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Parts of the first four lectures are based on notes of previous lectures of Alan
M¢Intosh, which were taken, edited, typed and refined by lan Doust and Elizabeth
Mansfield, whose willing assistance he gratefully acknowledges.

It is assumed that the reader has a basic knowledge of metric spaces, topology,
measure theory, and the theory of bounded linear operators on Banach and Hilbert
spaces. Sultable references for this material are the books “Real and Complex Analysis”
by W. Rudin, “Real Analysis” by H.L. Royden, “Introduction to Topology and Modern
Analysis” by G.F. Simmons, “Functional Analysis” by F. Riesz and B. 5z.-Nagy, and
“Linear Operators, Part I, General Theory” by N. Dunford and J.T. Schwartz. Later,
we shall also expect some knowledge of Fourier theory and partial differential equations.

LECTURE 1. SPECTRAL THEORY OF BOUNDED OPERATORS

Much of the material in the first two lectures is presented in greater detail in the
books “Perturbation Theory for Linear Operators” by T. Kato and “Spectral Theory”
by E.R. Lorch, as well the book by Dunford and Schwartz just mentioned.

In these two lectures, X denotes a non-trivial complex Banach space, while H

denotes a non-trivial complex Hilbert space.

(A) Spectra and resolvents of bounded operators on Banach spaces.

Let T be a bounded operator ou X . The norm of T is
[T = sup{ |Tufl:ved, lu=1}.

The Banach algebra of all bounded operators on X is denoted by L(X). As with
matrices, A € C is called an eigenvalue of T if there exists a non-zero vector u € X
such that Tu = Au. The resolvent set p(T) of T is the set of all A € C for which
(T — M) is a one—one mapping and (T — AI)™! € £(X). The spectrum o(T) of T is
the complement of p(T"). Clearly every eigenvalue of T lies in o(T).

In a finite dimensional space, every one—one operator is an isomorphism, and o(T)
is precisely the finite set of eigenvalues of T'.

For A € p(T), the resolvent operator Rp(A) € L(X) is defined by
Rr()) = A\ =17)"1.
These operators satisfy the resolvent equation
Rr(A) — Rr(p) = (b —A) Rr(X) Br(u)

for all X, pu € p(T). Thus, in particular, Rr(}) and Rp(up) commute.
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Ezample. Let [P denote the Banach space of all sequences
z = (T1,%2,... ,Tpy...)

of complex numbers, with finite norm

oo i/p
lzll = (lenlp> .

n=1

Given a sequence d = (dj,d2,...) such that sup, |d.| < oo, define the operator
D = diag(d) on I? by (Dz)n = dnzn for every n. Then D € £(I?) and o(D) is the
closure of the set {dy,dz,...} in C. Moreover

. 1 1
RD()\) = dlag(}\t-d;’ T—__d;’ >
for all A € p(D).

We can treat infinite series of vectors (or operators) in the same way that we treat
infinite series of complex numbers. For example, we say that an infinite series of opera-
tors ) T, is absolutely convergent if the series Y || 75 || is convergent, in which case
> Ty is necessarily convergent in £L(X) and || T || < 7= -

Also several of the definitions for real and complex functions can be extended to
vector valued (or operator valued) functions u(t) defined for a real or complex variable
t and taking values in X (or £(X)). For instance lim¢,, u(t) = v means that for
every € > 0 there exists 6§ > 0 such that ||u(¢) —v|| < ¢ whenever 0 < |t —a| <.
A function u is continuous in a region E if lim;, u(¢) = u(a) for every a € E. We
define u/(¢) to be the derivative of u(t) whenever the limit

u'(t) = %(t) = lim

h—0

u(t + k) — u(t)
3

exists. For a piecewise continuous function u defined on a rectifiable curve v, we define
the Riemann integral fyu(t) dt to be the limit in X (or in £(X)) of the appropriate

sums 3. (v(2;) —v(ti-1))u(t;).
Moreover, several of the formulae such as
d ! ?
2 (ou(t) + Bo() = a'(t) + B0/(1)

/(au(t)—{-ﬁv(t))dt - a/u(t)dt-l—ﬂ/v(t)dt

| [uwa) < [ruoni

IA
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which are valid for real valued functions, also hold for vector valued and operator valued
functions. Also, for holomorphic functions (i.e. functions which are defined and differ-
entiable everywhere on an open subset of the complex plane), Cauchy’s integral theorem
holds and there is a Taylor expansion about every point in that set. If a function is
bounded and holomorphic on the entire complex plane, then Liouville’s theorem holds,
meaning that such a function is constant.

Whenever ||T|| <1 then (on defining 70 =1T)

(I-T)"" E ™"

and the series is absolutely summable. A consequence of this is the fact that, if A € oT)
and

IK=M < RV,
then

Rr(() = (I— (= ORr(A\) ' Br()) = Y (A= ()"Rr(N)™.

‘n=0
This shows that p(T") is an open subset of C, and that Rr{(¢) is holomorphic in (
with the above Taylor expansion about each point A € p(T'). Hence
dn

e irl) = (1)l Re(C)™ .

Theorem A. Suppose that T is a bounded operator on X . Then o(T) is a non—
empty compact subset of C.

Proof. In view of the above remarks, it suffices to show that o(T) is bounded and
non-empty, Take any |{| > {|7'||. Then

Rp(¢) = ¢TMI=(T'T)TH = YoM
and .
| Br{O )] < =T

Therefore o(T) is bounded and Rp(¢) — 0 as ¢ — co. If ¢(T) were empty, then
R7(¢) would be a bounded entire function on C which tends to zero at infinity, and
therefore, by Liouville’s theorem, Rp({) = 0 for every ( € C. However, this is
impossible as the inverse of an operator on a non-trivial Banach space cannot be zero.
We conclude that o(T') is a non—empty subset of C. [J
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(B) Holomorphic functional calculi of bounded operators.

Let T be a bounded operator on AX'. Let {2 be an open subset of € which
contains o(7T), and let H(£l) denote the space of all complex valued holomorphic
functions defined on 2.

Let us use the word contour to mean a finite collection of oriented smooth closed
curves, and let us say that a contour 4 envelopes o(T) in § if ~ is contained in

Q\o(T) and
1 d¢ _{1, if o € o(T)
Zwiﬁc—a_ 0, fadgl.

For each function f € H(Q), define the operator f(T') € L(X) by
1) = 5= [1QCT-D e = o [ FOR© ¢
v v

where + is a contour which envelopes ¢(T) in €.

Since v envelopes o(T") in £, and the integrand is a holomorphic operator valued
function on 2\ o(T), it follows that f(T) € £(X), and by Cauchy’s theorem, that the
definition of f(T') is independent of the particular choice of .

The terminology f(T) is natural, in view of the following result, which can be
found in Chapter VII of the book already referred to by Dunford and Schwartz. In the
Notes and Remarks at the end of that Chapter, there is an account of the historical
development of this theory. People involved include E.H. Moore, D. Hilbert, F. Riesz,
C. Neumann, I. M. Gelfand, N. Dunford and A.E. Taylor.

Theorem B. Let T € L(X), and suppose that  is an open set which contains o(T) .
Then the mapping from H(Y) to L£L(X) which maps f to f(T) satisfies the following
properties:

(1) if f, g€ HQ) and a € C then f(T)+eg(T) =(f+ag)(T);

(2) if f, g€ H(Q) then f(T)g(T) = (fg)(T);

(3) if p(¢) = XhpcrC* then p(T) =Y i o exT*;

(4) if a € p(T) and Ro({) = (¢ —a)™! then

Ry (T) = (T —al)™ = —Rr(a);
(5) if {fa} is a net in H(Q) which converges uniformly on compact subsets of §

to f e H(Q) then f(T)=limy fo(T);
(6) if € H(Q) then f(o(T)) = o((T)).
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Proof.

(1) This follows from the linearity of the integral.

(2) Since the definitions of f(T') and ¢(T') are independent of the contours which
envelope o(T) in (2, we are free to chose suitable ones for our purposes. Let
U be an open subset of {} which contains ¢(T), and whose closure U is a
compact subset of . Let I' and 4 be contours such that T' envelopes o(T')
in U, and v envelopes U in €. Then, by the resolvent equation, we have

D) = 5 [ FHORROE 5= [ ow)Retw) du
- (2731‘)2/]f(g)g(w)RT(Q)RT(w)dgdw

" w 5 | 10 0) [ 2w
- i JotwRrte) [ ﬂ%dg "

= 0+ 5= [ o) Rrw) d
= (fo)(T).

(We can interchange the order of integration because the integrals are absolutely
convergent.)

(3) It follows from (1) and (2) that it suffices to prove this result for the functions
1 and Id defined by 1{(¢{) =1 and Id({) = (¢ forall { € C. Let v bea
contour which envelopes the closed disc of radius || T'||, and hence (T}, in C.

Then
(1) = 57 [Cr-D7 e
- 27rzj[Z Cn‘*‘l
- Z f[ (o
= I
since

/f ¢ {27rz' #fn=20
y (ntt N 0 otherwise.

Using the same argument, we see that

1) = oo [ er-nrac= Yool (& o

v n=0 TSy €
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(4) Let « € p(T). Then, by the above properties, we obtain:

(T — al)Ra(T) = UT) =1
Ro(T)(T —al) = 1(T) =1.

Therefore Ry(T) = (T —al)™t.
(5) Since ~ has finite length and

it follows that f(T) = lim, fo(T) .
(6) Suppose f € H(S1). Let A€ o(T). For { € (1, let

Q-
{ T when ¢ # A

[ a0 = £ e H
< max {1a() = FOI Re(Q) ]|} lengih()

¢
Fi(N) when { = A .

9(¢) =

Then g € H(Q) and f(T)— f(MNI = g(T)T — AI). If f(A) € p(f(T)) then
F(T) — f(M)I has a bounded inverse, and hence so does (T' — AI), which con-
tradicts the assumption that A € o(7) . Therefore f(A) € o(f(T)).

Now let A € o(f(T)). If A & f(o(T)) then A({) = (f({) — W71 is
holomorphic en a neighbourhood of o(T), say ©'. Applying the above results

to H(Q'), we get h(T)(f(T)— AI) = I, which contradicts the assumption that
A € o(f(T)) . Therefore X € f(o(T)). O

We say that T has a bounded H() functional calculus (“bounded” because
N < c|| fllo for all f e H(R)). There is a straightforward consequence con-
cerning spectral decompositions.

Suppose that T is an operator whose spectrum o(7") is a pairwise disjoint union
of non-empty compact sets

o(T) = oy UoU---Uopw .

For each k, let Q be an open subset which contains o} , chosen so that the {ip’s are
pairwise disjoint, let 2 = U, and define the holomorphic functions X € H(2) by

1 if¢ e

0 otherwise.

Xk(€) = {

Then Xp?= X, XeX; =0 if k#j, and Ei\;l Xg=1.
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Thus the operators Py, defined by P = X(T) form a family of spectral projections
associated with T', meaning that they satisfy

N
P’=P, PP; = 0ifk#j,and » Pe=1I
k=1

aswell as T =TPF; .

It is easy to infer from this, that the range X of Pp is a closed subspace of X
which is invariant under T, that X = @A), and that, if T denotes the restriction of
T to X, then Ty € £(Xs) and o(Ty) = o . Thus we have a speciral decomposition
of X associated with T .

In the case when X is finite dimensional and the sets o consist of distinct eigenval-
ues, then this decomposition of X into Xj can be used to obtain the Jordan cancnical
form of T, as is shown, for example, in Kato’s book.

Ezercise. For the operator D in the Example in Section A, show that f(D) =

diag(f(d1), f(d2),...). In this case, | (D)l = supyeo(py (M) € | fllo- Actu-
ally this operator D has 2 bounded F functional calcutus, where F is the space of
all bounded complex valued functions defined on {d,}.

Ezercise. Prove that the functional caleulus defined above is unique in the following
sense. There is no other mapping from H(Q) to L(X) which satisfies properties (1),
(2), (5), and either (3) or (4) of Theorem B.

Ezercise. Foreach t € R, let g; denote the holomorphic function g,({} = e™* . Define
e™T € L(X) by eT = g,(T). Use the holomorphic functional calculus of 7' and the
properties of the exponential functions to obtain whatever properties you can concerning
the operators e™*T . Show that the unique C' function »:R — X which satisfies

du .
() = ~Tu(t), u(0) = v

is given by u(t) = e v,
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LECTURE 2. SPECTRAL THEORY OF UNBOUNDED OPERATORS

Material in Section D and subsequent sections is based on my paper [M€¢] on Hg,
functional calculi, and on subsequent papers with A. Yagi [M¢Y], T. Qian [M¢Q], M.
Cowling, I. Doust and A. Yagi [CDM¢Y], and P. Auscher and A. Nahmod [AMCSN], all

of whom I take this opportunity to thank.

