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OPERATORS WHICH HAVE
A CLOSED QUASI-NILPOTENT PART

PIETRO AIENA, MARIA LUISA COLASANTE, AND MANUEL GONZÁLEZ

(Communicated by Joseph A. Ball)

Abstract. We find several conditions for the quasi-nilpotent part of a
bounded operator acting on a Banach space to be closed. Most of these con-
ditions are established for semi-Fredholm operators or, more generally, for
operators which admit a generalized Kato decomposition. For these operators
the property of having a closed quasi-nilpotent part is related to the so-called
single valued extension property.

1. The quasi-nilpotent part of an operator and the SVEP

The single valued extension property was first introduced by Dunford [5], [6] and
has, successively, received a more systematic treatment in Dunford-Schwartz [7]. It
also plays an important role in local spectral theory; see the monograph of Laursen
and Neumann [14]. The following local version of this property has been studied in
recent papers by Aiena and Monsalve [1], [2] and previously by Finch [8].

Definition 1.1. Let X be a complex Banach space and T ∈ L(X). The operator
T is said to have the single valued extension property at λo ∈ C (abbreviated
SVEP at λo), if for every open disc Dλo centered at λo the only analytic function
f : Dλo → X which satisfies the equation (λI − T )f(λ) = 0 for all λ ∈ Dλo is the
function f ≡ 0.

An operator T ∈ L(X) is said to have the SVEP if T has the SVEP at every
point λ ∈ C.

Let us consider the so-called local resolvent set ρT (x) of T at the point x ∈ X ,
defined as the union of all open subsets U of C such that there exists an analytic
function f : U → X which satisfies (λI − T )f(λ) = x for all λ ∈ U . The local
spectrum σT (x) of T at x is the set defined by σT (x) := C \ ρT (x). Obviously,
σT (x) ⊆ σ(T ), where σ(T ) denotes the spectrum of T .

For every subset Ω of C, the analytic spectral subspace of T associated with Ω is
the set

XT (Ω) := {x ∈ X : σT (x) ⊆ Ω}.
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It is easy to see from the definition that XT (Ω) is a T -hyperinvariant linear
subspace of X [14].

The SVEP, as well as the SVEP at a point λo ∈ C, may be characterized in a
very simple way.

Theorem 1.2. Let T ∈ L(X), X a Banach space. Then:
(i) T has the SVEP at λo if and only if ker (λoI − T ) ∩ XT (∅) = {0}; see [1,

Theorem 1.9].
(ii) T has the SVEP if and only if XT (∅) = {0}, and this is the case if and only

if XT (∅) is closed; see [14, Proposition 1.2.16].

Definition 1.3. Let X be a Banach space and T ∈ L(X). The analytical core of T
is the setK(T ) of all x ∈ X such that there exists a sequence (un)n∈N ⊂ X and δ > 0
for which x = uo, Tun+1 = un and ‖un‖ ≤ δn‖x‖, for every n ∈ N = {0, 1, · · · }.

It is easy to check that K(T ) is a linear, generally not closed, subspace of X .
Furthermore, T (K(T )) = K(T ) and if F is a closed subspace of X for which
T (F ) = F , then F ⊆ K(T ); see [19, Proposition 2]. Note that if T is quasi-
nilpotent, then K(T ) = {0}; see [16, Remarque 1.1].

Definition 1.4. Let T ∈ L(X), X a Banach space. The quasi-nilpotent part of T
is the set

Ho(T ) := {x ∈ X : lim
n→∞

‖T nx‖ 1
n = 0}.

Also Ho(T ) is a linear subspace of X , generally not closed. Furthermore,
ker (Tm) ⊆ Ho(T ) for every m ∈ N, and T is quasi-nilpotent if and only if
Ho(T ) = X ; see [20, Theorem 1.5].

The next result may be found in Vrbová [20], or Mbekhta [16]; see also [14,
Propositions 3.3.7 and 3.3.13].

Theorem 1.5. For a bounded operator T ∈ L(X), X a Banach space, we have:
(i) K(λoI − T ) = XT (C \ {λo}).
(ii) Ho(λoI − T ) ⊆ XT ({λo}) and the equality holds whenever T has the SVEP.

In the sequel by M⊥ we shall denote the annihilator of the subset M ⊆ X , and
by ⊥N the pre-annihilator of the subset N ⊆ X?.

Theorem 1.6. For a bounded operator T ∈ L(X), X a Banach space, the following
implications hold:

(i) Ho(λoI − T ) closed ⇒ Ho(λoI − T )∩K(λoI − T ) = {0} ⇒ T has the SVEP
at λo.

