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OPERATOR VALUED ANALOGUES OF MULTIDIMENSIONAL

BOHR’S INEQUALITY

VASUDEVARAO ALLU AND HIMADRI HALDER

Abstract. Let B(H) be the algebra of all bounded linear operators on a complex Hilbert
space H. In this paper, we first establish several sharp improved and refined versions of the
Bohr’s inequality for the functions in the class H∞(D,B(H)) of bounded analytic functions
from the unit disk D := {z ∈ C : |z| < 1} into B(H). For the complete circular domain
Q ⊂ Cn, we prove the multidimensional analogues of the operator valued Bohr’s inequality
established by G. Popescu [Adv. Math. 347 (2019), 1002-1053]. Finally, we establish the
multidimensional analogues of several improved Bohr’s inequalities for operator valued
functions in Q.

1. Introduction and some basic questions

Let H∞(D, X) be the space of bounded analytic functions from the unit disk D := {z ∈
C : |z| < 1} into a complex Banach space X with ‖f‖H∞(D,X) := sup|z|<1 ‖f(z)‖. Let

B(D, X) be the class of functions f in H∞(D, X) with ‖f‖H∞(D,X) ≤ 1. The Bohr radius

R(X) for the class B(D, X) is defined by (see [14])

R(X) := sup

{

r ∈ (0, 1) :Mr(f) ≤ 1 for all f(z) =
∞
∑

k=0

xkz
k ∈ B(D, X), z ∈ D

}

,

where Mr(f) =
∑∞

k=0 ‖xk‖ rk is the associated majorant series of f ∈ H∞(D, X). The
remarkable theorem of Harald Bohr [16] (in improved form) states that R(X) = 1/3 for
X = C, where the norm of X is the usual modulus of complex numbers. The interest in the
Bohr’s theorem has been revived when Dixon [20] used it to answer a long-standing question
on the characterization of the Banach algebras satisfying the non-unital von Neumann
inequality. For the last two decades, there has been an extensive research carried out
to the extensions of analytic functions of several complex variables, to planar harmonic
mappings, to polynomials, to solutions of elliptic partial differential equations, and to
more abstract settings. In 1997, Boas and Khavinson [15] introduced the n-dimensional
Bohr radius Kn for the Hardy space of bounded analytic functions on the unit polydisk,
and obtained the upper and lower bounds of Kn. In 2006, an improved version of the
lower estimate of Kn was obtained by Defant and Frerick [18]. Further estimation of Kn

has been obtained by Defant et al. [19] by using the hypercontractivity of the polynomial
Bohnenblust-Hille inequality. In 2014, Bayart et al. [11] obtained the exact asymptotic
behaviour of Kn. In 2019, Popescu [28] extended the Bohr inequality for free holomorphic
functions to polyballs. For more interesting aspects and generalization of multidimensional
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Bohr’s inequality, we refer to [3, 4, 5, 10, 21, 25]. In 2004, Paulsen and Singh [27] extended
Bohr’s theorem to Banach algebras by finding a general version of Bohr inequality which
is valid in the context of uniform algebras. In 2021, Bhowmik and Das [13] extensively
studied Bohr inequality for operator valued functions. Further results on Bohr radius, we
refer to [6, 7, 12, 23].

For p ∈ [1,∞), let Hp(D, X) be the space of analytic functions from D into a complex
Banach space X such that

(1.1) ‖f‖Hp(D,X) = sup
0<r<1

(
∫ 2π

0

∥

∥f(reit)
∥

∥

p dt

2π

)1/p

<∞.

In [12], Bénéteau et al. have shown that there is no Bohr phenomenon in the Hardy spaces
‖f‖Hp(D,C) for 1 ≤ p < ∞. In fact, they have shown that there is no Bohr phenomenon

in complex valued Hardy spaces Hq for q ∈ (0,∞). In [21], Djakov and Ramanujan have
extensively studied the p-Bohr phenomenon for the power series of the form

∑∞
k=0 |ak|prk

for p ∈ [1,∞), where f(z) =
∑∞

k=0 akz
k is a bounded analytic function in D. In [21], the

notion of p-Bohr inequality has been extended to the bounded analytic functions of several
variables.

In this paper, we establish multidimensional analogues of several improved p-Bohr’s
inequalities for the operator valued bounded analytic functions.

1.1. Bohr theorem for operator valued analytic function. One of the main aims of
the present paper is to study Bohr inequality in the setting of operator valued analytic
functions in the unit disk D, to be more specific, for functions in H∞(D, X), where X =
B(H) is the algebra of all bounded linear operators on a complex Hilbert space H. For
the rest of our discussion on this, we need to fix some basic notations. For T ∈ B(H),
‖T‖ denotes the operator norm of T . The adjoint operator T ∗ : H → H of T is defined by
〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ H. The operator T is said to be normal if T ∗T = TT ∗,
self-adjoint if T ∗ = T , and positive if 〈Tx, x〉 ≥ 0 for all x ∈ H. The absolute value of T is

defined by |T | := (T ∗T )1/2, while S1/2 denotes the unique positive square root of a positive
operator S. Let I be the identity operator on H. Let f ∈ H∞(D,B(H)) be a bounded
analytic function with the expansion

(1.2) f(z) =

∞
∑

n=0

Anz
n for z ∈ D,

where An ∈ B(H) for all n ∈ N ∪ {0}. For each f ∈ H∞(D,B(H)) of the form (1.2),
the function r 7→ Mr(f) is an increasing function in [0, 1) with m0(f) = ‖A0‖ ≤ 1,
where Mr(f) is the associated majorant series of f defined by Mr(f) =

∑∞
k=0 ‖Ak‖ rk for

r ∈ [0, 1). For each fixed z ∈ D, we denote Gz :=
{

f(z) =
∑∞

k=0Akz
k : f ∈ H∞(D,B(H))

}

.
In [8], Allu and Halder have proved that the space Gz with norm Mr constitutes a Banach
algebra and have shown that functions in Gz satisfy a von Neumann type inequality. Set
χ = B(D,B(H)). By the similar definition as in [17] for the complex valued functions, we
define

(1.3) m(χ, r) := sup
f∈χ

Mr(f) for r ∈ [0, 1).

