we note that the calculations in (30)-(31) or (33)-(34) may be performedapproximately in the manner described in Proposition 6. Also, although it is beyond the scopeof this paper, the techniques employed here may also be applied to produce splitting methods fornonlinear monotone variational inequalities. 11



3 Parallel Application to Optimal ControlWe now present a case study indicating that splitting methods can be an e�ective computationaltool for di�cult MAVI problems. In particular, one can use splitting to dissect a problem intocomparatively simple substructures that can be solved using highly parallel techniques. We drawan example of this kind of decomposition from the �eld of discrete-time optimal control. Ourformulation is based on the notion of extended linear-quadratic programming as introduced byRockafellar [40, 41].3.1 Discrete-Time Optimal Control as an Extended Linear-Quadratic ProblemMany optimal control problems have essentially linear dynamics that evolve over a �xed timeinterval [�L; �R] according to an underlying di�erential equationdwd� (�) = ~A(�)w(�) + ~B(�)u(�) + ~b(�) 8� 2 (�L; �R) ; (35)with various auxiliary conditions speci�ed at each instant in the time interval. The function w :[�L; �R]! <s represents the state of the system at any time instant, whileu(�) 2 U(�) � <h 8� 2 (�L; �R) (36)are the control variables at each time instant, anduL 2 UL � <hL (37)represents an initial control. Table 1 summarizes all the relevant problem data. The matrices andsets parametrized by � are usually assumed to vary continuously with � . Initial state conditionscan be speci�ed using w(�L) = BLuL + bL ; (38)a �xed initial state can be generated by choosing BL = 0.The beauty of the formulation advocated by Rockafellar is its ability to easily model constraintson the states and the controls at both intermediate and terminal times. This capability stems frommonitoring functions �VQ de�ned via�VQ(z) := supv2V nhv; zi � 12 hv;Qvio :Here V is a subset of <m and Q is a positive semide�nite m � m matrix. The function �VQ actsas a (linear-quadratic) penalty function and is allowed to take the value +1. Many di�erentpenalizations of the state and control \constraints" can be added using particular choices of V andQ. For example, if V = <m+ and Q = 0, then �VQ(z) = 0 if z � 0, and +1 otherwise, e�ectivelygenerating inequality constraints. [40] gives a variety of choices of V and Q, showing how to modelterminal state conditions and linear-quadratic regulator problems.The general problem formulation is to choose u(�) and uL to minimize the functionalF(uL; u) := Z �R�L ~p(�)u(�) + 12 Du(�); ~P(�)u(�)E� h~c(�); w(�)i d�+ D(pL); uLE+ 12 D(uL); PLuLE� D(cR); w(�R)E+ Z �R�L �V(�) ~Q(�) �~r(�)� ~C(�)w(�)� ~D(�)u(�)� d�+ �VRQR �rR � CRw(�R)� (39)12



Data Type of Datas; h; hL; m;mR Positive integers[�L; �R] A closed real intervalUL � <hL ;VR � <mR Closed convex setsU(�) � <h;V(�)� <m Closed convex set functions of � 2 [�L; �R]pL 2 <hL ; bL; cR 2 <s; rR 2 <mR Real vectorsPL 2 <hL�hL ; QR 2 <mR�mR Positive semide�nite matricesBL 2 <s�hL ; CR 2 <mR�s Arbitrary real matrices~p(�) 2 <h; ~c(�);~b(�) 2 <s; ~r(�) 2 <m Real vector functions of � 2 [�L; �R]~P (�) 2 <h�h; ~Q(�) 2 <m�m Positive semide�nite matrix functions of � 2 [�L; �R]~A(�) 2 <s�s; ~B(�) 2 <s�m;~C(�) 2 <m�s; ~D(�) 2 <m�h Arbitrary real matrix functions of � 2 [�L; �R].Table 1: Data describing an instance of an optimal control problem.subject to the constraints (35)-(38).In order to solve such a problem, we consider a discretization of (35)-(39) using N time points�1 = �L; : : : ; �t = �N�tN�1��L + � t�1N�1��R; : : : ; �N = �R :The integrals in (39) are approximated by �nite sums, and the derivative in (35) is modeled usinga �nite-di�erence formula. For further details, refer to [7, Section 3.6]. If we relabel the discretizedvariables usingu[1] = uL u[t] = u(�t�1); t = 2; : : : ; Nw[t] = w(�t); t = 1; : : : ; N � 1 w[N ] = wR ;then the resulting discretized problem ismin NXt=1�Dp[t]; u[t]E + 12 Du[t]; P[t]u[t]E � Dc[t]; w[t]E+ �V[t]Q[t](r[t] � C[t]w[t] �D[t]u[t+1])�S.T. w[t] = A[t�1]w[t�1] + B[t]u[t] + b[t] t = 1; : : : ; Nu[t] 2 U[t] t = 1; : : : ; N : (40)Note the time shift in the de�nition of w[t] and u[t]. P[t], U[t], Q[t], V[t], A[t], B[t], C[t], D[t],p[t], b[t], r[t], and c[t] are chosen to correspond to the continuous problem. For example, letting� = (�R � �L)=(N � 1), we have P[1] = PL, U[1] = UL, P[t] = � ~P (�t�1) and U[t] = U(�t�1) fort = 2; : : : ; N , c[t] = �~c(�t) for t = 1; : : : ; N � 1, and c[N ] = cR. Note that P[t] and Q[t] are squarepositive semide�nite matrices, while A[t], B[t], C[t], and D[t] are arbitrary, and possibly nonsquareand dense. We assume implicitly that w[0] and u[N+1] are identically zero.13