(ii) X = H(λoI − T ) +K(λoI − T ) ⇒ T ? has the SVEP at λo.

Proof. Without loss of generality, we may consider λo = 0.
(i) Assume that Ho(T ) is closed. Let T̃ denote the restriction of T to the Ba-

nach space Ho(T ). Clearly, Ho(T ) = Ho(T̃ ), thus T̃ is quasi-nilpotent. Therefore
K(T̃ ) = {0}. It is easy to see that Ho(T ) ∩ K(T ) = K(T̃ ). This shows the first
implication.

The second implication of (i) is an immediate consequence of Theorem 1.5. In-
deed, we have

ker (λoI − T ) ∩XT (∅) ⊆ Ho(λoI − T ) ∩K(λoI − T ),
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so, if the last intersection is {0}, then T has the SVEP at λo, by Theorem 1.2.
(ii) From [15, Proposition 1.8] we know that Ho(T ) ⊆⊥ K(T ?) and therefore

K(T ?) ⊆ Ho(T )⊥. We also have Ho(T ?) ⊆ K(T )⊥. Indeed, let ϕ ∈ Ho(T ?) and
consider an arbitrary element x ∈ K(T ). According to the definition of K(T ),
there is a sequence (un)n∈N ⊂ X , and a δ > 0, such that uo = x, Tun+1 = un and
‖un‖ ≤ δn‖x‖ for every n ∈ N. Clearly, T nun = x for every n ∈ N. Consequently,

|ϕ(x)| = |ϕ(T nun)| = |(T ?nϕ)(un)| ≤ ‖un‖‖T ?nϕ‖ ≤ δn‖T ?nϕ‖,

and hence |ϕ(x)| 1n ≤ δ‖T ?nϕ‖ 1
n for every n ∈ N. The last term converges to 0 as

n→∞, since ϕ ∈ Ho(T ?), and from this it follows that ϕ(x) = 0, i.e. ϕ ∈ K(T )⊥.
Finally, if X = Ho(T ) + K(T ), then {0} = Ho(T )⊥ ∩K(T )⊥ ⊇ Ho(T ?) ∩K(T ?).
Thus, by part (i), T ? has the SVEP at 0.

The two implications of part (i) of Theorem 1.6 were observed in [16, Proposition
1.10]. Later we shall prove that in the case of semi-Fredholm operators, or more
generally in the case that λoI − T admits a generalized Kato decomposition, the
implications of Theorem 1.6 are actually equivalences.

Theorem 1.6 suggests in a very natural way the following definition:

Definition 1.7. A bounded operator T ∈ L(X), X a Banach space, is said to have
property (Q) if Ho(λI − T ) is closed for every λ ∈ C.

Recall that a bounded operator T ∈ L(X), X a Banach space, is said to have
Dunford’s property (C), shortly property (C), if the analytic subspace XT (Ω) is
closed for every closed subset Ω ⊆ C. From part (ii) of Theorem 1.2 it follows that
if T ∈ L(X) has property (C), then T has the SVEP.

An obvious consequence of part (ii) of Theorem 1.5 is that if T has property
(C), then Ho(λI − T ) = XT ({λ}) is closed for every λ ∈ C, so that the following
implications hold:

T has property (C)⇒ T has property (Q)⇒ T has the SVEP.(1)

Note that neither of the implications in (1) may be reversed in general. A first
counterexample, which shows that the first implication is not reversed in general,
may be found among the convolution operators of group algebras.

Recall that a Banach algebra A is said to be semi-simple if the radical rad
A = {0} [3]; A is said to be semi-prime if there is no non-zero two-sided ideal J
for which J2 = {0}. Note that A is semi-prime if and only if, for every x ∈ A,
the identity xAx = {0} implies that x = 0, and that a commutative algebra is
semi-prime if and only if it contains no non-zero nilpotent elements. Clearly, any
semi-simple Banach algebra is semi-prime. A map T : A→ A, A a Banach algebra,
is said to be a multiplier if (Tx)y = x(Ty) holds for all x, y ∈ A. Note that if T is a
multiplier of a semi-prime commutative Banach algebra A, then (Tx)y = x(Ty) =
T (xy) for every x, y ∈ A; see the proof of [11, Theorem 1.1.1]. A very important
example of a multiplier is given in the case that A is the semi-simple Banach algebra
L1(G), the group algebra of a locally compact abelian group G with convolution
as multiplication. Indeed, in this case to any complex Borel measure µ on G there
corresponds a multiplier Tµ defined by

Tµ(f) := µ ? f for all f ∈ L1(G),
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where

(µ ? f)(t) :=
∫
G

f(t− s)dµ(s).