Clearly, m(χ, 0) = 1. It is worth mentioning that m(χ, r) is an increasing function of r
and hence m(χ, r) ≥ 1 for r ∈ [0, 1). For the arbitrary functions f in H∞(D,B(H)), not
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necessarily ‖f‖H∞(D,B(H)) ≤ 1, we have m(χ, r) ≤ Mr(f) ‖f‖H∞(D,B(H)). Thus, finding or

estimating m(χ, r), it is relevance to know ‖f(z)‖ i.e., to understand the rate of the growth
of functions in H∞(D,B(H)). However, a precise value for m(χ, r) is not known for all
r ∈ [0, 1). But we can estimate the bounds for m(χ, r). In [17], Bombieri has obtained
upper bounds and lower bounds for m(χ, r) for complex valued bounded analytic functions.

In Lemma 3.1, we obtain an operator valued analogue of Bombieri’s bound of m(χ, r).
We now generalize the notion of Bohr radius for the class zχ = {zf : f ∈ χ} i.e., for
the class of functions f ∈ χ with f(0) = 0. The Bohr radius for the class zχ is the
largest radius R1 such that (a) Mr(f) =

∑∞
k=0 ‖Ak‖ rk+1 ≤ 1 for r ∈ [0, R1] and for all

f(z) =
∑∞

k=0Akz
k+1 ∈ zχ, (b) when r ∈ (R1, 1), there is a function f ∈ zχ such that

Mr(f) > 1. In view of (1.3), it is easy to see that R1 is the unique root of

(1.4) rm(χ, r) = 1.

Since m(χ, r) is strictly increasing, the function r 7→ rm(χ, r) is also strictly increasing in
r ∈ [0, 1), which shows that (1.4) has the unique root in (0, 1). Bombieri [17] has proved
that R1 = 1/

√
2 for the complex valued bounded functions in D. Later, Paulsen et al. [26]

have extensively studied the radius R1 for complex valued functions. In the present paper,
we obtain R1 for operator valued functions in χ = B(D,B(H)) in Lemma 3.3.

In 2019, Popescu [28] proved the following interesting result, which is an analogue of the
classical theorem of Bohr for operator valued bounded analytic functions in D.

Theorem A. [28] Let f ∈ H∞(D,B(H)) be an operator valued bounded holomorphic
function with the expansion (1.2) such that A0 = a0I, a0 ∈ C. Then

(1.5)
∞
∑

n=0

‖An‖ rn ≤ ‖f‖H∞(D,B(H)) for |z| = r ≤ 1

3

and 1/3 is the best possible constant. Moreover, the inequality is strict unless f is a
constant.

The proof of Theorem A relies on the bound of the norm of coefficients ‖An‖, which may
be obtained as an application of the operator counterpart of the Schwarz-Pick inequality.

Lemma 1.6. [9] (counterpart of Schwarz-Pick inequality) Let B(z) be an analytic function
with values in B(H) and satisfying ‖B(z)‖ ≤ 1 on D. Then

(1− |a|)n−1

∥

∥

∥

∥

B(n)(a)

n!

∥

∥

∥

∥

≤ ‖I − B(a)∗B(a)‖1/2 ‖I − B(a)B(a)∗‖1/2
1− |a|2

for each a ∈ D and n = 1, 2, . . ..

We note that for f ∈ B(D,B(H)) of the form (1.2) with A0 = a0I, |a0| < 1. Without loss
of generality, assume that ‖f‖H∞(D,B(H)) ≤ 1. Then, by the virtue of Lemma 1.6, putting
a = 0, we obtain

(1.7) ‖An‖ ≤
∥

∥I − |A0|2
∥

∥ = 1− |a0|2 for n ∈ N.

In view of (1.7), the proof of Theorem A follows immediately. For the sharpness of the
constant 1/3, we consider the following function

(1.8) ψa(z) =

(

a− z

1− az

)

I = A0 +
∞
∑

k=1

Akz
k z ∈ D,
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where A0 = aI, Ak = −(1 − a2)ak−1I and for some a ∈ [0, 1). Then it is easy to see that
Mr(f) =

∑∞
k=0 ‖Ak‖ rk = (a + (1 − 2a2)r)/(1− ar) > 1 whenever r > 1/(1 + 2a). Taking

a is very close to 1 i.e., a → 1−, we obtain Mr(f) > 1 for r > 1/3, which shows that 1/3
is the best possible.

We say that B(D,B(H)) satisfies Bohr phenomenon if all the functions in B(D,B(H))
satisfies the inequality (1.5) for r ≤ 1/3. It is worth mentioning that the constant 1/3 does
not dependent on the coefficients of functions.

In the recent years, refined versions and improved versions of Bohr inequality in the case
of bounded analytic functions have become central research interest in one and several
complex variables. Several authors have established various refined and improved versions
of Bohr’s inequality (see [1, 24]). We now recall some of them. Let f ∈ H∞(D,C) be of
the form

(1.9) f(z) =
∞
∑

k=0

akz
k for z ∈ D.

Let Sr be the area of the image of the subdisk Dr = {z : |z| < r} under the map f given
by (1.9). Then it is known that Sr/π =

∑∞
k=1 k|ak|2r2k (see [22]).

