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Operators and operator algebras in Krein Spaces 1.

Spectral analysis 1n Pontrjagin space.

Minoru Tomita

Introduction

Krein space is an infinite dimensional generalization of
Minkowsky space, and more than fourty years ago several physists
already awared the importance of studying such spaces. TFor
instance one old idea is that a Hamiltonlan in relativestic
quantum mechaniques must be a selfadjoint operator in a Krein
space.

In any sense the theory of operators and operator aigebras
in Krein spaces must be founded by developping the spectral
analysis of selfadjoint operators in such spaces.

This paper 1is devoted to founding spectral analysis of self-

adjolint operators in Pontrjagin spaces.
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Chapter 1. Nectations and definitions

§1.0. Preliminary images of Krein space and Pontrjagin space.

Consider the product space L: = Hl X H2 of Hilbert spaces
Hl and H2, and define a seguilinear form <x,y> in L x L
by
<X:y> = (Xl]yl) - (X2!y2):
where x: = (Xl,X2) y: = (yl,yg) are elements of L. If H,

and H2 are of finite dimensional. L 1is known as a Minkowsky
space. If H1 and H2 are Hilbert spaces, L has been called

a Krein space, or an indefinite metric space. If either Hl or
H2 are of finite dimensional, L has been called a Pontrjagin
space.

In the following sections we shall introduce other defi-

nitions of Krein and Pontrjagin spaces, as we shall start from

defining indefinite innerproduct space.

§1.1. 1Indefinite innerproduct space.

In what follows "linear" always means" complex linear",

C denoctes the complex numbers, and R the real numbers.

1.1.1. (Definition) A linear space L 1is called an
indefinite innerproduct space 1f L has an indefinite inner-

product <x,y> satisfying the following conditions I.1 and TI.2.

I.1. <x,y> i1s a symmetric sequilinear form on L x L.
Namely, it is a complex valued functiconal on L x L satisfying

- 2 -
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<X,y> = <Y,X> ,
<axl+BX2>y> = u<xlay> + B<X2:y>-
<X,ay t+ ¥o> = a<x,y > + B<X,¥,>.

I.2. There is a certain innerproduct-norm | | (ie.,
a norm | x|: = (x|x) defined by an innerproduct (x}y) of

L)} which is selfpolar. Namely, it satisfies

“x" = sup”yui1[<x,y>|.

A norm | | satisfying I.2. in L is called a finite

unitary norm of L.

1.1.2. (Definition). An indefinite innerproduct space L
is called a Krein space if 1t becomes a Hilbert space under its
certain finite unltary norm. The topology of L 1is that of

the Hilbert space.

1.1.3. (Definition). The metrical completion L{p) of
an indefinite innerproduct space L under a certain finite
unitary norm p of L is a Krein space, which we call the

Krein completion of 1L under p.

1.1.4. We must beware that the space L may have finite
unitary norms which are not generally mutually eguivalent on
L, so that Kreln completions of L under different norms

cannot generally be identified to each cther.

-3 -
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1.2. #-innerproducts in Krein spaces.

Let L ©be a Krein space. Then <x,y> denotes the indefinite
innerpreoduct of L, and it is also called the #-innerproduct of
L, to distinguish it from the ¥-innerproduct which is defined by
a fixed anxiliary finite unitary norm ¥ of L.

In what follows L and M denote Krein spaces.

1.2.1. (Definition). Let x and y belong to L. x 1is
called #-orthogonal to y if <x,y> = 0 holds. Let 7L and 7L
be subsets of L. MU is called #-orthogonal 1f <x,y> = 0 holds
for xemMm and y ¢7,. The elements of 97 which are #-orthogonal
to is dencted by mf% If 91, is a closed linear subspace of

L, 'mf[L is called the #-orthogonal complement of 9l

1.2.2. (Definition). X : L— M denotes a mapping whose
domain #%(X) 4s in L, and range R(X) is in M. X 1is called
densely defined if «¥(X) is everywhere dense in L. X is called
invertiblly densely defined of X and its inverse mapping X_1

M - L are densely defined.

1.2.3. (Definition). Let X : L~ M be a linear mapping.
The #-adjoint, or the Krein adjolint, of ¥ means a linear mapping

#

X M-—21L which is determined by the following rule : Take

any x e L and y e M. X#y is defined and x = X#y holds

iff it satisfies
<x,z> = <y,Xz> for all z e42(X).

