
Opinion Retrieval from Blogs
Wei Zhang

Department of Computer Science
University of Illinois at Chicago

851 S Morgan St
Chicago, IL 60607, USA

wzhang@cs.uic.edu

Clement Yu
Department of Computer Science

University of Illinois at Chicago
851 S Morgan St

Chicago, IL 60607, USA

yu@cs.uic.edu

Weiyi Meng
Department of Computer Science

Binghamton University
Vestal Parkway East

Binghamton, NY 13902, USA

meng@cs.binghamton.edu

ABSTRACT
Opinion retrieval is a document retrieval process, which requires
documents to be retrieved and ranked according to their opinions
about a query topic. A relevant document must satisfy two
criteria: relevant to the query topic, and contains opinions about
the query, no matter if they are positive or negative. In this paper,
we describe an opinion retrieval algorithm. It has a traditional
information retrieval (IR) component to find topic relevant
documents from a document set, an opinion classification
component to find documents having opinions from the results of
the IR step, and a component to rank the documents based on
their relevance to the query, and their degrees of having opinions
about the query. We implemented the algorithm as a working
system and tested it using TREC 2006 Blog Track data in
automatic title-only runs. Our result showed 28% to 32%
improvements in MAP score over the best automatic runs in this
2006 track. Our result is also 13% higher than a state-of-art
opinion retrieval system, which is tested on the same data set.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – retrieval models, selection process. I.2.7
[Artificial Intelligence]: Natural Language Processing – text
analysis.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Opinion Retrieval, Blog Retrieval, Information Retrieval, TREC.

1. INTRODUCTION
The fast growth of blog (derived from “Web Blog”) web sites has
created a highly active portion of the World Wide Web. People
publish blogs, a kind of journal style web pages, which provide
news, comments, and personal diary-like articles. Readers can
leave feedbacks to the blogs. Major web search engines such as

Google [7] have launched blog search services. But these blog
search tools are just the applications of the traditional web search
techniques in the blog domain, in that, given a query, they only
search for fact-related information in the blogs. However, the
opinions about various topics, which are very important feature of
the blog documents, are not searched by these tools. In 2006, the
Text REtrieval Conference (TREC) brought up a “Blog Track”
for the first time focusing on information retrieval in the blog
documents [17]. The major task of this track was the “opinion
retrieval”. An opinion retrieval system is required to locate blog
documents expressing opinions about a query in a large blog
collection. Identification of the polarity of the query-relevant
opinions in the documents is not required. A relevant document
should satisfy two criteria: relevant to the query, and contains
opinions or comments about the query, no matter if they are
positive or negative. For example, given a query “Audi”, a
relevant document must contain opinions about either Audi cars
or the company itself. A document telling a driver’s feelings
about his Audi A4 is relevant in opinion retrieval. However, a
document only describing mechanic features of an Audi A4 is not
relevant. Although the machine learning and natural language
processing communities have worked on finding opinions about
targets such as products [15], movie reviews [18] in documents,
they usually assume that the documents have already contained
the relevant opinions. They do not address the general problem of
how to retrieve the opinionative documents from a collection. On
the other hand, the traditional information retrieval (IR)
community only focuses on the fact-oriented retrieval. It does not
handle the subjective contents about the queries in the documents.

In this paper, we present an opinion retrieval algorithm that
retrieves blog documents according to the opinions and comments
about a query that the blog documents contain. We first define
some concepts for the opinion retrieval.

• A query topic (query for short) is a list of words to be
searched in a document collection. The queries are the inputs
to an information retrieval system.

• The subjective texts are the comments or opinions about a
target in a document. In a blog document, the comments can
come from the original post of the blog, or from the feedbacks
added after the original post by other people. In our paper,
“subjective texts”, “subjective contents” of a document,
“comments” and “opinions” all have the same meaning.

• The relevant opinions of a query are the comments or
opinions that are about that query. For instance, in the Audi
example introduced above, opinions about the Audi cars or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’07, November 6–8, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-803-9/07/0011…$5.00.

831

company are relevant opinions. Opinions about a gas station
in the same document are not relevant opinions.

• The opinionative documents are the documents containing any
types of opinions, which are not necessarily related to a query.

• The topic relevant documents (relevant documents for short)
of a query are the ideal output of a document retrieval system.
Such topic relevant documents may or may not contain
opinions about the query.

• The Relevant Opinionative Documents (ROD) of a query are
documents that contain relevant opinions about the query. A
list of ROD is the ideal output of an opinion retrieval system.

