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Abstract

This paper examines the interplay of opinion exchange dynamics and
communication network formation. An opinion formation procedure is
introduced which is based on an abstract representation of opinions as
k–dimensional bit–strings. Individuals interact if the difference in the
opinion strings is below a defined similarity threshold dI . Depending on
dI , different behaviour of the population is observed: low values result in
a state of highly fragmented opinions and higher values yield consensus.
The first contribution of this research is to identify the values of parame-
ters dI and k, such that the transition between fragmented opinions and
homogeneity takes place. Then, we look at this transition from two per-
spectives: first by studying the group size distribution and second by
analysing the communication network that is formed by the interactions
that take place during the simulation. The emerging networks are clas-
sified by statistical means and we find that non–trivial social structures
emerge from simple rules for individual communication. Generating net-
works allows to compare model outcomes with real–world communication
patterns.

Introduction

Many societal processes are ultimately based on the mutual interactions among
individuals with diverse opinions, attitudes and lifestyles. The processes of
inter–personal communication and opinion exchange play a crucial role in the
formation of social structures and networks. Examining the interplay of opinion
exchange and communication network formation is the main issue addressed by
this study.

Therefore, an opinion formation model inspired by the abstract agent model
presented in [6] is introduced. Opinions are represented as a series of k bits,
which we find an interesting approach to the modelling of attitudes and be-
liefs, since human thinking can be represented in terms of polarities (yes/no,
good/bad, young/old, etc.). And moreover, we are used to measuring informa-
tion in bits.
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Such an abstract bit–string approach has been used in the simulation of
consumer–producer behaviour [6] as well as in the context of labour market anal-
ysis [5] where bit–strings represent products (or job offers) and needs (worker
skills). Here, each bit–string represents an agent opinion and a procedure of
agent–agent interaction is specified based on assumptions from social compari-
son theory [15] and in opinion formation models [7, 12, 3, 26, 27].

This paper is organized in the following way. We start reviewing previous
approaches to the modelling of opinion exchange dynamics. After this, we give
an explanation of our model. This is followed by a numerical analysis, in which
the opinion evolution is considered before looking at the emerging networks of
communication activity. A discussion of the results concludes this work.

Related Work

The most important observation from studying computer models of social in-
fluence and opinion dynamics is probably that interaction rules by which in-
teracting agents tend to become more alike in their beliefs do not necessarily
lead to a population in which all the individuals share the same opinion. To
put it in Axelrod’s words ([7], p.223): »Local convergence can lead to global
polarization.« This dynamic effect which contrasts common intuition has been
shown and analysed in a large number of different opinion formation models
(e.g., [7, 10, 12, 26, 3, 18]).

All these models are based on two principles: (1.) two individuals are more
likely to communicate with one another if they already share a number of opin-
ion features (i.e., their opinions are similar); and (2.) communication further
increases this number of shared features (i.e., individuals become even more
alike). Approaches differ mainly in their representation of opinion. Some mod-
els use continuous representations (e.g., [12, 3]) whereas others assume opinions
to be a set of features which can take different (discrete) values [7, 10]. Also
populations in which agents may have only two possible choices (yes/no) have
been studied frequently (e.g., [26, 16, 29, 30, 19]).

Depending on the control parameters, opinion models give rise to quite a
variety of population structures, from a highly fragmented population in which
only few individuals share the same opinion, to homogeneity or, in between these
two regimes, to a stable state with several differently sized groups. These three
behaviour classes1 have been reported in several previous studies on opinion
dynamics (e.g., [7, 10, 12, 26, 3, 18, 30]). Moreover, in the transition regime,
group sizes were found to follow a power law distribution [10]. For a detailed
report with particular focus on such statistical properties of social dynamics
processes the reader is referred to [9].

The social network structure which is assumed to underlie the opinion ex-
change dynamics is another important aspect. In opinion formation studies as
well as in other disciplines, often a static network determining which agents may
interact with one another is imposed. In social influence models this is referred
to as an agent’s neighbourhood. Only recently, the co–evolution of agent states
and networks formed by processes (based on the states) receive more attention

1Behaviour classes refer to qualitative different behaviours that potentially result from a
simulation model.
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(see [17] for an inter–disciplinary, recent review). Simultaneously, adaptive net-
work approaches that focus on the interplay of opinion dynamics and network
formation have been further developed [18, 30, 25, 4].