(C) Spectra and resolvents of closed operators in Banach spaces.

Recall that X denotes a non—trivial complex Banach space. By an operator in
X we mean a linear mapping T : D(T) — X, where the domain D(T') is a linear
subspace of &X' . (Note that we do not require that subspaces are closed.) The range of
T is denoted by R(T) and the nullspace by M(T). The norm of T is

1Tl = sap{||Tu]l : v € D(T),|ul| =1}

sothat 0 < || 7| < co. We say that T is bounded if ||T'|| < oo, and that T is bounded
on X if it is bounded and D(T) = & . The algebra of all bounded operators on X is
denoted by L(X). We call T' densely-defined if D(T') is dense in X, and closed if its
graph, G(T) = {(u,Tu) : u € D(T)} is a closed subspace of X x X . The space of all
closed operators is denoted C(X).

A complex valued function f defined on X is called a conjugate linear functional
on X if flau+ fv) = af(u) + Gf(v), forevery o, f € C and v, v € X. The

complex Banach space X* of all conjugate linear functionals on X', under the norm
A = sup{[f(u)l: [Jull =1},
is called the adjoint space of X .
If T is a densely—defined operator in C(X), then its adjoint operator T* € C(X)
is defined as follows. The domain of T™ consists of all g € X* such that g(Tu) = f(u)

for every u € D(T') and some f € XA*. Since T is assumed to be densely—defined, the
f € X* is uniquely defined by g, and so we define T*g = f.

In the case that A is a Hilbert space, we can identify X* with X by taking
flz) =(f,z). If T is a densely—defined operator in X such that T'=T*, then T is
called a self-adjoint operator in X .

When new operators are constructed from old, the domains are taken to be the
largest for which the constructions make sense. For example, if § and T are linear
operators, then S+ T and ST are the linear operators defined by

(S+T)u = Su+Tu, ueD(S+T) = DS)ND(T)
(STyu = S(Tu), veDST) = {ueDT):TueDS)},
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and, if 7' is one—one, then

DT = R(T) .

Care needs to be taken with the domains of operators. We write S C T' if D(S) C
D(T) and Su=Tu forall ueD(S). So S=T fandonlyif SCT and T C S.

Ezercise. Show that

S+T =T+S,
(S+T)+U = S+(T+U),
S+0 = §,
0S €S0 =0,
S—5co,
(ST)U = S(TU),
S(T+U) D ST+SU,
(S+TVWU = SU+TU,

and, if S is one-one,

S ¢ I and SS7' ¢ I.

Sometimes S(T+U) # ST+SU , as the examplegiven by T = —~U = I and D(5) # X
shows. If S and T are one-one, then sois $7', and (ST) ! =718,

Ezercise. If B € L{(X) and T € C(X), then the following operators are closed: B,
TB, BT (if B is one-one) and T~ (if T is one—one).

The resolvent set p(T) of T is the set of all A € C for which (T — AI) is one-
one and (T — XI)7! € L(X). The spectrum o(T) of T is the complement of p(7),
together with oo if T ¢ L(X). '

For T € C(X) and X € p(T), define the resolvent operator Rp()) € L{X) by
Rr(\) = (M -T)"1.

Lemma C. Suppose T is a closed operator in X and A € p(T). Let RA(¢) =
(C=XN"" for every ( € C, and let By(co) =0. Then —Ry(o(T)) = o(Rp())).

Proof. Suppose oo € o(T'). Then T ¢ L(X) and hence T — AI ¢ L(X). Therefore
Ry(c0) = 0 € o(Rr(N)) .
Next, let p € o(T) N C and assume that —(g — A\)™! = (A —p)™! € p(Rr())). Then

1

P =
A—p

Rr(\) (RT(/\)——/\:i—M,i’)_ € L(X) .
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Therefore P(T' — pl) C I and (T — pl)P = I, so that p € p(T), which contradicts
the assumption that u € o(T). Therefore —Rx(o(T)) C o(Rr(}N)) .

Now, suppose p € o(Rr())) and assume that —p ¢ Ra(o(T)). Then p € C and
A=1/p € p(T). Let

Q = —%(I-F;l;RT(/\—l/,u)) € L(X).

Then Q(Rr(A) —pl) = (Rr(A) —ul)@ = 1. So u € p(Rr())). However, this is a
contradiction, and hence o(Rp()A)) C —Ri(c(T)). O

In the above, we have extended the complex plane C to the Riemann sphere Cy, =
C U {o0}. The topology on the Riemann sphere consists of the usual neighbourhoods
in C together with the neighbourhoods of oo which are the sets of the form U U {co},
where C\ U is a compact subset of C. A function f defined in a neighbourhood of
co is holomorphic at oo if f(1/¢) is holomorphicat (=0.

Let T be a closed operator in X andlet A € p(T'). Then the function R) defined
in the last lemma, is a homeomorphism on Cs and is holomorphic on Coo \ {A}. It
therefore follows from the last lemma that ¢(7) is a non—empty compact subset of

Co .

We now develop the holomorphic functional calculus for closed operators with non—
empty resolvent set, following the treatment of Dunford and Schwartz.

Let €2 be an open subset of Co, which contains o(T") , but does not contain A € C,
and let H(Q) be the space of holomorphic functions defined on €. Then R) induces
a bijection between H(l) and H(Ra(Q)), where f € H(f) is mapped to fo R;'.
Using this bijection we define

F(T) = (foRY)(=Rz(V) ,
for every f € H(Q). The following result is then a consequence of Theorem B.

Theorem C. Let T be a closed operator in X with non-empty resolvent set, and
suppose that {} is a proper open subset of Co, which contains ¢(T') . Then the mapping
from H(Y) to L(X) which maps f to f(T) satisfies the following properties:

(1) if f, g€ H(Q) and a € C then f(T)+ag(T) = (f +ag)(T);
(2) if f, g€ H(Q) then f(T)g(T) = (fg)(T);
@) UT)=1;
(4) if o € p(T) and Ro(() = (¢ —a)™! then
RolT) = (T—oal)™ = —Rr(a) ;
(8) if {fo} is 2 net in H(S}) which converges uniformly on compact subsets of §)
to f € H(Q) then f(T) =limg fo(T);
(6) if £ € H() then f(o(T)) = o(f(T)).
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FEzercise. State and prove a theorem concerning the uniqueness of this holomorphic
functional calculus.

Ezercise. Prove A.E. Taylor’s formula

HT) = floo)l + 5 [ FOWT-T)7 ac

in the case when oo € ¢(T) and ¢ is a contour which envelopes ¢(T) in {0 in some
appropriate sense.

{D) Holomorphic functional calculi of operators of type S,

For 0 < w < p < 7, define the closed and open sectors in the complex plane C :

Sor = {¢€C: |arg¢| Sw}u{0}
Sgr = {C€C:(#0,|arg(| < p}.

We employ the following subspaces of the space H (52 4 of all holomorphic fune-
tions on 52 4

HOO(SS+) ={fe H(52+) N fllee <00},
where || fll, =sup{ [f({)]: { € Sas },

U(Syy) = {9 € H(Sy,) s >0,19(O) S CUKPA+ICP) ™ 3

and

F(Syy) = {feH(S) 3 >0,If(OI SO +1¢1) ¥,

so that
U(Shy) C HoolSuy) C F(Spy) C H(S,,)

Let 0 <w < m. An operator T € C(X) is said to be of type S,4 if o(T) C Sut
and, for each p > w, there exists €, such that

T —¢DH < Cultl™, ¢ ¢ Sus -

Fzample 1. Suppose that T is a self-adjoint operator in a Hilbert space H and that
(Tu, u) >0 for every u € X. Then T is an operator of type Spy. .

Ezample 2. More generally, for 0 < w < 7, suppose that T is an w -accretive op-

erator in a Hilbert space #, by which we mean that o(T) C S,+ and (Tu,u) €
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Syt for all u € D(T). Then it is easy to show that || Rp(¢) || < (dist(¢,Su4)) ™" for
all { ¢ S+, so that T' is an operator of type S,+. We remark that w-accretive
operators necessarily have dense domain, and are self—adjoint if and only if w =0.

Ezample 8. Let 0 <w < ¥. A family of bounded operators {S(z):z € S2,} on X
is called a holomorphic semigroup if

(1) S(2)S(w)=S(z+w) forall 2, we S, ;

(2) S(z) is holomorphicon S2, .
Let T be the generator of {5(z)}, namely the operator in X such that

Tu = 1imm
tl0 i

with domain consisting of all ¥ € X’ for which the limit exists. Then —T' is an operator
of type S(z-w)+ in .

Ezample 4. Define

27k 1
T= oDy [ 0 2“"]
in the Hilbert space H = ®C? = {(uy,uz,...) : ux € C*} with inner product

((w1,u2,...), (v1,v2,...)) =3, (ur, v). Then, for £ <0,

g [@F-OT —@F-g
(T-§I) _kGGBN{ 0 ) (;—k_é-)l] ] ’

so “ (T — €)1 ” > supy |2_k - €|-—2 > |§I_2 . Thus T is not of type S+ for any w.

Suppose that T is a one—one operator of type S, with dense domain and dense
range in X . Every such operator has a holomorphic functional calculus which is consis-
tent with the usual definition of polynomials of an operator. By this we mean that for
each ¢ > w and for each f e F (52+) , there corresponds a densely—defined operator
f(T) € C(X). Further, if f,g ¢ F(S’g_,_) and a € C, then

af(Tyu+g(Tu = (af +9)(T)u
9D f(Tu = (g )T

for every u € D(f(T)) for which one side (and hence the other side) of each equation
is defined.

1]

In particular, if ¥ € \II(S'2+) , then

W) = 5o [@ -0 de
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where ~ is the unbounded contour {¢ = re** : r > 0} parametrised clockwise around
So+,and w < 8 < p. Clearly, this integral is absolutely convergent in £{X), and it
is straightforward to show, using Cauchy’s theorem, that the definition is independent
of the choice of 8 € (w, u), and that if ¢ is holomorphic on a neighbourhood of S,4,
then this definition is consistent with the previous one. Moreover o(¥(T')) = ¥(o(T)) .

One way to construct this functional calculus is to first define these operators ¥(T")
by this integral when 3 € ¥(S2,), and to then define f(T') when f € F(Sp,) as
follows.

Suppose f € F(Sp,). Then for some ¢ and k, |f(¢)] < <(I¢|F + I€]7%) for every

¢eSp, . Let
B C k41
ve = ((1+<)2> '

Then ¢, fy € ¥(S5,) and ¥(T) is one-one. So (f¢)(T) is a bounded operator on
X ,and $(T)7! is a closed operator in X . Define f(T) € C(X) by

AT) = @)™ (FHTD) -
One must then check that the properties of the functional calculus are satisfied.

This functional calculus is the unique one in which the following Convergence
Lemma holds. It is one of the most important properties which is satisfied by this
functional calculus.

Theorem D (The Convergence Lemma). Let 0 < w < p < w. Let T be an
operator of type S,4 which is one—one with dense domain and range. Let {fo} be
a uniformly bounded net in Heo(Sp, ), which converges to f € Huo(S ©+) uniformly
on compact subsets of S7, , such that {fo(T)} is a uniformly bounded net in L(X).
Then f(T) € L(X), fo(T)u — f(T)u forall we X, and || f(T) || < sup, || f(TH .

Proof. Let 9(¢) = ¢(1 +¢)™? and ¥a(¢) = ¥(O)(fa(¢) = f(¢)). Then, for each a,
o € T(S2,) and

(T

IA

1fa() — FOI
const. j[ : + TE 1d¢|

U lleo + 1l fallo) + comst.  sup  {}fa(() = F(OI}
roi<|¢|<r

const.

IA

for all » > 1. Since the net {f,} is uniformly bounded and converges on compact
subsets of SO, , it follows that ||¢(7)|| — 0. Now take any u € X . Then

Ha(T)(T)u = AT3T)ull = 1a(Tull < 19a(D)Iull 0.
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Therefore
| F(TH(Thu|l < (SI;P | fa(T) N H(Thu|l .

Since ¥(T') has dense range it follows that || f(T)| < sup,|| fo(T)|| and that
fa(T)u — f(T)u forevery ue X. 0O

The Convergence Lemma allows us to give immediate proofs of many of the formulae
used in studying such entities as powers of T and semigroups associated with 7'.