Theorem B. Let f ∈ B(D,C) of the form (1.9). Then

(a)
∞
∑

k=0

|ak|rk +
(

1
1+|a0| +

r
1−r

) ∞
∑

k=1

|ak|2r2k ≤ 1 for |z| = r ≤ 1/3. The constant 1/3 is

the best possible.

(b)
∞
∑

k=0

|ak|rk + 8
9

(

Sr

π

)

≤ 1 for r ≤ 1/3. The bound 8/9 and the constant 1/3 cannot

be replaced by a larger quantity.

(c) |f(z)|+
∞
∑

k=N

|ak| rk ≤ 1 for |z| = r ≤ RN,1, where RN,1 is the unique root in (0, 1)

of 2(1 + r)rN − (1− r)2 = 0. The constant RN,1 is the best possible.

It is important to note that the proof of the part (a) and part (b) can be obtained by
putting γ = 0 in [22, Theorem 2] and [22, Theorem 1] respectively. The proof of the part
(c) can be obtained by putting γ = 0 in [1, Theorem 2.7].

Like the quantity Sr/π =
∑∞

k=1 k|ak|2r2k for the functions f(z) =
∑∞

k=0 akz
k inH∞(D,C),

we define

(1.10) S(z) =

∞
∑

k=1

k ‖Ak‖2 r2k, |z| = r < 1,

for the functions f(z) =
∑∞

k=0Akz
k ∈ H∞(D,B(H)). Let G(w) be a polynomial defined

by

(1.11) G(w) = c1w + c2w
2 + · · ·+ clw

l for ci ∈ R
+, i = 1, 2, · · · , l.

1.2. Multidimensional analogues of operator valued Bohr’s inequality. Let α be
an n-tuple (α1, α2, . . . , αn) of nonnegative integers, |α| be the sum α1 + · · · + αn of its
components, α! denotes the product α1!α2! . . . αn!, z denotes an n-tuple (z1, z2, . . . , zn) of
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complex numbers, and zα denotes the product zα1

1 zα2

2 . . . zαn

n . Using the standard multi-
index notation, we write an operator valued n-variable power series

(1.12) f(z) =
∑

α

Aαz
α, Aα ∈ B(H).

Let Dn = {z ∈ Cn : z = (z1, . . . , zn), |zj| < 1, j = 1, 2, . . . , n}. Let Kn(H) be the largest
nonnegative number such that the power series (1.12) converges in Dn and ‖f‖H∞(D,B(H)) ≤
1, then

(1.13)
∑

α

‖Aα‖ |zα| for all z ∈ Kn(H).Dn.

Definition 1.1. A domain D ⊂ Cn is said to be a Reinhardt domain centered at 0 ∈ D
if for any z = (z1, . . . , zn) ∈ D, and for each θk ∈ [0, 2π], k = 1, 2, . . . , n, we have that
(z1e

iθ1 , . . . , zne
iθn) ∈ D. We say that D ⊂ Cn is a complete Reinhardt domain if for

each z = (z1, . . . , zn) ∈ D, and for each |ξk| ≤ 1, k = 1, 2, . . . , n, we have that ξ.z =
(z1ξ1, . . . , znξn) ∈ D.

A domain Q ⊂ Cn is called a circular domain centered at 0 ∈ Q if for any z =
(z1, . . . , zn) ∈ Q, and for each θ ∈ [0, 2π], we have that (z1e

iθ, . . . , zne
iθ) ∈ Q. We say

that Q ⊂ Cn is a complete circular domain if for each z = (z1, . . . , zn) ∈ Q, and for
each |ξ| ≤ 1, we have that ξ.z = (z1ξ1, . . . , znξn) ∈ Q. For a complete circular domain
Q ⊆ Cn centered at 0 ∈ Q, every analytic function in Q can be expressed into the following
homogeneous polynomials

(1.14) f(z) =

∞
∑

k=0

Pk(z) for z ∈ Q,

where Pk(z) =
∑

|α|=k Aαz
α is a homogeneous polynomial of degree k and P0(z) = f(0).

It is natural to raise the following question.

Question 1.15. Can we establish the analogue of Theorem B for the operator valued
functions in B(D,B(H))? If so, then what is the multidimensional analogue of Theorem B
for the functions in B(D,B(H))?

In Theorem B (b), it is worth mentioning that Bohr inequality is improved by adding
one degree polynomial in Sr/π with the majorant series

∑∞
k=0 |ak|rk. Therefore, we have

the following question.

Question 1.16. Is it possible to establish an improved version of Theorem B (b) by adding
the polynomial G (Sr/π) with the majorant series

∑∞
k=0 ||Ak||rk for f ∈ B(D,B(H))? If so,

then what is the multidimensional analogue of Theorem B for the functions in B(D,B(H))?

One of the main aims of this paper is to answer Question 1.15 and Question 1.16 affir-
matively.

2. Main Results

Theorem 2.1. If the series (1.14) converges in the domain Q such that the estimate
‖f(z)‖ < 1 holds in Q and f(0) = a0I, a0 ∈ C, |a0| < 1, then

(2.1)
∞
∑

k=0

‖Pk(z)‖ < 1
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in the homothetic domain (1/3)Q. Moreover, if Q is convex, the constant 1/3 is the best
possible.

In particular, if f is complex valued bounded analytic functions in the domain Q, we can
obtain the multidimensional analogues of Bohr’s inequality for complex valued bounded
analytic functions in the domain Q, which has been independently proved by Aizenberg [2].
We obtain the Bohr radius for the functions f ∈ B(D,B(H)) with the initial coefficients
f(0) = 0 in the following lemma. Recall that R1 is the unique root of (1.4).

