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1. Introduction. An operator-stable probability distribution in a group G is a
limit law arising, roughly speaking, from affine modification of the partial sums
of a sequence of independent identically distributed G-valued random variables.
This paper is concerned with a more palpable description of an operator-stable
distribution in the case where G is a vector group; i.e. the topological group
underlying a ^-dimensional real vector space.

The first step is to reduce the problem to that of finding those probability
measures A, all of whose convolution powers are of the same type; i.e. for each
integer k^l, there is an automorphism Bk of G such that Afc is a translation of the
measure A ° Bk 1. It is then shown that A is operator-stable if and only if for each
t>0, Af is a translation of the measure A o [exp (log M?)]-1, for an automorphism
B of G characterized by conditions on the spectrum of B regarded as a linear oper-
ator on a vector space.

2. Notation and definitions. Throughout this paper, we denote by V a 6?-dimen-
sional vector group. In several proofs, we shall use the same symbol to denote the
same group with the additional structure of a vector space, or even an inner
product space. Denote by 0> = 3P(V) the set of probability measures on V. With the
topology of weak convergence, and multiplication defined by convolution, &
becomes a topological semigroup. We denote convolution of two measures A, ̂  by
A * ix, and the nth convolution power of A by A".

By V~, we mean the character group of V, "identified" with the dual vector space
of the vector space V. In the sequel, x will denote the generic element of Kand y the
generic element of V~. Let (x, y) denote the bilinear pairing of V and V~ brought
about by y acting as a linear functional on x. As a group character, y acts on x
according to exp z'(x, y). The characteristic function of a measure Xe£?(V) is
defined by

Given A e 8P(V), we define A- e 0>(V) by X~{E) = X{-E). The mapping A -> A~
is an involutive automorphism of ^. It is easy to check that X~^ = A~~, the last
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bar denoting the complex conjugate. The measure A is called symmetric if and only
if A=A-. For any XeSP, the measure °A=A*A~ is symmetric, and is called
the symmetrization of A.

Let H(\) = {y e V~ | X^(y)=\). It is easy to see that /7(A) is a closed subgroup
of K~. Note that {y e V~ \ \X~(y)\ = 1} = H(CX) is a closed subgroup of V~ con-
taining H(X).

Denote by S(X) the support of the measure A e 3P(V), viz., the smallest closed set
F in V with A(F) = 1. The relation S(X * p)=Cl (5(A) + S^)) is well known. We call
a measure A e ^ full if and only if S(X) is not contained in any (d— l)-dimensional
hyperplane of V. If A is not full, it is called deficient.

Proposition 1. X e 0>(V) is a full measure if and only if H(°X) does not contain
a l-dimensional subgroup of V~.

Proof. Firstly, A is full if and only if °A is full. If S(°X)<= X, a (d- l)-dimensional
subspace of V, then

and X1 is a l-dimensional subspace of V~. Conversely, if H(°X) contains a 1-
dimensional subspace 7 of then \v exp i(x, y)°X(dx) = l for all y e Y implies
exp i(x, y)=l, °A-almost everywhere, for all y e Y, which implies

5(°A) c {x I (x,y) = 0mod 277forall>'e 7} = {x \ (x, y) = Oforallje 7}= Y\

a (d— l)-dimensional subspace of V. |
We mention that the set of full measures in 3P( V) is an open subsemigroup

of 9.
Let us denote by End V the ring of continuous endomorphisms of the group V,

identified with the ring of linear transformations of the vector space V. Let Aut V
denote the group of continuous automorphisms of V, identified with the group
G\(V) of nonsingular linear transformations of the vector space V. For any
A 6 End Fand Ae^(K), let AX denote the measure AX{F) = X{A~\F)), Fa Borel
subset of V. If A e Aut V and a e F, we call the mapping A ^A * 8(a) an affine
transformation, 8(a) denoting the point mass at a. If instead A e End V~ Aut F,
the mapping will be called singular affine. The set of affine transformations (A, a)
is denoted by Äff V. If x is a F-valued random variable having distribution /x, then
clearly, Ax+a has distribution AX * S(ö).