Let us consider the powers of a one-one operator T of type S+ with dense domain
and dense range. (The density assumptions can often be removed.) For « € C, let

fa € F(S%,) be given by fo(() =(*, where > w. Then define T* € C(X) by
T = fo(T) .
From the functional calculus of T', formulae such as
T*TPy = TPy,  weDTP)nDT+F),

follow immediately. From the Convergence Lemma, it is also easy to prove standard
formulae for these operators such as the following. If § < s < 1, then
1 R
T°uw = = lim t7(I +tT) ' Tu dt , u € D(T),

R—oo /.
e—0

where

. Oo——s -1
ﬂ‘j{ £ (1 4+8) " dt .

We can develop the theory of the associated holomorphic semigroups in a similar
manner. Suppose 1 is a one-one operator with dense domain and dense range which
is of type S+ , where 0 <w < Z. For each z € S?E—w)+ let

2

9:(¢) = e .
Then g, € F (S% ) and the operators
e——zT — gz(T)

form a holomeorphic semigroup.

Ezercise. State and prove a theorem concerning the uniqueness of this holomorphic
functional calculus.

Egzercise. Show that, whenever f(T) € L(X), then f(T*) € £(X*) and f(T)* =
F(T*), where f(¢) = f(C).
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LECTURE 3. QUADRATIC ESTIMATES

In this lecture and the next, H denotes a non—trivial complex Hilbert space.

We are primarily interested in characterising and studying those one-one operators
T of type Sy+ in H which have a bounded H, functional calculus, meaning that for
all f € Ho(Sh,) (where > w), f(T) € L(H) and

IFD < eull flloo

for some constant ¢, . In particular, we show that this is the case if and only if the
quadratic norm ||« ||; is equivalent to the original norm ||| on H.

In the Hilbert space case, every one—one operator T' of type S,4 necessarily has
dense domain and dense range, so that the Convergence Lemma is always valid.

Further, D(T) NR(T) is dense in H. If T is not one—one, then H = N(T) & Ho
where N(T) = {u € H : Tu = 0}, and Ho is the closure of R(T), so that we do
not lose generality by restricting our attention to one—one operators. (No orthogonality
is implied by the symbol @.) See [CDM®Y] for a treatment of these results, and for

the situation in Banach spaces. References for the results which follow also include [Y],
M9, [M®Y], [M<Q)], and [AMCN]. There is related material in [deL].

(E) Quadratic norms of operators of type 5,4 in Hilberi spaces.

Suppose, for § < w < 7, that T is a one—one operator of type S+ in H. Given
¢ € ¥(5,,) and t > 0, define ¢; € T(55,) by #:(¢) = ¢(#). The operators
¥:(T) € L(H), defined in the previous section, depend continuously on %, so the
integrals in the following results make sense.

Lemma E. Let T be a one-one operator of type Sy in H. Let ¢, ¢ € ¥(§ +)
where p > w . Then there exists a constant ¢ such that

(i) I P (D < el oo

for all f € Hoo(S3,) and all ¢ >0, and

(i)

3 5 i i
? Sc{/ing(r)n“’;}

/ Y (T),(To(r)
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for all continuous functions g from [o,3] to H,andall 0 <a < f<oo.

Proof. If v ={¢ =re*® :r >0}, w < < u, is an unbounded contour parametrised
clockwise around 5,4 , then

(F0T) = 57 [ FQweOT —cnac.

So, for some s >0,

I (Fbe )T < const. [|f”oojfz_-{|—_t%%|‘ﬂ%
< el flloo

which proves (i1). To obtain (i), first verify that

o] < cons. [ I P

{ const. (¢/7)*(1 +log(r/t)) i 0<t<T <00
const. (r/1)*(1 +log(t/7)) H 0<r<t< 0.

Therefore a variant of Schur’s estimate becomes

L[ e@sman| &
< /w{ j @, | [pmw@ | 19 )nfli} i
< /w{ /C;ﬂl!wrmg(if) / |- (@)e, @ | o) 12 ‘”}

IA

cup { [ oo ‘—’—} s [ o 5 {/ o)) dr}
/ lotr) 1P

as required. O

IA

We are now in a position to define the quadratic norm ||u ||z, associated with a
one—one operator T of type S,4 in H and a non—zero function ¥ € ‘I/(Sg ) Itis

defined by
o0 dt )2
el = { [ Iwdmnr® §
o
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on the space Hf,,, of all u € H for which the integral is finite.
Egercise. Show that there exist two more functions 6, 8 € ¥(S;,) such that

[ onarwn T = 1.

Prove, using the Convergence Lemma, that

hm Yo, g(Tu = hm T)z/),-(T)u—— = u
ﬂ——)oo /

for all u € H, where tq,p € U(S],) is defined by

Yas (¢ f 008 (O ()

Ezercise. Show that ||u ||y, is indeed a norm on HY. .

Ezercise. Suppose that {vs} is a Cauchy net in HJ T, in the topology associated with
|- llgy» and that v — v € H in the original norm topology. Prove that v € HY,,

and that ||vey —v ”T,zp - 0.

Proposition E. Suppose that T is a one—one operator of type S, In H
i, ¢ are non-zero functions in ¥(S),) where u > w. Then there exists a

¢ such that, for every f € Hoo(Sp,) and every u € Hi, T D),

17 (TMullry < el flleo Nuliry -

Proof. Let u € HE,, N D(f(T)) . Choose 8, 8 and 1o as in the exercise above. By

, and that
constant

using the holomorph;c functional calculus of T, and applying Lemma E, we have

1%ep(T)f(T)ullp, = {j:oo| P (T, p(T) (T H }

_ {/‘” [ @ ma. s (T)uﬁdf 2

=i [f dr
[ e@e e @@t
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AN

const. { / I (£8,)(T)r (T d’} by (i)

1
2

A T
el £l { | 1@ d—} by (i)

el flloo Nullg,y -

IA

IA

Using this we see that {¢ag(T)f(T)u} is a Cauchy net in %217,;, as (a,f) —
(0,00) . Moreover, by the first of the above exercises, we see that it converges in H to
f(T)u . So, by the third exercise, f(T)u € 7., , and satisfies the required estimate. O

On considering the case when f =1, in which case f(T') = I, we see that the spaces
'HT are independent of ¢, and mdeed of u, so can be denoted by HY, and that
the norms || u ”T » are equivalent, meaning that, for each pair of non-zero functions

and ¢ , there exists a positive constant ¢ such that ¢ ullp, < lullp, <cllullyy
for all u € HY.. We write this as ||u lry = llu ”Tyﬂ' Henceforth we write ||ull; in

place of any one of these equivalent norms.

Define the Banach space Hr to be the completion of % under the norm || u || 1.
Actually Hr is a Hilbert space, because HJ. is an inner product space under

(v, v)r = J/ ", ) &

Ezercise. Prove that R(T(I+T)?) =D(T)NR(T) C D(T)NR(T*) C HS C H for
all o € (0,1), and hence that H% is dense in H. Also prove that R(T(I +T)7%) is
dense in Hy.

We say that T satisfies a quadratic estimate if H C Hr and ||ully <cllu| forall
u € H ,and that T satisfies a reverse quadratic estimateif Hr C H and ||u]| < c|lu |
for all © € Hy . Our next aim is to show that T satisfies a quadratic estimate if and
only if its adjoint T* satisfies a reverse quadratic estimate, or indeed, if and only if its
dual with respect to any pairing does.

Two complex Banach spaceé X and Y form a dual pair (X,Y) if there is a
bilinear or a sesquilinear form (-, -) on X x ) which satisfies the following properties

Ku, )] < ellully llvlly foralue X and allv e Y
lulle < ersup B frany e x
vEY ”””y
(u, v)|
v < ey sup forallvey
lolly 28Up
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for some constants c,c; and cz. (A sesquilinear form (u,v) is a complex valued
function on X X Y which is linear in u and conjugate linear in v.)

Suppose (X, Y) is a dual pair. A dual pair (T', T') of operators of type S.+
consists of operators 7' of type Sy in X and T7 of type So+ in Y which satisfy
(Tu,v) = (u, T')

for all u € D(T) and all v e D(T).

Ezercise. Let T* be the adjoint of an operator T' of type S,+ in a Hilbert space H
with inner product (-, ). Show that (T', T*) is a dual pair of operators of type S+
in (H, H) under the pairing (u, v) = (u, v).

Ezercise. If (T, T") is a dual pair of operators of type S,4 in (X, Y) and if ¢ €
T(Sp,) for some g > w, then
((Thu, v) = (u, $(T"))

for all w € X and v € YV, where $(¢) = %(¢) when the pairing is sesquilinear,
and ¢ = 3 when the pairing is linear. Moreover there exists a constant ¢ such that

| 9@ || < cll(T)| for all 3 € T(S9,).

Ezample. If v is a contour in C and 1 < p < oo, let Ly(y) be the Banach space of
equivalence classes of measurable complex valued functions u on v for which

i/p
luty = { [P st} <o 15p<o0,
lull,, = esssuplu(z)| <oo.
zE&y

For 1<p<ooand 1/p+1/g=1, (Ly(), Le(7)) is a dual pair of Banach spaces
under the bilinear pairing

(w,v) = jfu(z)v(z)dz .
To be specific,
lull, = sup{ w, o)l sv € Lg(m), ofl, =1} .

Suppose Tu = wu and T'v = wv for some measurable function w with essen-
tial range in S,4+. Then (T, 7") forms a dual pair of operators of type S,+ in

(Lp(7), Lq(7)> .

FEzercise. Suppose (X, Y) is a dual pair of Banach spaces, Z is a dense linear subspace
of V, and f is a continuous function from a compact interval [o,(] to X'. Then
there exists a Borel function g from {a,f] to Z such that ||g(t)||y, =1 for all ¢ and

HF@) |2 £ 2e1{f (), g(t)) forall ¢.
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Theorem E. Suppose (T', 1) is a dual pair of one—one operators of type S,+ in a
dual pair of Hilbert spaces (H,K). Then (Hr, K1) is a dual pair of Hilbert spaces
under the induced pairing.

Proof. Choose @ € ¥(57,) such that L)t dt = 1, and let Jullp = ||u 7%
and ||v||p = ||v|lg - It suffices to prove the following bounds.

Hu,v) < ellullp vl for all u € HY and all v € Ky

Hullp <Cp sup M for all u € HY
22 Tl

lolly < C sup L0l
ueHS flullr

for all v € K3 .

On applying the Convergence Lemma, we see that if v € HY and v € XS, , then
i dt
(w o) = ([ WHOWG )
o — dt
= [t T
0

so that [(u, v)| Scllully |vlip -
Now take any u € H%. Choose 0 < a < 8 < 0o such that

, di

8
Glelr < [ v &

By the previous exercise, there exists a Borel function g from [a, 8] to K%, such that
T

ldT)ul® < 2e(e(Thu, 9(2)
and
lg@ Il = I ¢e(T)ull
for all ¢. Let v = J/‘f@t(T’)g(t)t_:l dt. Then

B
Gl < 2 [ D, g0)F = 2eate, v)

ol = {/w i}

g Ldt)?
const,. gl n (by Lemma E)

const. ||uflp .

and

B
J{ o (T BT 1) 2

t

IN

IA
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Hence
[{u, v)|
vl

fully < Ci

for some constant (.

Similarly, we can show that for any v € K% , there exists u € H% such that

|{u, v)]
el

lolly = Ce

O

Corollary E. Suppose (T', T') is a dual pair of one—one operators of type S,4 in a
dual pair of Hilbert spaces (H,X). Then Hr C H with ||ul|| < ¢||u||; if and only
if KC Ky with ||v]p <ol '

Proof. This follows immediately from the previous theorem. [

(F) Boundedness of holomorphic functiona! calculi.

We are now in a position to relate square function estimates to bounded Ho, func-
tional calculi.

If T is a one—one operator of type S+ In H,and 0 € w < g < w, then we
say that T has a bounded Hoo(Sy,) functional coleulus if, for all f € Hoo(52+) ,
f(T) € L(H) and

A < el fll -

Ezercise. If (T, T") is a dual pair of operators of type S,+ in a dual pair of Hilbert
spaces (H, K),and p > w, show that T has a bounded He(S5,) functional calculus
if and only if T° does, and that

(f(T)u, v) = (u, F(T")0)

for all w € H and v € K, where f was defined in a previous exercise.