The #-adjoint X# exlsts iff X 1s densely defined.

- 4 -
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1.2.4. (Definition) (a). An operator X in L 1is called

#-selfadjoint if X = X#

holds.

(b). An operator X in L 1s 'called #-positive if it 1is
#-selfadjoint and satisfies <Xx,x> > 0 on «f(X).

{c). An operator X in L is called a #-projection if it
satisfies X = X = X".

{d). A linear mapping X : L > M is called #-unitary if
x = ¥ nolas.

(e). A linear mapping X ; L—M is called #~imaginary if
¥’ = _x™1 holds.

(f) A linear mapping x : L-—2>M is called #-selforthogonal

1f xX"X vanishes on a5 (X)) .

1.2.5. Every #wselfadjoint operator is closed and densély
defined, and so are every #-positive operatcr and #-projection.
Every #-unitary mapping and every #-imaginary. Mapping are
closed and invertiblly densely defined. Indeed, for instance,

# 1

if X : L M 1is #-unitary, X' = X - means that X is densely

def'ined and the inverse mapping X—l is closed. Then X is
' 1
)

closed and hence X#(=X— is densely defined. A mapping X : L

> M 1is #-selforthogonal iff X 1is densely defined and has the
#-gelforthogonal range. Indeed, X ig selforthogonal iff X#

is defined and satisfies <Xx,Xy> = 0 for all x, y in £%(X).

1.2.6. (Remark). We must beware that #-projections and

#-unitary mappings 1in our definition are not generally continuous.
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§1.3, The ¥-norm in Xrein space.

1.3.1. We conslider a certaln fixed finite unitary norm
of L which makes L a Hilbert space. We call this norm the
*_norm and denote it by | || or by &. The innerproduct associate
with the norm ¥ is denoted by (x|y), and is called the ¥-inner-
product of L. The definitions in the Section 1.2 are also applied

to the ¥-innerproducts of the spaces I, and M,

1.3.2. (Definition). Let x, y belong to L. x 1is
¥_orthogonal to y if (x|y) = 0 holds. Let 7, 7. be subsets
of L. Lis ¥-orthogonal to 1 if (xjy) = 0 holds for xeM
and y e 7.

Let X be an operator in L. X 1s ¥-gelfadjoint if
X = X¥ holds. X is ¥-positive if X is ¥-gselfadjoint and
satisfies (Xx|x) > 0 on £(X). X 1is a ¥-projection Iif ‘

X = X* = X° holds. A linear mapping X : L = M is ¥-unitary

ir x* = X"1 holds.

A subset MM #¢ of L Dbecomes ¥-gelforthogonal iff ;WZ= 0
holds. *-projections and *-unltary mappings are continuous.
¥—imaginary mapping X : L + M does not exist. A densely

defined linear mapping X : L-2 M 1s ¥-selforthogonal iff X

vanishes on the domain.

1.3.3. (Definition). An operator X in I is called
biselfadjoint if it is #-selfadjoint and *¥*-gselfadjoint. X
1s called a biprojection if it 1is a #-projection and a ¥-
projection. A linear mapping X : L »+M 1is called biunitary
if it is #-unitary and ¥-unitary.

-6 -
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§1.4. Defining operator of the ¥-norm.

The #-innerproduct <x,y> 1is a continuous sequilinear
form on L x L treating L as a Hilbert space under the

¥_norm. Then

1.4.1. (Proposition). There is a certain continuous

linear operator J in L satisfyiﬁg
<x,y> = (Ixly),
-1
Indeed the last identity immediately follws from
<X,y> =<y,X>
il = supyy g [>T
1.4.2. (Definition). The operator J in L is called

the defining operator of the ¥-norm. If necessary, we also

denote J Dby JL.

The Definition 1.4.2 is based on the next theorem.

1.4.3. (Theroem). The defining operator J of the ¥-norm
of I 1s a continuous #-positive #-unitary operator in L,

and the ¥-norm of I is determined by
t”xuz = <JxX, X>.

It 1s also clear that



138

1.4.4, (Proposition). Let X : L = M be a densely defined

linear mapping. Then_

Chapter 2. Geometry 1n Kreln space.