It is not difficult to verify that for any bounded continuous function/on V,

= 1   if >>e X1 = {y eV~\(x,y) = 0,VxeX},

°X{x I exp i(x, y) = 1} = 1   for all y e Y
so that
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andthatS(^A) = ̂ 5(A), (AB)X=A(BX), A(X * n) = AX * ̂ and (AX)~(y) = X~(A*y),
where A* denotes the adjoint map of V~ induced by the bilinear pairing
(•, •); i-e- (Ax, y) = (x, A*y). We give End V the compact-open topology as a set
of functions from V to V. This topology is equivalent to the norm topology of
End Fas a space of linear operators on V, when Fis provided with a vector norm.
It is easy to check that the mapping {A, A> -> AX of End VxZP(V) -+Z?(y) is
jointly continuous. We define an equivalence relation in 8?(V) by writing A~ju.
if and only if there is an affine transformation {A, a) such that X=Ap * 8(a). The
measures A, jii are then said to be of the same type, and an equivalence class of
measures is called a type. Clearly, random variables x and Ax+a will have distri-
butions of the same type.

3. Statement of the problem. In terms of random variables, the problem we
study is enunciated as follows: suppose that {xn} is a sequence of F-valued random
variables with common distribution and assume that the terms of the sequence
are mutually independent; assume, further, that (An, an) is a sequence of affine
transformations of Fsuch that the distribution of An(xx + ■ ■ ■ +xn)+an converges
to a measure A £ ^(V); what can be said about the limit measure A?

Converting this to a problem involving only measures, we ask which measures A
can arise as limits of sequences An^n * 8(an).

Our aim is to characterize those A which are full and are such limits—denote by
Sf the class of such measures. For reasons which do not become clear until the
problem is posed in a different form, if is called the class of operator-stable
measures on V. It is clear that £f is invariant under affine transformations.

We refer the reader to Feller [1] for an account of the class Sf when V reduces
to the real line. It is possible in this case to give an explicit formula for the character-
istic function of a stable distribution. In fact (Feller [1, p. 542]) any such character-
istic function X~ must have the form A^(>>) = exp (atf>aiö(y) + iby), where 0<a5 2,
-1585 1, and

K»(y) = - Iy\aW ~i sgn8 tan ™/2],     o # 1,
= -b|[l+isgn>>SIog\y\],        a = 1.

In particular, X~t(y) = X~(tllay) exp ib(t)y, r>0 where b{t) is real. It is easily seen
that if a^l, there exists b such that ^ = A * 8(b) satisfies ^t(y)=^(t1"'y) but if
a = 1, it is not generally possible to make such a centering, and b(t) has the form
6(/) = ctlog t. These results are obtained from the fact that the Khintchine-Levy
measure M (see next paragraph) of a stable distribution must be given by M{[x, oo)}
= cpx~a, M{(-co, -x]} = cqx~a where c^O, p+q=l, p^O and <7^0.

All that has been done so far in the multi-dimensional case is to find limits of
distributions of sequences ^„(xiH-\-xn)+an where An is a multiple of the
identity operator. By the same techniques as in the one-dimensional case, one finds
the Khintchine-Levy representing measures as mixtures of one-dimensional
K-L measures for stable distributions concentrated in rays starting at the origin.
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Our results will provide analogues of these facts, except that an explicit repre-
sentation for a general operator-stable characteristic function does not seem
possible.

4. The Khintchine-Levy formula. A stable distribution is infinitely divisible and
a major tool in the analysis of £f will be the multi-dimensional form of the Khint-
chine-Levy representation. The form we use is a slight modification of the original
Levy [4] version, and we state it as

Proposition 2 (Khintchine-Levy). To an infinitely divisible measure A e 3?(V),
there corresponds a triple (c, (f>, M) consisting of an element c e V, a nonnegative
quadratic form <j> on V and a nonnegative Radon measure M on the locally compact
space V~{0} satisfying

(i) M is finite off every neighborhood of 0, and
(ii) J"K_{0) \\x\\2M(dx)<co for every compact subset K of V, || • || being any vector

norm on V, such that

Here, t : K -> V is any continuous function satisfying
(a) r(x)=x+0( 1 x 12) (x -> 0), and
(b) t is bounded.

A change in the function t produces only a change in the term c.

For uniqueness, we know that if, for j= 1, 2,

My) = Kcj, y) - My) + f    texP Kx, y)-i- Kr^x), y)]Mj(dx)

and </>!(>0 = *li2{y) for all y e V, then <f>1=<f>2 and MX = M2. If, further, rx=ra, then

We describe this representation by saying that A has representing triple (c, <j>, M).
Any nonnegative Radon measure M on V~ {0} satisfying (i) and (ii) will be called a
K-L measure. Note that the element c determines merely a translation of A, and </>
determines the Gaussian component.

The next proposition is pure calculation, and sets out the manner in which the
representing triple changes with an affine transformation of A.