This discretized problem is also an extended linear-quadratic programming problem, for whichthere is an elegant duality theory based on saddle-point theory for a LagrangianL(u; y; v; w) := NXt=1 Dp[t]; u[t]E + 12 Du[t]; P[t]u[t]E� Dc[t]; w[t]E + Dv[t]; r[t] � C[t]w[t] �D[t]u[t+1]E�12 Dv[t]; Q[t]v[t]E + Dy[t]; w[t] � A[t�1]w[t�1] �B[t]u[t] � b[t]E ; (41)where u[t] 2 U[t] and v[t] 2 V[t] for t = 1; : : : ; N .The primal problem (40) arises frommaximizing this Lagrangian over v and y; the correspondingdual problem results from minimizing the Lagrangian over u and w. Essentially, this dual problemis also a control problem where v are the (discretized) dual control variables and y are the dualstate variables,It is well-known that determining a saddle point of (41) is equivalent to solving (40) under asuitably mild quali�cation [40]. After some simpli�cations, the discretized saddle-point problem inthe variables x[t] = (u[t]; y[t]; v[t]; w[t]), t = 1; 2; : : : ; N is equivalent to avi(M; q;B), withM = 26666666664 M[1] �L>[1]L[1] M[2] �L>[2]L[2] M[3] �L>[3]. . .L[N�2] M[N�1] �L>[N�1]L[N�1] M[N ] 37777777775 ; (42)q = h q[1] q[2] : : : q[N ] i> ; (43)B = NYt=1 �U[t] �<s � V[t] � <s� ; (44)where the submatrices M[t], L[t], and q[t] take the respective formsM[t] = 26664 P[t] �B>[t]B[t] �IQ[t] C[t]I �C>[t] 37775 ; (45)L[t] = 26664 �D>[t] A[t] 37775 ; (46)q[t] = hp>[t] b>[t] � r>[t] � c>[t]i : (47)The matrices M[t] are square, with M[1] having dimension hL + 2s + m, M[N ] having dimensionh+ 2s+mR, and the rest having dimension h+ 2s +m.We generated test problems having precisely this structure using techniques already developedfor MCPLIB [7], which is based on the code written by Wright [50] at the University of Washington.This procedure generates a�ne variational inequalities of the form (42)-(47) with the property that14



U[t] and V[t] are products of bounded closed intervals, P[t] and Q[t] are diagonal, and ~A(�), ~B(�),~C(�), ~D(�), ~P (�), ~Q(�), U(�), and V(�) do not vary with � . Although this last property makes allthe matrices M[t] identical, except for M[1] and M[N ], this characteristic does not appear to makethe generated problems particularly easy to solve, and our code takes no advantage of it.Thus, all of out test problems have the dynamical structure that is described in [43]. Onlythe parameters referred to within this structure have been randomized. Furthermore, the assumedstructure is very general, and includes many standard problems occurring in optimal control.3.2 Parallel Application of SplittingConsider the application of splitting algorithms to MAVI's with the structure described in (42)-(47).If the P[t] and Q[t] are all positive de�nite, then algebraically eliminating the free variables yields amore compact positive de�nite AVI of dimension (N�1)(h+m)+hL+mR. However, the resultingmatrix no longer has the block tridiagonal structure of (42), but is instead block lower triangular,and very much denser. Instead, we chose to maintain the original problem structure, and adopt theapproach of (30)-(31), with sup f�kg1k=0 < 1. An approach based on forward-backward splitting isalso possible [4], but is subject to relatively stringent stepsize restrictions.Our approach is motivated by the existence of parallel solvers for block-tridiagonal systemsof linear equations having structure like (42). Unfortunately, these techniques do not generalizedirectly to variational inequality problems, because it is no longer always possible to use one rowto \eliminate" another. However, one can isolate the block tridiagonal structure of the problem bytaking the approach of Proposition 8 withM1 = 266664 �M[1] �M[2] . . . �M[N ] 377775 ; (48)M2 = 266664 (1� �)M[1] �L>[1]L[1] (1� �)M[2] �L>[2]. . .L[N�1] (1� �)M[N ] 377775 ; (49)and � being some scalar in the range [0; 1]. If we chooseH to be block diagonal conformally withM1,then H +M1 is also block diagonal. Because of the separable structure of B in (44), step (30) nowdecomposes intoN independent, smaller AVI problems, each one over a box B[t] := U[t]�<s�V[t]�<s.These problems may be solved independently and in parallel. Similarly, with H block diagonal,the matrix H +M2 in (31) will be block tridiagonal. Thus, (31) may be solved by block-orientedversions of the parallel cyclic reduction and substructuring methods described in [15, Section 5.4]and [16]. Brie