Theorem F. Suppose T is a one—one operator of type S, in H . Then the following
statements are equivalent:

(a) T has a bounded Hoo(S),) functional calculus for all p > w;

(b) T has a bounded Hoo(S5,) functional calculus for some p > w;
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(© NAD) < cull fllo forall f € B(SI,) and some > w;
(d) T e L(H) forall s€ R, and || T || < cuetl®l for some p>w;

(e) D(T*)=D(A%) and D(T*®) = D(B*) for some a € (0,1), where A = (T*T)>
and B = (TT*)2, with || A%u|| ~ || T*u|| and || B®u|| ~ || T**u||;

(f) Hr = H, and there exists ¢ > 0 such that, for every v € #,

cHully < lull < ellullp -

Proof. Suppose that (f) holds. Then, for all y > w, it is a consequence of Proposition E
that || f(T)ull < cull flloo ]l forall w € H andall fe ¥(S§5,). Thus || f(T)| <
cull flloo forall fe ®(SH,).

To obtain (a), apply this estimate, the Convergence Lemma, and the fact that every
function f € Hoo(S +) is the limit of a uniformly bounded sequence of functions f, €
‘I/(Sﬁ ) in the sense of uniform convergence on compact subsets of 52 4+ - Statements

(b) and (c) follow.

. So also does (d), ?Tca,use T = f,(T) where f, € Hoo(53+) is given by f.(¢) =
(%5 and [[fs |loo = el

We shall prove that (d) implies (e) in the next section. We refer the reader to the
literature, say [Y] or [M¢], for a proof that (e) implies (f).

A proof that (b) implies (f) which is more in the spirit of harmonic analysis goes as
follows. Let 95 be a sequence of functions in (S92, ) such that [x(¢)] < 27F|¢|(1+

27%1¢])7? and Zk___ood;k( )=1. Then, for all ue€H,

= H
lullr < a { Z | or(T)u ]|2} (proved similarly to Proposition E)

k=-—o0

< a 15:1121 ” Z appr(THu ll (proved below)
< e sup sup S cun(O)| Iull - (b ()
< @SlZPZWk(C)lHuH

< ealull .

Also, T* has a bounded Heo(S),) functional calculus, so |[u|l;. < eqllu]|, and
hence, by Corollary E, ||u|| < c¢s||u ]|l as well, thus proving (f). O
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The second inequality above is well known. It is proved in the following way. Let
ur = Yr(T)u. Let rp denote the Rademacher functions on [0,1]. These are step

functions such that ri(z) = +1 for all € [0,1], and fol ri(z)ri(z)dz = 8 . Then

S l? = 3 / ri(2)re(e) do g, u;)
E gk VO
/0 Zrk(m)uk

dz
E

2
s | S
{quelsl

IA

as required.

A. Yagi first proved the equivalence of (d), (¢) and (f), (with |ju ||, defined using
a particular choice of ) [Y]. Subsequently a full statement of this theorem was given
in [M9], though various parts of it have been known for some time. Of course, quadratic
estimates have a long history in harmonic analysis, some aspects of which we shall touch
on later.

We conclude with the remark that, by virtue of the equivalence of (a}) and (b},
the definition which we made loosely at the very beginning of this lecture is perfectly
alright for the case of one—one operators of type S,+ in a Hilbert space. That is, we say
that T has a bounded Ho, functional calculus provided T has a bounded Hoo(52+)
functional calculus for some, and hence all, g > w.
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LECTURE 4. OPERATORS WITH BOUNDED HOLOMORPHIC FUNCTIONAL CALCULI

In this lecture we investigate some classes of operators T of type S, in a non-
trivial Hilbert space H with inner product (-, -}, and also consider operators of type
S, where S, = Syt U Sy— .

(G) Accretive operators.

Let us first consider self-adjoint operators. A self-adjoint operator S in H is
sald to be positive if (Su,u) > 0 for all non-zero v € D(S). Every positive self-
adjoint operator is a one—one operator of type Sp+ , and has a bounded Borel functional
calculus, so it certainly has a bounded Hoo(Sp,) functional calculus for all p > 0.

Actually, the constant ¢, is 1, meaning that || f(S)u|| < || f|lo, forall f e Hoo(S,) -

Let us verify that statement (f) of Theorem F holds in this case. Let u € H. Then

s = { [“iwour £)°

—{ [[@usmtsn 0T }

([Tt )

= rllull

il

1
where & = { fooo [¢(t)|2 %} * . Therefore, in this special case, the quadratic norm is a

positive multiple of the original norm, and so Hg =H.

An operator T in H is accretive if Re(Tu, u) > 0 forevery u € D(T),and T is
mazimal accretive if T is accretive and ( € p(T') whenever Re( < 0. Every bounded
accretive operator on H is maximal accretive.

If T is maximal accretive and Re¢ <0, then || Rr(¢)| < |Re¢|™", from which it

follows that T' is of type ¥ .

Every one-one maximal accretive operator T' has a bounded Hoo(S3,) functional
calculus for all 4 > Z with constant ¢, =1, meaning that || f(T)u|| < || f||, for all
feH 00(53 +) - This fact is essentially equivalent to von Neumann’s inequality, namely
that || g(W)|| <1 for all operators W € L(H) such that || W] <1, and all functions
g which are holomorphic on a neighbourhood of the closed unit disc, and bounded by
1 on the disc. See Chapter XI of [RN] for a discussion of this inequality.

We present, however, a direct proof due to Edwin Franks.
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Theorem G. Suppose that T is a one-one maximal accretive operator in H . Then
T has a bounded H,, functional calculus, and

A< flloo >
for every f € Hoo(Sp,) and all u> I

Proof. Let us first suppose that T is bounded and strictly accretive, meaning that
Re(Tu, u) > cllu|?
for all v € H and some ¢ > 0.

Choose u > Z and f € ¥(S9,). Then, since (T* + (I)™" is holomorphic on a
neighbourhood of {{ € C:Re({ >0}, we have

FT) = 5 [ HO@ -
1 ~1 % —1
= 5 [ FOW@ =D + @+ e

Therefore
1 i o
T = g [ HO@ + D)@+ THT = D) e
iR

for all v € H. Note that, because of our assumptions on T, the last integral is
absolutely convergent. On taking limits as usual, and applying the Convergence Lemma,
we find that this formula holds for all f € Hoo(52+) and all v € H. In particular,
setting f =1,

u = % [R(T* + )TN T + THT — (It dC

and, since the integrand is positive self-adjoint,
1 [ L 2 3
lul = {5-7;/ “ (T*—G—T)f(T—z'nI)‘lu“ dn} :

Moreover, for all u,v € H,

[(f(T)u, v)|

5 [ S0 (@ +inD) @+ YT —ind) M, 0 d,7|

i
2

IA

1le{zs [ | s mp@ =i an}

{%/Z |+ m)E@ — inry~ro ”2 dn}%

I f lloo Nl o

il
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so | f(T)| <)l fllo as required.

Now let us consider the general case. Take any € >0 and let T. = ((T +eI)™! +
eI)™1. Then T. is a bounded strictly accretive operator on H . Moreover, as ¢ — 0,
(Te —¢I)™! converges in the norm topology of L£(H),to (T'—(¢I)~'. This convergence
is uniform on sets of the form {¢ € 50, : v <|(| < R} when 0 <r < R < 00. So,
for every o € \II(SS+) , ¥(T.) converges in the norm topology to (1) as ¢ — 0. It
therefore follows from the above result for bounded strictly accretive operators, that

MO <Yl
for every ¥ € ¥(S9,).

We have thus proved statement (c) of Theorem F with ¢, =1 for all 4 > Z. The
result follows by applying the Convergence Lemma as in the proof of that theorem. O

FEzercise. Extend this theorem to prove that || f(T)|| < || fll,, for functions such as
f:(¢) = e7*, ¢ > 0, which are bounded on the right half plane, but not on any bigger
sector. Hence prove that e ™7 isa Oy semigroup with H e T “ <1 forall t>0.

We remark that the formula for f(T) used in proving Theorem G involves a kind
of Poisson integral, as opposed to the Cauchy infegral we mostly use.

Ezercise. Prove that every one—one maximal accretive operator T in H has a bounded
harmonic functional calculus (where this needs to be defined). Hence prove that
[logT —logT*|| < .

Ezercise. Let W and T be two bounded operators on H related by the formula
T=(I-W)I+W)! and henceby W= (I -T)(I+T)"!. (Assume that —1 is not
in the spectrum of either operator.) Prove that || W || < 1 if and only if T is strictly
accretive.

Here is a proof of one implication. For all v € H,

1 = 1| W |?

I

Re(({ —W)u, (I+W)u)
= Re(T(I+W)u, (I + W)u)
> 0.

Ezercise. Derive von Neumann’s inequality as a corollary of Theorem G.

In section D, we defined, for 0 <w < 7, T to be an w-accretive operator in #
if o(T) C Suy and (Tu, u) € Suy for all w € D(T) . Such an operator T is maximal
accretive, and so, if it is one-one, has an H, functional calculus. It is also of type 52+ ,
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and thus, by Theorem F, for all ;1 > w there exists ¢, such that || f(T)|| < cull flloo
for all f € Hoo(Sy,). We note however, that if 4 < §, then the constant c, may be
larger than 1.

A third class of operators which occurs in applications are those given in the follow-
ing exercise. These operators do not necessarily have bounded H,, functional calculi.

Ezercise. Let T = VS where S is a positive self—adjoint operator in H,and V isa
bounded invertible w -accretive operator. Prove that T is a one—one operator of type
Sw+ . An example of such an operator is given by Tu(z) = —b(z )Z]_l 52, 2(:z:) in
Ly(R™), where b € Lo(R"™ C) with Reb(z) > k > 0 for almost all 2 € R™.

The theory of accretive operators was developed by T. Kato and others to study op-
erators such as elliptic operators in divergence form with bounded measurable complex
coefiicients. These are defined as follows.

Consider an elliptic sesquilinear form J definedon ¥V xV by

Ju, v /{Tajkau B +Eak; v—i—Ebuaa +auv } dx

where ) is an open subset of R™, V is a closed linear subspace of the Sobolev space
H'(Q) which contains C°(Q), ajk,ar,b;,a € Loo(€) and Re Zajk(x)fk?j“ > x|¢|? for
all ( = ((¢;) € C* and some x >0 . Let L be the operator in Ly(}) with largest
domain D(L) C V such that Jlu,v] = (Lu,v) for all w € D{L) and all v € V. Then
L+ is a maximal accretive operator in Ly (£2) for some positive number A. Therefore

L+ M has a bounded H,, functional calculus, and satisfies quadratic estimates.

The part of Theorem ¥ which was actually the first to be used in studying elliptic
operators, was the fact that certain operators satisfy statement (d), and hence (e}, which
was used to determine that the domains of their fractional powers are Sobolev spaces.

The proof that (d) implies (e) is a consequence of the following result with B =T,
by first taking S = A, then interchanging the roles of 5 and T, and finally repeating
the process for the adjoint operators.

Proposition G. Let S and T be one-one operators of type S,.+ and S,.+ in
Hilbert spaces H and K respectively, each having bounded imaginary powers (as in
(d) of Theorem F.). Let B be a bounded linear mapping from H to K such that
B(D(T)) ¢ D(S) and ||SBul| < ci||Tu|l. Then, for every a € (0,1), B(D(T*)) C
D(S%) and || S®Bu|| < co || T*u|| where co = ;|| B|* ™.

Proof.- Suppose that ¢; > 0. It suffices to show that, for any u € D(SBT™1), the
function

#(z) = ||S*BT *u||||B||* " 7"
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satisfies |¢(2)] < 1 on the strip {¢ € C: 0 < Re{ < 1}. From the assumptions,
we have the bounds on the lines Re( = 0 and Re( = 1. If ¢(() > 0 at oo in
the strip, then |#(z)| < 1 by the maximum modulus principle. Otherwise, consider
dn(l) = qb(C)e(z/"e“l/" . Since ¢(¢) is bounded, ¢,({) = 0 as { — co in the strip.
Thus, |¢n(¢)] <1 everywhere in the strip since [¢,| <1 on the boundary. This is true
for all n, so |¢(¢)] <1 since e¢’/ne=1/m" 5 1 as n — co. Therefore, as D(SBT™!)
is dense in D(S*BT~%) the result follows. [

(H) Operators of type S, and spectral projections.

For 0 Sw < pu< I, define S,_ = =S,y and S)_ = — g+. Then define the
closed and open double sectors 5, = 5,-US,4 and Sg = S:L U5’2+ , and the function
spaces

U(59) C Heo(S)) C F(Sy) C H(SY)

on them, exactly as before.

Let 0 <w < Z. An operator T in # is said to be of type S, if ¢(T) C S, and,
for each g > w,

[(@—ch™ | <Culcl™, ¢&8,.

