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OPERATOR THEORY AND ALGEBRAIC GEOMETRY 

R. G. DOUGLAS, VERN PAULSEN, AND KEREN YAN 

Operator theory as the study of bounded linear operators on a complex 
Hilbert space is nearing the end of its first century. To date most effort 
has been directed toward the study of a single operator or of a selfadjoint 
algebra of operators. The work has relied not only on measure theory and 
functional analysis but on techniques from complex variables, topology, 
and algebra. But for single operator theory the topology is either planar or 
general, it is one complex variable, and it is linear algebra or the algebra of 
polynomials in one variable that is used. For operator algebras the relevant 
mathematics is more sophisticated and draws on increasing amounts of 
topology and geometry to the point that one has begun in the last decade 
to refer to parts of the study of operator algebras as "noncommutative 
topology and geometry." 

In recent years the study of nonselfadjoint operator algebras has also 
enjoyed considerable success but this development has largely excluded 
spectral theory. The work of Carey and Pincus [10] is an exception. Mul-
tivariable spectral theory could be viewed by analogy as "noncommutative 
algebraic geometry," and such a development was the goal of the module 
approach to multivariable operator theory presented in [13]. The intent 
was to introduce methods from several variables algebra into operator the­
ory. In this note we announce several results in multivariable operator 
theory whose proofs rely on techniques which are drawn from algebraic 
geometry or commutative algebra. Complete details will appear elsewhere. 

An operator T on the complex Hilbert space H is said to be hyponor-
mal if the self-commutator [T*, T] = T*T-IT* is positive definite. Any 
operator T makes H into a module over the algebra of polynomials C[z]. 
A little reflection shows that H is a module over Rat(a(r)), the algebra of 
rational functions on the spectrum a{T) of T with poles off a(T), In [6] 
Berger and Shaw showed that if T is hyponormal and H is a finitely gener­
ated Rat((T(r))-module, then [T*, T] is trace class. Hence T is essentially 
normal and defines an element [T] in Ext(a(r)) = K\(a(T)) [7]. The 
trace class commutator enables one to define the Chern character of this 
class following Helton and Howe [16], Carey and Pincus [10], and Connes 
[11]. Attempts at generalizing the Berger-Shaw result to several variables 
have failed although the Chern-Weil type construction of Carey-Pincus 
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and Connes would apply if the appropriate hypotheses were fulfilled. Ac­
tually, as examination of the coordinate multipliers on the bidisk shows, 
no complete generalization of the Berger-Shaw result can hold in several 
variables. We obtain our generalization by restricting the joint spectrum 
to be contained in an algebraic curve. 

An TV-tuple T = {T\, T2,..., 7#) is joint hyponormal if [7/, 7)] = 0 and 
the compound operator ([T*, 7}]) is positive definite (cf. [4]). The joint 
spectrum we use will always be the Taylor spectrum [17]. 

THEOREM. Let 7 = (T\, T2,..., TN) be a joint hyponormal N-tuple on 
H and set 

I = {/> € C[z{ ,z2,...,zN]:p(Tl9...,TN) = 0}. 

If H is a finitely generated Rat(a(7i,..., Tn))-module and the Krull dimen­
sion of C[zi,. . . , ZN]/I is 1 (or, equivalently, the zero variety Z(I) is an 
algebraic curve), then {[T*, 7/]) is trace class. 

Hence, the C°°-subalgebra of C*{TX,..., TN) is what Helton-Howe call 
a one-dimensional crypto-integral algebra. 

COROLLARY. If (S\,... ,SN) are joint subnormal operators on H such 
that H is a finitely generated Ràt(<r(S))-module and a(S\,..., SN) is con­
tained in an algebraic curve, then ([S*,Si]) is trace class. 

The proof uses a refined version of Noether's normalization theorem 
from algebraic geometry (cf. [8]). If each of the operators 7} could be 
expressed as pi{X) for some polynomial pt and a fixed hyponormal oper­
ator X such that H were finitely generated as a Rat(a(X))-module, then 
the result would be immediate. The normalization theorem enables us to 
essentially reduce to this case. 

There are many examples to which our results apply. Let V be an al­
gebraic curve in C^ and ju be a finite measure with compact support con­
tained in V. If H is the closure in L2(/A) of C[z\,z2,..., z#], then the 
restriction 7/ of multiplication by z,- provides an TV-tuple (T\, T2,..., 7#) 
to which the Corollary applies. Although H could be all of L2(ju), that 
will not be the case if evaluation of the polynomials at some point of V is 
continuous in the L2-norm. Thus if ju restricted to some open set in the 
relative topology of V is area measure, the example will be nontrivial. 