The classical Helson-Wendel Theorem shows that each multiplier is a convolution
operator and the multiplier algebra of A := L1(G) may be identified with the
measure algebra M(G); see [11, Chapter 0].

Theorem 1.8. Let T be a multiplier of a semi-simple Banach algebra A. Then

Ho(T ) = ker T.

In particular, T has property (Q).

Proof. We know that ker T ⊆ Ho(T ), so it remains to prove the inverse inclusion.
Suppose that x ∈ Ho(T ). By an easy inductive argument we have

(Ty)n = (T ny)yn−1 for every y ∈ A and n ∈ N.
From this it follows that

‖(aTx)n‖ = ‖(Tax)n‖ = ‖T n(ax)(ax)n−1‖
≤ ‖a‖‖T nx‖‖(ax)n−1‖

for every a ∈ A, so the spectral radius of the element aTx satisfies

r(aTx) = lim
n→∞

‖(aTx)n‖ 1
n = 0

for every a ∈ A. This implies that Tx ∈ rad A; see [3, §25, Proposition 1]. Since A
is semi-simple then Tx = 0 and therefore Ho(T ) ⊆ ker T .

The last assertion is clear, because λI−T is a multiplier of A for every λ ∈ C.

Clearly, if T is a quasi-nilpotent multiplier, then ker T = Ho(T ) = A, so T = 0
([13]).

The following example shows that the assumption that A is semi-simple in The-
orem 1.8 cannot replaced by the weaker assumption that A is semi-prime.

Example 1.9. Let ω := (ωn)n∈N be a sequence with the property that 0 < ωm+n ≤
ωmωn for all m,n ∈ N. Let `1(ω) denote the space of all complex sequences x :=
(xn)n∈N for which ‖x‖ω :=

∑∞
n=0 ωn|xn| < ∞. The space `1(ω) equipped with

convolution

(x ? y)n :=
n∑
j=0

xn−jyj for all n ∈ N

is a commutative unital Banach algebra. Let Aω denote the maximal ideal of `1(ω)
given by

Aω := {(xn)n∈N ∈ `1(ω) : x0 = 0}.
The Banach algebra Aω is an integral domain and hence semi-prime. Moreover,
if the weight sequence ω satisfies the condition ρω := limn→∞ ω

1
n
n = 0, then Aω

is a radical algebra ([14, Example 4.1.9]), i.e. coincides with its radical. Now, fix
0 6= a ∈ Aω and let Ta(x) := a ? x, x ∈ Aω, denote the multiplication operator by
the element a. From the estimate

‖T nx‖ 1
n = ‖an ? x‖ 1

n ≤ ‖an‖ 1
n ‖x‖ 1

n
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we see that Ta is quasi-nilpotent, thus Ho(Ta) = Aω. On the other hand, Aω is an
integral domain so that ker Ta = {0}.

Theorem 1.8 suggests the way of obtaining examples of operators which have
property (Q) but not property (C). Indeed, there are convolution operators Tµ,
µ ∈ M(G), on the group algebra L1(G) which do not enjoy property (C); see [14,
Chapter 4].

The next example, which is obtained by a slight modification of Example 3.9 of
[4], shows that also the second implication of (1) may be not reversed in general.

Example 1.10. Let X := `2 ⊕ `2 · · · and define

Tnei :=
{
ei+1 if i = 1, · · · , n,
ei+1
i−n if i > n.

Clearly,

‖T n+k
n ‖ =

1
k!

and (
1
k!

)
1

n+k → 0 as k →∞.

From this it follows that σ(Tn) = {0}. Moreover, Tn is injective and the point
spectrum σp(Tn) is empty. Now, let T := T1 ⊕ · · · ⊕ Tn ⊕ · · · . From ‖Tn‖ = 1, for
every n ∈ N, we obtain ‖T ‖ = 1. From σp(Tn) = ∅ it also follows that σp(T ) = ∅.
Take x = (xn) ∈ X with xn := e1

n . We have

‖x‖ = (
∞∑
n=1

1
n2

)
1
2 <∞,

thus x ∈ X . Moreover,

‖T nx‖ 1
n ≥ ‖T nn

e1

n
‖ 1
n = (

1
n

)
1
n

and the last term does not converge to 0. Clearly, x /∈ Ho(T ). Finally, `2⊕ `2 · · · ⊕
`2 ⊕ {0} · · · ⊂ Ho(T ), where the non-zero terms are n. Since Ho(T ) contains all
sequences with only finitely many non-zero terms, it follows that Ho(T ) is dense in
X . Since Ho(T ) 6= X then Ho(T ) is not closed, thus T has not property (Q). Note
that the operator T has the SVEP, since σp(T ) is empty.