Most of the results for one-one operators of type S, generalise directly to the
case when 7' is a one—one operator of type 9, . Indeed the results presented in Lecture
3 remain valid, word for word, subject to the following minor modifications. (i) The
contours v have four rays, so as to enclose both sectors. (ii) The functions ¢ €
¥(S5,) used to define |||y, cannot be identically zero on either sector. (iii) At every
occurrence, replace T(I+T)"2? by T(I +T%)"!, replace T by (T2)*/? | and replace
o by (T*Q)aﬂ .

The main result is, once again, that 7' has an H,, functional caleulus if and only
it Hr = H , with equivalence of norms.

FEzercise. Prove that, if T is a one—one operator of type S, in H, then T? is a one—
one operator of type Syt . Prove also that Hr = Hyz. Thus T has a bounded Ho,
functional calculus if and only if T2 does.

Let us consider the spectral projections associated with the parts of the spectrum
in each sector.

For some p > w, define the holomorphic functions X4, X-, sgn € Hoo(S57) by
X4(¢) =1 i Re( >0 and X4({) =0 if Re( < 0, X-({) =1~ x4(¢), and
sgn(() = X4(¢) — x-(¢). Let By = x4(T) and E_ = X_(T) € C(H), so that,
by the identities of the functional calculus, D(Ey) = D(E-) , E,> = E, , E_.* =
E_, E/E_= 0!’D(E+) =FE_E,,EL+E_= II’D(E.;,) and B, — F_ = sgn(T) .
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The operators E; and E_ form a pair of closed spectral projections corresponding
to the parts of the spectra in S,4+ and S,- respectively, though in general they may
fail to be bounded operators on H . But, of course, if T has a bounded Ho functional
calculus, then E,,E_ € L(H) because X4, X— € Hoo{SD).

‘We see therefore, that whenever Hr = H , then Ey and E_ are bounded spectral
projections on H, and that H = HT & H~, where H* = R(E;) and H™ = R(E_)
are the corresponding spectral subspaces. (The direct sum @ has no connotations of

orthogonality.) This is an important reason for obtaining quadratic estimates.

Let us consider some special cases. If 7' is a one—one self-adjoint operator, then T
is of type 5o, and has a bounded Borel functional calculus, so it certainly has a bounded
Ho functional calculus, again with constants ¢, = 1. In this case || E4| =1 so the
decomposition H = HY @ H~ is an orthogonal one. We remark that there exist one—
one operators of type Sp which do not have a spectral decomposition H = Ht @ H~
[MeY].

Another class of operators of type S, consists of the ones obtained as follows. Not
all such operators have a bounded H., functional calculus.

Theorem H. Let T = V.S where S is a one—one self-adjoint operator in ‘H , and V
is a bounded invertible w -accretive operator. Then T is a one—one operator of type

S -

Proof. There exists a constant ¢ such that, for { ¢ S, , and v € D(T),

f|(T = CDullllull 2 Em(VTHT = (Du,u)| = [Im(V ™ u,u)]

>
> (V7 u,w)| dist(¢, S.) (because (V" u,u) € S,) .
Hence, for some C > 0,

T = CDull = C dist((, 5) flull

The dual of (T — (I) with respect to the pairing (u, v) = (V" u,v) of H with
itself, is (7Y — (I) where T = V*§. Since T' has the same form as T, we also have

I(T"— CDull 2 Cdist((,S0) lull = C dist(¢,5) flul -
It follows from these two estimates that ¢ ¢ o(T) and

(T~ ¢D)7Y| < 07 ( dist(¢, 5.,))7" .

We conclude that T is of type S,. O

106



OPERATOR THEORY AND HARMONIC ANALYSIS

To conclude, let us introduce a specific operator which has this form. In the final
lecture, we shall prove that it does indeed have a bounded H., functional caleculus, and
we shall see the significance of the resulting decomposition H =H* @ H™ .

Let - denote the Lipschitz curve in the complex plane which is parametrised by
a Lipschitz function g : R — C such that ¢',1/¢’ € Lo.(R) and ¢'(z) € S+ for all
zeR.

Define the derivative of a Lipschitz function v on v by

Y —
W'(2) = lim ulz+h)—u(z)
h—0 h
z+hEy

Next use duality to define D., to be the closed linear operator in L,(~y) with the largest
domain which satisfies
(Do, v) = (u, )

for all Lipschitz functions v on ~ with compact support. We are using the pairing
(w,v) = jiru(z)v(z) dz
¥

defined in Section E.

Then (D, —D,) isa dual pair of one-one operators of type S, in (Ly{), L)),
1<p<Loo, I/p+1/g=1.

If V denotes the isomorphism from Lz(y) to Lz(R) induced by the parametriza-
tion, (Vu)(z) = u(g(z)), then (VD,u)(z) = b(z)(DVu)(z), where b = 1/¢', and
D = 24 with domain D(D) = {u € Ly(R) : Du € Ly(R)}. Now D is a one-one
self~adjoint operator, and the operator of multiplication by & is a bounded invertible
w —accretive operator in La(R), so, by Theorem H, the operator T = D is a one—one
operator of type S, in Lz(R). It follows that the operator D, = V™7V is a cne-one

operator of type S, in La(vy).

Ezgercise. Show that, once we have proved that the operator T has a bounded Hy
functional calculusin L,(R), then we can conclude that the operator Iy has a bounded
H, functional calculus in Lo(y).
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LECTURE 5. SINGULAR INTEGRALS

Let us turn our attention to real harmonic analysis. Good references include the
books [St1] and [St2] of E.M. Stein.

(I) Convolutions and the functional calculus of mif; .

Let us briefly consider the Ly theory of the gradient operator

D = (DlaD27'-~’Dn) = (l‘a_ l—a;, li)

For 1 < p < oo, let Ly(R") denote the Banach space of (equivalence classes of)
complex valued measurable functions u on R™ for which the norm

ol = { [ mora |’ <,

and let Lo(R™) be the Banach space of (equivalence classes of) measurable functions
u on R™ for which the norm

Hull, = ess sup |u(z)] < .
E€Rn

(Functions which are equal almost everywhere are identified in the usual way.)

For 1 < j <n,let D; denote the operator D; = %% in L,(R™) with domain
bt

Su
D(Dj) = § ueLy(R") : —— € Ly(R")
Oz
where the derivative is taken in the sense of distributions.
It is well known that D; is a closed operator. In the case when p = 2,
Fourier theory can be used to verify this, and to comstruct a functional calculus of

D = (D4, Ds,...,D,;). Here is a brief survey of the results from Fourier theory that
are needed.

The Fourier transform @ = F(u) of a function u € L;(R") is defined by

16 = FW© = [ e Oum)ds

Rr
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for all £ € R™®. The function 4 is a bounded continuous function on R® which satisfies
120l < llully for all u e Ly(R™).

If we Ly(R*)NLi(R"), then 4 € L2(R™), and Parseval’s identity
lall, = (@m)"2 |lull,

holds for all such u, and so the Fourier transform extends to an isomorphism, also
called F, from Ly(R7") to La(R").

If u € Ly(R™), then Dju € Ly(R™) if and only if §;4(£) € Ly(R™, dE), and

(D)) = ’F(%%)(f) = & [ = gae)
J

More generally, suppose that p is a polynomial in n variables. Then p(D)u € Ly(R™)
if and only if p(£)a(€) € La(R™,dE) , and

(p(D)u)™ (&) = p()a(E) -

Egzercise. Use Parseval’s identity to show that D; is a closed operator in Ly(R”) as
claimed above. More generally, show that if p is a polynomial in n variables, then the
operator p(D) with domain D(p(D)) = {u € La(R™) : p(D)u € L(R™)} is a closed
operator in Lo(R7}.

The joint spectrum of D = (D4, Ds,...,Dy) is oa(D) = R®. There are various
ways to define this which we need not go into here, but essentially what it means is that
R™ is the support of the functional calculus of I,

For any function f € Loo(R™), there is a natural definition of f(D) defined via
the Fourier transform, namely

(f(D)u)™ (&) = f(E)a(§) .
Then f(D) is a bounded operator on Lo(R") with
17Dyl = @) ([ fally, < ISfllooliull

for all u € Ly(R™). This, together with the facts (i) that the mapping from functions
f to operators f(D) is an algebra homomorphism, and (ii) that there is agreement

with the natural definition for polynomials of several variables, means that we have a
bounded Lo(R™) functional calculus of D in Ly(R™).

The agreement with the natural definition of p(D) for polynomials p of D isin
the sense that, if f and pf € Loo(R"), then

(D) f(D)u = (pf)(D)u forall u € Ly(R™) and
fD)p(D)u = (fp)(D)u forall ue D(p(D)) .
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It is well known that there is a close connection between the funf:tional calculus of
D and convolution operators. For example, if ¢ € L1(R™) and f = ¢, then, for almost
all z € R?,

fD)ule) = dru(a) = [ ole = )uls)dy.

When f is not the Fourier transform of an L; function, it may still be possible to
represent f(D) as a singular convolution operator. For example, if r;(§) = —i§;/ €]
for ¢ € R", then r;j(D) = R;, the j’th Riesz transform. Note that || Rull, < |lull,
for all u € Ly(R™) . It is well known that

Rju(z) = ry(D)ule) = iy = [ et OL

for all u € L2(R™) and almost all ¢ = (21;22,...,2,) € R™. Here o, is the n di-
mensional volume of the unit n-sphere {z € R™*! : |z| = 1}. We shall see in Section
L that, if 1 < p < oo, then || R;u Hp <cpllu ||P for some constant ¢ .

E:}:ercise. Let

P
A =
= Oz ;*
be the Laplacian on R™ with domain
2 n n 62“’ n :
DA) = Wi (R™) = cu € LR 1 s—— € LR for1<j<m,1<k<m ;.
Oz ;0zy

(i) Prove that —A is a positive self-adjoint operator in L2(R™), and that, letting
|D| = V=4, then R;=—|D|™ & =—i|D|7' D;.

(ii) Show that the semigroup S; = exp(tA), t > 0, generated by A is represented
by

S(e) = e2ule) = [ ke - y)uly)dy

where )
ky(z) = (éiitmf)_”‘/ze_h:I /4

for all z € R™. Use the fact that (S;u)"(§) = e”t|5|2ﬂ(5) .

In Section G, we showed that, for any one—one self-adjoint operator T in a Hilbert »
space, and for any 3 € ¥(SJ,) where > 0, the quadratic norm ||u |, = |{u i,y 1s
a multiple of the original norm. That is,

lulle = { [ homyul? %f-}

= wflull
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where x = {fo |9 ()] dt}

Let us now consider the operator T'= —A in H = Ly(R"™). The quadratic norm

using ¥(¢) = (e™¢ is
{r ma&wﬁ“}

2 3
tda:dt}
%
{ L] tdzdt}

where U(z,t) = Syu(z) is the solution of the heat equation ZZ(z,1) = AU(z,t) with
initial value U(z,0) = u(z), which decays as ¢ — co. This is in agreement with the
kind of quadratic estimate typically used in harmonic analysis. This norm can also be

expressed as
2
o0 dt
full-a = {/ ]f dm—t‘}
0 Jme

where 6:(z,y) = tZki(z —y).
Ezercise. Obtain other equivalent quadratic norms for —A by making other choices of
1 . For example, consider (¢) = (Ze™¢.

lull_a

It
e,
;T3
?\

(wb

=

j{ 6:(z, y)u(y)dy
-

The positive self-adjoint operator —/4 has a bounded H. functional calculus in
Ly(R™) . In Ly(R"™), —A isalso of type So4 , and has a bounded Hoo(S5, ) functional
calculus for all g > 0. This is a consequence of the Marcinkiewicz mult 1pher theorem.
It also follows from the more general Thecrem N to be proved later.

(J) The Hilbert transform and Hardy spaces.

Let us turn our attention to the one dimensional case n = 1. A treatment of higher
dimensional analogues of this material using Clifford analysis is discussed in [M¢I].

The operator D = 1-& with domain W}(R) = {u € LZ(R) Dy € L,(R)} is a
one-one self-adjoint operator in Ly(R) with spectrum o(D) =

The functional calculus introduced in the previous section is now just the usual
functional calculus of the self~adjoint operator D .

In particular, the closed operator |D| defined by

(ID1w)™() = [¢la(8)
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also has domain W}(R) and

|D| = sgn(D)D where
sgn(D) = x4(D) — x-(D) = Ey — E_.

Here Ey = X4(D) and E_ = x_(D) are the spectral projections corresponding to
the positive and negative parts of the spectrum, as defined in Section H. They give us
the orthogonal spectral decomposition H = HT ® H~. Since H = La(R), we write
HE = LE(R), so that Ly(R) = LF(R) @ L; (R), which is the Hardy decomposition of
Ly(R).

