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ABSTRACT. We find several conditions for the quasi-nilpotent part of a
bounded operator acting on a Banach space to be closed. Most of these con-
ditions are established for semi-Fredholm operators or, more generally, for
operators which admit a generalized Kato decomposition. For these operators
the property of having a closed quasi-nilpotent part is related to the so-called
single valued extension property.

1. THE QUASI-NILPOTENT PART OF AN OPERATOR AND THE SVEP

The single valued extension property was first introduced by Dunford [5], [6] and
has, successively, received a more systematic treatment in Dunford-Schwartz [7]. It
also plays an important role in local spectral theory; see the monograph of Laursen
and Neumann [14]. The following local version of this property has been studied in
recent papers by Aiena and Monsalve [1], [2] and previously by Finch [8].

Definition 1.1. Let X be a complex Banach space and T € L(X). The operator
T is said to have the single valued extension property at A\, € C (abbreviated
SVEP at \,), if for every open disc Dy, centered at A\, the only analytic function
f : Dy, — X which satisfies the equation (Al —T)f(A) =0 for all A € D, is the
function f = 0.

An operator T' € L(X) is said to have the SVEP if T' has the SVEP at every
point A € C.

Let us consider the so-called local resolvent set pr(x) of T at the point x € X,
defined as the union of all open subsets U of C such that there exists an analytic
function f : U — X which satisfies (Al — T)f(A) = « for all A € Y. The local
spectrum or(x) of T at x is the set defined by or(z) := C\ pr(x). Obviously,
or(xz) C o(T), where o(T) denotes the spectrum of T'.

For every subset 2 of C, the analytic spectral subspace of T associated with 2 is
the set

Xr(Q):={zre X :opr(x) CQ}.

Received by the editors December 8, 2000 and, in revised form, April 20, 2001.

2000 Mathematics Subject Classification. Primary 47A10, 47A11; Secondary 47A53, 47A55.

Key words and phrases. Quasi-nilpotent part, single valued extension property, operators with
a generalized Kato decomposition.

The research of the first two authors was supported by the International Cooperation Project
between the University of Palermo (Italy) and Conicit-Venezuela.

The research of the third author was supported by DGICYT, Spain.

(©2002 American Mathematical Society
2701

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2702 P. AIENA, M. L. COLASANTE, AND M. GONZALEZ

It is easy to see from the definition that X7 () is a T-hyperinvariant linear
subspace of X [I4].

The SVEP, as well as the SVEP at a point A, € C, may be characterized in a
very simple way.

Theorem 1.2. Let T € L(X), X a Banach space. Then:
(i) T has the SVEP at A, if and only if ker (A1 —T) N X7(0) = {0}; see [1I
Theorem 1.9].
(ii) T has the SVEP if and only if X7(0) = {0}, and this is the case if and only
if Xr(0) is closed; see [14] Proposition 1.2.16].

Definition 1.3. Let X be a Banach space and T € L(X). The analytical core of T
is the set K(T') of all z € X such that there exists a sequence (u,)neny C X and § > 0
for which x = ue, TUp+1 = uy, and |Ju,|| < 0™||z||, for every n € N={0,1,---}.

It is easy to check that K(7T) is a linear, generally not closed, subspace of X.
Furthermore, T(K(T)) = K(T) and if F is a closed subspace of X for which
T(F) = F, then F C K(T); see [19, Proposition 2]. Note that if T is quasi-
nilpotent, then K (T') = {0}; see [16, Remarque 1.1].

Definition 1.4. Let T € L(X), X a Banach space. The quasi-nilpotent part of T
is the set

H,(T):={z € X : lim |T"z|~ =0}.
n—oo

Also H,(T) is a linear subspace of X, generally not closed. Furthermore,
ker (T™) C H,(T) for every m € N, and T is quasi-nilpotent if and only if
H,(T) = X; see 20, Theorem 1.5].

The next result may be found in Vrbova [20], or Mbekhta [I6]; see also [14]
Propositions 3.3.7 and 3.3.13].