In Krein space, we may conslder two types of geometries.
One is the classical geometry whichrinvestigates the invariants
of the group of continuous #-unitary operators in L. Another
is the investigations of geometrical aspect of unbounded #-unitary
operators in- L. In this chapter we shall sketch certain aspects
of the latter geometry based on the concept of the Cartan decom-

position.
§2.1. Cartan decomposition of #-unitary operators.

The Cartan decomposition of Lorentz groups in Minkowsky
spaces 1s generalized tc the case of #-unitary operatdrs in

Krein spaces.

2.1.1. (Theorem)., Let X : L > M be a #-unitary mapping

Then X 1s represented in the form

U:L~»M is a biunitary mapping. Kl and K2 are ¥-positive

#-unitary operators in L and M respectively.

The above representation of X 1is called the Cartan

decomposition of X,
-8 -
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Proof. X = K,U = UK, is the V. Neumann's polarization

of the mapping X : L » M regarding L ‘*and M as Hilbert

1 and K2

are ¥-positive operators in L and M, satisfying

spaces. U : L > M is a ¥-unitary mapping, and K

2 _ g 2 s
K;© = X¥X, K,° = XX*.

We show that X*¥X and KX are #-unitary. Indeed, remarking

1
1
that X = X' = JX¥J, we have
* = * — -1 _1* = * -1
T(X%X)T = (IXEI)(IKI) = ¥ x~1e = (x*x)7T,
and JK.°7 = Kr2. From this we have JK.J = K- and K. is
1 1 : < 1 1 1 1

#-unitary. Similarly we find that K2 is #-unitary, and U

satisfies

<K1X,Kly> = <x,y> = <Xx,Xy>

<UK1X,UKly>.

Since U 1is bijective, it is #-unitary, and the Theorem is

proved.
§2.2. Unitary norms and #-unitary operators.

2.2.1. (Definition). Let X : L » M be a linear mapping.

Then X dinduces a (unbounded) seminorm X > “XXH

Dy
defined on L, where we set |Xx| = 4+~ 1f Xx 1is not defined.
If X dis injective, Dy is called a (unbounded) norm in L.

Now we characterize unbounded norms in L induced from

#-unitary mappings.
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2.2.2. (Definition). A functional p on L 1is called

a unitary norm of L if the following U0, Ul, U2 are satisfied
uo. 0 < p(x) < +o.

Ul. The finite part «f(p): = {x ¢ L : p(x) < +=}
of p 1s a linear subspace of L, and p 1s an innerproduct
nerm on it. Namely, p(x)2 = (x|x)p holds for a certain inner-
product (x|y)p in ¢%(p). The innerproduct (x[y)p is called

the p-innerproduct in L.

uz, The norm p 1s selfpolar on L. Namely, it
satisfies
p(x) = Supp(y);ll<x’y>|'
2.2.3. (Theorem). A functional p on L 1is a unitary

norm of L iff p 1s induced from a certain #-unitary mapping

X : L » K, where K 1s a certain Krein space.

Proof. Suppcse taht p 1s induced from a certain #-unitary
mapping X : L »> K. Then the finite part of p 1is identical to
the domain yx¥(X) of X and p 1is an innerproduct norm on it.

p 1s self-polar. Indeed,

-1#

-1
“XX“ % x|l = Sup”y“;ll<x,x y> |

T P xg g1 o2l

The identity is valifd even 1f Xx 1s not defined. Then p
is a unitary norm of L.

- 10 -
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Conversely, suppose that p 1s a unitary norm of L.
p 1is an innerproduct norm of the finite part «%p) of p,
and «XMp) has an indefinite innerproduct <x,y> and a finite
unitary norm p. Let L(p) be the Krein completion of x4%(p)
under the norm p, and X : x + x, L(p) = L. be the identity
mapping on x%p). X 1s injective, densely defined, and
" 2 1. We show that x'¢ x71. Namely, if a pair x € L,

y € L{(p) satisfiles
<x,Xz> = <y,z> for =z € 9(p),

then x =y holds. If x and y are as above, then the norm

pl{y) of y in L(p) is determined by

p(.V) = suPp(z);l,zc—;ﬁ(p)|<y’Z>l

= sup | <x,2z>|

p(z)<l

p(x).

Therefore x belongs to «(p), and remarking
<x,z> = <y,z> for z e  (p),
we have x = y. Then X 1s #-unitary and induces p.

2.2.4. (Theorem). For every unitary norm p of L
there i1s a unique ¥*-positive #-unitary oeprator K in L

which induces p.