Proposition 3. If X is infinitely divisible in ä?(V) and has representing triple
(c, (f>, M), and if Ae Aut V and aeV, then the representing triple of AX * 8(a) is
(c', <f> o A*, AM) for some c' e V.

Proof. In the calculation, it is only necessary to note that if t satisfies (a) and (b)
of Proposition 2, then so does the function A ° t o A ~1. |

Finally, if A is infinitely divisible with representing triple (c, <j>, M) and t>0, we
let A' denote the /th power of A; viz., the infinitely divisible measure with repre-
senting triple (tc, t<f>, tM). The semigroup {A{ | t > 0} is then weakly continuous.
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5. Reduction of the problem. The following lemma is used repeatedly in the
sequel. It is a generalization of a lemma which is well known in the one-dimensional
set-up (see e.g. Feller [1, p. 246, Lemma 1]).

Proposition 4 (The Compactness Lemma). Suppose   that for n=l,2,
An e SP(V), (An, an) is an affine transformation, and assume that

(i) A„ -> A e &(V),
(ii) AnXn * 8(an) 0>(V).

Then, if A and p are full in V, the set {An \ n= 1,2,...} is precompact in Aut V,
{an I n= 1, 2,...} is precompact in V, and if A and a are limit points in these re-
spective sets, then AX* 8(a)=p.

In other words, if for n= 1, 2,..., A„~/mn, if A„ A, fin -> p and A and p are full,
then A~/m.

Proof. Let < •, • > be an inner product on V, and let || jcj|2 = <x, jc>. If it is possible
to prove that

(A) {an I n= 1, 2,...} is bounded in V, and
(B) {\\An\\ I n = l, 2,...} is bounded in R,

then any sequence {nk} of positive integers will have a subsequence {n'k} such that
an<k converges to an element a of V, and An-k converges to an element E of End V.
By joint continuity,

AnkKk * 8(and -+EX* 8(a)  as k -> co.

But the left side converges to ju, so n = EX * 8(a). Since S'(/M.) = £5'(A)+a is not con-
tained in a (d— l)-dimensional hyperplane, E must be invertible, so that all limit
points of {An I n=\, 2,...} are in Aut V, showing {An \ n= 1, 2,...} to be pre-
compact in Aut V. It suffices, therefore, to prove (A) and (B).

We start with (B). Firstly, the conditions (i) and (ii) imply that °An -> °A and
^n(°^n) —^ V, where °A and °fi are full. In proving (B), we may therefore assume that
an = 0 for all n. With this assumption in force temporarily, we shall assume, for
purposes of obtaining a contradiction, that {\An\ \ n—l,2,...} is not bounded.

Let us choose a fixed orthonormal basis for the inner product space (V, <•, •»,
and think of the operators An as matrices, relative to this basis. Now, An can be
factored into polar form, An=UnPn, where Pn is positive self-adjoint and Un is
orthogonal. The fact that Pn is diagonalizable by orthogonal matrices implies that
An = VnDnWn where Dn is diagonal, and Vn and Wn are orthogonal. Passing to a
subsequence, if necessary, it may be assumed that one entry of Dn tends to infinity
as n —> co. Modifying Vn if necessary, it may be assumed that it is the first entry,
a"1, which does so. Then an -> 0. Since the orthogonal group is compact, it may be
assumed that Wn converges to an orthogonal matrix W. Set vn= WnXn. We have
AnW~1(vn) = AnXn -> fx and WX = v, also full. Replacing An and An by vn and
AnWn1, we see that it may be assumed that An can be factored into the form
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VnDn, Vn orthogonal and Dn diagonal. Let e>0 be given: let Ar={x | ||,x||<./-}
and let r be chosen so large that

(iii) An(A)>l-e/2foralln,
(iv) ^nAn(A) > 1 -e/2 for all n,
(v) A is a continuity set for A and /x (i.e. A(bdry A)=/x(bdry A)=0).

Now, ^-1(A)=JDB-1Kn-1(A)=DB-1(A), so by (iii) and (iv),

Notice that xeß^"1(A)nA implies \\x\\ = r and ||£>nx||<./• so that \xj\^r for
j=2,...,d and     <.ra„. Let Ln be the rectangle

{x I \xj_\ <. anr, \xj\ = r forj = 2,...,d).

Then D~\A) n A<=Ln. Define fK(x) = max [(1 -Ä^l, 0)], A:>0. We have

Letting n -> co, we find that jvfK(x)X(dx) = 1 —e for all K>0, hence

X{x I |*iI ^ l/K} ä l-e  for all # > 0,

implying A{x | x1 = 0}^l—e. Since e > 0 is arbitrary, X{x | x2 = 0} = 1 and A must be
deficient. This contradiction implies the truth of (B).