Lemma 2.2. Let f ∈ χ = B(D,B(H)) with f(0) = 0. Then R1 = 1/
√
2.

If f ∈ B(D,C), then the well known Bombieri [17] result follows from Lemma 2.2. In
the following result, we obtain an multidimensional analogues of Lemma 2.2.

Theorem 2.2. If the series (1.14) converges in the domain Q with the estimate ‖f(z)‖ < 1
holds in Q and f(0) = 0, then

(2.3)

∞
∑

k=1

‖Pk(z)‖ < 1

in the homothetic domain (1/
√
2)Q. Moreover, if Q is convex, the constant 1/

√
2 is the

best possible.

Corollary 2.4. Suppose that the series (1.12) converges in the polydisk Dn such that
f(0) = 0 and ‖f(z)‖ < 1 in Dn. Then

∞
∑

k=1

∥

∥

∥

∥

∥

∥

∑

|α|=k

Aαz
α

∥

∥

∥

∥

∥

∥

≤ 1

in the polydisk (1/
√
2)Dn. The constant 1/

√
2 is the best possible.

We establish the multidimensional analogues of Theorem B (c) for the operator valued
analytic functions in the complete circular domain Q.

Theorem 2.3. Suppose that Q is a complete circular domain centered at 0 ∈ Q ⊂ Cn.
If the series (1.14) converges in Q such that ‖f(z)‖ < 1 for all z ∈ Q and f(0) = a0I,
a0 ∈ C, |a0| < 1. Then for p ∈ (0, 1], we have

(2.5) ‖f(z)‖p +
∞
∑

k=N

‖Pk(z)‖ ≤ 1

in the homothetic domain (RN,p)Q, where RN,p is the positive root in (0, 1) of the equation

(2.6) 2(1 + r)rN − p(1− r)2 = 0.

Moreover, if Q is convex, then the constant RN,p is the best possible.

In the following result, we prove the multidimensional version of Theorem B (a) for the
operator valued analytic functions in the complete circular domain Q.

Theorem 2.4. Assume that the series (1.14) converges in the domain Q such that ‖f(z)‖ <
1 for all z ∈ Q and f(0) = a0I, a0 ∈ C, |a0| < 1. Then

(2.7)
∞
∑

k=0

‖Pk(z)‖+
(

1

1 + ‖f(0)‖ +
r

1− r

) ∞
∑

k=1

‖Pk(z)‖2 ≤ 1.
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holds in the homothetic domain (1/3)Q. Moreover, if Q is convex, then 1/3 is the best
possible.

In the following, we obtain an multidimensional version of Theorem B (b) for the operator
valued analytic functions in the complete circular domain Q.

Theorem 2.5. If the series (1.14) and (1.10) converge in the domain Q such that ‖f(z)‖ <
1 for all z ∈ Q and f(0) = a0I, a0 ∈ C, |a0| < 1. If G is given by (1.11), then

(2.8)
∞
∑

k=0

‖Pk(z)‖+G

( ∞
∑

k=1

k ‖Pk(z)‖2
)

≤ 1

holds in the homothetic domain (1/3)Q, where the coefficients of G satisfy

(2.9) 8c1

(

3

8

)2

+ 24c2

(

3

8

)4

+ · · ·+ 8(2l − 1)cl

(

3

8

)2l

≤ 1.

Moreover, if Q is convex, then 1/3 cannot be replaced by a larger quantity.

Corollary 2.10. Let f be as in Theorem 2.5. If G is a monomial of one degree, then

(2.11)
∞
∑

k=0

‖Pk(z)‖+
8

9

∞
∑

k=1

k ‖Pk(z)‖2 ≤ 1

holds in the homothetic domain (1/3)Q. Moreover, if Q is convex, then 1/3 cannot be
replaced by a larger quantity.

3. Key Lemmas and their proofs

We first obtain the upper and lower bounds of m(χ, r) for functions in B(D,B(H)).

Lemma 3.1. Let f ∈ B(D,B(H)). Then

(a) m(χ, r) ≤ 1/
√
1− r2 for r ∈ [0, 1),

(b) m(χ, r) ≥ (3−
√

8(1− r2))/(1− r) for r ∈ [1/3, 1).

Proof. Let f(z) =
∑∞

k=0Akz
k, where Ak ∈ B(H) for k ∈ N ∪ {0}.

(a) In view of the Cauchy-Schwarz inequality, we have

(3.2) Mr(f) =

∞
∑

k=0

‖Ak‖ rk ≤

√

√

√

√

∞
∑

k=0

‖Ak‖2
√

√

√

√

∞
∑

k=0

r2k for r ∈ [0, 1).

From the given assumption that f is in the unit ball of H∞(D,B(H)). That is,

‖f‖H∞(D,B(H)) ≤ 1. In particular, we have ‖f‖2H2(D,B(H)) =
∑∞

k=0 ‖Ak‖2 ≤ 1. Then

the desired inequality follows from (3.2).

(b) To obtain the lower bound of m(χ, r), we consider the function ψa which is defined
by (1.8). It is easy to see that Mr(f) = (a+(1−2a2)r)/(1−ar) := π(a) and hence,
m(χ, r) ≥ π(a) for r ∈ [0, 1). When r ∈ [0, 1/3], it is known that m(χ, r) ≥ 1.
Now to obtain a better bound of m(χ, r), we shall maximize π(a). For r ≥ 1/3, the

maximum value of π(a) occurs at a =
(

2−
√

2(1− r2)
)

/2r. By substituting this

value of a in π(a), we obtain m(χ, r) ≥ (3−
√

8(1− r2))/(1− r) for r ∈ [1/3, 1).
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�

In the following result, we establish an operator valued analogues of Theorem B (c) with
the term |f(z)| replaced by ‖f(z)‖p for p ∈ (0, 1] for functions f in B(D,B(H)).