Proof. We take a certain #-unitary mapping X : L » M

which induces the norm p, and consider the Cartan decomposition

- 11 -
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X :=0UK of X. U :L > M is bilunitary. K 1s a x-positive
#-unitary operator in L and induces p. Suppose also that

p is induced from another ¥*-positive #-unitary operator S

in L. Then [K<x]| = ||Sx|| holds on &f(p): = {x e L : p(x) < +=}.

Therefore K = S holds, and the Theorem is proved.
§2.3. Defining operator of unitary norm.
Proposition 1.4.1 is now generalized as follows

2.3.1. (Theorem). Let p be a unitary norm of L. Then

there is a unique #-positive #-unitary cperator Jp in L

satisfying
2 _
p(x) = <J x,x>.
p
for all x in aﬂ(Jp).

Proof. p is induced from a certain ¥-positive #-unitary

operator K 1in L. We set

I = JK°.
D

Then Jp is #-unitary. We show that Jp is #-positive.

Indeed, it is #-selfadjoint and
T X, x> = (Kgxlx) = “KX“2 = p(x)°,

and we have the Theorem. (For the uniqueness of Jp, refer

the next Theorem 2.3.3).

- 12 -
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2.3.2. (Definition). The operator J, in Theorem 2.3.1 -

is called the defining operator of the norm p.

2.3.3. {(Theorem). Let 8 be a #-positive #-unitary operator

in L, then 8 defines a certain unitary norm p 1iIn L.

Proof. JS 1s a *-positive #-unitary operator in L.

Indeed, it is ¥*-selfadjoint, #-unitary and

(J8x|x) = <Sx,x> > 0.
' iy
holds on ¢%(3S). Let K = (JS)Z. Then K is also *-positive

#-unitary and S = JK2 holds, and induces the norm Py -

§2.4, Canonical partition and canonical. quasi-partition.

2.4.1. (Definition). ILet L., and L, be subspaces of L

1
such that

(a). L1 and L2‘ are the #-orthogonal complements. of

each other.

(pb). If 0 # x € L, then <X,%> > 0. If 0 #ye€e L

2
then <y,y> < 0.

(¢). The linear sum of Ll and L2 is everywhere

dense in 1.

Then the representation of L : L = L1+L is called a

2
- canonical gquasi-partition of L. Inparticular, if L = Ll + L2
holds, the representation L = Ll + L2 1s called a canonical

partition of L.

2.4.2. (Definition). Let p Dbe a unitary ncrm of L.
Let L+(p) be the elements x of L satisfying p(x)2 = <X,X>,

~ 13 -
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and L (p) the elements x of L satisfying p(x)2 = —<X,X>.

We call the representation L : = [L+(p) + L (p)] the p-quasi-

partition of L.

2.4.3. (Theorem). Let p be a unitary norm of L. Then
the p-quasi-partition L : = [L+(p) + L7 (p)] 4is a canonical quasi-
partition of L. Let Jp be the defining operator of p.
Then L+(p) and L (p) are eigen-spaces for eigenvalues 1

and -1 of Jp, and we have
+ -
¢9(Jp) = L (p) + L7 (p).

Proof. First we consider the case that p 1is the *-nornm

llx||- Then the defining operatcr J of the *-norm satisfies

J = J% = J“l, and hence is represented in the form : J = J¥ - J,

where J7 and J~ are ¥*_projections satisfying 1 = S,

we set LT = L+(*), L™ = L7 (%), LY 1s the elements x of

L satisfying "x“2 = (Jx x), and is identical to the range

of J+. Similarly, L~ is identical to the range of J,

these are the eigenspaces for the eigenvalues 1 and ~1 of J,

respectively, and L = L+ + L~ is a canonical partition of L.
Next, we return to a general unitary norm p, and let K

be the ¥-positive #-unitary operator in L which induces p.

Then

7, = Jk° = x73%.

An element x of L Dbelongs to L+(p) ifr

1

“KX”2 = <x,x> (JKx,Kx),

- 14 =
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le., Kx = JKx or x = Jpx holds. In other words x 1is
an eigenvector of Jp for the eigenvalue 1. Then L+(p) is
the eigenspace of Jp for the eigenvalue 1. Similarly, L (p)

is the eigenspace of Jp for the eigenvalue -1. Now we set

k"7,

=
i

1
-2-(1 + Jp)

1K

oy
H

1
§(l - Jp) K

o

Then L+(p) and L (p) are the ranges of J; and J;, and
2 + -
I = HET) = L7(p) + L7(p).