y, block cyclic reduction involves using block Gaussian elimination to eliminateevery other block of rows. The remaining, uneliminated rows form a block tridiagonal system halfthe size of the original one. Eliminating every other block of rows from this system and proceedingrecursively, one may factor the system in log2N parallel steps.When � = 1, a much simpler procedure is possible with some further assumptions on H . In15



addition to H being block diagonal, that is,H = 266664 H[1] H[2] . . . H[N ] 377775 ; (50)suppose that each H[t] has the block diagonal substructureH[t] = 266664 H1[t] H2[t] H3[t] H4[t] 377775 ; (51)with the blocks conforming to those of M[t]. Then H +M2 takes the form266666666666666666666664
H1[1] H2[1] H3[1] D[1]H4[1] �A>[1]�D>[1] H1[2]A[1] H2[2] H3[2] D[2]H4[2] �A>[2]�D>[2] H1[3]A[2] H2[3] . . .

377777777777777777777775 :This matrix is also block diagonal, and the linear system of (31) thus decomposes into many smaller,independent linear systems. Note, however, that the system's block structure does not align exactlywith that of M in (42); instead, its blocks are \o�set."We now have a parallel means for implementing both steps (30) and (31) of our splittingiteration. In practice, we also need some procedure for terminating the algorithm. Given that B isa \box" de�ned by ` 2 [�1;+1)n and u 2 (�1;+1]n as in (2), we may de�ne, for any x; g 2 <n,
i(xi; gi; `i; ui) := max f0; `i � xi; xi � ui;min fxi � `i; gig ;min fui � xi;�gigg (52)�(x; g; `; u) := maxi=1;:::;n f
i(xi; gi; `i; ui)g : (53)Then the problem avi(M; q;B) given in (1) is equivalent to �nding some x such that �(x;Mx +q; l; u) = 0. In practice, we will settle for �(x;Mx + q; l; u) � �, where � is some small tolerance;a simple way to terminate (30)-(31) is to periodically compute 
k := �(xk ;Mxk + q; l; u), andterminate if 
k � �.However, we advocate a somewhat more complicated procedure designed to detect exact solu-tions to (1) that might lie near the current iterate. De�ne �k := q+(M2�H)xk and suppose we solveeach subproblem avi(H[t] + �M[t]; �k[t];B[t]) making up (30) by a standard pivotal method [5, 18].Then for each of these subproblems there will be a �nal complementary basis Yk[t]. Consider their16



concatenation Yk := (Yk[1];Yk[2]; : : : ;Yk[N ]). Eventually, as fykg and fxkg converge to some solution x�of avi(M; q;B), Yk should stabilize at some complementary basis corresponding to x�. We proposeto take advantage of the possibility that this basis might be encountered long before 
k � �.Suppose Yk does not change over � consecutive iterations. Then by setting the nonbasic vari-ables at their corresponding bounds and solving for the remaining basic variables, we may be ableto\jump" to some solution x�. We use following procedure to attempt such \jumps": let yk+1 2 <nbe de�ned by yk+1i = ( yk+1i yk+1i nonbasic in Yk0 yk+1i basic in Yk ; (54)and let qk+1 := q +Myk+1. De�ne Mk to be M with each nonbasic column in Yk replaced by thecorresponding canonical unit vector. Now, we solve the system Mk ~yk+1 = �qk+1 for ~yk+1. Thissystem is block tridiagonal, so it is again amenable to the same parallel techniques as (31). Letŷk+1 2 <n be de�ned by ŷk+1i = ( yk+1i yk+1i nonbasic in Yk~yk+1i yk+1i basic in Yk : (55)It is a simple matter to compute 
̂k := �(ŷk+1;Mŷk+1 + q; l; u) from yk+1 and ~yk+1. If 
̂k � �, weterminate with the solution ŷk+1.As a heuristic acceleration technique, we propose checking whether 
̂k+1 < �
k, where � 2 [0; 1)is a parameter. If so, we rede�ne yk+1  ŷk+1 before proceeding to step (31).We are now ready to state a complete algorithm for an AVI with the structure (42)-(47):0. If � < 1, factor the block tridiagonal system H + M2. Set k = 0, choose some arbitrarystarting point x0 2 <n, and compute �0 :=M2x0.1. Compute �k = q + �k �Hxk. Then, for all t = 1; : : : ; N , computeyk+1[t] = sol�H[t] + �M[t]; �k[t];B[t]� (56)using a standard pivoting algorithm. If k > 0, use the prior complementary basis Yk�1[t] as astarting point. When done, save the �nal complementary basis Yk[t].2. If no Yk[t] has changed in the last � iterations, go to step 7.3. Compute�k := H �2�kyk+1 + (1� 2�k)xk�+M2xk = H �2�kyk+1 + (1� 2�k)xk�+ �k : (57)Then solve the block tridiagonal system(H +M2)xk+1 = �k : (58)4. Compute �k+1 := M2xk+1.5. Compute gk+1 := Mxk+1 + q = �k+1 +M1xk+1 + q. Then �nd 