The proof of (A) now proceeds as follows: by assumption, {AnXn * 8(an)} is
precompact, and since (B) is true, {AnXn} is precompact; there is therefore a compact
subset C of V such that AnXn(C) > 3/4 and (AnXn * 8(an))(C) > 3/4 for all n, so that
AnXn(C n (C-an))> 1/2 and certainly C n (C—an)=£ 0 ; we conclude that for all
n, |a„|<.diam C<oo, and (A) is proven. |

Corollary \. If X is any full measure in 3P{V) and if we define
Inv A = {(A, a) e Aff K | AX * 3(a) = A}, rAen Inv A is a compact subgroup of Äff V.

Corollary 2. In the open subsemigroup tF of full measures in SP( V), the relation
"~" induces compact equivalence classes.

Both of these corollaries follow trivially from the compactness lemma.

6. A characterization of operator-stable measures. The class Sr° will now be
characterized in a manner more amenable to analysis than that of the original
definition.

Xn(D ~ HA) n A) > 1 - e  for all n,
and

^ min {fK(x) I x e Ln} ■ Xn(Ln)
^ Xn(D^(A)n&).(l-Kanr)

> (1 -     - tfanr)   for all n, K > 0.
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Theorem 1. A full measure p e 2P(V) is stable (i.e., /x e £f) if and only if for each
integer «2; 1, there is an affine transformation (Bn, bn) such that rin = Bn[x * 8(bn). In
other words, fx is in £f if and only if fx is full and all powers of fx are of the same type.

Proof. Firstly, if all powers of jx are of the same type, then for each n,

P = O* * 8(cn),      (Cn, cn) e Äff V

so fx = lim Cnrxn * 8(cn) implying it e S.
Suppose now that /x is full and that
(i) /x = lim An\n * 8(an), A e 0>(V), (An, an) e Äff V.
Since convolution is a jointly continuous operation, we obtain from (i) the

equation
ixm = lim [AnXn * 8(an)]m  for m = 1,2,...

n

and ^4n being an automorphism of ^(T), this last equation means
(ii) itm=limn Anfimn * 8(m-an).

Taking the arithmetic subsequence {nm \ n= 1, 2,...} of {« | n= 1, 2,...}, we ob-
tain from (i) that

(iii) /x = lim„ ^nmttnm * 8(anm).

Let fin = Anm\nm * 8(anm). By (iii),

(iv) /xn^/x.
Equation (ii) can now be written

(v) C>n * 8(cn) -> ftm
where Cn=AnA~^ and c„ = w•an-^(ny4^m1fl„m. Since tt and ttm are full measures, the
compactness lemma can be invoked to infer from (iv) and (v) that /x and /xm are of
the same type, for every positive integer n. |

Our next aim is to extend the last theorem to include all real positive powers of /x.
In so doing, we get more information about the affine transformations which
appear.

Theorem 2. // fx is full and operator-stable, there is an automorphism BofV such
that

ix1 = exp {log t-B}fx* 8(b(t));     t > 0,

for some b(t) e V. The converse is clearly true.

While the proof is not at all difficult, it involves many steps, and for better
organization, we proceed with a sequence of simple lemmas. To start with, define
Gt = {A e Aut V I fx^Afx * 8(a) for some a e V). The set Gt may, a priori, be empty
for some r>0, but the last theorem shows that Gt is nonempty whenever t is a
positive integer.

Lemma 1. Gt + 0 for any t > 0.

Proof. If r > 0 is rational and equal to j/k, Gj and Gk are nonempty and p' and it*
are of the same type. Therefore, there is an affine transformation (B, b) such that
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fj,' = Bfik * 8(b). But then, (Bp * 8(\/k-b))k = p', and so Bp * 8(\/k-b) is the unique
infinitely divisible Acth root of p', so Bp * 8(l/k-b) = pilk = pK Thus, Gt^= 0 if < is
rational, and /t' is of the same type as p if t is rational. If t is any positive real
number, let tn be rational, and let tn -> /. Then p1* ->■ tt' and, if

p = CV» * S(cn),      (Cn, cB) e Aff K,

the compactness lemma implies that pl is of the same type as it, so that
Gt^0. ■

Lemma 2. Gt~1 = Gllt and Gs t = Gs- Gt for all s, t > 0.

Proof. It is easy to see that Gf1(^Gllt and GsGt^Gst. Replacing t by l/t in the
first inclusion and 5 and t by l/s and st in the second, the reverse inclusions
hold. ■

Lemma 3. Gs n Gt= 0 if s^t.