Note that sgn(D) is a bounded operator on Ls(R) satisfying (sgn(D))? =171. It
is the identity on L3 (R), and minus the identity on L; (R). In terms of convolutions,
it is represented by

sgn(D)u(z) = lim—j; /f ! u(y) dy

-0 T — y
|z—y|>e

for all u € Ly(R) and almost all @ € R, being i times the Hilbert transform.

It is interesting to note that, since Ei+ = 3(%sgn(D) + I) then

Esu(e) :!:Eii%gf;— /f
jz—y|>e

oy Wy + 3 u(@)
) VRN e 1
iél—lp%lﬂ: é;]ooa:—!—i(S——yu(y)dy

i

for all uw € Ly(R) and almost all z € R.
Let us look at this in a different way using the semigroups generated by — |D].
Given u € L3(R) and t > 0, define uy () € Ly(R) by
up(t) = e PEu = e 1P B u .

Then u.(t) has the properties

d

—;—:’-(t) + Dup(t) =0  ¢>0
%gr(l)u.{,(t) = Eyu
gt = 0

Also, for ¢ < 0, the functions u_(t) € Ly(R) defined by

u-(t) = ePE.u = e WPlE_y
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satisfy the properties

—a—;t;(t) + Du_(f) =0 t<0
7%1;1}1;1)11_(75) = E._u
tli}rgou_(t) =0

Now these partial differential equations are actually the Cauchy Riemann equations
if we identify (z,t) with z+it € C. That is, the functions Uy on C; = {o+it: ¢ > 0}
and U_ on C_ = {z 4+t :¢ <0} defined by

Up(z +1t) = up(t)(z) , t>0,z2z€eR
U_(z+t) = u_(t)(z), t<0,zeR.

are holomorphic

Ezercise. Show that the holomorphic functions U, and U_ on the open half spaces
C4+ and C- can be represented by

Utlz +1it) = +2 ! u(y) dy

o o T+t —y
for all uw € L3(R). So, in agreement with the previous expressions for Eiu(z),

tg%l:t Us(z +1t) = Equ(z)

for almost all z € R, and
lim Ug{z+it) = 0
t—ytoo

forall z e R.

Thus the Hardy spaces L¥(R) consist of those functions us € La(R) which can
be extended holomorphically to functions U1 on Cy which decay at infinity.

Bzercise. Give a characterisation of the quadratic norm ||u ||, in terms of these holo-
morphic extensions of u .

In later sections we shall generalise this material, and consider the Hardy decom-
position of La(«), where v is the graph of a Lipschitz function.
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LECTURE 6. CALDERON—ZYGMUND THEORY

Let us consider some fundamental results concerning real or complex valued func-
tions defined on R"™. We follow the treatment given by E.M. Stein in his excellent
books [St1, St2], and recommend that the reader consult these bocks, as well as those
of Y. Meyer [M], M. Christ [Ch] and others, for a fuller treatment of these topics, in-
cluding the historical background. Similar results also hold for functions defined on a
space of homogeneous type. This is a measure space (§2,u) which has a metric with
the property that p(B(z,2r)) < cp(B(z,r)) for all r > 0 and some constant c.

Here, and subsequently, B(z,r) denotes the open ball with centre z and radius
7. For a subset B of R”, the notation |B| denoctes its Lebesgue measure, and °B its
complement. In all our proofs, the constant ¢ can change from line to line.

(K) Maximal functions and the Calderén—Zygmund decomposition.
(K1) Maximal functions.

We first investigate the maximal functions which are closely related to the theory
of singular integrals.

For any locally integrable function f, and any r > 0, the Hardy-Littlewood
maximal function M f is defined by

M) = suplBEN [ (f)dy
r>0 ’ B{z,r)

The main properties of the Hardy-Littlewood maximal functions are as follows.
Theorem K1. Let f be a complex valued function defined on R".

(a) If f € L,(R™), 1 <p< oo, then the function M f is finite almost everywhere.

(b) If f € Liy(R™), then for every a >0

c
fe: (0@ > el < £ [ Ifwlay

where ¢ is a constant which depends only on the dimension n .

(c)If feLy(R*), 1<p<oo,then Mf € L,(R") and

IMfl, < cllfil,
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where ¢, depends on p and the dimension n .
Property (b) is referred to as a weak type (1,1) estimate.

Corollary K1. If f is a locally integrable function, then

lim | B(z, )| / S =

x?
almost everywhere.
The proof of the corollary is left as an exercise. See [St1], Chapter 1.

Before proving the theorem, we first state an improved version of the covering lemma
of Vitali. We say that a family of sets {By} covers a set E provided E C UaB, .

Lemma K1. Let E be a measurable subset of R™ which is covered by a family {Bq}
of balls of bounded diameter. Then there exists a disjoint sequence (By) of these balls

so that
S 1Bl > d|E|
2

where ¢ is a positive constant which depends only on the dimension n (¢ =5"" will

do).
For a proof of the lemma, see [St1], Chapter 1.

Proof of Theorem K1. We shall prove the theorem by showing that the inequalities hold
even for the larger uncentred maximal function M f which is defined by

1
MA@ = sz [ 1wy

where the supremum is taken over all balls B containing = .

For @ >0, let By = {z € R*: (Mf)(z) > a}. The definition of Mf implies

that for each z € E, there exists a ball B, which contains z so that

/ F@)ldy > alBal .

£

Thus |Bz| < Ll fll,. The family {B, : z € E,} covers E,. Using the covering
lemma above, there exists a mutually disjoint family of balls By such that

> Bkl = clEal -
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Therefore
£l 2 [ 1fG)ly > 318 2 aclE)
UBg k
which proves (b).
We now prove (a) and (¢) simultaneously.

The case p = co is obvious with ¢, = 1. Hence we suppose that 1 < p < co.

Define fi(z) = f(z) if |f(z)] > /2, and fi(z) = 0 otherwise. Note that f; €
Li(R™) if f € Lp(R™) . We also have (Mf)(z) < (M(fi))(z)+a/2,s0

Bl < 1o €R™: (MUA)E) > a2l € S Al = = [ |flds.
|fi>a/2

We now set ¢ = Mf and define the distribution function of g as Aa) = [{z : |g(z)| >
a}|. Then

éﬂ(Mf)%’dw = —j{waf’d}\(a) - p/;““ap-u(a)daﬂ

Note that the first equality comes from the definition of the distribution function, the
second equality from integration by parts.

Substituting the bound of |E,| into the last integral, we obtain

p = —1 gﬁ d
IMA <5 [ or [a Lo If(x)lde 2

‘We evaluate the double integral by changing the order of integration, then integrat-

ing first with respect to o . Simple calculations show that this gives assertion (c) with

snp, 1177
the constant ¢, = 2 [—:P—} .0
p~—1

(K2) The Calderén-Zygmund decomposition.
The Calderén-Zygmund decomposition plays an important role in the real analysis
of singular integrals. The idea is to split an integrable function into its “small” and

“large” parts, then analyse each part using different techniques.

We first state a lemma using the covering idea of Whitney.

Lemma K2. Given a closed, nonempty subset E of R™, then its complement °E
is the union of a sequence of cubes @, whose sides are parallel to the axes, whose
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interiors are mutually disjoint, and whose diameters are approximately proportional to
their distances from E . More explicitly:

(a) Up @ = B ;

(b) the interiors of Qr and Q; are disjoint if k #7 ;

(c) there exist positive constants ¢; and ¢y so that
c1d(Qr) < 6(Qr, E) < c2d(Qr)

where d(Qy) denotes the diameter of Qr and 6(Q,E) is the distance from Qi to
E.

For the proof of this lemma, see [St1], Chapter 1.
The following theorem is referred to as the Calderén-Zygmund decomposition.

Theorem K2. Suppose f € Li(R™) and o > 0. Then there exists a decomposition

of f,

f=g+b = g+zbk,
P

so that
(i) l9(z)| < ca for almost all z € R™;

(i1) there exists a sequence of cubes Qi with mutually disjoint interiors so that the
support of each by is contained in (}; and

/|bk(x)ida: < calQx| and
/bk(:c)dz = 0;

(i) 254 1@kl < & [1f(2)ldz

where the constant ¢ depends only on the dimension n .

Proof.

We use the uncentred maximal function M as in the proof of Theorem K1 and
define By = {z € R": (Mf)(z) > a}. Then E, is an open set and its complement is
nonempty. Using the above covering lemma of Whitney, there exists a family of cubes
Qr so that |J, Qr = Eo and the interiors of the sets @ are mutually disjoint.

117



DAVID ALBRECHT, XUAN DUONG AND ALAN MCINTOSH

Define g(z) = f(z) for z € °E, and
z) = -t d
ote) = 1Qnl™" [ Flw)dy

if € Q. It follows that f =g+ Y by, where

(a) = Xa, [f2) -1 [ florey]
k
and Xg, denotes the characteristic function of Q.

By Coroliary K1, we have |f(z)| < « for almost all z € °E,. Let Bj be the
cube with the same centre as Jp but whose sides are expanded by the factor ¢; in
Lemma K2. Then

Bl [ 1f@lde < o
By
because the cube Bj intersects °E, .
Since |By| = (Cz)”lel , it follows that |g(z)| < ca, hence (i) is proved.

It is straightforward from its definition that b; is supported in & and has the
average value 0. Also

j’ Ibildz < 2 f |f(@)lde < o|Be| < calQul ,
R Qr

thus (é7) is proved.

Property (74¢) follows from the weak type (1,1) estimate of the maximal func-
tion. [

(L) Singular Iniegral Operators.

In this section, we investigate singular integral operators T which are expressible
in the form

T)e) = [ Keuiwd
in some sense, where the kernel may be singular near z = y.

Because of this singularity, some care needs to be taken with the above expression.
Let us call T' a Calderdén—Zygmund singular integral operator with kernel K if

(1) the operator T is bounded on Ly(R™) with norm Cy;

(2) the kernel K is a measurable function with the property that for each continuous
function f with compact support, and for almost all £ not in the support of f, then

(TH(z) = fgn K(2,y)f(y)dy;
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(3) there exists a constant C > 1 and 0 <~ <1 so that

C
Kz, < —,
K@)l €
|z — &Y
_ < otr "l
IK(CL‘,y) K(ml,y)l = Clx_y|n+7
for |z —z1| < |z~ y|/2, and
ly =y "
_ < o2 g
[K((L‘,y) K($ay1)| = !x__yln+7

for |y —yi| <l —yl/2.
Note that the above condition (3) implies the following condition (3’).

(8’) There exist constants §, C so that

j/ |K(z,y) — K(z,y1)|ldz < C'
cB(y,&r)
whenever y; € B(y,r), for all y € R™, and
[ K@y - Kl < 0
¢B(z,6r)

whenever z1 € B(z,r), for all z € R"™.

The main result is the following.

Theorem L. Under the above assumptions, for any p, 1 < p < oo, the operator T
can be extended to a bounded operator on L,(R") with the norm bound C, depending
on p, the constants Cy, C and ~ in assumptions (1) and (3).

For p=1, the operator T is of weak type (1,1).

Proof. Let us prove that T is of weak type (1,1), using assumption (1) and the first
estimate in (3’). The result then follows from the Marcinkiewicz interpolation theorem
for 1 < p < 2, and then the standard duality argument for 2 < p < co.

For f € Li(R*)(L2(R") and a > 0, decompose f as f=g+b=g+> . br by
the Calderén-Zygmund decomposition of Theorem K2. Then

Hz : ITf(z)] > o} < Hz:[Tg(2)] > a/2} + [{=z : [Tb(z)| > /2}] .
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It is not difficult to check that g € Lo{R™). Usmg the facts that 7' is bounded on
Ly(R™) and that |g(z)| < ca, we obtain

e 1Tg(a)| > a/2}] < e | Tgl; < walgli < 21f1, -

On the other hand
1
o @) > /2 < S IR+ Y [ ITh(o)lis
k k *Be

where B}, is the cube with the same centre y; as that of the cube @i in the Calderén—
Zygmund decomposition but with sides multiplied by the constant § in assumption (3’).
Because of property (iii) of the decomposition, Y., |Bi| <caa™ || f]; .

Since the average value of by is 0, we have

Thu(e) = [1K(o0) - K(o,)lbelv)dy -

It then follows from the first estimate in (3’) and the estimates (ii), (iii) of the decom-

position that
Ejf Th(z)ldz < sl Fll; -
& 7B

On combining these estimates, we find that
¢
e [Tf()] > a}| < ﬁ £l

forall f € Li(R™) [} L2(R™). We leave it to the reader to complete the proof by proving
this weak type (1,1) estimate for all fe L;(R™). O

Many important operators in harmonic analysis are Calderén—~Zygmund operators,
the most important being the Hilbert transform and the Riesz transforms. Thus these
operators are bounded on Ly(R) and L,(R™) respectively when 1 < p < 0o. Actually
it was these operators that were studied first.