L+(p) and L (p) are mutually #-orthogonal to each other.

Then it determines a canonical Quasi—partition of L.

2.4, 4, {(Theorem). Let L = [Ll + L be a canonical

5]
guasipartition of L. Then it is identical to a certain quasi-

partition of L defined by a certain unitary norm of L.

Proof. Define an operator S with the domain A4 in L

by

€ L X

S X +x2 > X=X, for x 1

1 2 € Lo

We show that S8 1is a #-positive #-unitary operator in L.

S satisfies 8§ = 8%, and

<SX,x> = <XpLX > = <Xp,Xa> 2 0

for x = X1+X26AQ .  Then S# 2 8 holds. We show S# c 3.

Let y and =z be elements of L satisfying

- 15 -
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<8X,y> = <X,z> for x ¢ g9.

Let

= 1 = L(y-
u = 5(y+z), v = 5(y-z).

Then

<xl,v> = <X5,u” for x, € L
Since Ll and L2 contains O, we have

<Xy,V> = <X,,u> = 0 for X, € Ll, X, € L2,

and v belongs to the #-orthogonal complement L of L.

2
Similarly, wu belongs to Ll. Then remarking
¥y = u+tv, Z = u-v,
we find that =z = Sy, and S# = S8 holds. Hence S 1is a

#-positive #-unitary operator in L and identical to the
defining operator Jp of a certain unitary norm. Hence

L, = L+(p) and L, = L (p) holds, and the quasipartition

is defined by p.

§2.5. Reduction by #-selforthogonal subspace.

2.5.1. (Definition). Let Wl be a certain closed #-self-

orthogonal subspace of L. Then setting Ll = M, L3 = JMm,

and L2 the ¥-orthogonal complement of L1+L3 in L, L 1is

represented as a linear sum L = L1+L2+L3 of mnmutually
¥_orthogonal spaces Ll’ L2 and LB' We call 1t the reduction

cf L Dby the space TN = Ll' We immediately obtain that

- 16 -
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2.5.2, (Lemma). Let L = L1+L +L be a reduction of L

2 73

by a cerfain closed #-selforthogonal subspace o= L1 of L.
Then L2 1s a Krein space whose #-innerproduct and ¥-norm are
the restrictions of those of L on L2. Each element x of

L. has a unique representation

X = X4 + X, + Jx3,

where X1, x3 € > X, € L2. The #—innerproduct and the
¥-norm of L has thé following representation 7
<x,y> = (¥1Iy3) +<xpeypr + (aslyy),
2 e 2 2
=l = "X]_” + “X2" + "X3” -

If A 1is a continuous linear operator in L, A and A have

the following matrix representation.

" 4 %
A1 Rip A3 | A3z Apg Ayg
_ # o # # #
A= Ay Aoy Asg |y AT =T A3, Any Ay
A A * Aot
A3 A3 Az Ayp Ay Ayg

Chapter 3. Spectral analysis in Pontrjagin space.
§3.1. Pontrjagin space.

3.1.1. (Definition). A Krein space L 1is called a
Pontrjagin space if C has a certain canonical partition
L= L1+L2 such that elther Ll or L2 is of finite dimen-

sional.

- 17 -
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In this chapter we always denote by L a Pontrjagin space

with a canonical partition L = L1+L2 whose L is of dimen-

2

sion n < +w. The partition determines a certain finite unitary

norm | || which we call the ¥-norm of L. The operator J
which defines the ¥-norm of L is represented as J = J+ - J .
L, 1is the range of J~, and hence dim J = holds.

3.1.2. {(Lemma). If M is a #-selforthogonal linear

subspace of L, then the dimension of Pl is < n.

Proof, Let E be the ¥-projection in L whose range
is the closure [TIb] of the range of . [TM] 1is also #-self-

orthogonal. Then

(JEx|Ey) <Ex,BEy> = 0

and EJE = 0. Remarking J

I - 237, we have
E = 2EJ'E and dim E dim J~ =

3.1.3. (Theorem). Every #-unitary operator in L 1is

continuous.