In reference [18], a parameter is used to determine whether agents form
their opinion based on the opinions of connected agents or if they re–link to an
agent having the same opinion. This simple model was found to undergo the
same phase transition from diverse to homogeneous opinions as reported above.
The effect of giving agents the possibility of cutting links, if they do not achieve
agreement with their neighbours, is also studied in [30]. The study presented
in [4] starts from a random network determining the possible communication
links between the agents. The similarity between two linked agents (which
evolves in time since the opinions of interacting agents are updated) is used
to assign a frequency of interaction. In this way, dynamic network structures
emerge without the need for specifying conditions for cutting social links.

In this paper, we also avoid introducing further assumptions for re–wiring
the network. Instead, the network design is based on the communication that
effectively takes place among the agents.

Model Definition

The opinion formation model implemented for this study bases on a bit–string
representation as used in [6] concerning the simulation of consumer–producer
behaviour and in [5] for the analysis of labour market dynamics. In these ex-
amples, bit–strings represent products (or, respectively, work offers) and needs
(skills). The exchange is based on the matching of these two strings. Here, this
concept is used in the modelling of opinion exchange where a series of k bits
represents an agent opinion, and interaction between agents takes place if their
opinion strings are similar. Two agents are willing to interact with one another
if the matching of their opinion strings is below (or equal to) a certain similarity
threshold denoted by dI . The interaction process is illustrated in Fig. 1.

Figure 1: Illustration of the interaction process.

In the beginning N agents are generated and a random bit–string is assigned
to them. In the interaction process, two agents, say c4, c11 according to Fig. 1,
meet at random. But they are only willing to communicate about an issue (one
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element of the bit–string), if the number of unequal bits (i.e., the hamming
distance h) is below or equal to a similarity threshold dI . If the hamming
distance between the two agents is below the threshold (h(c4, c11) ≤ dI), they
exchange ideas about an issue. As a result of that the agent chosen first (c4
in the example) adopts the opinion of the c11 concerning that issue by flipping
the respective bit.2 In this way the principles of similarity and imitation which
form the basis of most opinion models (e.g., [7, 10, 12, 26, 3, 18]) are integrated.

The model is implemented so that during a single time step all the agents
have the chance to interact with one another. Therefore one time step of the
model corresponds to N interactions of pairs of randomly chosen agents ci, cj .
We exclude self–interaction (ci = ci), but we do not force all agents to be chosen
exactly one time (with the result that some may be chosen twice and other ones
are not chosen at all in that iteration).

In order to understand better the opinion exchange dynamics among the
agents, we keep track of the interactions that take place in the course of the
simulation. We introduce an interaction matrix I which stores all the interaction
activity. I is of size N × N and the element iij saves the number of times ci
and cj interacted in some way. Therefore, each time two chosen agents ci, cj are
sufficiently similar (h(ci, cj) ≤ dI), we increase iij and iji by one. Note that iij
and iji are also increased if agents already share the same opinion. The matrix
I corresponds to a weighted graph, in which edges represent the communication
lines between different agents. Additional information about who imitates who,
and which agents are imitated is stored separately.

To summarize. Starting from an initial random population, at each time step
N pairs of agents (ci, cj) are chosen, and if the distance is below the threshold
(h(ci, cj) ≤ dI), the agent ci switches one of the bits that have been unequal.
In other words, if individuals are close enough they have the opportunity to
become even closer. Otherwise, they just do not communicate at all. As they
split apart groups are formed. In the next section, we discuss the characteristics
of the groups that emerge from this process.

Behaviour Classification

In order to obtain a classification of the general dynamic behaviour of the model,
a series of systematic tests has been performed. For this purpose, we looked
at different numbers of dimensions k used in the opinion representation and
respectively different threshold values dI . Note that considering the ratio of the
two parameters dI

k
might also be of interest, since it accounts for the relative

similarity required for two agents to interact. It would also be favourable as the
number of model parameters would be reduced.

However, in order to be clear about the interdependence of the two pa-
rameters, we first tested all the configurations k = 1 . . . 32 and respectively
dI = 1 . . . k, and looked at the number of groups of individuals that share ex-
actly the same opinion (denoted by NG). A group in this sense can be formalized
as

Go = {ci : h(ci, o) = 0} , (1)

2Since the probability of an agent to be the first one is equal for all individuals during the
iteration process, all the agents have an equal chance to imitate or to be imitated. The same
assumption about who imitates who is made by Axelrod in [7].