Proof. If AeGsnGt, say tts = ^*8(a) and pt = Ap*8(a'), then V = V
implying |ti~(>>)|2'= |tt"(j)|2t for all y. If s^t, this implies that \p"(y)\ =0 or 1, so
I/^XjOI — 1, tt^ being continuous. But this would mean that it is degenerate. |

Lemma 4. C7=IJ {Gt | r>0} is a c/osea' subgroup of Aut K

Proof. That G is a subgroup is the content of Lemma 2. To prove that G is
closed in Aut V, let us assume that a sequence {/tn} of members of G converges in
Aut V to an automorphism A. We must show As G. Suppose An e G(n. If {("„}
contains a subsequence which converges to 0 in R it may be assumed for the pur-
poses of this argument that r„-^0. Then Anp = pl" * 8(an) for some an e V, so
^n(» = (V)f"->S(0) as «->oo. Thus, A(°p) = 8(0), and since V is full, A=0, a
contradiction which establishes the fact that {?„} cannot have a subsequence
tending to 0. On the other hand, if tn has a subsequence tending to co, by setting
Bn = An 1 e G1Hn, Bn^ A'1 and l/rn —>0. The last argument implies that A'1=0.
We conclude that {?„} must be bounded away from 0 and co. Let / be any limit point
of {tn}; it may be assumed that tn -> t. Then Anp -> Ap but

AnfJL = tt'« * S(an)   and   p** -> tt'.

Since /lit and tt are full, the compactness lemma implies {an} is precompact in V,
so if a is any limit point, we have

Ap = it' * 8(a),   so that A e Gt <= G.

Lemma 5. j«e mapping 77: G ̂  R+, defined by rj(A) = t if A e c7(, is we// defined,
and is a continuous open homomorphism of G onto the positive reals under multi-
plication. The kernel of 17 is Gu a compact normal subgroup of G.

Proof. The mapping 77 is well defined by Lemma 3. It is a homomorphism
because of Lemma 2. To prove that 17 is continuous, suppose An -> A0 in G, with
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rj(An) = tn, so that An e C7(n. We have ij}n = Anri * 8(an) for some an e V, so (°it)in
= An(°rC)^A0(0p)-(0p)to. But this means KO0I2'" ^ K0>)|2(°, hence tn^t0.
The openness of 77 is now an automatic consequence of its continuity and the
a-compactness of G—see, e.g. Theorem 5.29 of Hewitt and Ross [2]. |

Proof of Theorem 2. The mapping i=logrj is a real additive continuous
homomorphism of G onto (R, +). Firstly, we demonstrate the existence of a one-
parameter subgroup HofG with tj(H) = R. Since G is a closed subgroup of Gl (V),
it is a linear Lie group, so the component G° of the identity in G is an open normal
subgroup of G. Since, by Lemma 5, y is open, £ is open, implying that £(G°) is
an open subgroup of (R, + ) and hence must itself be R. Since G° is the union of its
one-parameter subgroups, one of them, H say, must map onto R under the map-
ping £. Now, H, being a one-parameter subgroup of Gl (V), must be of the form
{esB I — 00 < s < 00} for some operator B. The mapping s -> esB is a continuous
homomorphism of (Ä, +) into G, so s -> esB -> £(esB) is a continuous homo-
morphism of (R, +) onto (7?, +) so that £(esB) = Ks for some constant KeR.
Replacing B by K~1B, we may assume that £(esB)=s, giving rj(esB) = es or 7i(el0Kf'B)
= r. Thus exp {log t-B}e Gt for every r>0.

It remains only to show that B is invertible, if it is full. If B were noninvertible, B*
would be noninvertible and there would exist y e V~ such that B*y=0, y^O. In
this case, exp {log t-B*}y—y for all t >0, implying

\^(sy)\ = |^(exp{log?-73*}^)| = \^(sy)\.

This would mean |    j == 1 on the subspace generated by y, a contradiction to the
fullness of p, by Proposition 1. |

Remark. We shall denote exp {log t-B} by the notation tB.

1. The class 3ä. The class of operators, B, which can occur in a representation
if = tBix * 8(b(t)) for some full measure it will be denoted by 38. So far, we know
only that 38 consists solely of nonsingular operators. It is easy to check, now, that if
Be 3) and A is any automorphism, ABA ~1 e 3fi. In other words, 38 is closed under
similarity transformations, and 38 will be describable through spectral properties.
In fact,

Theorem 3. Necessary and sufficient conditions for an operator B to be in the
class 38 are

(i) The spectrum of B is in the half-plane Re zjt 1/2, and
(ii) The eigenvalues lying on the line Rez=l/2 are simple—i.e. the elementary

divisors of B associated with these eigenvalues are of first degree.