k+1 = �(xk+1; gk+1; l; u).6. If 
k+1 � �, terminate with the solution xk+1. Otherwise, set k k + 1 and go to step 1.7. Compute qk+1 = q+Myk+1. Form Mk, solve the block tridiagonal systemMk ~yk+1 = �qk+1,and form ŷk+1 using (55). 17



8. Compute 
̂k = �(ŷk+1;Mŷk+1 + q; l; u). If 
̂k � �, halt with the solution ŷk+1. Otherwise, if
̂k < �
k, overwrite yk+1  ŷk+1. Proceed to step 3.Now suppose that we have a computer system consisting of V � N processors; if we have morethan N processors available, we only use the �rst N . We allocate the time steps t = 1; : : : ; N tothe processors in contiguous groups of roughly N=V . Each processor stores all data associated withthe rows ofM and q corresponding to its allocated time steps. All working vectors in the algorithmare partitioned similarly.Given this simple data distribution, we now describe, step by step, how to construct a data-parallel implementation of the algorithm 0-8:0. If � < 1, we must factor H +M2, which can be done using standard parallel techniques (e.g.block versions of the cyclic reduction method of [16]). Computing �0 := M2x0 requires anexchange of data between processors holding adjacent groups of time steps.1. Because H is block-diagonal, the computation of �k decomposes by the time step t. Similarly,the computation of yk+1 via (56) decomposes into a collection of N independent problems,one for each time step, each of which may be solved by local application of a standard pivotingalgorithm. Thus, no interprocessor communication is needed in this step.2. Here, we must determine if any Yk[t] has changed in the last � iterations. Each processor canlocally determine whether any of its Yk[t] have so changed. Then, the processors do a global\or" reduction/broadcast operation to globally determine if any Yk[t] has changed.3. Since �k = M2xk has already been computed, (57) decomposes by timestep and requires onlylocal computation. If � < 1, solving (58) is a parallel back-solve based on the factorizationalready computed in step 0. If � = 1, the system can be solved using only local computationand data exchange between consecutive processors.4. Computing �k+1 requires data exchange between consecutive processors.5. Finding gk+1 decomposes by time step, and requires only local computation. To �nd 
k+1,each processor �rst computes and �nds the maximum of the values 
i(xk+1i ; gk+1i ; `i; ui)(see (52)) for the indices i that it \owns". Then a single scalar interprocessor \reduction"operation �nds and broadcasts the global maximum.6. Since 
k+1 has just been broadcast in the previous step, no communication is required.7. Computing qk+1 again requires an exchange of data between consecutive processors. FormingMk requires a similar data exchange. Solving Mk ~yk+1 = �qk+1 requires a factor and back-solve using standard parallel block cyclic reduction techniques. Finally, forming ŷk+1 using(55) requires only local computation.8. Computing 
̂k requires some local computation and a single reduction/broadcast operation,as in step 5. After the broadcast of 
̂k, no further communication is needed.The communication requirements of the algorithm are those implicit in the block tridiagonalfactor and solve operations (steps 0, 3, and 7), along with global scalar reduction (steps 2, 5, and8) and simple one-dimensional \shift" operations (steps 0, 3, 4, and 7) for data exchange betweenconsecutive processors. The computation and communication requirements of the algorithm arehighly regular, with the possible exception of �nding yk+1[t] in step 1.18



3.3 Implementation for the CM{5 FamilyWe implemented the algorithm on the CM{5 family of parallel computers [46]. The modi�ed \fattree" communication topology of the CM{5 is well-suited to parallel tridiagonal factorization, shiftoperations, and global reductions.Due to the algorithm's computational and communication regularity, we chose to implement itusing the global data-parallel CM Fortran (CMF) language [47] and the CMSSL collection of nu-merical/scienti�c subroutines [48], which already contains sophisticated block-tridiagonal routinesbased on [16]. Under the global CMF/CMSSL programming environment, the CM{5 functionsessentially synchronously, like a giant array processor or SIMD computer [13]. The elemental pro-cessing units are not the \processing