We consider the ROD as a subset of the intersection of the topic
relevant documents and the opinionative documents. Accordingly,
our opinion retrieval algorithm has three components. (1) An IR
component retrieving the topic relevant documents, no matter if
they contain opinions or not. We utilize an IR system built for a
past TREC task for this purpose. (2) An opinion identification
component that retrieves the opinionative documents. We build
support vector machine (SVM) classifiers to identify the
opinionative documents. Two types of SVM classifiers are
constructed. One is query-dependent and the other is query-
independent. (3) A ranking component. It has a NEAR operator to
find the ROD by looking for the query-relevant opinions. Then
the ranking component utilizes multiple strategies to rank the
retrieved ROD by using the query-document similarities and the
intensities of the query-relevant opinions in the documents. Our
algorithm is tested on the TREC 2006 Blog Track data [17]. Our
contributions are:

1. Present a system for the new research field of opinion
retrieval.

2. Study the effects of the variations of the components in our
system on retrieval effectiveness.

3. Study the effects of having different sets of opinion features
on retrieval effectiveness.

4. Experiments show that the retrieval effectiveness of our
system has significant improvements over the best results
published in the recent TREC 2006 Blog Track by 28% to
32%. Our result is also 13% better than a state-of-art opinion
retrieval system tested on the same data set.

The rest of this paper is organized as follows. Section 2 reviews
the related works. Section 3 describes the IR component of our
algorithm. Section 4 describes the SVM opinion finding
component. Section 5 describes method of finding query-relevant
opinions. Three document ranking strategies are also introduced
in Section 5. Experimental results are reported in Section 6.
Conclusions are given in Section 7.

2. RELATED WORKS
The opinion retrieval was the major task in the new TREC 2006
Blog Track. 14 groups participated in this task. The groups with
the top performances were [29][31][32][33].

Mishne [29] adopts fact-oriented IR, dictionary-based opinion
expression detection and spam filtering as three major
components in his system. This system not only utilizes the blog
documents being tested, but also the RSS seeds as additional

training data. Mishne [30] recently reported an opinion retrieval
system that utilizes the publishing dates of the documents as a
feature in the retrieval. This system also compares the contents of
actual blog posts and the RSS documents to calculate the
proportion of the comments in a blog document. Query-dependent
spam filters, which are in the form of support vector machine, are
used to further remove spam documents. This system achieved a
MAP score of 0.2411, which was higher than the best score in
TREC 2006 Blog Track. In the experiment part, we show that the
score of our system is about 13% higher than that of this system.

Zhang and Yu [31] adopt concept-based IR [16], machine-
learning approach based opinion detection and two separate
opinion similarity functions in their system. Their system, which
was an earlier version of our system, obtained the best
performance among the groups using the title-only queries [17].

Yang et al. [32] adopt IR components that utilizes proximity
match and phrase match. Their opinion component adopts
frequency-based heuristics, special pronoun patterns and
adjective/adverb-based heuristics. Although this system reported
the best performance among all the participating groups, it has a
tuning module involving human-feedback, which makes it is not a
purely automatic system. Furthermore, their best run was
achieved by using the title-description-narrative queries, which
provide more information than title-only queries [17].

Oard et al. [33] adopt passage retrieval; both dictionary-based and
machine-learning based sentiment term selection methods; a
passage sentiment score is calculated by using all the sentiment
terms in that passage.

Other related works come from the machine learning and the
natural language processing communities, focusing on identifying
the subjective texts in the documents and classifying the
subjective/objective nature of such texts.

The subjectivity orientations of words or phrases have been
studied. Hatzivassiloglou and McKeown [5] studied the adjectives
as evidence of subjective texts. Hatzivassiloglou and Wiebe [6]
investigated sentence subjectivity classification. A method is
proposed to find adjectives that are indicative of positive or
negative opinions. Wiebe et al. [26] identified subjective language
features, such as low-frequency words, word collocations,
adjectives and verbs, from corpora and used them in the sentiment
classification. Esuli and Sebastiani [4] classified the orientation of
a term based on its dictionary glosses. Whitelaw, Garg, and
Argamon [25] used short phrases called “appraisal groups”
subjective language features for sentiment classification.

In the opinion identification works, Liu, Hu and Chen [15] and
Popescu and Etzioni [20] both extracted product features and their
opinions from the Web. They use heuristic rules and supervised
learning techniques to find product features and opinions.
Recently, Jindal and Liu [10] also studied the opinions in
comparative sentences using the support vector machine and the
naïve Bayes classifiers with both manual and automatic rules.
Other opinion identification works include [12][28][9].