Once again, the rather complicated proof obliges us to break it down to more
organizable parts. Firstly, we record some facts about the representing triple of a
stable distribution.
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Proposition 5. If A e S has representing triple (c, <f>, M) and Xt = tBX * 8(b(t)),
BeSS, then

(a) <j>(tB"y) = t<f>(y) for yeV~andt> 0,
(b) tBM=tMfor t>0.

Proof. A direct application of Theorem 2 on Proposition 3.
The heart of the proof of Theorem 3 lies in

Lemma 6. A measure M concentrated on an orbit {tBx0 \ t>0} and satisfying
tBM= tM is a K-L measure if and only if every eigenvalue of B in the cyclic subspace
generated by x0 has real part greater than 1/2.

Proof. Assume firstly that S(M)<={tBx0 | t>0} and tBM= tM. Let X
= [x0, Bx0, B2x0, .. .]=[x0], the cyclic subspace generated by x0. Since B is non-
singular, BX= X, and since our interest is only in the behavior of B on X, we assume
B — B\ X. B is then a cyclic operator, and by structure theory for such operators (see,
e.g. Jacobson [3, p. 73]), to each elementary divisor of B, there is a subspace Xh
such that

(i) BX^Xj, and
(ii) X=X1@---@Xk.
Also, the minimum polynomial qp of B\X} is a power of a polynomial which is

irreducible over the real field.
Now, set F{s) = M{tBx0 \ t>s). The condition tBM=tM implies that F(st)

= l/tF(s). Thus, F(t)=K/t for some constant K>0. The measure M is a K-L
measure if and only if j" \x\2M(dx)<co in a neighborhood of 0. This is the case if
and only if

Here, || • || is any vector norm on X. Any other vector norm would suffice, for all
such norms are equivalent on X. We shall specify a norm on X which facilitates
computation. Let || • ||; be a vector norm on Xt, to be chosen later, and let ||2 x;|
= 2 \Xj\j. Then || • [[ is a norm on X with the property that [)2 xj ^ ||xr]|r for each
r, 1 <./•<.&. Suppose x0 = 5j=i xi> x> 6 ^i- Then x; ^0 for each j, otherwise x0 fails
to be cyclic in X. We have then ?sx0 = 2?=i tBxj=J!i=i jBj-*V> where Bj=B\Xj, and
||rBx0||^ ||?s'xr||r, for each r. For the rest of the proof, let r be arbitrary but fixed,
l^r^k. We now choose || • ||r in Xr as follows: extend Xr to its complexification
Xcr, and let Bcr be the extension of Br to X? in the usual way. We shall define a
norm for X^ and let ||-||r be the restriction of \ -\°r to Xr. For notational
convenience, let J(au ..., ak) denote the k x k matrix having all entries equal to
zero below the diagonal, a± on the principal diagonal, a2 on the super-diagonal,

or

(*)
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..., ak in (1, k) position. To choose |[ ■ ||c, let us firstly choose a (complex) basis
{fi> •••>&,} for Xrc so that the matrix of B\ with respect to ...,£„} is
/(a, 1, 0,..., 0) if q, is linear, and

/(«,1,0,...,0) 0 \
0 J(ä, 1,0,...,0)/

if qj is quadratic. The complex numbers a, ä are the eigenvalues of B,, hence of B.
Choose \ -\°r by making 12ai£/l|r = Z Kl- Then, we have j|/^vr||r= ||fBav||£, and
since the (complex) matrix of tB' can be seen by an easy computation to be

j(ta, flogt,..., i/ip-iy.niogty-1)

if qj is linear, or the obvious extension if qt is quadratic, (\tBrxr\cr)2 is seen to be
a linear combination, with coefficients depending on xr, of terms of the form
fa(log f)mf"(log t)n, m^p- 1, n£p-l, and these terms are each /2Re"(log /)", for
some q^2p — 2. Then

f ||/flrxr||2r-2 dt ^ f1 const t2Reat~2 dt
Jo Jo

ä const (~ t2Uea~2dt.
Jo

The first term is finite, by (*), so 2 Re a — 2 > — 1, implying Re a > 1 /2.
To obtain the converse, note that Rea>l/2 implies r2Re<""2 dt<co and an

integration by parts shows that all the terms r"(log /)mra(log t)n, as above, have
finite integrals at 0. Taking the same norms as above, we find

f1 \\tB'Xr\\2r2 dt < oo,Jo
so

P \\tBx\\2r2dt <: const Sr f ||r\xr||2r2 dt < oo. ■
Jo Jo

We now proceed with the
Proof of Theorem 3. Let A(i5) = {M|Ma K-L measure on K~{0} and tBM = tM}.