Procf. Let U be a #-unitary operator, and take its
Cartan decomposition U = KV. V dis biunitary, and continuous
on L. Hence it is sufficient to see that K is continuous
on L. Conslder the spectral decomposition K = J+ AME(A) of
K. 8Since JKJ = K_l, we have JyY(K)J = w(K_l) fgr any bounded

Berel function ¢ on O

A

A < 4o,  In particular, we consider
the projections El’ Eg, E3 which are spectral measures on
the sets (0,1), {1} and (1l,+»), respectively, since the

- 18 -
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mapping A - A_l carries (0,1) onto {(1,+»), we find that
‘JElJ = E3, JE2J = E2, and the ranges of El and E3 are
#-selforthogonal. By Lemma 3.1.2 we have dim E3 = dim El < n.

Then the spectrum of K consists of at most 2n+l points,

and K oeesssm=~ hecome contlinuous in L and we have the Theorem.
3.1.4. (Corollary). Every unitary norm of L 1s finite.

Proof. Every unitary norm is induced from a certain
®_positive #-unitary operator in L, and by Theorem 4.1.2

it is finite-valued on L.

3.1.5. (Theorem). Let ¢ﬂ = M1+M2 be a canonical quasi-
partition of L. Then 1t is a canonical partition of L

and dim M2 ='n holds.

Proof. The partition determines a unitary norm P of
I, and ¢4% 1s identical to dﬂ(Kg), where X is a ¥-positive
#-unitary operator which induces the norm P. Since K 1is

continuocus, we have L = ¢9 and L= M1+M2 is a partition of
, 1s the range of the operator Jp. Since J; = K#J_K,

> =4 holds, and the Theorem is proved.

L. WM

dim M

3.2. #-spectral and #-prespectral operators.

We now introduce operators in a Krein space with certain

nice properties.

3.2.1. {(Definition). An operator A in a Krein space
LO is called #-spectral 1f there 1is a continuous #-unitary
operator X and a biselfadjoint operator B in LO satisfying
A = x"BX.

- 19 -
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3.2.2. We réﬁurn again té the Pontrjagin space L. The
discussioﬁ of épectral.analysis of #-selfadjoint operator would
finish if\every #—selfadjoint.operator in L would have been
#-spectral, because such an operator A have the spectral |
representations A = JXdE(A) by continuous #—préjections
{E{X) : = < A < 4+»}. But even in Minkowsky spaces, #-self-

adjoint operators generally do not have such a wishful property.

3.2.3. So we introduce the concept of #-prespectrality,
which is a property of coperators in L slightly weaker than:
the #-spectrality. On the other hand it preserves the following

two conditions.

3.2.4. Every #-selfadjoint operator in:Minkowsky space.

'is #-prespectral.

3.2.5.. ‘#-prespectrality of operators in. L 1s preserved
under the strong convergences in bounded nets of operators in

L.

3.2.6. We start from modifying the representation of
a #-spectral operator A in L. A 1is written as A = X#CX,
by a {(continuous) #—unitary operator X and a biselfadjoint
operator € 1in L. Consider the Cartan decomposition X = UK,
where U is biunitary and X is ¥-posgitive #-unitary in L.
We set B = U#CU, and represent A again by A = K#BK.
Then B 1is also biselfadjoint. We define a ¥*-positive operator

T in L by
T = K2(I+k°)7L.

- 20 -
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From JKJ = K_l, we have JTJ = I-T, and

TA(I-T) = (TA(I-T))%*.

Indeed,

CTA(I-T) = (T+K2) " ®BR(I+K°) L.
Summarizing these properties of A we define

3.2.7. (Definition). An operator A in L is called
#-prespectral if A 1is #-selfadjoint and has a certain

¥.positive operator T 1in L satisfying JTJ = I-T, and
TA(I-T) = (TA(I-T))*.

3.2.8. (Lemma). A continuous operator A in L 1is
#-spectral iff A 1is #-selfadjoint, and satisfies the con-
dition of Definition 3.2.7 whose operator T in L 1is

injective.

Proof. Indeed, if there d1s such an injective T, we

can take a ¥_pogitive operator K satisfying T = K2(I+K2)_l.

K is #-unitary, and B: = KAK'

Then A: = K#BK is #-spectral.

is biselfadjoint in L.

-§3.3. Canonical represntations of #-selfadjoint operators.