4



where o is the reference opinion string shared by all the members ci of the group
Go. A particular group Go comprises all the agents ci, whose opinions equals o,
(that is the hamming distance h(ci, o) = 0). Consequently, NG is defined as the
number of groups Go with at least one member. With groups defined in this
way, the maximum number of possible groups is

max(NG) = min(N, 2k). (2)

As opinions are represented as a series of k bits, there are 2k possible opinion
strings. But in the case that the number of agents is below that number (N <

2k), then the maximum number of groups with at least one member is equal to
N (i.e., max(NG) = N).

The model behaviour can be classified by using NG as an indicator for dif-
ferent kinds of behaviour. The case where NG is near the theoretical maximum
(NG ≈ N or respectively NG ≈ 2k as described above) represents the cases
in which the public opinion remains highly fragmented, since there are many
groups with only few members (or even just a single one). The other extreme
is represented by NG = 1 in which case all the agents belong to a single giant
group, that is: the society of agents reaches global consensus.

In Fig. 2 this classification of the model behaviour with respect to k and dI
is shown using a 32× 32 parameter grid formed by k = 1 . . . 32 and dI = 1 . . . k.
N = 1000 agents have been used for the experiments and five simulation runs
have been performed for each parameter configuration.3 The two additional
grids represent the iteration number required to reach the stable state (middle)
and the variance of NG (r.h.s) observed over the five realizations. Note that the
stable state, in which no further opinion exchange is possible, is always reached,
though the number of iterations required to reach it differs tremendously.

Figure 2: On the l.h.s., classification of the model behaviour in terms of NG

with respect to k and dI for 1000 agents. The middle image shows the iteration
number required to reach the stable state, and on the r.h.s. the variation of NG

is shown. Average of 5 simulation runs.

Fig. 2 makes clear that a transition takes place from a population in which
all opinions are the same (blue region with NG ≈ 1) to a population in which
basically all the agents have different opinions (dark red with NG ≈ 1000). The
third and in fact most interesting behaviour is observed in the area of transition

3On the whole, 5× 528 runs with N = 1000 agents have been performed.
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in between these two extremes. It will be considered using a specific parameter
constellation in the following section.

Group Size Distribution

In order to get a better idea of the model behaviour in transition, we concentrate
on the example N = 1000 and k = 20 in the following two sections. The
influence of the population size N is studied after that. From the images in
Fig. 2 we assume that the critical behaviour can be observed for dI = 3, where
an average number of groups NG ≈ 400 was found with a very high variance.
In a second series of systematic experiments, now using 100 simulation runs, we
subsequently increase the threshold from dI = 1 . . . 5 and look at the distribution
of group sizes in stable state. The results are presented in Fig. 3.
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Figure 3: Group size distribution in stable state for k = 20 and dI = 1 . . . 5
based on 100 simulation runs.

It becomes clear that, for N = 1000 and k = 20, dI = 3 is indeed at the
border between the two qualitatively different behaviours: homogeneity and
fragmentation. It therefore displays the model behaviour in the phase transition.
Moreover, Fig. 3 shows that groups scale according to a power law for dI = 3,
which was also reported in the phase transition of the Axelrod model in [10].

For dI < 3 only very small groups are present, whereas for dI > 3 the
likeliness of small groups to form subsequently decreases and agents are very
likely to meet in a single giant group (global consensus). Note, however, that
for dI = 4 several intermediate group sizes are also observed that show a power
law scaling for group sizes up to 20 members.

Communication Networks

The analysis of the groups that consist of individuals sharing the same opinion
is an interesting issue, looking at the communication activities that led to this
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state, on the other hand, can reveal important additional information of how
a certain state is reached. From the network point of view, we can consider
that agents are the nodes of a communication network and that edges represent
communication lines. In order to keep track of the communication activity
within such a network, we introduced the interaction matrix I which stores all
the interactions that take place in the course of the simulation. We also compute
the adjacency matrix A, the elements of which are aij = 0 if iij = 0 and aij = 1
if iij > 0. Matrix A accounts for communication lines between the agents, but
not for the intensity (i.e., the frequency) of communication between them.
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Figure 4: Log–log plot of the degree distribution for N = 1000, k = 20, and
different dI = 1 . . . 5. The distribution for dI = 3 displays the behaviour in the
phase transition.

In Fig. 4 the degree distribution of the communication network computed
on the basis of A is visualised. Degree distributions are used frequently in the
classification of complex networks (e.g., [2, 8, 17, 13]). The data displayed in
Fig. 4 represents the same 100 realisations performed for the group size analysis
shown in Fig. 3.