Note that if M e A(B), S(M) is invariant under tB for all t >0, so that S(M) is a
union of orbits of tB. The M may be infinite measures, but they are essentially
finite in the sense that W{dx)=\x\2l(\ + \x\2)M(dx) is a finite measure in V.
To apply the theory of finite measures, let 9J?(F) be the real linear space of finite
measures in V, with the topology of weak convergence. Let

£2(5) = {WeWl(V) I W{dx) = \\x\\2l(\ + \\x\2)M{dx), M e \{B)}.

£2(73) is easily seen to be a convex cone in Wl, and Q.1{B) = {We £2 | IV(V)^ 1} is a
compact convex subset of 50?. Each \V in £2 has the property that S(W) is a union
of orbits of tB. Thus, it is easily seen that the extreme points of £2x(ß) are the
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measures concentrated along a single orbit {tBx0 \ t>0}. Thus, the set of convex
combinations of such measures is dense in £lu and this shows that in A(B), the
linear combinations of A/'s which are concentrated in a single orbit are dense in
HB).

Let X now be decomposed into a direct sum of subspaces X} (1 <j5 r) such that
BXj = Xj, and such that the minimum polynomial of B\X, is a power of a real-
irreducible polynomial. Assume that the eigenvalues in Xu ..., Xk lie in Re z > 1/2
and those in Xk+1,..., Xr lie in Rez<J/2. Let X0 = Xk+1-\-+ Xr. Now, if
x e X, and x=2o *u xi e Xj then, by Lemma 6, the orbit {tBx | r >0} supports a
nonzero K-L measure A/ e A(B) if and only if x0 = 0. Hence, since linear combina-
tions of such M are dense in A(B), M is concentrated in Xi H-1- 2^, for
all M e A(ß).

To find how B behaves in X0, examine the adjoint B*: V~ -> V~. Let, in V,

y, = (x0@- ■ -e ^-i e    ©• • •© xky,   o 5 y 5 k.
y, is then the dual of X}, and j5*| yj = (B\Xj)*. It is a consequence of the Khint-
chine-Levy formula that

log °^(y) = -2<f>(y) + j"(cos (x, y) - \)M(dx)

and if y e y0, since M is concentrated in X1© - ■ - ® Xk,

log = -2m0.
Since /x is assumed full, <f>(y)^0 if y e y0, j^O. Thus, the quadratic form <f>\ y0 is
nondegenerate, and there is a basis {yu ..., y„} in T0 such that

With respect to this basis {y1}..., yq}, a bilinear form <■, ■ > is defined, and
adjoints C of operators C are defined by

<C>i, y2} = <>»!, c>2>.

Then, the condition 5(a) reads that for all y e y0 and ?>0,

<j>(tB'y) - /^(v).

Since 5* T0= F0, it will not hurt to assume in this section that ß* = 5*| Y0. Then,
for all y e y0,

<tBy,tBy> = Ky,y>.
Thus,

<tBttB*'y,y> = <[ty,y}

or
tB*tB*' = tl= tll2I-tll2J.

Since tlt2I=t"2, this can be written as
;(B*-//2)j(B»-//2>' = I
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Setting C=B*-I/2, we find that ?c + c'es/for all />0, so that C+C' = 0. Thus, in
this basis, C is a skew operator. Hence B* = 1/2 + C is a normal operator, and all its
elementary divisors are linear. This proves the necessity of the conditions in the
theorem. To prove the sufficiency of the conditions, let B satisfy (i) and (ii). As in
the proof of the necessity, let X=Xx ©• • •© Xr, X, having the same meaning as
before. If x, e X,, x^O, (l^j^k), then, by Lemma 6, the orbit {tBXj \ t>0}
supports a nonzero K-L measure M, e A(B). Since the orbit {tBxj \ t>0} generates
Xj, the stable measure A; with triple (0, 0, M,) is supported, and is full, in Xy On
X0 = Xk+1 ®-■-® Xr, we construct a Gaussian measure /x satisfying p1
= exp {log t-B I X0}ix. We can imagine that X= X0, hence that B may be put into
a canonical form diag {JX,...,/,} where Js is either a 1 x 1 matrix with element 1/2,
or a 2 x 2 matrix