nodes", but the individual vector arithmetic units (VU's).Each processing node has four of these vector units. The vector units function synchronously, eachperforming similar operations on di�erent data. The environment is \tuned" principally for speedof operations on long vectors.CMF and CMSSL do not support \ragged arrays" in which the valid extent of one subscriptdepends on the value of another. This restriction limits our implementation to the case that allthe M[t] have the same dimension, namely hL = h and mR = m. Thus the dimension of the squarematrix M simpli�es to n = N(2s+ h+m).The implementation also assumes that the matrices P[t] and Q[t] are diagonal, as are the scal-ing/stepsize matrices H1[t]; : : : ; H4[t]. These additional restrictions are inessential, and could be re-moved very easily. A[t], B[t], C[t], and D[t] are represented as dense matrices.CMF and the CMSSL made most of the implementation straightforward. The CMSSL alreadycontained the necessary block tridiagonal routines, and most of the local calculations were easilywritten in CMF or were simple applications of the CMSSL's \multiple instance" dense linear algebrafunctions. CMF's ANY, MAXVAL and EOSHIFT intrinsic functions provided the required globalreductions and data exchanges between consecutive processors.The main di�culty was in solving the local subproblems avi(H[t] + �M[t]; �[t];B[t]) in step 1.Our approach was to �rst algebraically eliminate each subproblem's unbounded variables, trans-forming it into a fully dense AVI of dimension h+m on a bounded box U[t]�V[t]. To this collectionof problems, we then applied our own special, multiple-instance, synchronous implementation ofLemke's algorithm, written in CMF, with calls to the CMSSL. Essentially, we synchronously per-form Lemke pivots on every subproblem instance t = 1; : : : ; N . Instances that have already locateda complementary solution perform trivial basis-preserving pivots until all instances have reachedtermination. We use explicit representations of the basis inverses, with outer-product updates andperiodic reinversion.This approach was the easiest available to us, but has two potential drawbacks. First, aftereach pivot, the code must perform a fundamentally unnecessary global communication operationto determine whether all instances have terminated. Fortunately, these operations are extremelye�cient on the CM{5. Second, when N > V , the algorithm may perform a large number ofunnecessary 
ops, since each processor pivots on all its instances at each Lemke iteration, asopposed to only those that have not terminated. In a less inherently synchronous programmingenvironment, both these ine�ciencies could be removed; however, implementing the rest of thealgorithm might prove considerably more complicated.3.4 Computational Results on CM{5E SystemsFor purposes of comparison, we attempted to solve the problems using standard serial codes fora�ne variational inequalities on a SPARCStation 10/51 workstation with 32 megabytes of RAM.19



The serial codes consisted of PATH [8], which implements a generalization of the SQP methodwith a piecewise-linear path search, SMOOTH [3], a di�erentiable approximation method, andMILES [45], which implements a standard pivotal algorithm of the Lemke class. All the abovecodes are designed for nonlinear box-constrained variational inequalities, but can be applied tolinear problems. By reformulating the test problems as quadratic programs [42], we also attemptedto solve some of the problems with the generalized reduced gradient nonlinear programming codeCONOPT [10]. The generated quadratic programs are convex, but they are guaranteed not to bestrictly convex.Other techniques for the parallel solution of ELQP problems arising in optimal control havebeen described in the literature. Wright [51] develops an interior point SQP approach with specialadaptation of the (banded) linear algebra for solving the generated subproblems. Pantoja andMayne [29] also use an SQP approach, but exploit the structure at a higher level. Both of thesetechniques are essentially comparable to the PATH method, but with special implementation toexploit the problem structure. None of these authors report results on the structured ELQP'soutlined in Section 3.1.Zhu and Rockafellar [52, 53] consider the problem as an ELQP and apply forward-backwardsplitting techniques exploiting the underlying duality structure. Although they report results