In the document-level opinion classification, Das and Chen [2]
use a manually crafted lexicon in conjunction with several scoring
methods to extract investor sentiment from stock message boards.
Tong [22] generates sentiment (positive and negative) timelines
by tracking online discussions about movies over time. Pang et al.

832

[18] examines several supervised machine-learning methods for
positive/negative sentiment classification of movie reviews. Pang
and Lee [19] also studied the problems of multi-category
classification of movie reviews by using supervised learning.

Various types of machine-learning techniques have been applied
to the opinion classification task. Turney [23] applies an
unsupervised learning technique based on mutual information
between document phrases and the words “excellent” and “poor”
to find indicative words of opinions for classification. Dave et al.
[3] also experiment with a number of learning methods for review
classification. They show that the classifiers perform well on
whole reviews, but poorly on sentences because a sentence
contains much less information.

Ku et al. [14] summarize blog documents by their major topics
and the related opinions.

3. TOPIC RETRIEVAL
The IR component of our opinion retrieval algorithm is a
traditional document retrieval procedure. It retrieves all of the
query-relevant documents from a document collection. The idea is
that, given a query, the relevant opinionative document (ROD) set
is a subset of the query topic relevant document set. An ideal IR
step should retrieve all the topic relevant documents; all of the
ROD should be retrieved accordingly. The subjectivities of the
documents are not the concern of this step, as they will be
identified in the classification module. Theoretically, any
document retrieval system fits here, such as the Okapi formula
based systems or the systems based on various language models.
In our implementation, we adopt a system derived from [16],
which has reported the best GMAP (Geometric Mean Average
Precision, the official measure used for TREC 2005 Robust Track)
score using TREC 2005 Robust Track data. It has the
characteristics of concept recognition and query expansion. It
places more emphasis on concept matching than individual term
matching. We only describe the key points of this system. The
details can be found in [16].

3.1 Concept Identification
A concept in a query is defined as either a multi-word phrase
consisting of adjacent query words, or a single word that does not
belong to any other concept [34]. Concept identification is a
query pre-processing procedure, which partitions an original
query to these concepts. Concept is introduced to improve
retrieval effectiveness. For example, the words in a query “Happy
Feet” (a movie title) can be recognized as a phrase. The query
should be searched as a single phrase rather than as two individual
words. We designed a phrase recognition algorithm, which
involves dictionaries, statistics from document sets, Web and
natural language processing tools, and integrate it into our opinion
retrieval algorithm. The detail of this phrase recognition algorithm
can be found in [34]

3.2 Query Expansion
We adopt three query expansion methods. One method is a
dictionary-based method that utilizes Wikipedia [20] to find an
entry page for a phrase or a single term in a query. If it has such
an entry, all the titles of the entry page are expanded as synonyms
of the query concept. For example, if we search “PC game” in
Wikipedia, it is re-directed to an entry page titled “personal

computer game”, which is then added as a synonym of “PC
game” in the query. The synonyms are treated the same as the
original query terms in the retrieval process. The content words in
the entry page are ranked by their frequencies in the page. The top
k terms are returned as potential expanded terms.
We adopt the local context analysis [35] as the second query
expansion method. Our method combines the global analysis and
local feedback. The query in the form of concepts is used to
retrieve a ranked document list from the given document
collection. The terms in the top n (a threshold) documents are
ranked according to the formula in [35]. The top k terms are
returned as the potential expanded terms of this method.
The last query expansion method is a web-based method. It is
similar to the local pseudo feedback expansion but using web
documents as the document collection. The query is submitted to
a web search engine, such as Google, which returns a ranked list
of documents. In the top m documents, the top k terms that are
highly correlated to the query terms are returned.
Each expansion method generates terms with weights to be added
to the original query. All the expanded terms of all the concepts
of a query are put together. If an expanded term is returned by
more than one method, the sum of its weights from the different
methods is its weight. The weights of the expanded terms are
normalized to values in (0, 0.7). The idea is that the original query
terms and concepts all have weights of 1, while the expanded
terms should have lower weights. The 20 top weighted expanded
terms are chosen as the final expanded terms for each query.