2. The case of semi-Fredholm operators

For every linear operator T on a vector space X , let us consider the increasing
sequence of kernels ker T n and the decreasing sequence of ranges T n(X).

Definition 2.1. Let T be a linear operator on a vector space X . The generalized
kernel of T is defined by

N (T ) :=
⋃
n∈N

ker T n.

The hyperrange of T is defined by

T∞(X) :=
⋂
n∈N

T n(X).

Clearly, T∞(X) is a T -invariant subspace and it is easily seen that, if X is a
Banach space, K(T ) ⊆ T∞(X). Moreover, for every n ∈ N we have

ker (λoI − T )n ⊆ N (λoI − T ) ⊆ Ho(λoI − T ).
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Recall that T is said to have finite ascent if N (T ) = ker T k for some positive integer
k. Clearly, in such a case there is a smallest positive integer p = p(T ) such that
ker T p = ker T p+1. The positive integer p is called the ascent of T . Analogously, T
is said to have finite descent if T∞(X) = T k(X) for some k. The smallest integer
q = q(T ) such that T q+1(X) = T q(X) is called the descent of T . It is possible to
prove that if p(T ) and q(T ) are both finite, then p(T ) = q(T ); see [9, Proposition
38.3].

Theorem 2.2 ([1]). For a bounded operator T on a Banach space X the following
implications hold:

i) p(λoI − T ) <∞⇒ T has SVEP at λo.
ii) q(λoI − T ) <∞⇒ T ? has SVEP at λo.

Hence each one of the two conditions p(λoI − T ) < ∞ or Ho(λoI − T ) closed
implies the SVEP at λo. In general these two conditions are not related. The
operator T of Example 1.10 has ascent p(T ) = 0 and quasi-nilpotent part Ho(T )
not closed. In the following example we find an operator T which has a closed
quasi-nilpotent part but ascent p(T ) =∞.

Example 2.3. Let T : `2 → `2 be defined by

Tx := (
x2

2
, · · · , xn

n
, · · · ), where x = (x1, · · · , xn, · · · ).

It is easily seen that ‖T k‖ = 1
(k+1)! and from this it follows that T is quasi-nilpotent

and therefore Ho(T ) = `2. Obviouly, p(T ) =∞.

Definition 2.4. An operator T ∈ L(X), X a Banach space, is said to be semi-
regular if T (X) is closed and ker T ⊆ T∞(X).

An operator T ∈ L(X) is said to admit a generalized Kato decomposition, ab-
breviated GKD, if there exists a pair of T -invariant closed subspaces (M,N) such
that X = M ⊕N , the restriction T |M is semi-regular and T |N is quasi-nilpotent.

Remark 2.5. In the sequel we list some examples of operators which admit a GKD.
(i) Every semi-regular operator has the GKD M = X and N = {0}. Note that

if T is semi-regular, then Ho(T ) = N (T ); see [15, Proposition 2.10].
(ii) Every quasi-nilpotent operator has the GKD M = {0} and N = X .
(iii) An important case is obtained if we assume in the definition above that

T |N is nilpotent. In this case T is said to be of Kato type; see [15]. Obviously,
any semi-regular operator is of Kato type. Note that if T is of Kato type, then
T∞(X) = K(T ) and K(T ) is closed; see [1, Lemma 2.4] or [2, Theorem 2.3 and
Theorem 2.4].

(iv) Let

Φ+(X) := {T ∈ L(X) : dim ker T <∞, T (X) closed}
denote the class of all upper semi-Fredholm operators, and let

Φ−(X) := {T ∈ L(X) : codim T (X) <∞}
denote the class of all lower semi-Fredholm operators. The class of all semi-Fredholm
operators is defined as Φ±(X) := Φ+(X) ∪ Φ−(X) and the class of all Fredholm
operators is defined as Φ(X) := Φ+(X)∩Φ−(X). A well-known result of Kato [10,
Theorem 4] establishes that every T ∈ Φ±(X) is of Kato type. More precisely, T
admits a GKD (M,N) with T |N nilpotent and dim N <∞.
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Recall that for T ∈ Φ±(X) the index of T is defined by ind T := dim ker T −
codim T (X). The index is an integer or ±∞.