Lemma 3.3. Let f : D → B(H) be an operator valued bounded holomorphic function with
the expansion f(z) =

∑∞
k=0Akz

k in D such that Ak ∈ B(H) for all k ∈ N ∪ {0} and
A0 = a0I, a0 ∈ C, |a0| < 1. If ‖f(z)‖ ≤ 1 in D, then for p ∈ (0, 1], we have

(3.4) ‖f(z)‖p +
∞
∑

k=N

‖Ak‖ rk ≤ 1 for |z| = r ≤ RN,p,

where RN,p is the unique root in (0, 1) of the equation (2.6). The constant RN,p is the best
possible.

Proof. Let B(H) be the set of bounded linear operators on a complex Hilbert space H.
Then B(H) is a complex Banach space with respect to the norm

‖A‖ = sup
h∈H\{0}

‖Ah‖
‖h‖ = sup

h∈H,‖h‖=1

‖Ah‖ ,

where A ∈ B(H). Let X∗ be the dual space of B(H). For x ∈ B(H) \ {0}, let

T (x) = {lx ∈ X∗ : lx(x) = ‖x‖ and ‖lx‖ = 1}.

By the Hahn-Banach theorem, we have T (x) 6= φ. Fix z ∈ D \ {0} and let ν = z/|z| ∈ ∂D.
Without loss of generality, we assume f(z) 6= 0. Let τ ∈ B(H) be any fixed point such
that ‖τ‖ = 1. We define the following holomorphic function in D by

g(ρ) = lτ (f(ρν)) for ρ ∈ D,

where lτ ∈ T (τ). Clearly, |g(ρ)| ≤ 1 in D. By applying the Schwarz-Pick lemma (often
referred to as Lindelöf’s inequality) (see [5]) to the complex-valued function g, we obtain

(3.5) |g(ρ)| ≤ |g(0)|+ |ρ|
1 + |g(0)||ρ| , ρ ∈ D.

It is easy to see that

(3.6) |g(0)| = |lτ (f(0))| ≤ ‖lτ‖ ‖f(0)‖ = ‖f(0)‖ .

Let |g(0)| = t and |ρ| = s. Then s ∈ [0, 1) and hence, the right hand side term (t+s)/(1+ts)
of (3.5) is an increasing function in the variable t ∈ [0,∞). Therefore, by (3.5) and (3.6),
we obtain

(3.7) |lτ (f(ρν))| ≤
‖f(0)‖+ |ρ|
1 + ‖f(0)‖ |ρ| .

By choosing ρ = |z| and τ = f(z)/ ‖f(z)‖ in (3.7), we obtain

(3.8) ‖f(z)‖ ≤ ‖f(0)‖+ |z|
1 + ‖f(0)‖ |z| for z ∈ D.
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Let f(z) =
∑∞

k=0Akz
k be analytic in D such that Ak ∈ B(H) for all k ∈ N ∪ {0} and

A0 = a0I, a0 ∈ C with |a0| < 1. Then, in view of (1.7) and (3.8), we have

(3.9) ‖f(z)‖p +
∞
∑

k=N

‖Ak‖ |z|k ≤
( |z|+ |a0|
1 + |z||a0|

)p

+ (1− |a0|2)
|z|N

1− |z| = 1 + ΥN,p(|a0|),

where

ΥN,p(|a0|) =
(

r + |a0|
1 + r|a0|

)p

− 1− r − (1− |a0|2)rN
1− r

for |z| = r

and |a0| ∈ [0, 1]. Let |a0| = α. To prove the inequality (3.4), it is enough to show that
ΥN,p(α) ≤ 0 for α ∈ [0, 1]. That is, we have to show that ΦN,p(α) ≤ 0, where

ΦN,p(α) = (1− r)(r + α)p − (1 + rα)p
(

1− r − (1− α2)rN
)

.

Clearly, ΦN,p(1) = 0. Therefore, if we show that ΦN,p is an increasing function in α under
the condition (2.6), then we are done. A simple computation shows that

Φ′
N,p(α) = p(1− r)(r + α)p−1 − pr

(

1− r − (1− α2)rN
)

(1 + rα)p−1 − 2αrN(1 + rα)p

and

Φ′′
N,p(α) = p(p− 1)(1− r)

(

(r + α)p−2 − r2(1 + rα)p−2
)

+ p(p− 1)r2(1− α2)rN(1 + rα)p−2

− 2αprN+1(1 + rα)p−1 − 2rN(1 + rα)p.

Note that (r+α)p−2−r2(1+rα)p−2 is positive for α ∈ [0, 1] and p ∈ (0, 1], which shows that
the first term in the expression of Φ′′

N,p(α) is negative for p ∈ (0, 1]. Since the other terms
in the expression of Φ′′

N,p(α) are also negative for p ∈ (0, 1], it follows that Φ′′
N,p(α) ≤ 0 for

all α ∈ [0, 1] and p ∈ (0, 1]. Thus, Φ′
N,p is a monotonically decreasing function in α ∈ [0, 1]

for p ∈ (0, 1], which gives that

(3.10) Φ′
N,p(α) ≥ Φ′

N,p(1) = p(1− r)2 − 2rN(1 + r) := Ψ(r).