Now we generalize the Jordan's canonical representation

of matrices to the cases of #-selfadjoint operators in L.
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3.3.1. (Theorem). Let A be a continuous #-selfadjoint
operator in a Pontrjagin space L with dim L™ = n. Then A

has the following matrix representation

A

11 12 13
A = 0 A22 A23 ,
0 0
A33
* = * = * = i
where All A33, A23 A12’ A13 A13. The represgntatlon

is determined by the reduction L = L1+L2+L3 of L by a

certain #-selforthogonal closed subspace L1 of L satisfying
dim Ll = dim L3 n, and A22 becomes a #-spectral operator

in L2.

3.3.2. (Definition). The matrix representation of an

operator A in L satisfying the requirement of Theorem 3.3.1

is called the canonical representation off A.

3.3.3. (Lemma). A continuous operator A in L is

#-prespectral 1ff A has the canonical representation.

Indeed, let A be a contlinuous operator with the canonical

representation. Then A 18 #-selfadjoint. A22 is #-spectral

op KgBEKZ’ where B2 is biself-

adjoint and K d1is #-unitary, and further we can suppose that

and has a representation A

K is ¥*-positive in Lg. Let IK denote the identity in L

and define the operators T2 in L2 and T 3in L Dby

K.’

2

O 0 0

T, = KS(I.+K)™Y, T= 10 1. 0
o = K (Iy+K,

0o 0° 1,
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Then clearly, T is ¥_positive and satisfies JTJ = I-T and

‘TA(IuT) = (TA(I-T))*¥. Hence A is #-prespectral.
Conversely, suppose that A is #-prespectral.

Then there is a ¥-positive operator T din I such that

JTJ = I-T and TA(I-T) is ¥-selfadjoint. Let L be

1
the kernel of T. Then Ll is a closed subspace of L.
L3: = JLl is the kernel of JTJ (= I-T), and hence Ll is
¥—_orthogonal to L3, and L1 and L3 are f-selforthogonal.
Let A: = (Aij). be the matrix representation of A defined
by the reductlon L = L1+L2+L3. We show that Ll is invariant
under A. 1Indeed, if x belongs to L then Tx = 0, and

1)
hence (I-T)x = x holds. Now

TAx = TA(I-T)x
= (TA(I-T))*¥x = (I-T)A*Tx = 0.

Therefore Ax Dbelongs to Ll’ and L1 is invariant under

, . - _ - #
A. TFrom this we find that A,y = A31 =0, and A, = (A21)
= 0. T has the matrix representation
0 0 0
T = ( 0 ’I‘2 0
0 0 I3
L) *— . + I3 L3 * - -
T2 is positive in L2, and satisfies JETZJE 12 T2,
_ . *_ . P - . o . -
and T2A22(I2 T2) is selfadjoint. Further, T2 }s injective
on L2. Then by Lemma 3.2. A22 becomes #-spectral. Thus

has the canonical representation.
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§3.4. Proof of the canonical representation theorem.

The assertion 3.2.4 is now equivalent to

the following 3.4.1.

3.4.1. (Lemma). If A 1s a #-selfadjoint operator in a
Minkowsky space L, then A has the canonical representation.
To prove 3.4.1, let L, be a maximal subspace of L which

is invariant under A, and consider the reduction L = L +L +L

1 7273
of L by the space Ll' Then L has the representation
Ri1 A1z Bys
A = 0 A22 A23
0 0 A33
"Suffice it to show that A22 is #-spectral in Lz. Notice

that ‘L2 does net contain any nontrivial #-selforthogonal
subspace Il which is invariant under A22. Indeed, if L
is such a space, then L2+Tﬂ, becomes a #-selforthogonal

subspace of L which is invariant under A.

Then 3.4.1 is verified by showing the next lemma.

3.4.2. (Lemma). If a #-selfadjoint operator A in
a Minkowsky space L deces not have any nontrivial invariant

#-selforthogonal subspace, then A d1is #-spectral.

Proof.  Let S be the set of elgenvalues of A.
For each o0& S consider the operator
E(oa): = (2wi)-lj (A—z)—ldz,
C
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where C 1is . a small circular surrounding & to the positive
direction. It is very well-known that I = ZaeSE<a)’

E(u)2 = E(a) and E(a)E(B) =0 for a # B. The range of

E(a) 1is the eigenspace of A assoclated to the eigenvalue «.
Remarking that A# = A, 1if o belongs to S, then a also

belongs to 8. E(a) commutes to A, and
# _
E{a)" = E(a) # 0.