Theorem 1.5. For a bounded operator T € L(X), X a Banach space, we have:
(i) KAl =T) = X7(C\{Ao}).
(ii) Ho(AoI —=T) C Xr({N\o}) and the equality holds whenever T has the SVEP.

In the sequel by M~ we shall denote the annihilator of the subset M C X, and
by +N the pre-annihilator of the subset N C X*.

Theorem 1.6. For a bounded operator T € L(X), X a Banach space, the following
implications hold:
(1) Ho(AoI —T) closed = Hy(MoI —T)NK (Aol —T) ={0} = T has the SVEP
at Ao.
(i) X =HM\oI =T)+ K(AoI —T) = T* has the SVEP at X,.

Proof. Without loss of generality, we may consider A, = 0.

(i) Assume that H,(T) is closed. Let T denote the restriction of T to the Ba-
nach space H,(T'). Clearly, H,(T) = HO(T), thus 7' is quasi-nilpotent. Therefore
K(T) = {0}. It is easy to see that H,(T) N K(T) = K(T). This shows the first
implication.

The second implication of (i) is an immediate consequence of Theorem [[H. In-
deed, we have

ker (Aol —T) N X7 (0) € Hy(AoI —T) N K (AT —T),
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so, if the last intersection is {0}, then T" has the SVEP at \,, by Theorem

(ii) From [I5, Proposition 1.8] we know that H,(T) Ct K(T*) and therefore
K(T*) C H,(T)*. We also have H,(T*) C K(T)*. Indeed, let ¢ € H,(T*) and
consider an arbitrary element x € K(T'). According to the definition of K(T),
there is a sequence (up)nen C X, and a § > 0, such that u, = ©, Tup+1 = u, and
[lun|| < 6™||z|| for every n € N. Clearly, T™u,, = x for every n € N. Consequently,

lp(@)] = lp(T"un)| = [(T™" @) (un)| < unl[[[ Tl < 6" [T,

and hence |p(z)|% < 6||T*"¢||* for every n € N. The last term converges to 0 as
n — oo, since ¢ € H,(T*), and from this it follows that ¢(z) = 0, i.e. ¢ € K(T)*.
Finally, if X = H,(T) + K(T), then {0} = H,(T)* N K(T)* 2 H,(T*) N K(T*).
Thus, by part (i), 7" has the SVEP at 0. O

The two implications of part (i) of Theorem [[L6] were observed in [16, Proposition
1.10]. Later we shall prove that in the case of semi-Fredholm operators, or more
generally in the case that A,/ — T admits a generalized Kato decomposition, the
implications of Theorem are actually equivalences.

Theorem suggests in a very natural way the following definition:

Definition 1.7. A bounded operator T' € L(X), X a Banach space, is said to have
property (Q) if H,(AM — T) is closed for every A € C.

Recall that a bounded operator T' € L(X), X a Banach space, is said to have
Dunford’s property (C), shortly property (C), if the analytic subspace Xr(Q) is
closed for every closed subset 2 C C. From part (ii) of Theorem [2it follows that
it T'e L(X) has property (C), then T has the SVEP.

An obvious consequence of part (ii) of Theorem is that if T has property
(C), then Hy(AI —T) = X ({\}) is closed for every A € C, so that the following
implications hold:

(1) T has property (C') = T has property (Q) = T has the SVEP.

Note that neither of the implications in (1) may be reversed in general. A first
counterexample, which shows that the first implication is not reversed in general,
may be found among the convolution operators of group algebras.

Recall that a Banach algebra A is said to be semi-simple if the radical rad
A = {0} [B]; A is said to be semi-prime if there is no non-zero two-sided ideal J
for which J2 = {0}. Note that A is semi-prime if and only if, for every z € A,
the identity xAz = {0} implies that « = 0, and that a commutative algebra is
semi-prime if and only if it contains no non-zero nilpotent elements. Clearly, any
semi-simple Banach algebra is semi-prime. A map T': A — A, A a Banach algebra,
is said to be a multiplier if (Tx)y = x(Ty) holds for all z,y € A. Note that if T is a
multiplier of a semi-prime commutative Banach algebra A, then (Tx)y = z(Ty) =
T(zy) for every z,y € A; see the proof of [T1, Theorem 1.1.1]. A very important
example of a multiplier is given in the case that A is the semi-simple Banach algebra
L1(G), the group algebra of a locally compact abelian group G with convolution
as multiplication. Indeed, in this case to any complex Borel measure p on G there
corresponds a multiplier 7}, defined by