We observe that Ψ(r) ≥ 0 for r ≤ RN,p, where RN,p is the unique root of Ψ(r) = 0.
Indeed, Ψ′(r) = −2p(1 − r)− 2

(

NrN−1 + (N + 1)rN
)

≤ 0 implies that Ψ is a decreasing
function in r ∈ [0, 1]. On the other hand, since Ψ(0) = p > 0 and Ψ(1) = −4 < 0, Ψ
has the unique root in (0, 1) and let RN,p be that root. Since Ψ is a decreasing function
in r, we have Ψ(r) ≥ Ψ(RN,p) = 0 for r ≤ RN,p. Therefore, Φ′

N,p(α) ≥ 0 for r ≤ RN,p

and p ∈ (0, 1]. Thus, ΦN,p is an increasing function in α whenever p ∈ (0, 1]. Therefore,
ΦN,p(α) ≤ ΦN,p(1) = 0 for r ≤ RN,p for p ∈ (0, 1]. This shows that ΥN,p(α) ≤ 0 for
r ≤ RN,p, p ∈ (0, 1] and hence, the inequality (3.4) follows from (3.9).

To prove the sharpness of the radius RN,p, we consider the function ψa with ψa(z) =
∑∞

k=0Akz
k given by (1.8). A simple computation shows that

‖ψa(−r)‖p +
∞
∑

k=N

‖Ak‖ rk =
(

r + a

1 + ra

)p

+ (1− a2)
aN−1rN

1− ar
(3.11)

= 1− (1− a)BN,p(a, r)

(1 + ar)p(1− ar)
,

where

BN,p(a, r) = (1− ar)(1 + ar)p
(

1

1− a

(

1−
(

r + a

1 + ra

)p)

−
(

1 + a

1− ar

)

aN−1rN
)

.
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We note that the right hand expression of (3.11) is greater than or equals to 1 if, and only
if, BN,p(a, r) ≤ 0. By letting a→ 1−, we obtain

lim
a→1−

BN,p(a, r) = (1− r)(1 + r)p
(

p

(

1− r

1 + r

)

− 2rN

1− r

)

< 0

for r > RN,p. This proves the sharpness of the constant RN,p. This completes the proof. �

In the next result, we prove an operator valued analogues of Theorem B (a).

Lemma 3.12. Let f : D → B(H) be an operator valued bounded holomorphic function
with the expansion f(z) =

∑∞
k=0Akz

k in D such that Ak ∈ B(H) for all k ∈ N ∪ {0} and
A0 = a0I, a0 ∈ C with |a0| < 1. If ‖f(z)‖ ≤ 1 in D, then we have

(3.13)
∞
∑

k=0

‖Ak‖ rk +
(

1

1 + ‖f(0)‖ +
r

1− r

) ∞
∑

k=1

‖Ak‖2 r2k ≤ 1 for |z| = r ≤ 1

3
.

The constant 1/3 is the best possible.

Proof. Let f(z) =
∑∞

n=0Anz
n in D with ‖f(z)‖ ≤ 1 in D such that An ∈ B(H) for all

n ∈ N ∪ {0} and A0 = a0I, a0 ∈ C. Set ‖A0‖ = |a0| = b ∈ [0, 1]. Then by (1.7), we obtain
∞
∑

k=0

‖Ak‖ rk +
(

1

1 + |a0|
+

r

1− r

) ∞
∑

k=1

‖Ak‖2 r2k

≤ b+ (1− b2)

(

r

1− r

)

+

(

1

1 + b
+

r

1− r

)

(1− b2)2
r2

1− r2
:= Ψ2(b).

Clearly, Ψ2 can be expressed as Ψ2(b) = b + α(1 − b2) + β(1 − b)(1 − b2) + γ(1 − b2)2 for
b ∈ [0, 1], where

α =
r

1− r
, β =

r2

1− r2
and γ =

r3

(1− r)(1− r2)
.

Clearly, α, β and γ are non-negative. We note that

Ψ′
2(b) = 1− 2αb+ β(3b2 − 2b− 1) + 4γ(b3 − b),

Ψ′′
2(b) = −2α + 2β(3b− 1) + 4γ(3b2 − 1) and Ψ′′′

2 (b) = 6βb+ 24bγ.

Since β and γ are non-negative, we have Ψ′′′
2 (b) > 0 for all b ∈ [0, 1]. That is, Ψ′′

2 is an
increasing function of b, which implies that

Ψ′′
2(b) ≤ Ψ′′

2(1) = −2α + 4β + 8γ =
2r

(1− r)(1− r2)
τ(r),

where τ(r) = 4r2+2r(1− r)− (1− r2) = (1+ r)(3r−1). It is easy to see that τ(r) ≤ 0 for
r ≤ 1/3. Therefore, Ψ′′

2(b) ≤ 0 for b ∈ [0, 1], which shows that Ψ′
2 is a decreasing function

in b ∈ [0, 1]. Thus, for r ≤ 1/3, we obtain

Ψ′
2(b) ≥ Ψ′

2(1) = 1− 2α =
1− 3r

1− r
.

Clearly, for r ≤ 1/3, we have Ψ′
2(1) ≥ 0 and hence Ψ′

2(b) ≥ 0 in [0, 1]. This implies that
Ψ2 is an increasing function in [0, 1] and hence, we obtain Ψ2(b) ≤ Ψ2(1) = 1 for r ≤ 1/3.
This proves the desired inequality (3.13).
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For the sharpness of the constant 1/3, we consider the function ψa with ψa(z) =
∑∞

k=0Akz
k is given by (1.8). A simple computation shows that

‖A0‖+
∞
∑

k=1

‖Ak‖ rk +
(

1

1 + |a0|
+

r

1− r

) ∞
∑

k=1

‖Ak‖2 r2k

= a+
1− a2

a

∞
∑

k=1

anrn +

(

1

1 + a
+

r

1− r

)

1− b2

b

∞
∑

k=1

a2kr2k := 1 + (1− a)u(r) := v(r),

where

u(r) =
(1 + a)r

1− ar
+

(

1

1 + a
+

r

1− r

)

(1 + a)(1− a2)r2

1− a2r2
− 1.