The distribution shows that for dI = 1 the frequency with which node degrees
of one or two (represented by the blue triangles) have been observed is around
0.02, which makes clear that the great majority of the nodes has a zero degree,
i.e., they are isolated nodes. For dI = 2, still, the majority of nodes is isolated,
but there are agents connected to up to six others. All in all, for low values of
dI the differences between the agents maintain, because initially, the distance
between most agents is larger than dI . Therefore, interaction becomes unlikely
and the communication network is very weakly connected.

The degree distributions for dI = 4 and dI = 5 are quite different from the
prior examples. They display the characteristics of a highly connected (quasi–
complete) network. In the course of 100 simulations no node with a degree below
200 was found which means that the weakest connected agent is still connected
to more than 200 other agents. Moreover, the larger dI is chosen, the more close
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the final network is to the complete graph.4 This is because potentially all the
agents are allowed to interact with all the others (complete graph), and with an
increased threshold value more of these interactions really take place since the
condition h(ci, cj) ≤ dI is more likely to be satisfied.

An interesting property is observed when comparing the degree distribution
for dI = 4, dI = 5 to the group size distribution in Fig. 3 as it results using
the same values dI . As shown in Fig. 3, small minority groups of agents may
form in these cases, although these agents interacted with at least 200 others
(as we know from Fig. 4), i.e., they are not isolated at all. We conclude that
intensive communication behaviour does not automatically make agents adopt
the opinion of the largest group, agents (or small groups of agents with up
to ten members) may have an individual »outsider« opinion even though the
communication activity involved many agents from different groups.

From the network point of view the phase transition from highly fragmented
opinions to global consensus as reported above now becomes the transition from
a weakly connected network (i.e., reduced communication activity for dI = 1, 2)
to a complete network (in which all the agents communicate with all the others
for dI = 4, 5). The degree scaling behaviour in between these two regimes
(dI = 3) represents the model behaviour in the phase transition.

The distribution of the degrees for dI = 3 as shown in Fig. 4 displays the
characteristics of a non–trivial network structure (compare also the network
shown in Fig. 8). The distribution is significantly different from distributions
found in random networks. Fig. 4 indicates that the scaling of the degrees is
according to a power law, at least for the upper tail with degrees below 100.
This means that the network is scale–free. For connectivities around 100 slight
deviations are visible and for degrees in the region from 300 to 500 we cannot
any longer assume a power law behaviour.

Further analysis using a larger number of experiments5 might reveal the
reasons for these irregularities, and they will also make us more confident about
the power law distribution indicated by Fig. 4. Another equally important
issue to provide us with a more complete picture of the model behaviour is the
influence of the populations size.

Influence of the Population Size

In order to be able to compare the model outcomes for realizations using different
numbers of agents (N), it is convenient to use the relative number of groups
after stabilization given by NG

N
. In the case of opinion fragmentation NG

N
≈ 1

since NG ≈ N . In the case a global consensus is reached we have NG = 1
and therefore NG

N
= 1

N
≈ 0. For the intermediate states the relative number of

groups stays between zero and one (0 < NG

N
< 1).

In the l.h.s. of Fig. 5, the relative number of groups in stable state is shown
for N = 100, 500, 1000, 5000 and 10000 as a function of the threshold dI . In
all simulations an opinion string of length k = 20 is used. Each data point in
Fig. 5 represents the average of NG

N
determined over 10 repeated simulation runs.

Let’s call d∗I the threshold values at which the transition from fragmentation to
consensus takes place. With each increase of the population size from N =

4For dI = 6 the percentage of node degrees smaller than 900 was 0.08%.
5In the physics literature (e.g., [10, 18]) often 10

4 realizations are used.
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Figure 5: Dependence of the model behaviour on the population size N . L.h.s.:
The relative number of groups after stabilisation (NG

N
) is shown for different

population sizes N . R.h.s.: The critical values d∗I at which transition behaviour
is observed with respect to the population size. Results for 10 realizations and
k = 20.

100 to N = 10000 the values at which transition behaviour is observed (d∗I)
decreases.

The r.h.s of Fig. 5 makes this clear. It shows the »critical« values d∗I as
a function of the population size. For a certain N , d∗I has been chosen to
correspond to those 10 repeated simulation runs in which the variance in the
values of NG

N
is maximal, as a high variance is a suitable indicator for transition

behaviour (compare also Fig. 2). The r.h.s of Fig. 5 shows the decrease of the
d∗I with the population size N . Note the logarithmic scale used for the number
of agents N on the horizontal axis. As the N grows 10 times larger, the critical
threshold decreases by one.