S 1s contained in the real line., Indeed, 1if d is a
non-real element.of S, then E(a)#E(a) = 0, and E(a) is
#-selforthogonal. Then the range of E(a) 1s a nontriviél
#—selforthogonai, invariant subspace of A, and it leads a
contradiction. If o is real, then AE(a) = oE(a) holds.
Indeed, let n be the least number such that (A-a)PE(a) = 0.
If n > 2, we can take a number m such that ©2m > n and

< n-1. The operator (A-a)™E(a) 1s # 0 and #-selforthogonal.

=
(PN

((A-a)™E(a))F((A-a)"E(a))
= (A-a)“ME(q) = O.

This 1s a contradiciton.

The signs of <x,x> for elements x # 0 of the range
of E(a) is constant, and we denote it by sign E(u).

Indeed, if there are elements x # 0 and y # 0 such
that <x,x> > 0 rand <Y ,¥) < 0, we can take a certain element
z = ox+(l-a)y # 0 satisfying <z,z> = 0, and {az : aeC} is
a nontrivial invariant subspace of A.
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Now we set

BT (a) = E(a),

sign E(a)="+

ET(A) E(o).

Zsign E{a)=-

and let Ml and M2 be the ranges of E+(A) and E (A).

Then L = M1+M2

a certain finite unitary norm p of L. Consider the

is a canonical partition of L and defines

innerproduct (x|y)p correéponding to p. Then A 1is
p-selfadjoint on L. Let K be the ¥-positive #-unitary
operator in L which induces p. Then K#AK is biselfadjeoint,
and A is #-spectral in L. Thus 3.4.2 and hence 3.4.1 are
verified.

We now show 3.2.5 as the next lemma 3.4.3.

3.4.3. (Lemma). If {Aa} is a bounded net of #-prespectral
operators in L which converges strongly to an operator A

in L, then A 1is #-prespectral.

Proof. For each Aa we take a certain ¥-positive operator

T satisfying JT J = I-T and
o o o
- = - %
TuAa(I Ta) (TaA(I Tu)) .

Then in the Hilbert space L we have 0 < T < I, and
we can take a certain subnet {TB} of {Ta} converging
weakly to a certain operator T 1in Ll' T 1s also ¥-positive
and satisfies JTJ = I-T.
We show that
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TA(I-T) = (TA(I-T))¥.

The identity T AB(I—TB) = (TBAB(I_TB))* is equivalent to

B

—N¥ = -
Tohg-ART, = T (A -A%)T,,

Where {AB} is norm-bounded, and TBAB—AETB converges weakly to
TA-A¥T. Since A6 are #-selfadjoint we have

Af = JAgT = (1-277)Ag(1-237),

and

- A% = - R - -
AB AB 2J AB + ZABJ b ABJ .

J~ is of finite dimensional, and the right hand of the above
identity converges uniformly to A-A¥*.
Remark that

~A% - A%
TB(AB A )TB TB(A A )‘I‘B + TBRBTB,

.where [RBI + 0, Then to see that TB(AB-—AE)TB converges weakly
to T(A-A¥)T, it is sufficient to find that if X 1is an operator
of finite dimensional, TBXTB con#erges weakly to TXT. This
also turns to verify the case that X 1s an operator of one-

dimensional range, say X = ab¥, which is an operator in

L : ab¥* : x > (x|b)a. Notice that

% = %
TBab TB (TBa)(TBb) .

Then TBab*T8 converges weakly to Tab*T. Thus we obtain

the identity
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TA(I-T) = ((TA(I-T))*,
and A 1is #-prespectral. The Lemma is proved.

3.4.4%, (Proof of Theorem 3.3.1)., The discussion of this
section.insures the validity of Theorem 3.3.1, but for completeness
we summalize how our argument goes.to this conclusion.

If L is a Minkowsky space, ﬁhe‘Theorem is valid (3.4.1).
So, even if L 1is a general Pontrjagin space, every #-selfadjoint
operator of finite rank has the canonical representation.

If A 1is any continuous #-selfadjoint operator in L,
we can take a bounded net of #-selfadjoint operators of finite

ranks converging strongly to L. Now operators in this net
rare #-prespectral (by Lemma 3.4.1). Then by Lemma 3.4.3
A is #-prespectral. Then by Lemma 3.4.1 A has the canonical

repregentation.
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