T.(f) :==puxf forall fe Li(G),
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where
W*fXﬂ:{Lf@—sMMQ-

The classical Helson-Wendel Theorem shows that each multiplier is a convolution
operator and the multiplier algebra of A := L;(G) may be identified with the
measure algebra M (G); see [11] Chapter 0].

Theorem 1.8. Let T be a multiplier of a semi-simple Banach algebra A. Then
H,(T)=ker T.
In particular, T has property (Q).

Proof. We know that ker T' C H,(T'), so it remains to prove the inverse inclusion.
Suppose that « € H,(T). By an easy inductive argument we have

(Ty)" = (T"y)y" " for every y € A and n € N.
From this it follows that
[(aTz)"||

[(Taz)"|| = ||T" (az)(az)"~" |
lalllT"| [ (az)" ]
for every a € A, so the spectral radius of the element aTx satisfies

r(aTz) = lim |(aTz)"|* =0
n—oo

IN

for every a € A. This implies that Tz € rad A; see [3, §25, Proposition 1]. Since A
is semi-simple then Ta = 0 and therefore H,(T) C ker T.
The last assertion is clear, because AI —T is a multiplier of A for every A € C. O

Clearly, if T' is a quasi-nilpotent multiplier, then ker T'= H,(T) = A,s0 T =0
([13]).

The following example shows that the assumption that A is semi-simple in The-
orem [[.§ cannot replaced by the weaker assumption that A is semi-prime.

Example 1.9. Let w := (wy )nen be a sequence with the property that 0 < wy,4rn <
Wmwy, for all m,n € N. Let £} (w) denote the space of all complex sequences x :=
(2n)nen for which [|z||, = Y07 jwn|zn| < oo. The space ¢*(w) equipped with
convolution

n
(x*y)y = an,jyj for alln € N
=0

is a commutative unital Banach algebra. Let A, denote the maximal ideal of £*(w)
given by

Ay = {(zn)nen € 11 (w) : zg = 0}.

The Banach algebra A, is an integral domain and hence semi-prime. Moreover,
1

if the weight sequence w satisfies the condition p,, := lim,_ wy = 0, then A,
is a radical algebra ([14] Example 4.1.9]), i.e. coincides with its radical. Now, fix
0#ac€ A, and let Ty(z) := axz, x € A,, denote the multiplication operator by
the element a. From the estimate

(|77

" < flam| e

n

no=[la" x
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we see that T, is quasi-nilpotent, thus H,(T,) = A,. On the other hand, A, is an
integral domain so that ker T, = {0}.

Theorem suggests the way of obtaining examples of operators which have
property (@) but not property (C). Indeed, there are convolution operators T},
w € M(G), on the group algebra L;(G) which do not enjoy property (C); see [14]
Chapter 4].

The next example, which is obtained by a slight modification of Example 3.9 of
[4], shows that also the second implication of () may be not reversed in general.

Example 1.10. Let X := /s & {5 --- and define

Te"—{eiJrl ifi:1,~',n,
nti -— Cit1 Cra
— ifi>n.

Clearly,
T = L and ()7 — 0 as k — 0o
o T g Jl '

From this it follows that o(7T,,) = {0}. Moreover, T), is injective and the point
spectrum o, (7T),) is empty. Now, let T:=T1 & --- T, & ---. From ||T,| = 1, for
every n € N, we obtain ||T|| = 1. From 0,(73,) = 0 it also follows that o,(T) = 0.
Take x = (2,,) € X with x,, := ¢&. We have

o0

1.1
ol = (3" =) <o,
n=1
thus x € X. Moreover,
1 €1, 1 1.1
Tl % > 1T L% = (=)=
1Tl = |77 % = (5)

and the last term does not converge to 0. Clearly, x ¢ H,(T'). Finally, lo ® ly- - @
ly & {0}--- C Hy(T), where the non-zero terms are n. Since H,(T') contains all
sequences with only finitely many non-zero terms, it follows that H,(T) is dense in
X. Since H,(T) # X then H,(T) is not closed, thus T has not property (Q). Note
that the operator T has the SVEP, since o,(T) is empty.