We now turn to a very different result. The simplest Hubert module over 
the disk algebra A(D) is the Hardy module H2(D). Using von Neumann's 
characterization of isometries [18], the Wold decomposition [19], or Beurl-
ing's invariant subspace theorem [6], one can show that each (closed) sub-
module of H2(D) is unitarily equivalent to H2(D). One can view this as 
an analytical analogue of the fact that C[z] is a principal ideal domain. 

Attempts at generalizing the Beurling result to the Hardy module 
H2(DN) for the polydisk algebra ^(D^) were unsuccessful until it was 
shown in the middle seventies by Berger, Coburn, and Lebow [5] and 
more generally by Cowen and Douglas [12] and Agrawal, Clark, and Dou­
glas [1] that not all submodules of H2(DN) are unitarily equivalent. This 
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was extended to more general domains by Agrawal and Salinas [2]. Our 
aim here is a rigidity result which shows just how different submodules 
are. 

If I is an ideal in C[z{,..., ZN], then the closure of I in H2(DN), de­
noted [I], is a submodule of A(DN) . The results cited above referred to 
submodules of the form [I] for which Z(I) is a finite and discrete subset of 
D^. A result of Ahern and Clark [3] reveals that all submodules of finite 
codimension in H2(DN) have this form. Our results cover a much wider 
class of examples. 

THEOREM. Ifl{ and I2 are ideals in C[z\,..., zN] which satisfy 
(i) the height ofli, is at least 2, and, 

(ii) each algebraic component ofZÇLj) intersects DN, then [l\] and [h] 
are similar if and only if\\ = I2. 

By the height of a general ideal is meant the minimum height of the 
associated prime ideals. 

The proof proceeds using the global isomorphism of [Ii] and [I2] to 
imply the local isomorphism of Ii <g)qz] L and I2 <§qz] L for every finite 
dimensional module L over C[z] = C[z\,..., zN]. After some additional 
arguments, a result of Grothendieck [14] applies to show that Ii = I2. 

Since the proof is completely local, it extends to Hubert modules over 
algebras of holomorphic functions on domains such as the unit ball in C^ 
or indeed to many convex or pseudoconvex domains of C^. Moreover, 
similarity can be replaced by quasisimilarity or something even weaker. 
If there exist module maps X: [l\] -• [I2] and Y: [I2] -+ [Ii] with dense 
range, then Ii = I2. Finally, the Hardy module can be replaced by a 
Hubert module formed from the closure of the polynomials or the rational 
functions in the L2-space of more general measures on the domain; for 
example, volume measure. The critical property is that evaluation of the 
functions and derivatives of the functions at interior points be continuous 
in the L2-norm. Hypothesis (i) excludes ideals which are even locally 
principal, while (ii) ensures that C[z{,..., zN] n [I] = I. 

Deciding when the principal ideals 
{p} = pC[z{,..., zN] and {q} = qC[z{,..., zN] 

give equivalent submodules must involve more then algebra since all prin­
cipal ideals are isomorphic as modules. However, although [{zi}], [{^2}], 
and H2(DN) obviously define unitarily equivalent submodules, Hastings 
showed in [15] that the submodule defined by [{zx - z2}] is not even 
quasisimilar to H2(DN). Although the equivalence problem is, in general, 
quite difficult, we can solve it for homogeneous polynomials. 

THEOREM. If p\ and pi are homogeneous polynomials in C[z\,..., zN], 
then [{p\}] and [{pi}] are unitarily equivalent if and only if there exist 
monomials z and z' such that zp\ = z' pi\ similar if and only if quasisimilar 
if and only if the quotient p\jpi is bounded above and below on TN. 

Not all submodules of H2(DN) are of the form [I] for some ideal I in 
C[z\,..., zN]. That is not true even for the case N = 1. To obtain a rigidity 
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result for general submodules, we must not only restrict the common zero 
set Z(M) of the functions in a submodule M but we must consider the 
"zero variety" on T^. For ƒ in H2(DN) let oy be the unique singular 
measure on T^ for which Pz(\f\dm - dof) is the least harmonic majorant 
of log | ƒ |, where Pz denotes the Poisson kernel. 

THEOREM. If M I and M2 are submodules of H2(DN) which satisfy 
(i) the Hausdorff dimension of Z(M,-) is at most N - 2, and 

(u) inf{oy: /€M/} = 0, 
then Mi and M2 are quasisimilar if and only if Mi = M2. 

The proof of this last result now involves function theory on the poly-
disk and a detailed knowledge of the one variable theory. In particular, 
localization of the interior of D^ is not enough and one must invoke "local­
ization on the boundary." Hence this proof does not automatically extend 
to other domains in C^. We will discuss the details of this at another time. 

We have described what we believe are some interesting results in mul-
tivariable spectral theory whose proofs depend on nontrivial techniques 
from algebraic geometry and commutative algebra. We believe that this is 
only the beginning. 

Finally, we want to acknowledge the considerable assistance provided 
to us by H. Sah in finding the needed techniques from algebra. 
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