forproblems similar to the well-conditioned ones that we consider, their implementation is serial. Noparallel implementations of the above methods available for the CM-5, so we report only represen-tative serial times for those codes that were accessible within GAMS.We ran the parallel code on three di�erent CM{5E con�gurations, with a total of 16, 128, and256 vector units, respectively. The CM{5E is a variant of the basic CM{5 in which each processingnode consists of a 40-MHz SPARC{10 and four 40-MHz vector units. In all cases, each vector unithad access to 32 megabytes of local RAM.We created two sets of test problems. To conform with the assumptions of our CM{5 implemen-tation, we restricted the MCPLIB procedure (as described in Section 3.1) to the case hL = h andmR = m and limited the scope of our experiments by considering only the case h = m = s. Thedimension of the problems simpli�es to n = 4Ns and within each set of problems, the data is param-eterized by N and s. The GAMS source �le that was used to generate the test problems is availableby anonymous ftp from ftp://ftp.cs.wisc.edu/math-prog/mcplib/gams/opt cont.gms.In the �rst set, the condition numbers of the matrices P[t] and Q[t] are in the range of 2 to3. We generated such problems with s = 8, 16, 24, 32, and 40. In the second set, the conditionnumbers of P[t] and Q[t] were much higher, in the range of 104 to 105. For these more ill-conditionedproblems, we generated instances with s = 8, 16, and 24. For both sets, we considered all values ofN between 16 and 1024, stepping by powers of 2. For a few problems, we also tried N = 2048.After some careful but far from exhaustive experimentation on a subset of test problems, wearrived at the following parameter settings, where H = �I :� = max f8=N; 0:025g � = 10�7�k � 0:9 � = 0:9� = 0:05 � = 50 : (59)Only � (and hence H) varies with the problem to be solved. Since M2 is not positive de�nite,we were constrained to keep �k bounded away from 1. Thus, the algorithm implemented is a formof \Douglas-Rachford" (DR) splitting as described in [12].We set � to be fairly large because the e�ort involved in factoring the block tridiagonal matrixMk is considerable, and in particular much greater than that needed in the block tridiagonal back-solves of step 3. In practice, the algorithm always terminates in step 8. There were typically20



between 1 and 4 heuristic \jumps" (when the test 
̂k � �
k was passed), and they tended to beconcentrated towards the end of each run.For well-conditioned problems with small s, � = 1 worked very well, cutting the time per iter-ation approximately in half without much penalty in iteration count. For more di�cult problems,however, the algorithm is very sensitive to the value of �. Values of � near 1 in
ated iterationcounts by an order of magnitude or more; in general, it seemed important to use a value of � at ornear 0.The sensitivity of the algorithm to the other parameters is much milder. Setting � to within afactor of 4 or so of the value speci�ed in (59) resulted in only modest run time variations. Similarly,sensitivity to �k is limited as long as it is not close to 0, although values near 1 do tend to workbest. Sensitivity to the termination tolerance � is minimal unless the parameter is very large, sincethe algorithm always terminates with a step 8 \jump" to a solution that is accurate to at least 10digits of precision.Table 2 gives run times for the well-conditioned test problems. The solutions obtained by all ourmethods agreed to seven signi�cant digits. In Table 2, \Memory" means that a given problem wouldnot �t in physical memory, and \Time" indicates that the speci�ed code could not solve the problemwithin 14,400 seconds (4 hours). The results are also plotted graphically in Figures 1 through 5.It should be noted that the per-timestep memory requirements of the CM{5 implementation areconsiderably higher than the serial implementations'. This disparity is partly due to the largetemporary data structures allocated by CMSSL, and partly to our decision to use dense linearalgebra in our CM{5 Lemke subroutine. The latter choice made implementation considerablyeasier, and probably did not require any sacri�ce in speed, due to the CM{5's preference for longvector operations.Of the serial codes, PATH appears to be the most e�cient for these problems, followed (some-what distantly) by SMOOTH. CONOPT and MILES could only solve the easiest