In Fig. 5 the influence of N on the model behaviour is evaluated on the basis
of the average value and the variance of a series of relative numbers of groups,
NG

N
. A further interesting aspect is the influence of the population size on the

group sizes in stable state and the interaction network formed as the result of
the opinion exchange process. For N = 1000, dI = 3 and N = 10000, dI = 2
(both displaying the characteristics of transition behaviour) the group size and
the degree distributions are presented and compared in Fig. 6.

We observe in Fig. 6 that there is no remarkable difference between the
groups formed in a population of 10000 agents compared to the example of
1000 agents considered previously. The degree distribution shown in the inset of
Fig. 6 displays the same scaling behaviour for both cases as well. This indicates
that in the phase transition the observed interaction patterns as well as the
statistical properties of the grouping behaviour after stabilisation is invariant to
changes of the population size. Moreover, observing the same power law scaling
of the degrees for N = 1000 and N = 10000 confirms that the opinion exchange
process as presented in this paper yields scale–free communication networks.

The observed power law scaling can be an interesting issue for the validity of
the model, since such a behaviour is shown to be a property of many real–world
networks (compare [2, 8, 11, 23, 22, 20]). The invariance of the communication
patterns to the population size N (as indicated by Fig. 6) is another important
issue for the comparison with real–world network data, since empirical network
studies often consider a large number of participants (up to several millions).
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Figure 6: Group size and degree (inset) distributions for N = 1000, dI = 3 and
N = 10000, dI = 2 with k = 20 in both cases. The distributions for N=1000
and N=10000 are based on, respectively, 100 and 10 repeated simulation runs.

Networks as a Link to Reality

Recently, a critical account by Sobkowicz ([28]) revealed that among the vast
literature on opinion formation models, there are very few attempts to link the
simulation results to real–world data. The main reason for this is that high–
quality data of opinion spread in real societies is not available. However, recent
analyses of real–world communication networks ([23, 22, 20]) have led to a better
understanding of human communication activity. The network view on opinion
exchange processes introduced in this paper, enables that simulation outcomes
be compared to this new insights. This may be of great value in the refinement
and calibration of opinion models.

One example of networks that can be adequate in the comparison are phone
call networks (e.g., [1, 23, 22]). As in our model, these networks are constructed
by one–to–one communication. In [23] and [22], Onnela et al. extensively anal-
yse the structure of a mobile phone network constructed by observing the com-
munication activity of several million users during 18 weeks. They explain that
the data serves as »a proxy for the underlying social network« ([23], p. 3) and
therefore of human communication patterns. For any opinion model to be of ex-
planatory value (as an explanatory candidate in the words of Epstein [14]), it is
necessary that realistic network structures (macro–behaviour) are formed by the
interaction process implemented in the model, so that simulated communication
patterns compare to the real–world exchange processes.

In a qualitative sense, the degree distributions of the interaction networks
in the phase transition shown throughout this paper (Fig. 4 and 6) relate to
observations made on real–world communication networks. A scaling according
to a power law as shown for call graphs by Onnela et al. in [23, 22] (compare
Fig. 1A in [22]) as well as by Aiello et al. in [1] (Fig. 1 and 2), is observed
in the present model of opinion exchange. Another confirming observation is
the percentage of nodes in the largest connected component. In the mobile
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network study ([23, 22]) it consists of 84% of the nodes and in our networks this
percentage is found to be in between 75 and 85%. The qualitative similarity
may be a useful starting point for future calibration of the opinion model.

One has to take into account in such a comparison that the real–world ex-
amples consist of several millions of nodes (e.g., 3.9 million in [23, 22]) and that
the largest network created in the course of this study has (only) 10000 partic-
ipants. However, as the previous section revealed, the degree scaling did not
change with an increasing population size.

The emergence of very complex, non–trivial social structures from simple
opinion exchange processes becomes also visible in the example network pre-
sented at the very end of this paper (in Fig 8). Agents do not have any knowl-
edge of the global properties of the network nor is there any routine by which
they urge to improve their position in the network. Nevertheless, we observe
the formation of various clusters that among themselves are strongly connected,
and also the emergence of individuals that connect between different clusters
becomes visible. Having a high centrality, but only a small number of social
contacts to sustain, such nodes are considered to have a high importance in the
social network (compare [17] and references therein).