Theorem 2.6. Let T ∈ L(X), X a Banach space, and assume that λoI − T has a
GKD (M,N). Then the following properties are equivalent:

(i) T has the SVEP at λo.
(ii) Ho(λoI − T ) ∩K(λoI − T ) = {0}.
(iii) Ho(λoI − T ) is closed.
(iv) Ho(λoI − T ) = N .

In particular, if λoI − T is semi-regular the conditions (i)-(iv) are equivalent to
the following one.

(v) Ho(λoI − T ) = {0}.
Proof. Also here we only consider the case λo = 0. Clearly, (iv) ⇒ (iii) and from
Theorem 1.6 we know that (iii) ⇒ (ii) ⇒ (i).

(i)⇒ (iv). First note that if T admits a GKD (M,N), then Ho(T ) = Ho(T |M)+
Ho(T |N). The inclusion Ho(T ) ⊇ Ho(T |M) + Ho(T |N) is obvious. In order to
show the opposite inclusion, consider an arbitrary element x ∈ Ho(T ) and let
x = u + v, with u ∈ M and v ∈ N . Since T |N is quasi-nilpotent then N =
Ho(T |N) ⊆ Ho(T ). Consequently, u = x − v ∈ Ho(T ) ∩ M = Ho(T |M) and
therefore Ho(T ) ⊆ Ho(T |M)+Ho(T |N). Hence Ho(T ) = Ho(T |M)+Ho(T |N) =
Ho(T |M) + N . Now, suppose that T has the SVEP 0. Clearly, the SVEP at a
point is inherited by the restrictions to closed invariant subspaces, so T |M has the
SVEP at 0 and from the semi-regularity of T |M it follows that T |M is injective;
see [1, Theorem 2.14]. From this we obtain

Ho(T |M) =
∞⋃
n=1

ker (T |M)n = {0}

and therefore Ho(T ) = N .
The final assertion is clear.

Corollary 2.7. Let T ∈ L(X), X a Banach space, and assume that λoI − T is
of Kato type. Then the conditions (i)-(iv) of Theorem 2.6 are equivalent to the
following one:

(v′) p(λoI − T ) <∞.
In this case, if p := p(λoI − T ), then

Ho(λoI − T ) = N (λoI − T ) = ker (λoI − T )p.

Proof. Assume λo = 0. We know that the inclusions Ho(T ) ⊇ N (T ) ⊇ ker T n

hold for every T ∈ L(X) and for every n ∈ N. Let (M,N) be a GKD for T
such that (T |N)k = 0 for some k ∈ N. Then Ho(T ) = N ⊆ ker T k and hence
Ho(T ) = N (T ) = ker T k. From this it follows that p := p(T ) ≤ k and therefore
ker T k = ker T p.

The next result shows that, under the assumption that λoI−T is semi-Fredholm,
another equivalent condition can be added to those given in Corollary 2.7.

Theorem 2.8. Suppose that λoI − T ∈ L(X) is a semi-Fredholm operator. Then
the following statements are equivalent:

(i) Ho(λoI − T ) is closed.
(ii) Ho(λoI − T ) is finite dimensional.
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Proof. We have only to prove the implication (i) ⇒ (ii). This immediately follows
from the mentioned Kato decomposition of a semi-Fredholm operator: if (M,N)
is a GKD for λoI − T such that λoI − T |N is nilpotent and dim N < ∞, then
Ho(λoI − T ) = N , by Theorem 2.6.

The preceding result was obtained in [12, Theorem 2] under the assumption that
λoI − T is a Fredholm operator.

Theorem 2.9. Suppose that λoI − T ∈ L(X) is of Kato type. Then the following
statements are equivalent:

(i) T ? has the SVEP at λo.
(ii) q := q(λoI − T ) <∞.
(iii) X = Ho(λoI − T ) +K(λoI − T ).

Moreover, if any of the equivalent conditions (i)-(iii) holds, then

(λoI − T )∞(X) = K(λoI − T ) = (λoI − T )q(X).

Proof. Assume that λo = 0. The equivalence (i) ⇔ (ii) has been proved in [2,
Theorem 2.6]. The implication (iii) ⇒ (i) has been proved in Theorem 1.6.