We note that u is strictly increasing function in (0, 1). Hence, for r > 1/3, we have
u(r) > u(1/3). By letting a very close to 1, we obtain

lim
a→1−

u(1/3) =
2(1/3)

1− (1/3)
− 1 = 0.

Therefore, u is strictly positive function for r > 1/3, as a is very close to 1. Hence, v(r) > 1
for r > 1/3, which shows that the radius 1/3 is the best possible. �

In the following result, we establish an operator valued analogues of Theorem B (b).

Lemma 3.14. Let f be as in Lemma 3.12. If ‖f(z)‖ ≤ 1 in D, then we have

(3.15)

∞
∑

k=0

‖Ak‖ rk +G(S(z)) ≤ 1 for r ≤ 1

3
,

where the coefficients of G(w) are given by (1.11) satisfy (2.9). Furthermore, the constant
1/3 cannot be replaced by a larger quantity. Here S is given by (1.10).

Proof. Let ‖A0‖ = |a0| = b ∈ [0, 1]. Then using the inequality (1.7), we obtain

(3.16) S(z) ≤ (1− b2)2
∞
∑

k=1

kr2k = (1− b2)2
r2

(1− r2)2
.

The inequality (3.16) along with (1.7) gives

‖A0‖+
∞
∑

k=1

‖Ak‖ rk + U(S(z)) ≤ b+ (1− b2)
r

1− r
+

l
∑

m=1

cm

(

(1− b2)r

1− r2

)2m

= 1 +H(r),

(3.17)

where

(3.18) H(r) = (1− b2)
r

1− r
+

l
∑

m=1

cm

(

(1− b2)r

1− r2

)2m

− (1− b).

It is easy to see that H(r) is an increasing function and hence H(r) ≤ H(1/3) for r ≤ 1/3.
A simple computation shows that

H(1/3) =
1− b2

2

(

1 + 2Fl(b)−
2

1 + b

)

:=
1− b2

2
J(b),
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where

Fl(b) =
l
∑

m=1

cl(1− b2)2m−1

(

3

8

)2m

and J(b) = 1 + 2Fl(b)−
2

1 + b
.

To show that H(r) ≤ 0, it is enough to show that J(b) ≤ 0 for b ∈ [0, 1]. Since b ∈ [0, 1], a
simple computation shows that

b(1 + b)2
(

3

8

)2

≤ 4

(

3

8

)2

, b(1 + b)2(1− b2)2
(

3

8

)4

≤ 4

(

3

8

)4

, · · · ,

b(1 + b)2(1− b2)2m−2

(

3

8

)2l

≤ 4

(

3

8

)2l

.

It is easy to see that

J ′(b) =
2

(1 + b)2

(

1− 2c1b(1 + b)2
(

3

8

)2

− 6c2b(1 + b)2(1− b2)2
(

3

8

)4

− · · · − 2(2l − 1)clb(1 + b)2(1− b2)2l−2

(

3

8

)2l)

≥ 2

(1 + b)2

(

1−
(

8c1

(

3

8

)2

+ 24c2

(

3

8

)4

+ · · ·+ 8(2l − 1)cl

(

3

8

)2l
))

≥ 0, if 8c1

(

3

8

)2

+ 24c2

(

3

8

)4

+ · · ·+ 8(2l − 1)cl

(

3

8

)2l

≤ 1.

Therefore, J(b) is an increasing function in [0, 1] if (2.9) holds. Hence, J(b) ≤ J(1) = 0
for all b ∈ [0, 1], which gives the desired inequality (3.15). To show the sharpness of the
constant 1/3, we consider the function ψa given by (1.8) with ψa(z) =

∑∞
k=0Akz

k. A
simple computation using (1.7) shows that

∞
∑

n=0

|an|rn + U(S(z)) = a + (1− a2)
r

1− ar
+
c1r

2(1− a2)2

(1− a2r2)2
+ · · ·+ cmr

2m(1− a2)2m

(1− a2r2)2m

: = 1− (1− a)Φ1(r),

where

Φ1(r) = −(1 + a)r

1− ar
− c1r

2(1− a)(1 + a)2

(1− a2r2)2
− · · · − cmr

2m(1− a)2m−1(1 + a)2m

(1− a2r2)2m
+ 1.

It is not difficult to show that Φ1(r) is strictly decreasing function of r in (0, 1). Therefore,
for r > 1/3, we have Φ1(r) < Φ1(1/3). A simple computation shows that lima→1Φ1(1/3) =
0. Therefore Φ1(r) < 0 for r > 1/3. Hence 1− (1− a)Φ1(r) > 1 for r > 1/3, which shows
that 1/3 is the best possible. This completes the proof. �

4. Proofs of the main results

Proof of Theorem 2.1. To obtain the inequality (2.1), we convert the multidimensional
power series (1.14) into the power series of one complex variable and we want to make use
of Lemma 3.3. Let L = {z = (z1, . . . , zn) : zj = ajt, j = 1, 2, . . . , n; t ∈ C} be a complex
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line. Then, in each section of the domain Q by the line L, the series (1.14) turns into the
following power series of complex variable t:

(4.1) f(at) =
∞
∑

k=0

Pk(a)t
k = f(0) +

∞
∑

k=1

Pk(a)t
k.