3.3 Relevant Document Retrieval and
Ranking
After the recognized phrases and the expanded terms are added to
the queries, the queries are sent to document retrieval system to
retrieve relevant documents. We adopt the IR system by Liu et al.
[16]. It allows both phrases and single terms to be in the query.
Let d be a document, Q be a query, C be the set of phrases of Q
that are from the phrase recognition, E be the set of expanded
terms of Q that are obtained from query expansion, W be the set
of corresponding term weights of the terms in E, calculated in
Section 3.2, idf(p) be the inverse document frequency weight of a
concept p, Okapi(t, d) be the Okapi/BM-25 score [21] of a term t
in d, the similarity between the query Q and a document d, Sim(d,
Q), is defined as a pair of (phrase-similarity Sim_p(d, Q), term-
similarity Sim_t(d, Q)):

()

),()(),(),(_

)(),(_

where
(3.1)),(_),,(_),(

∑∑

∑

∈
×

∈
+=

∈
=

=

Et
dtOkapitW

Qq
dqOkapiQdtSim

Cp
pidfQdpSim

QdtSimQdpSimQdSim

The phrase-similarity is defined as the sum of the idf (inverse
document frequency) weights of the phrases in common between
the document and the query. If a document does not have the
recognized phrase, the Sim_p is 0. The term-similarity is the usual
term similarity between the query and the document, which is
computed by using Okapi formula. Each query term that appears
in the document contributes to the term-similarity, no matter it is
in a query phrase or not. The Sim_p has a higher priority than
Sim_t. The retrieved documents of a query are ranked in

833

descending order of their Sim_p values. When documents have
the identical phrase similarity value, they are ranked in
descending order of their term similarities. So given a query, two
documents D1 and D2 have similarities (x1, y1) and (x2, y2),
respectively. D1 will be ranked higher than D2 if (1) x1>x2, or
(2) x1=x2 and y1>y2.

4. OPINIONATIVE DOCUMENT
RETRIEVAL
This component is to identify the opinionative documents in a
document set, regardless of what the opinions are about. The
documents retrieved from topic retrieval can be separated into
three sets: (1) no opinion, (2) opinionative but not relevant to the
query, and (3) opinionative and relevant to the query (ROD). In
this step, we distinguish the documents of (2) and (3) from those
in (1). A statistical classifier is built to label the opinionative texts
in a document. The document is decomposed into sentences. The
classifier labels each of them as either subjective (opinionative) or
objective (non-opinionative). The document is opinionative if at
least one of its sentences is labeled as subjective by the classifier.
We adopt a support vector machine (SVM) classifier that uses
unigrams (single words) and bigrams (two adjacent words) as
features. The vectors are presented in a presence-of-feature form,
i.e. only the presence or absence of each feature is recorded in the
vector. The number of occurrences of the feature is not recorded.
This classifier-feature setup had been shown to be among the best
configurations by Pang [18]. We use the SVM-Light [10] with its
default setting, which is the linear kernel function, as the SVM
implementation.

4.1 Collecting Data for Classifier Training
Given a query, we collect a subjective document set and an
objective document set related to that query as the training data of
the classifier. We expand the idea in [18], which only uses movie
reviews as subjective texts and movie story narratives as objective
texts: Query-dependent documents are collected for each query
separately. The subjective documents of a query are gathered
from reviews web sites such as rateitall.com and epinions.com.
We use the concepts and single terms obtained in Section 3.1. For
each such single term or concept, we search its related reviews via
the review site’s search interface. There are two possible cases:

Case 1. There is only one group of reviews available for this
term/concept. Download the reviews in this group. Set the
downloaded documents as the reviews of this term/concept. This
refers to the case that the term/concept has only one sense. No
sense disambiguation is needed.

Case 2. There are more than one group of reviews available. It
means that the query term/concept may have multiple senses. For
example, “Chicago” can refer to a city, a music band, or a movie.
We pick one review group by sense disambiguation. A word
vector is formed using other original query terms and the
expanded query terms to represent the meaning of the
term/concept being searched. The descriptions of the review
groups are available from the web site. The words in each
description form a vector as the sense for the corresponding
review group. Cosine similarities are calculated between the
query sense vector and all the review sense vectors. The review
group having the highest similarity score is downloaded as the
subjective documents for the query term/concept.

After we get the review documents for all the concepts of a query,
these documents are put together to form a single document set
for the whole query. We assume that the contents of these review
documents are all subjective. Although this is not 100% true, as
we collect a large amount of reviews, the subjective portion
should be dominant so that the effect of the objective portion can
be neglected. In order to get large amount of data, we also
download additional reviews from the original reviews’ siblings
in the review web sites. The siblings refer to the entities in the
same category as a query term/concept. For example, if a query is
“Toyota Camry”, in rateitall.com, reviews about “Ford Fusion”
are also collected because they are both in the “Sedan” category.
These sibling reviews are extracted by using the web site
navigation tree among the entities: after the entry for a query
term/concept is located and its reviews are downloaded, go to the
parent node of this entity, get other child nodes of this parent, and
download their reviews. For each query, we collect reviews from
up to 60 of its siblings. Another way of collecting the subjective
documents is to submit the original query plus some “opinion
indicator phrases” such as “blogs OR reviews OR comments”, “I
think”, “I don’t think”, “I like” or “I don’t like” to a search engine
and get the returned documents. The intuition is that these phrases
are indicative of opinions. If the documents contain both the
query and one of these phrases, it is very likely that they contain
opinions relevant to the query. So we assume that the contents of
these documents are subjective too. Google is used as the search
engine in our implementation. For each of the “query + indicator
phrase” combination, we take the top 3 returned documents. The
documents from the review web sites and the search engine form
the subjective document set of a query.