(ii) ⇒ (iii). Assume that q := q(T ) <∞. Since T is of Kato type then K(T ) =
T∞(X) = T q(X). Moreover, X = ker T q + T n(X) for every n ∈ N (see [9,
Proposition 38.2]), and therefore X = Ho(T ) + T∞(X).

Theorem 2.10. Suppose that λoI −T ∈ L(X) is a semi-Fredholm operator. Then
the following statements are equivalent:

(i) T ? has the SVEP at λo.
(ii) K(λoI − T ) is finite codimensional.

Proof. Also here we assume that λo = 0.
(i) ⇒ (ii). From Fredholm theory we know that T ? is also a semi-Fredholm

operator and ind T ? = − ind T . Now, if T ? has the SVEP at 0, then ind T ? ≤ 0
(see [1, Corollary 2.7]) and therefore ind T ≥ 0. From this it follows that T
is a lower semi-Fredholm and consequently also T q is lower semi-Fredholm., i.e.
T q(X) = T∞(X) = K(T ) is finite codimensional.

(ii) ⇒ (i). Since K(T ) = T∞(X), condition (ii) means that T∞(X) is of finite
codimension. But from this it is immediate that q(T ) < ∞, so that T ? has the
SVEP at 0, by Theorem 2.9.

It should be noted that if T is semi-Fredholm, then T∞(X) coincides with the so-
called algebraic core of T , i.e. the greatest subspace M of X for which T (M) = M ;
see for instance [1, Theorem 2.3].

Corollary 2.11. Assume that λoI−T ∈ L(X) is a semi-Fredholm operator. Then
the following statements are equivalent:

(i) T and T ? have the SVEP at λo.
(ii) X = Ho(λoI − T )⊕K(λoI − T ).
(iii) Ho(λoI − T ) is closed and K(λoI − T ) is finite-codimensional.
(iv) λo is a pole of (λI − T )−1, or equivalently p(λoI − T ) = q(λoI − T ) <∞.
(v) The spectrum does not cluster at λo.

In particular, if any of the equivalent conditions (i)-(v) holds and p := p(λoI−T ) =
q(λoI − T ), then

Ho(λoI − T ) = N (λoI − T ) = ker(λoI − T )p
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and

K(λoI − T ) = (λoI − T )∞(X) = (λoI − T )p(X).

Proof. The equivalences of (i), (ii), (iii), and (iv) are obtained by combining all
the results established in this section. The implication (iv) ⇒ (v) is obvious. The
implication (v) ⇒ (i) is an immediate consequence of the fact that both T and T ?

have the SVEP at every point of the resolvent, as well as at every isolated point of
the spectrum.

Note that rather similar results to those of Corollary 2.11 have been established
by Mbekhta [15, Théorème 1.6] and Schmoeger [19], in the case that λo is an isolated
point of the spectrum.

Remark 2.12. Recall that for every T ∈ L(X) the semi-Fredholm region is defined
to be

Σ(T ) := {λ ∈ C : λI − T is semi-Fredholm}.
It is well-known that Σ(T ) is an open set and hence it may be decomposed in
connected disjoint open nonempty components. Suppose that T has SVEP at some
λo ∈ Ω, Ω a component of Σ(T ). Then, by Theorem 2.6 and Corollary 2.7

{0} = Ho(λoI − T ) ∩K(λoI − T ) = N (λoI − T ) ∩ (λoI − T )∞(X)

= N (λoI − T ) ∩ (λoI − T )∞(X) ,

and from the constancy of the map λ ∈ Ω→ N (λI − T ) ∩ (λI − T )∞(X) (see [18,
Theorem 4.2]) we conclude that N (λI − T )∩ (λI − T )∞(X) = {0} for every point
λ ∈ Ω. From [2, Theorem 1.10] it follows that T has the SVEP at every point
λ ∈ Ω. Moreover, the set

Γ := {λ ∈ Ω : jump (λI − T ) 6= 0}
is countable ([18]) and is equal to the set of all λ ∈ Ω such that λI − T is not
semi-regular; see [21, Proposition 2.2]. From Theorem 2.6 then Ho(λI − T ) = {0}
for every λ ∈ Ω \ Γ, while the remaining points λ ∈ Γ are eigenvalues with ascent
p := p(λI − T ) < ∞, Ho(λI − T ) = ker (λI − T )p and 0 < dim Ho(λI − T ) <∞,
by Corollary 2.7 and Theorem 2.8. In particular this situation occurs for every
component of the semi-Fredholm region of an operator which has the SVEP.
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