Since ‖f(at)‖ < 1 for t ∈ D and f(0) = a0I, a0 ∈ C, by making use of Lemma 3.3, we
obtain

(4.2)

∞
∑

k=0

∥

∥Pk(a)t
k
∥

∥ < 1

for z in the section L
⋂
(

1
3
Q
)

. Since L is an arbitrary complex line passing through the
origin, the inequality (4.2) is just (2.1). For the sharpness of the constant 1/3, let the
domain Q be convex. Then Q is an intersection of half spaces

Q =
⋂

a∈J
{z = (z1, . . . , zn) : Re (a1z1 + · · ·+ anzn) < 1}

for some J . Because Q is circular, we obtain

Q =
⋂

a∈J
{z = (z1, . . . , zn) : |a1z1 + · · ·+ anzn| < 1} .

Therefore, to show the constant 1/3 is the best possible, it is enough to show that 1/3
cannot be improved for each domain Ga = {z = (z1, . . . , zn) : |a1z1 + · · ·+ anzn| < 1}. In
view of Theorem A, for some b ∈ [0, 1), there exists a function ψb : D → B(H) defined
by (1.8) with ‖ψb(ξ)‖ < 1 for ξ ∈ D, but for any |ξ| = r > 1/3, (2.1) fails to hold in the
disk Dr = {ξ : |ξ| < r}. On the other hand, consider the function φ : Ga → D defined by
φ(z) = a1z1 + · · ·+ anzn. Thus, the function f(z) = (ψb ◦ φ)(z) gives the sharpness of the
constant 1/3 for each domain Ga. This completes the proof. �

Proof of Lemma 2.2. In view of Lemma 3.1 (a), with r = 1/
√
2, we have m(χ, 1/

√
2) ≤√

2 and by Lemma 3.1 (b) with r = 1/
√
2, we obtain m(χ, 1/

√
2) ≥

√
2. These together

give (1/
√
2)m(χ, 1/

√
2) = 1. Hence by (1.4), we conclude that R1 = 1/

√
2. �

Proof of Theorem 2.2. In view of Lemma 2.2, by going the similar lines of argument
as in Theorem 2.1, we can easily show that

∑∞
k=1 ‖Pk(z)‖ < 1 in the homothetic domain

(1/
√
2)Q. To show the constant 1/

√
2 is the best possible, let the domain Q be convex.

Therefore, by the analogues proof of Theorem 2.1, it is enough to prove that the constant
1/
√
2 cannot be improved in each domain Ga = {z = (z1, . . . , zn) : |a1z1 + · · ·+ anzn| < 1}.

Since 1/
√
2 is the best possible in Lemma 2.2, there exists an analytic function h : D →

B(H) defined by

h(ξ) = ξ

(

1√
2
− ξ

1− ξ√
2

)

I =

∞
∑

k=1

Akξ
k for ξ ∈ D,

where A1 = 1/
√
2 and Ak = −(1/2)(1/

√
2)k−2 for k ≥ 2 such that ‖h(ξ)‖ < 1 in D and

h(0) = 0. But for any |ξ| = r > 1/
√
2,

∞
∑

k=1

‖Ak‖ rk =
r/
√
2

1− (r/
√
2)
> 1,
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which shows that (2.2) fails to hold in the disk Dr = {z : |z| < r}. Therefore, the function
f(z) = (h ◦ φ)(z) gives the sharpness of the constant 1/

√
2 in each domain Ga, where

φ : Ga → D defined by φ(z) = a1z1 + · · ·+ anzn. This completes the proof. �

Proof of Theorem 2.3. In view of Lemma 3.3 and the analogues proof of Theorem
2.1, as well as from (3.4), we can easily obtain the inequality (2.5) in the homothetic
domain (RN,p)Q, where RN,p is the positive root in (0, 1) of the equation (2.6). To prove
the constant RN,p is the best possible whenever Q is convex, in view of the analogues
proof of Theorem 2.1, it is enough to show that RN,p cannot be improved for each domain
Ga = {z = (z1, . . . , zn) : |a1z1 + · · ·+ anzn| < 1}. Since RN,p is the best possible in Lemma
3.3, there exists an analytic function h : D → B(H) such that ‖h(ξ)‖ < 1 in D, but (2.5)
fails to hold in the disk Dr = {z : |z| < r} for each |ξ| = r > RN,p. Thus, the function
f(z) = (h ◦ φ)(z) gives the sharpness of the constant RN,p in each domain Ga, where
φ : Ga → D is defined by φ(z) = a1z1 + · · ·+ anzn. �

Proof of Theorem 2.4. In view of Lemma 3.12 and the analogues proof of Theorem 2.1,
as well as from (3.13), we can obtain the inequality (2.7) in the homothetic domain (1/3)Q.
To prove the constant 1/3 is the best possible when Q is convex, in view of the analogues
proof of Theorem 2.1, it is enough to show that 1/3 cannot be improved for each domain
Ga = {z = (z1, . . . , zn) : |a1z1 + · · ·+ anzn| < 1}. Thus, the function f(z) = (h ◦ φ)(z)
gives the sharpness of the constant RN,p in each domain Ga, where φ : Ga → D is defined
by φ(z) = a1z1 + · · ·+ anzn. �

Proof of Theorem 2.5. Using Lemma 3.14 and the analogues proof of Theorem 2.1,
from (3.15), we can easily obtain the inequality (2.8) in the homothetic domain (1/3)Q,
where the coefficients of G satisfy (2.9). When Q is convex, to prove the constant 1/3 is
the best possible, in view of the analogues proof of Theorem 2.1, it is enough to show that
1/3 cannot be improved for each domain Ga = {z = (z1, . . . , zn) : |a1z1 + · · ·+ anzn| < 1}.
Thus, the function f(z) = (h ◦ φ)(z) gives the sharpness of the constant RN,p in each
domain Ga, where φ : Ga → D defined by φ(z) = a1z1 + · · ·+ anzn. �
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