2. THE CASE OF SEMI-FREDHOLM OPERATORS

For every linear operator T on a vector space X, let us consider the increasing
sequence of kernels ker 7" and the decreasing sequence of ranges 7" (X).

Definition 2.1. Let T be a linear operator on a vector space X. The generalized
kernel of T is defined by

N(T) = U ker T".
neN
The hyperrange of T is defined by
To(X) = () T"(X).
neN

Clearly, T°°(X) is a T-invariant subspace and it is easily seen that, if X is a
Banach space, K(T') C T°°(X). Moreover, for every n € N we have

ker (Al —T)* C N(A\I —T) C Ho(AI —T).
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Recall that T is said to have finite ascent if N'(T') = ker T* for some positive integer
k. Clearly, in such a case there is a smallest positive integer p = p(7T') such that
ker TP = ker TP*!. The positive integer p is called the ascent of T. Analogously, T'
is said to have finite descent if T*(X) = T*(X) for some k. The smallest integer
q = q(T) such that T9"1(X) = T9(X) is called the descent of T. Tt is possible to
prove that if p(T') and ¢(7T") are both finite, then p(T") = ¢(T'); see [0l Proposition
38.3].

Theorem 2.2 ([1]). For a bounded operator T' on a Banach space X the following
implications hold:

i) p(AeI —T) <00 =T has SVEP at X,.
i) ¢g(Aol —T) < 0o = T* has SVEP at X,.

Hence each one of the two conditions p(A,I —T') < 00 or Hy(AI — T) closed
implies the SVEP at A,. In general these two conditions are not related. The
operator T' of Example has ascent p(T") = 0 and quasi-nilpotent part H,(T)
not closed. In the following example we find an operator 7" which has a closed
quasi-nilpotent part but ascent p(T) = oco.

Example 2.3. Let T : {5 — {5 be defined by

X9 Tn
Tx :: —7.-- ,_,-.- 5 Wherex: x 7.-- 7x ,-.- .
(5 ) (21 )
It is easily seen that ||T%| = ﬁ and from this it follows that T is quasi-nilpotent

and therefore H,(T) = ¢5. Obviouly, p(T) = oco.

Definition 2.4. An operator T' € L(X), X a Banach space, is said to be semi-
regular if T(X) is closed and ker T' C T*°(X).

An operator T € L(X) is said to admit a generalized Kato decomposition, ab-
breviated GKD, if there exists a pair of T-invariant closed subspaces (M, N) such
that X = M @ N, the restriction T |M is semi-regular and 7' | N is quasi-nilpotent.

Remark 2.5. In the sequel we list some examples of operators which admit a GKD.

(i) Every semi-regular operator has the GKD M = X and N = {0}. Note that
if T is semi-regular, then H,(T") = N (T'); see [I5, Proposition 2.10].

(ii) Every quasi-nilpotent operator has the GKD M = {0} and N = X.

(ili) An important case is obtained if we assume in the definition above that
T |N is nilpotent. In this case T is said to be of Kato type; see [15]. Obviously,
any semi-regular operator is of Kato type. Note that if T is of Kato type, then
T*(X) = K(T) and K(T) is closed; see [1l, Lemma 2.4] or [2| Theorem 2.3 and
Theorem 2.4].

(iv) Let

O (X)={TeL(X): dimker T < oo, T(X) closed}
denote the class of all upper semi-Fredholm operators, and let
O_(X):={T € L(X): codim T(X) < oo}

denote the class of all lower semi-Fredholm operators. The class of all semi-Fredholm
operators is defined as ®4(X) := &, (X) U ®_(X) and the class of all Fredholm
operators is defined as ®(X) := @4 (X)NP®_(X). A well-known result of Kato [0}
Theorem 4] establishes that every T' € &4 (X) is of Kato type. More precisely, T
admits a GKD (M, N) with T |N nilpotent and dim N < oo.
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Recall that for T' € &4 (X) the index of T is defined by ind T := dim ker T —
codim T(X). The index is an integer or oo.