instances. How-ever, the parallel splitting implementation is markedly faster than any of the serial codes for almostall the problems. The exceptions are that PATH is competitive with the parallel code when N = 16,and also for the s = 8 problems that have N � 256. Depending on s, the parallel code could solveproblems 2 to 8 times larger than PATH.Comparison of the timings for the 16, 128, and 256 vector unit con�gurations illustrate how thesplitting approach is able to take advantage of parallelism. Our code can use at mostN vector units,even if more are available, so the 128- and 256-VU timings are essentially the same for N � 128.In fact, the 128-VU system gives slightly better performance in these cases, because it is controlledby a SPARC{10 \front end" processor, whereas other systems are controlled by SPARC{2 frontends. For N = 16, all the CM{5E con�gurations yield similar timings, except for the e�ects causedby front end performance.Table 3 gives run times for the more ill-conditioned problems. The format is the same as forTable 2, except that there are some \Failure" entries in the CONOPT column. These entriesindicate that, once the problems were converted to quadratic programs, CONOPT rejected themas having no feasible solution. Figures 6 through 8 show the same data graphically. The relativeperformance of the various codes remains quite similar to the well-conditioned problems, exceptthat parallel implementation's advantage over PATH is even more dramatic for s � 16. For thesame values of s, N , and number of vector units V , the splitting method does take longer to solvethe ill-conditioned problems than the well-conditioned ones, apparently due to a slowing in theconvergence rate of the underlying splitting procedure. There was an increase in the number ofsplitting iterations, mitigated by decrease in the number of Lemke pivots per iteration.The tuning of the CM{5/CMF/CMSSL environment for long vector operations makes it di�cult21



Serial Codes (SPARCStation 10/51) Parallel Splitting (CM{5E)s N PATH SMOOTH CONOPT MILES 16 VU 128 VU 256 VU8 16 0.91 7.57 5.85 7.03 9.74 6.40 13.008 32 2.04 16.33 37.76 36.47 8.47 4.11 6.218 64 4.08 40.07 180.45 292.6 7.90 3.98 7.758 128 8.47 134.14 2688.14 1486 11.45 5.04 6.878 256 19.04 217.74 Time Time 22.94 9.63 11.668 512 35.93 Memory 7.30 2.58 3.068 1024 93.56 12.74 3.30 3.428 2048 Memory 26.15 4.95 4.1016 16 11.56 44.73 33.65 42.44 11.31 8.23 12.7516 32 32.75 133.49 176.57 352.5 13.07 7.69 9.1016 64 65.29 191.31 2717.86 3042.00 18.70 9.58 10.9716 128 168.84 649.61 Time Time 25.64 10.26 12.3716 256 455.04 Memory 65.93 19.53 17.7016 512 1005.45 80.95 19.09 18.4816 1024 Memory Memory 49.37 35.6916 2048 100.33 63.1224 16 47.88 126.05 18.81 14.16 19.6424 32 152.5 388.12 24.62 15.5 17.2324 64 418.2 1029.32 85.57 25.93 25.1424 128 1169.46 4765.17 102.08 34.25 40.7224 256 2814.20 Memory 292.85 72.83 61.5124 512 Memory Memory 167.26 131.2724 1024 1042.09 621.8832 16 54.79 280.68 58.67 45.54 47.1032 32 178.85 989.64 81.37 52.74 59.0432 64 536.18 2815.9 104.95 48.61 53.9032 128 1208.22 Memory 455.56 114.12 129.0832 256 Memory Memory 320.96 262.732 512 822.42 560.0232 1024 3982.53 2227.4240 16 118.65 3221.21 53.68 45.44 49.6240 32 384.40 Memory 119.64 80.95 86.2540 64 1405.47 451.28 200.89 211.5840 128 3305.78 1448.10 228.86 247.6340 256 Memory Memory 712.84 555.9540 512 2393.79 1497.7340 1024 Memory 5711.72Table 2: Elapsed CPU time in seconds for the well-conditioned problems.22



Serial Codes (SPARCStation 10/51) Parallel Splitting (CM{5E)s N PATH SMOOTH CONOPT MILES 16 VU 128 VU 256 VU8 16 2.02 13.96 19.36 6.10 10.91 9.38 9.278 32 3.85 23.79 74.53 25.81 14.48 7.04 13.838 64 13.96 70.37 344.48 3384.00 23.41 11.52 17.248 128 44.12 161.31 Time 7541.00 34.10 15.82 23.248 256 129.45 950.20 Time 107.63 50.42 62.248 512 1275.12 Memory 901.75 270.01 347.848 1024 Time 4368.97 1028.12 1039.5316 16 20.81 138.05 Failure 24.44 17.62 22.7116 32 97.62 392.03 Failure 32.45 20.20 31.0316 64 284.26 774.29 Failure 100.06 54.88 64.3316 128 1243.79 1857.06 Failure 111.39 39.74 47.0416 256 7386.99 Memory Failure 322.94 94.44 95.1416 512 Time 1396.56 264.86 275.6016 1024 Memory Memory 1137.17 843.1716 2048 7225.26 3905.9824 16 66.85 528.18 67.68 51.75 60.0224 32 203.28 1477.76 139.57 84.45 98.6624 64 1645.27 3969.28 494.02 82.51 93.2924 128 8239.70 Memory 966.21 256.65 274.4824 256 Time 1811.61 414.18 380.5024 512 Memory Memory 1493.27 1085.4924 1024 6682.58 