While the generation of networks provides us with the possibility of linking
the simulation model and reality at the level of global structure, the use of bit–
strings in the opinion representation allows for a connection of agent opinions
and real survey data. For instance, questions like »are you currently satisfied
with the work of politician X?« or »which of the following issues you think should
be regulated/not regulated by the government?« can be used to set up an agent
population with opinions distributed according to the results of a questionnaire.
Repeated surveys might even allow for comparison of real data to the simulated
opinion exchange dynamics.

Future Developments

Besides being scale–free, real–world networks are typically characterized by
some other statistical properties. Many posses a relatively small average di-
ameter (small–world property) and a high clustering. So far our analysis did
not consider these properties in the analysis of the emerging network of opinion
exchange activity. Classifying the networks using additional statistical network
measures, such as betweenness centrality, diameter and clustering measures like
the continuous clustering coefficient introduced in [24], is one essential issue to
be addressed in the future.

Looking at opinion dynamics from the perspective of networks allows for
a series of additional analyses, one of which is shown in Fig. 7. The data
stored during the 100 simulation runs for N = 1000 and dI = 3 is used in
this analysis. In Fig. 7, the number of opinion changes is plot with respect to
the degree of the nodes. Surprisingly, we observe strong irregularities in the
exchange behaviour. For node degrees around 100 and around 320 significantly
more opinion exchange is observed than for neighbouring degrees. This might
be an indication that critical connectivity level exists, and that the nodes once
they reached this connectivity enter a larger community of agents which gives
them a whole group of new communication partners. Such a reasoning may also
explain the scaling of the degree distribution for degrees larger than 100. Future
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research has to clarify these effects.

Figure 7: Number of opinion changes to the degree.

Due to the high flexibility of the bit–string description adopted in this work,
a series of model refinements can be implemented without much effort. For
instance, splitting the string into two and using one sub–string for (say) the
private live and the other for the professional relations will allow to generate two
different networks and to study the interrelation between the two. Considering
parts of the string as fixed, accounting for fixed attributes like gender, can also
be a reasonable extension to the model. And along this line, a recent study
showed that cross–gender communication is more frequent and more intensive
than communication among the same gender [20], which reveals that besides
similarity also differences attract in some cases. An adaptation of the interaction
rule such that for a part of the bit–string difference is more appealing than
similarity is another candidate for future refinement of the model.

Another future development will concern the validation of the opinion dy-
namics model. Initial assumptions of the model can be grounded on previous
research and on literature, and they can also be validated through some em-
pirical studies. In this case, the assumptions of similarity and imitation follow
Axelrod’s well–known and discussed dissemination of culture model. The model
outcomes which are the communication network and the group sizes will be the
subject of future research, aiming to compare them to some real–world networks
and group configurations as outlined in the previous section.

Conclusions

Like other authors in the opinion formation field, we explore the mechanisms
through which similarity leads to interaction and interaction leads to still more
similarity. Network properties seem a natural way to describe the structural
patterns that come out from those multi–agent interactions. In this context,
the main purpose of this paper is to discuss the potential of networks to emerge
endogenously from local interactions without explicitly specifying rules for net-
work linking. This facilitates comparisons of model results to real–world social
networks.
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We show that complex network structures emerge from a simple process
of communication between individuals that have no information on the global
properties of the network. This indicates that a crucial role in the formation of
social structures and associations is played by the mutual interactions among
individuals with diverse opinions, attitudes and lifestyles.

In the context of opinion dynamics, considering which networks result from
simulations with different model parameters made visible that the phase transi-
tion from highly fragmented public opinion to homogeneity in models of social
influence is due to the communication activity that is allowed by a certain pa-
rameter constellation. A few critical values play the fundamental role.

We have followed a biological inspiration, where opinion change compares to
a mutation mechanism that allow for the adoption of a new position with respect
to a certain issue in the agents mind. Such an abstract bit–string approach has
been used in the context of labour market analysis [5] where bit–strings represent
job offers and worker skills. It was also applied to model innovation in a market–
oriented context where producers and consumers try to improve their matching
in what concerns products and needs [6]. We envision that the application of
the notion of opinion exchange presented in this paper could bring relevant
improvement to the way the underlying population structures were represented
in those earlier approaches.
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Figure 8: A network of communication formed by the interaction of 1000 agents
(k = 20 and dI = 3). We can observe the formation of various clusters that
among themselves are strongly connected. We also observe the emergence of
individuals that connect between clusters which gives them a high importance
in the social network. All in all, this shows that very complex social structures
can emerge from opinion exchange processes and individual communication.
Image produced with the Network Workbench Tool [21].

16