With the dual basis {n^ ..., in Y0, B* has canonical form diag {J*,..., J$}.
We have to construct a quadratic form </> on Y0 such that <f>(tB*y) = t<f>(y). Consider
<A(2«^i) = 2a2- If foil-** rt-fU/aad ^{t'm^t^). If fof,,i+1]=X,, we

and, once again, </>(t1f(ar]i + brii+1)) = t<f>(ar)i + br)i+1). Thus, e"*'3" is a Gaussian
characteristic function, and its distribution is full and concentrated in X0. The
measure v=A: * ■ ■ ■ * Xk * p is now full and stable, and vl = t V |

As by-products of the proof of Theorem 3, we can assert the following:

Theorem 4. Any full operator-stable measure X on V can be decomposed into a
product A = Aj * A2 of measures A, concentrated in subspaces Vt, V= Vx © V2, where
Xx is a full Gaussian measure in Vx and A2 is a full operator-stable measure on V2
having no Gaussian component.

Theorem 5. Any K-L measure M for a full operator-stable measure XonV can be
represented as a mixture of K-L measures Me where MB is a K-L measure concen-
trated in an orbit, &, of tB and satisfies tBMe = tMe. The measure Me is characterized
by the condition that sMB{tBx0 | t>s} is constant for all s, when x0 is a generator of
the orbit 6.

If A is full and operator-stable, and satisfies A! = /BA * 8(b(t)) for some b(t), we
shall call B an exponent for A. A measure A may possess more than one exponent.
For example, if V is given an inner product with respect to which A is a rotation-
invariant Gaussian measure, then 2?=772 is an exponent for A, as is any operator of
the form 1/2 +C where C is skew.

The operators in the class 38 can be interpreted as exponents of the normalizing
factors which give rise to operator-stable laws. That is, if xu x2,... are independent

have
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full operator-stable random variables having the same distribution, then each has
the same distribution as some translate of n~B(x1+ ■ ■ ■ +x„), for n—l, 2,....

8. Centering. We turn, finally, to an examination of the term b(t) in the
formula

(8.1) A' = tBX * 8(b(t)) forallr>0,

satisfied by a full operator-stable measure A with exponent B. Taking sth powers on
both sides of (8.1), we find that

Asi = ;BAS * 8(sb(t)) = tBsB\ * 8(tBb(s)+sb(t)).

But \st = (st)B\ * 8(b(st)), from (8.1), so that the vector-valued function b{-) must
satisfy the functional equation

(8.2) b(st) = tBb(s) + sb(t) for all s > 0, t > 0.

One consequence, obtained by setting s = t=l, is that 6(1) = 0.

Theorem 6. If 1 is not in the spectrum of B, the general solution of (8.2) is

(8.3) b{t) = tx0-tBx0,     t > 0,

for some x0 e V, and in this case, when the full operator-stable measure A satisfying
(8.1) is centered at x0, the measure tt = A * 8( — x0) satisfies iJ = tBn.

Remark. By analogy with the one-dimensional case, an operator-stable measure
/x satisfying pt = tBfx could be called strictly stable. Our theorem shows that when 1
is not in the spectrum of B, any full operator-stable measure can be centered so as
to become strictly stable.

Proof. Once we have proven (8.3), the second assertion of the theorem follows
by a standard calculation. As a first step in proving (8.3), note that if b^-) and
b2(-) are solutions of (8.2), then b1{ )-b2{-) is a solution of (8.2). Note also that if
b(-) is a solution of (8.2) such that b(t0) = 0 for some ?0# 1, then

b(st0) = t0b(s) = tBb(s)  for all s > 0.

Since 1 is not an eigenvalue of B, t0 is not an eigenvalue of tB, so we must have
b(s) = 0. These observations imply that any two solutions of (8.2) which agree at
even one point must in fact be identical.

Now, the operator (tI—tB) is invertible, for t^ 1, hence we can always solve an
equation

(tI-tB)x0 = Xj  for x0 £ V, for all Xj e V.

Hence, the solutions b(t) = tx0 — tBx0 constitute all possible solutions of (8.2). |
In the event that B has 1 as an eigenvalue, it may not be possible to center A as in

the last theorem. This is in analogy with the one-dimensional case of the so-called
asymmetric Cauchy distribution. An example is given by taking B=I so that (8.2)
becomes

b(st)=sb(t) + tb(s),
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which is satisfied by the function b(t) = t log tx0, for all x0 e V. We can clearly not
absorb such a factor to center A.
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