3434.09Table 3: Elapsed CPU time in seconds for the ill-conditioned problems.to draw empirical conclusions about our algorithm's abstract speedup potential from the runtimedata in Tables 2 and 3. For example, suppose that we wish to compare the 16- and 256-VU datafor N = 256. One must keep in mind that, even though all the VU's are occupied in both cases,the 16-VU con�guration is operating on much longer vectors, and so runs more e�ciently. Anotherway of looking at the situation is that the implementation continues to extract a kind of parallelismfrom the algorithm even as N increases past the number of processors V , because increasing vectorlength allows it to increase its use of pipelining internal to each processor. This phenomenon leadsto an appearance of sublinear speedup, especially for small s. Larger values of s lead to largeraverage vector lengths, and thus tend to mitigate the e�ect somewhat.4 ConclusionSections 1 and 2 have presented a uni�ed approach to set-valued monotone operator splitting the-ory, and applied it to generate two classes of iterative algorithms for monotone a�ne variationalinequalities. The analysis of these methods does not depend on symmetry, and creates a number oftheoretical connections to existing matrix splitting methods. In particular, the iteration (33)-(34)resembles standard matrix splitting interspersed with solutions of certain systems of linear equa-23



tions, and converges under quite general conditions.Section 3 has demonstrated that splitting methods are interesting for more than their theoreticalconnections alone. Splitting allows one to \pull apart" the structure of some problems so they canbe attacked in a highly parallel manner. This approach is consonant with the general philosophy ofsplitting methods, dating back at least to 1950's alternating direction methods for banded systemsof linear equations [9, 32]: one expresses the structure of ones problem as a composition of two lesscomplicated structures, each simple enough to be attacked with the technology at hand.Finally, with careful implementation aimed at circumventing \tail convergence" di�culties, wehave demonstrated that these techniques can lead to parallel algorithms that signi�cantly outper-form state-of-the-art general solvers on a class of di�cult, large-scale a�ne variational inequalityproblems. There are many other application areas for which the techniques described in this pa-per would be appropriate. A particular class of applications for future research is the �eld oflinear-quadratic problems arising in stochastic programming [42, 44].Acknowledgements: We would like to thank Paul Bay, formerly of Thinking Machines Cor-poration, for helping us with the CMSSL block tridiagonal linear system routines. Some of theresearch described here was performed while the �rst author was employed at Thinking Machines;we would like to thank the �rm for the use of their computational facilities.References[1] H. Br�ezis. Op�erateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espacesde Hilbert. North-Holland, 1973.[2] M. Cao and M. C. Ferris. Lineality removal for copositive{plus normal maps. Communicationson Applied Nonlinear Analysis, 2:1{10, 1995.[3] C. H. Chen and O. L. Mangasarian. Smoothing methods for convex inequalities and linearcomplementarity problems. Mathematical Programming, 78:51{70, 1995.[4] G. H.-G. Chen. Forward{Backward Splitting Techniques: Theory and Applications. PhD thesis,University of Washington, 1994.[5] R. W. Cottle and G. B. Dantzig. Complementary pivot theory of mathematical programming.Linear Algebra and Its Applications, 1:103{125, 1968.[6] R. W. Cottle, J. S. Pang, and R. E. Stone. The Linear Complementarity Problem. AcademicPress, Boston, 1992.[7] S. P. Dirkse and M. C. Ferris. MCPLIB: A collection of nonlinear mixed complementarityproblems. Optimization Methods and Software, 5:319{345, 1995.[8] S. P. Dirkse and M. C. Ferris. The PATH solver: A non-monotone stabilization scheme formixed complementarity problems. Optimization Methods and Software, 5:123{156, 1995.[9] J. Douglas and H. H. Rachford. On the numerical solution of heat conduction problems in twoand three space variables. Transactions of the American Mathematical Society, 82:421{439,1956.[10] A. Drud. CONOPT: A GRG code for large sparse dynamic nonlinear optimization problems.Mathematical Programming, 31:153{191, 1985.24
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