Theorem 2.6. Let T € L(X), X a Banach space, and assume that \,I —T has a
GKD (M, N). Then the following properties are equivalent:

(i) T has the SVEP at Ao.
(il) Hy(AoI —T)NK(A\I —T)={0}.
(iil) Ho(Aol —T) is closed.
(iv) Ho(AoI —T) = N.
In particular, if \oI — T is semi-regular the conditions (i)-(iv) are equivalent to

the following one.
(v) Ho(AI —T) ={0}.

Proof. Also here we only consider the case A, = 0. Clearly, (iv) = (iii) and from
Theorem [L.6 we know that (iii) = (i) = (i).

(i) = (iv). First note that if T admits a GKD (M, N), then H,(T) = Ho(T | M)+
H,(T |N). The inclusion H,(T) 2 H,(T |M) + H,(T |N) is obvious. In order to
show the opposite inclusion, consider an arbitrary element z € H,(T) and let
x =u+wv, withw € M and v € N. Since T |N is quasi-nilpotent then N =
H,(T |N) C H,(T). Consequently, u = z —v € Ho(T)NM = H,(T |M) and
therefore Hy(T) C Ho(T |M)+H,(T |N). Hence H,(T) = Ho(T | M)+ H,(T |N) =
H,(T |[M)+ N. Now, suppose that T has the SVEP 0. Clearly, the SVEP at a
point is inherited by the restrictions to closed invariant subspaces, so T' |M has the
SVEP at 0 and from the semi-regularity of T' |M it follows that T' |M is injective;
see [1, Theorem 2.14]. From this we obtain

e
Ho(T |M) = | ] ker (T [M)™ = {0}
n=1
and therefore H,(T) = N.
The final assertion is clear. O

Corollary 2.7. Let T € L(X), X a Banach space, and assume that \,I — T is
of Kato type. Then the conditions (i)-(iv) of Theorem are equivalent to the
following one:

(V') pAoI = T) < o0
In this case, if p = p(AoI —T), then

Ho(AI —T) = N(XoI — T) = ker (AoI — T)P.

Proof. Assume )\, = 0. We know that the inclusions H,(T) 2 N(T) 2 ker T™
hold for every T' € L(X) and for every n € N. Let (M,N) be a GKD for T
such that (T|N)¥ = 0 for some k € N. Then H,(T) = N C ker T* and hence
H,(T) = N(T) = ker T*. From this it follows that p := p(T) < k and therefore
ker TF = ker TP. O

The next result shows that, under the assumption that A\, —T is semi-Fredholm,
another equivalent condition can be added to those given in Corollary 2.7

Theorem 2.8. Suppose that \,I — T € L(X) is a semi-Fredholm operator. Then
the following statements are equivalent:

(i) Hy(AoI —T) is closed.
(il) Ho(AoI —T) is finite dimensional.
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Proof. We have only to prove the implication (i) = (ii). This immediately follows
from the mentioned Kato decomposition of a semi-Fredholm operator: if (M, N)
is a GKD for A,I — T such that A\, — T |N is nilpotent and dim N < oo, then
H,(\oI —T) = N, by Theorem 26 O

The preceding result was obtained in [12| Theorem 2] under the assumption that
Aol — T is a Fredholm operator.

Theorem 2.9. Suppose that \oI —T € L(X) is of Kato type. Then the following
statements are equivalent:
(i) T* has the SVEP at X,.
(i) ¢:=q(Aol —T) < 0.
(iil) X = Hy(AoI =T)+ KXol = T).
Moreover, if any of the equivalent conditions (i)-(iii) holds, then
Mol —T)(X)=KMNI—T) = (A —T)UX).