The Riesz transforms play an important role in the analysis of partial differential
equations. For example, it follows from the equation

v

Oz;0zy

~RjRiAu

and the boundedness of the Riesz transforms, that the Laplacian controls all second
order partial derivatives in the L, norm. That is, ” '5;9%9% ” <cpllAul|, forall j
J
P

and k.
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More consequences of Theorem L will be given in the forthcoming lectures, arising
from functional calculi of elliptic operators in Lecture 7, and from convolution singular
integrals on Lipschitz curves ~ in Lecture 8.

Ezercise L. Generalise Theorem L in the following way.

Let T be a bounded operator on L;(R"™). Suppose that T} is a sequence of
bounded operators associated with kernels K} in the sense of condition (2), such that
the kernels K}, satisfy condition (3) with the constants C' and + independent of k.
Assume that for each f € Lo(R™)(}L1(R") there is a subsequence T}; such that

(T1)(&) = lim (Ti, ()
for almost all z € R™.

Prove that T is of weak type (1,1).

Conclude that T can be extended to a bounded operator on L,(R") with the norm
bound €}, depending on p, the constants C' and +, and the Ly normof T.
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LECTURE 7. FUNCTIONAL CaLcULl OF ELLIPTIC OPERATORS

(M) Heat kernel bounds.

Let 2 be a measure space equipped with a distance d and measure p. Assume
that T is an operator of type Su4 in Lp(2) with w < §. Then —T generates a
holomorphic semigroup e *7 . If, for all ¢ > 0, these operators can be represented by
kernels k¢(z,y), then these kernels are called the heat kernels of T'.

We say that the heat kernel of T' satisfies a Gaussian upper bound if

C _ m 1f{(m—1)
& <« Y iy
] t(x,y)| —_ P(«T,y,tl/m) €

where ¢,C and m are positive constants, and p(z,y,7) denotes the maximum volume
of the two balls with centres z and y and with radius 7.

In many applications, the heat kernel of such an operator also satisfies, for some
0 <a<1,a Holder continuity estimate in the variable y:

Cld(y,y1)]*  _ ™ ]/ (m =)
k . < ? c[d(x,y) /t]
| t(may) k’t(w,yl)l = p(ﬁ,y,tl/m)ta €

whenever d(y,y1) < d(z,y)/2, and a similar estimate in the variable z:

Cld(z, 2" —cfagapym 2=
ko2, y) — ke(z1,9)] < D@y, imya

whenever d(z,z:) < d(z,y)/2.

We remark that there do exist interesting operators which possess Gaussian bounds
on their heat kernels, but not the above Holder continuity estimates.

We now give a list of examples:

(1) In Chapter 5, we saw that the heat kernel of the Laplacian
n 82
A=) ——
=t Oz},
on R™ is given explicitly by

ki(w,y) = (4mt)~"/2mIomol/ae
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for all + > 0. In this case, the above formula for the heat kernel also extends to all
complex value ¢t with Ret > 0. This formula shows that the heat kernel has the
Gaussian bound with m = 2 and the corresponding upper bound on its derivatives
(with respect to space variables), hence the Holder continuity estimates hold for both
variables z and y. ’

(2) If Q is a region in R™ with smooth boundary and T is the Laplacian on L3($2)
subject to Dirichlet boundary conditions, then it follows from the Feynman—Kac formula
that its heat kernel ki(x,y) is a positive, C*° function which satisfies

0 < ki(z,y) < (4mt) "2 lo-ul/4t
for z %y and t>0.

The Gaussian bound for complex ¢ with Ret > 0 can also be obtained by analytic
continuation. See, for example, [D]. The Holder continuity estimates are also true.

(3) Let V be a nonnegative function on R™ such that the closed quadratic form

|2

Q) = iu oif I + | v

is densely defined. There exists a unique positive operator T' such that (T'f, f) = Q(f)
and D(T2) = D(Q) . That operator T is called the Schrédinger operator with potential
V', usually written as T = —A& +V(z) . The Trotter formula shows that the heat kernel
of T (for ¢ > 0) is positive and satisfies the Gaussian upper bound. However, unless
V satisfies additional conditions, the heat kernel can be a discontinuous function of the
space variables and the Holder continuity estimates may fail to hold.

(4) Let A(z, D) be an elliptic operator of even order m defined in a bounded domain
{} of R® with smooth boundary, and let B;(z,D), j=1,...,m/2, be operators of
order m; < m defined on the boundary of {}. We assume

(i) the system A(:lc,D),«’[Bj(ac,l))};n:/l2 , as well as its formal adjoint system, are
regular on £ in the sense of Agmon;

(ii) there is an angle p € (0,%) such that the system e’D — A(z,Dy),
{B,(=z, DI)};”:f is an elliptic boundary value problem on Q X (—oo < t < c0)) which
satisfles the coerciveness condition for any ¢ <8 < 27— p.

Let T be the operator with domain
D(T) = {veW;*(Q): Bj(z,D)u =00n 90,5 =1,..m/2}

which is defined by (Tw)(z) = A(z,D)u(z) for all u € D(T). It is known that the
operator defined analogously by the formally constructed adjoint system coincides with
the adjoint of T'.
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Under these assumptions, T'+col , where ¢g is a sufficiently large positive constant,
generates a holomorphic semigroup which possess a heat kernel with Gaussian bound.
The Hélder continuity estimates also hold. See [T].

(5) Let Xj,..., X be smooth vector fields on R” satisfying the Hérmander subelliptic
condition uniformly over R™, which means the rank of the Lie algebra generated by
the vector flelds is constant. Let d be the control distance corresponding to the vector
fields and p the Haar measure. Then the space (R",d,p) is of polynomial type with
the dimension at infinity n and the local dimension n’ > n. Next let

k
T = -Y XX,
=1

denote the self-adjoint operator associated with the Dirichlet form

k
Q¢) = > I1Xisll;

on Ly(R", d,p) with domain D(Q) = {u € L2(R™ d; p) : Xiu € Lo(R™; d; p) for all 1} .

The operator T then has a heat kernel which satisfies a Gaussian bound with
m = 2. (The small ¢t bounds were first derived by Sanchez—Calle and the large
bounds were subsequently established by Kusuoka and Stroock). Corresponding bounds
on the “first order derivatives” are also true, hence the Holder continuity estimates hold.

See [SC], [R.

(6) Let © be a bounded open connected subset of R™. Let @ = (a;;) bean nxn matrix
with entries ai; € Loo(Q) satisfying Re Y ai;(2)¢G¢ > M¢|? forall z €Q,( € C and
some A > 0, and define the quadratic form

i3

Q) = Y (8i¢ai0;9)

iy=1
where the domain T(Q) is the closure of C$°(Q) with respect to the norm (Q(¢) +
|6]1>)% . The associated operator corresponds to the strongly elliptic operator

SN a
T =- Z gxfiaiz’(m)‘a}‘;

¢, j=1
with Dirichlet boundary conditions. This operator is w accretive for some w < %

In the case the coefficients a;; are real, then the heat kernel of T' satisfies the
Gaussian bound (see [GW] for the case of symmetric coefficients). The Holder continuity
estimates also hold (see [DM¢]).

If @ =R", the Gaussian bound on the heat kernel is still true in the case of real

coeflicients. See [A], [AMcT]. However, for complex coefficients, there are examples to
show that the Gaussian bound may fail to hold in dimensions n > 5.
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(N) Bounded H,, functional calculi in L, spaces.

Let T be a differential operator of type S+ in Ly(£2) . It depends on the operator
and the structure of the space that various methods can be used to establish a bounded
functional calculus for 7. Here we try to give the reader a sketch of these methods.

(1) Fourier multiplier theory: Let T be a (higher order) elliptic partial differential
operator with constant coefficients on the Euclidean space R™, or the half space R},
with Dirichlet boundary conditions. Using the Fourier transform, we can establish
the bounds on the symbols of the resolvents. Then a bounded holomorphic functional
calculusof T on L, spaces follows from the Mikhlin’s multiplier theorem. This method
is restricted to the case of constant coeflicients. However, by combining it with a
perturbation argument, we can obtain a bounded H,, functional calculus when T is a
second order elliptic operator on R™ with Hélder continuous coefficients. See [PS] for
the case of f(T)=T%,s€R.

(2) Pseudo-differential operators: This technique can be used to establish the
bounded H., functional calculus of a general elliptic operator with smooth coefficients,
acting on ¢ -tuples of functions on a compact manifold with smooth boundary. See [Se],
[Du]. In the case of R™, by using a perturbation argument, the smoothness conditions
can be reduced to Holder continuous coefficients. See [AHS].

(8) Transference method: This technique can be applied to prove the boundedness
of f(T) when T is a second order elliptic partial differential operator on an L, space
of a strongly Lipschitz domain. However, this method can only be used to cbtain an
Hoo(S),) functional calculus when 4> . See [Du].

(4) Singular integral theory: This is a powerful technique and it is our aim in this
section to show how Calderén—Zygmund theory can be used to establish bounded Ho
functional calculi on L, spaces.

The main result is the following theorem.

Theorem N. Assume T is a one-one operator of type S+ in L(R™), 0 <w < 7/2,
which satisfies the following conditions:

(1) T has a bounded Ho, functional calculus in Lo(R™) for all f € Hoo(52+)_

(2) There exists y > w so that the kernel k,(z,y) of the holomorphic semigroup

e™*1 associated with T satisfies the Holder continuity estimate:

|kx(z,y) — ko(2,51)] < ey — yl%l2l =/ Deap(—[alz — y|™ /|27

for all zES’(O% and some 0 <a<1.

—n)+

Then if f € Hoo(S}), for any v > p, the operator f(T) is of weak type (1,1).
Forany p, 1<p<2, f(T) can be extended to a bounded operator on L,(R") with
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norm at most c|| f ||, . A similar result is true for 2 < p < co if the Holder continuity
estimate in condition (2) holds for variable x instead of y.

Proof. First consider functions f € ¥(S3,).

To obtain the estimates for f(T'), we represent the operator f(T) by using the
semigroup e”*7 . As in Section D, the operator f(T) on L, is given by

F@) = — [(@-AD" e,

2m -

where the contour 7y = v4 U~y_ is given by ~4(t) = te?” for ¢t > 0 and v_(t) = —te™™
for £ <0.

For A € 74, substitute

(T -t :/’[ e T dz
Ty

where the curve Ty is defined by T4 () = te{™ /2 for ¢+ > 0. We also have similar
expression for A € y-.

We then change the order of integration and obtain

(1) = J/;ur e“ZTn+(z)dz+j[ e~ Tn_(2)dz ,

where
1

. Az
ny = j;te f()‘)d)‘7

27

which implies the bound
lne(2)] < ell flleol2l™

Consequently, the kernel Kg(z,y) is given by

Kstew) = [ Flopne(@ds+ [ kufegin-(2)dz

Using this representation and the Holder continuity estimate of the heat kernel, elemen-
tary but tedious calculations show that we obtain

/[ |K¢(z,y) — K¢(z,pn)|dz < C
<B(y,dér)

and our theorem follows from Theorem L for f € ¥(S57,). Note that the constant C
in the above estimate does not depend on how fast the function f decays at 0 or co.
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To extend the result to f € Heo(S5,) , take

/\l/k

= f(AN)—————~ .
By the Convergence Lemma (Theorem D), fi(T)u convergesto f(T)u inthe Ly norm
for all u € Ly(R™). Hence there is a subsequence k; so that fi, (T)u(z) converges to
f(T)u(z) almost everywhere. The theorem then follows from the above estimates for
f € ¥(Sy,) and Exercise L.

The case 2 < p < co follows from duality. [l

Ezercise. Let f(T'), denote the extension of f(I") to L,(R™). Show that f(T), =
f(T,) for a suitably defined operator T, of type S,y in Ly(R"). Thus 7j, has a
bounded Hoo(Sy,) functional calculus in Ly(R") for all p > w.

Notes.

1) The theorem is still true when R”™ is replaced by a space of homogeneous type.
£

(2) The operators in examples (1), (2), (3), (5) and (6) (with real, symmetric
coefficients) of Section M are self-adjoint in L, . The operators in (4) (under suitable
conditions) and (6) with complex coefficients are maximal accretive. Hence they all have
bounded functional calculi in L;. Therefore, for all the above operators, the Hélder
continuity estimates imply the existence of bounded functional calculi in L, .