Proof. Assume that A\, = 0. The equivalence (i) < (ii) has been proved in [2]
Theorem 2.6]. The implication (iii) = (i) has been proved in Theorem

(ii) = (iii). Assume that ¢ := ¢(T") < oo. Since T is of Kato type then K(T')
T*(X) = TYX). Moreover, X = ker T? + T"(X) for every n € N (see |
Proposition 38.2]), and therefore X = H,(T') + T (X).

Theorem 2.10. Suppose that \,I —T € L(X) is a semi-Fredholm operator. Then
the following statements are equivalent:

(i) T* has the SVEP at X,.

(ii) K(AoI —T) is finite codimensional.

o= |

Proof. Also here we assume that A, = 0.

(i) = (ii). From Fredholm theory we know that T* is also a semi-Fredholm
operator and ind T* = — ind T. Now, if T* has the SVEP at 0, then ind T* < 0
(see [1, Corollary 2.7]) and therefore ind T > 0. From this it follows that T
is a lower semi-Fredholm and consequently also 79 is lower semi-Fredholm., i.e.
T9X)=T>°(X)= K(T) is finite codimensional.

(ii) = (i). Since K(T) = T°°(X), condition (ii) means that 7°°(X) is of finite
codimension. But from this it is immediate that ¢(T) < oo, so that T has the
SVEP at 0, by Theorem 2.9 O

It should be noted that if T is semi-Fredholm, then T°°(X) coincides with the so-
called algebraic core of T', i.e. the greatest subspace M of X for which T(M) = M;
see for instance [II Theorem 2.3].

Corollary 2.11. Assume that Aol —T € L(X) is a semi-Fredholm operator. Then
the following statements are equivalent:

i) T cmd T* have the SVEP at A,.
(i) X =H,MI-T)® K(M\I—-T).
(iil) H, ()\ I-T) is closed and K(M\I —T) is finite-codimensional.
(iv) Ao is a pole of (M —T)~1, or equivalently p(\oI —T) = q(X\oI —T) < 00
(v) The spectrum does not cluster at A,.
In particular, if any of the equivalent conditions (1)-(v) holds and p := p(AI—T) =
q(A\oI —T), then

Ho(AoI = T) = N(A\I — T) = ker(AoI — T)?
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and
Kl = T) = (Aol = T)(X) = (AI = T)(X).

Proof. The equivalences of (i), (ii), (iii), and (iv) are obtained by combining all
the results established in this section. The implication (iv) = (v) is obvious. The
implication (v) = (i) is an immediate consequence of the fact that both T and T™*
have the SVEP at every point of the resolvent, as well as at every isolated point of
the spectrum. [l

Note that rather similar results to those of Corollary 2.11] have been established
by Mbekhta [T5, Théoréme 1.6] and Schmoeger [19], in the case that )\, is an isolated
point of the spectrum.

Remark 2.12. Recall that for every T' € L(X) the semi-Fredholm region is defined
to be

(T) :={A € C: X —T is semi-Fredholm}.

It is well-known that 3(7') is an open set and hence it may be decomposed in
connected disjoint open nonempty components. Suppose that 7' has SVEP at some
Ao € 2, Q a component of 3(T"). Then, by Theorem[26 and Corollary 271

{0}y = H,0I-T)NKMI—T)=NMI —T)N (NI — T)®(X)
= NI —-T)N NI —T)®(X) ,

and from the constancy of the map A € Q@ — N (A —T)N (A —T)*(X) (see [18]
Theorem 4.2]) we conclude that N(AI —T)N (A — T)°°(X) = {0} for every point
A € Q. From [2, Theorem 1.10] it follows that T has the SVEP at every point
A € Q. Moreover, the set

F={AeQ:jump (M —-T)# 0}

is countable ([I8]) and is equal to the set of all A € Q such that A\ — T is not
semi-regular; see [21}, Proposition 2.2]. From Theorem 2@ then H,(A — T) = {0}
for every A € Q\ T, while the remaining points A € T" are eigenvalues with ascent
p:=p(A =T) < 0o, Hy(AI = T) =ker (AT —=T)? and 0 < dim H,(A\ —= T) < oo,
by Corollary 27 and Theorem In particular this situation occurs for every
component of the semi-Fredholm region of an operator which has the SVEP.
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