(3) It was proved recently that the above theorem is still true if the condition of
Holder continuity estimates is replaced by an upper bound on the heat kernel which
satisfies certain conditions, in which the Gaussian bound is a special case. See [DR].
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LECTURE 8. SINGULAR INTEGRALS ON LipscHITZ CURVES

In this chapter we comsider harmonic analysis on Lipschitz curves. Those who
are interested can find a survey of higher dimensional analogues of this material using

Clifford analysis in [M€I].

(O) Convolutions and the functional calculus of —if;L, .

Let us recall the following material from the end of Section H.

Let 4 denote the Lipschitz curve in the complex plane which is parametrised by a
Lipschitz function ¢g: R — C such that ¢',1/¢' € Lo(R) and ¢'(z) € Su4 for almost
all z € R.

Define the derivative of a Lipschitz function u on v by

W'(z) = lim u(z +h) —u(z)

h—0 h
z4hEY

for almost all z € 4. Next use duality to define D, to be the closed linear operator in
Ly(y) with the largest domain which satisfies

(D’Yuvv> = (uyivl)

for all Lipschitz functions v on v with compact support. We are using the pairing
(v,v) = ju(z)v(z) dz
¥

defined in Section E.

Then (D, —D,) is a dual pair of one-one operators of type S, in (Lp(v), Lg(7)),
1<p<oo, 1/p+1/g= 1. This can be seen by giving an explicit formula for the
resolvent. See [M¢Q)]. Alternatively, if p = q = 2, we can proceed as follows.

If V denotes the isomorphism from Lg(v) to Lo(R) induced by the parametriza-
tion, (Vu)(z) = u(g(z)), then (VD,u)(z) = b(z)(DVu)(z), where b = 1/g’, and
D = 14 with domain D(D) = W(R) = {u € Ly(R) : Du € Ly(R)}. Now D is
a one—one self-adjoint operator, and the operator of multiplication by b is a bounded
invertible w —accretive operator in L;(R), so by Theorem H, the operator T = bD is

a one-one operator of type S, in Ly(R). It follows that the operator D, = V7!TV

128



OPERATOR THEORY AND HARMONIC ANALYSIS

is a one-one operator of type S, in La(7y). It is not hard to verify that the dual of
D, is —D,.

We have seen that every one—one operator of type S, has a holomorphic functional
calculus, meaning, in this case, that there is a natural way to define the closed operator
f(Dy) for each holomorphic function f € F(S2) when p > w. What we would like
to know is whether D. has a bounded H, functional calculus in Ly(7y), especially in
L,(y) . The situation is very different from the special case when y=R and Dy =D
which was treated in Section J, because D, is typically not self-adjoint, and there is
no identity of Parseval for functions in Lo(7y).

Of course, if f € ¥(S]), then f(Dy) € L(Ly(v)), and the agreement with the
natural definition for polynomials p means that if pf € ¥(S}) also, then

p(Dy) f(Dy)u = (pf)(Dy)u forall u € Ly(y) and
F(Dy)p(Dy)u (pf)(Dy)u whenever u € D(p(D,)) .

fl

Again there is a close connection between the functional calculus of I}, and con-
volution operators.

For example, suppose that ¢ is a function in L;(R) with a holomorphic extension

to SY, v > w, which satisfies |¢(z)| < l—zI(_IleII;_IQ"_) for some ¢ and s > 0, and let

f= g£ Then f has a holomorphic extension, also called f, to S2, and, whenever
w<u<v,then f€ \I’(Sﬂ). Moreover

f(Dy)u(z) = /qb(z—w)u(w)dw

for all u € Ly(y) and almost all z € v.

This is not too hard to verify, though not as simple as for the case v = R treated
in Lecture 5, because we can no longer identify the Fourier transform of both sides with
fi . To see that the convolution formula for f(D.) is reasonable, let us just check the
formula p(Dy)f(Dy) = (pf)(Dy) when p(€) = ¢ and ¢’ satisfies the same bound as
¢, so that (3¢')" = pf € ¥(S)). Then D,f(D,)u(z) = D, f,y(b(z — wu(w)dw =
f7 14 (z —w)u(w)dw = (pf)(Dy)u(z) for all z € . There is a full treatment of
holomorphic extensions of functions and their Fourier transforms in [M°Q)].

For these functions ¢, we shall use ¢, for the function ¢4(z) = 1¢(2). Thisis so

that, if f = %s then fi(¢) = f(#¢) = (¢)*(() .

We are now in a position to state our main theorem.

Theorem O. The operator D, has an H, functional calculus in ‘H = Ly(y).
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Equivalently, Hp, =H and ||ulp_ = |lu]| forall v € H = La(y).

It suffices to prove that ||ull, <c|lu| forall v €%, for then, since D, is dual
to —D. with respect to the pairing (u, v) = fy u(z)v(z)dz , we can infer, on applying
Corollary E, that ||u| < c|lu ||_D7 =c|lu ”D7 , and thus get equivalence. This is the
reason why we considered pairings on a Hilbert space other than the inner product.

To prove the quadratic estimate ||ullp <c|lu I, it suffices to show that for some
v > w and for some sufficiently nice function ¢ € H(S?) which satisfies |¢(2)]| <
C|zl*

-~ for some C and s > 0, then there exists a constant ¢ such that
f21(14]2]%*)

{[" %} < clull,

2
There are by now several ways to prove such an estimate. One way is to apply the
following result of S. Semmes [SS]. The proof of this theorem requires more harmonic
analysis, such as properties of Carleson measures, than we have developed in these
lectures.

/: pr(- = wyu(w) du

for all w € La(v).

Proposition O. Let 8; be complex valued functions on R™ x R", ¢ > 0, such that,
for some C,§ > 0, and some function b € Lo(R™) satisfying Reb >4,

Ctn+1
&
(1) Iﬂt($7y)‘ = (t+i:c—yl)”+2
Ct" ly — |
— N o g
(2) |9i($’ay) gt(-’lf;y )I = (t+l$—y|)"+2
3) f 6(z,)b(y)dy = 0 forall z€R".
R»

Then there exists ¢ such that

{ [T L ocomoa]

for all u € Ly(R™).

Mg

di
7} < cllul,

This result provides us with a powerful tool for proving quadratic estimates. It is
intriguing in that the L, estimates follow from the cancellation property of the kernels
with respect to any single function b € Lo(R"™).
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Before proceeding, we remark that the quadratic norm for —4A was expressed in
such a way at the end of Section I, with 8(z,y) = t%kt(:n —y), a function which clearly
satisfies (1), (2) and (3) with b=1.

Proof of Theorem Q. Take, for example, ¢(z) = (—H_#zg)g, and let ¢:(z) = %¢(§) . The
functions defined by 8;(z,y) = ¢:+(g(z) — g(y)) for almost all =,y € R satisfy (1), (2)

in Proposition O (with n = 1). They also satisfy (3) with b = ¢’. Let us check this
when t =1. Forall z e R,

j; (e v)by) dy = j ” b(x) - 9(u))g'(v) dy

$(g(z) — w) dw

It

1

= 5 [ B+ o) w7 d

= 0.

2 3
dz}
9 A

for all u € L3{~y) as required. O

Therefore, by Proposition O,

{0

IN

2 3
dt |~
g ¢

. { [ atomtswrsway
elula()g'O)

cliull,

j{/ B+ — wu(w) du

IA A

Ezercise. Suppose 1 < p < oo and g > w. Apply Theorem O and a variant of
Theorem N for operators of type S, to conclude that the operator D., hasan H 00(52)
functional calculus in Ly(7y).

(P) The Cauchy integral on a Lipschitz curve v and Hardy spaces.

When f is not the Fourier transform of an L; function, it may still be possible to
represent f(D.) as a singular convolution operator. In particular, we are interested in
the holomorphic functions X4, X-, sgn € Heo(S]) defined in Section H. Then

sgn(Dyulz) = gim L j[ ! u(w) dw

for all u € Ly(7y) and almost all z € v, being the Cauchy singular integral operator on
v
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Further, By = X+(Dy) = 3(&sgn(D,) + 1), so

Eiu{z) = +lim . J/ uw(w)dw + 2u(w)

e=0 27 z —Ww
jz—w|>e
. 2 1
= 4 Hm -—/-—-,——-—u(w)dw
§=0x 21 J 2400 —w

for all u € Ly(vy) and almost all z € v.

Here Ey = X4(Dy) and E_ = x_(D,) arethe spectral projections corresponding
to the parts of the spectrum o(D.,) in the right and in the left half planes, as defined
in Section H. They give us the spectral decomposition H = HT @ H~. Since H =
La(v), we write HE = LE(y), so that La(y) = LT (y) @ L; (7), which is the Hardy
decomposition of La(vy).

Let us also consider the semigroups generated by —|D,| = —sgn(D4)D., .
Given u € Ly(v) and ¢ > 0, define uy(t) € La(y) by
uy(t) = e P By = e UDE .
Then u4(t) has the properties

c'?u.|_
Ot

(#) + Dyus(t) = 0 t>0
}%u+(t) = F,u

A =0

Also, for t < 0, the functions u_(t) € La(vy) defined by
u(t) = e E oy = e HDVE _y

satisfy the properties

Q;T“(t) + Dau_(t) =0 t<0
limu_(t) = E_u
t—0
tl_l_}nc}ou_(t) =0

Now these partial differential equations are actually the Cauchy Riemann equations
if we identify (2,t) with z+4t € C. That is, the functions U} on Qi = {z+it: ¢ >0}
and U_ on Q- ={z+1t:t <0} defined by

Us(z+1t) = uit)(z), t>0,z2€n9
U_(z+1t) = u_(t)(2), t<0, zex
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are holomorphic.

Ezercise. Show that the holomorphic functions Uy and U~ on the regions {24 and
€1 can be represented by
Us(e+it) = £- L u(w)dw
= +t— § ——u
HETE 2n J z4+d —w e
¥

for all u € Ly(y). So
tl_l»r(])rli Ug(z +it) = Exu(z)

for almost all z € v, and
t—l-ilinoo Ui(z+1t) = 0

for all z € .

Thus the Hardy spaces L (y) consist of those functions us € Ly(y) which can be
extended holomorphically to functions Uy on Q4+ which decay at infinity.

Ezercise. Give a characterisation of the quadratic norm |[u |5  in terms of these holo-
¥
morphic extensions of .

We saw in the exercise at the end of Section O that D, has an Hoo(S]) functional
caleulus in L,(vy) for 1 < p < 0o, so the operators considered above are also bounded
on L,(v). Let us summarise these results as follows.

Theorem P. The Cauchy singular integral operator C., = sgn(D.) is a bounded
operator on Ly(y), 1 < p < 0o, as are the speciral projections Ex = Xi(D,) =
LEC, + 1) COZ“T@SpOﬂd{}]g to the parts of o(D.) in each half plane. Thus Ly(v) =
L} (v) @ Ly (v) where LE(y) = Ex(Lp(7)) are the Hardy spaces consisting of those
functions w4 € Ly(ry) which can be extended holomorphically to functions Ux on Q4

which decay at infinity.

The proof of these theorems builds upen the work of Zygmund, Calderdn, Carleson,
Stein, Fefferman, Meyer, Coifinan and many other people. Calderén first proved Theo-
rem P in 1977, in the case when w is small [C]. Subsequently, Coifman, M¢Intosh and
Meyer proved the boundedness for all such curves [CM°M].

The use of the Calderdén rotation method leads to the boundedness of singular
double-layer potential operators on L,(b{)), when 5§} is the boundary of a strongly
Lipschitz domain £ C R™*!. This fact was used soon after by Verchota to solve the
Dirichlet and Neumann problems for harmonic functions with L, boundary data on
such domains by using layer potentials [V]. (These problems had been solved previously
by Dahlberg [D1] and by Jerison and Kenig [JK] using other methods.)
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The proof in [CM®M] involved complicated multilinear estimates. Subsequently,
other methods were developed which simplified and generalised these results. In partic-
ular, there was the T(b) theorem of MCIntosh and Meyer [MM] and of David, Journé
and Semmes [DJS], as well as the method of Semmes which we presented [SS]. There
were wavelets [M]. And there was the paper by Coifman, Jones and Semmes [CJS] which
gave two elementary proofs of the boundedness of €., the first reducing it to quadratic
estimates of Kenig in Hardy spaces, and the second using martingales. Actually, no
proofs are really elementary, because they all rely on the power of Calderén—Zygmund
theory and Carleson measures in some form.

During the same period, the functional calculus aspect of these results was devel-
oped, first by Coifman and Meyer [CM1}, and more fully by Tac Qlan and myself [M<(Q)].
Higher dimensional versions of this material were developed in [LM¢S] and [LM<Q)].
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