The objective training documents are collected from Wikipedia in
a similar way. The dictionary entry pages are high-quality
objective data source, since the definitions describe things without
emotion. We submit each of the concepts and non-concept single
terms of a query to Wikipedia to get the corresponding definition
pages. All the contents of these pages are assumed to be objective.
In order to have enough statistics, we also submit the original
query, with a restriction of not containing any terms “reviews”,
“comments”, “opinion”, “posts”, to a web search engine. The
intuition of this is that a document is likely to be non-opinionative
if none of these words are found. The top 2 documents returned
from Google are collected. The documents from Wikipedia and
Google form the objective document set of a query.

4.2 Selecting Useful Features
We do not use all of the unigrams and bigrams in the collected
documents as the features of the SVM classifier. Only a subset of
them is chosen via the Pearsons chi-square test[1]. Yang [27]
reported that chi-square test was an effective feature selection
approach. To find out how dependent a feature f is with respect to
the subjective set or the objective set, we set up a null hypothesis
that f is independent of the two categories with respect to its
occurrences in the two sets. A Pearsons chi-square test compares
observed frequencies of f to its expected frequencies to test this
hypothesis by a contingency table. Table 1 shows the contents of
a contingency table. To calculate the chi-square value of a feature
f, all the subjective and objective documents are decomposed to
sentences. All sentences in the subjective documents are labeled
as subjective. All those in the objective documents are labeled as
objective. The observation Oij in Table 1 is counted as the

834

number of sentences having/not-having f in the
subjective/objective set respectively. For example, O12 is the
number of sentences not having f in the subjective sentence set.

Table 1. Contingency table for Pearsons chi-square

 F ┐ f Row total
Sub. set O11 O12 O11+O12
Obj. set O21 O22 O21+O22

Col. total O11+O21 O12+O22 Grand total O11+O12+ O21+O22
The independence of f is tested by calculating its chi-square value

() ()
∑ ∑
= =

−

21 21, ,

2
2

i j ijE
ijEijO=fχ

where Eij is the expected frequency of case ij calculated by

{ } 2 1, j i, ∈
×

,
totalgrand

jtotalcolumn
itotalrow

=ijE

The larger the chi-square value, the more class-dependent f is with
respect to the subjective set or the objective set. We keep a
feature if it has a chi-square value no less than 5.02, which
corresponds to the significance level of 0.025. We assume that it
is class dependent, and thus is used as a feature in the SVM
classifier. During the text processing, we only do Porter stemming
but do not remove any stop words. After the features are selected,
all the subjective and objective sentences are represented as
feature-presence vectors, where the presence or absence of each
feature is recorded [18]. These vectors are used to train the SVM
classifier. The classifier is generated in a one-classifier-per-query
way, as the subjective and objective documents are collected
according to the query. So each query has its own features and its
own customized classifier, because we think that the features
could be query dependent. For example, “delicious” may appear
in opinions about foods, but hardly appear in opinions about a car.

4.3 Building the SVM Opinion Classifiers
4.3.1 Query-Dependent Classifier
Since people tend to use different words in different domains, for
example, “tasty” in opinions about foods but hardly in opinions
for automobile, and “dependable” vice versa, we want to build the
query-dependent classifiers at first. It means that given a set of n
queries, each query gets its subjective and objective training data
sets in section 4.1, n queries result in n subjective/objective
training sets. Each of these n training sets is used to select features
and build a classifier only for the corresponding query. This
results in n classifiers.

4.3.2 Query-Independent Classifier
A query-dependent (Q-D) classifier might be accurate but its
efficiency could be a problem, if applied in practice. We construct
another type of classifier, namely query-independent (Q-I)
classifier. It is built as follows: given the same query set and the
training data sets of section 4.3.1, the training data from all
queries is used to build a classifier, so that the classifier is
independent of the actual query. We will compare the
performance of Q-D and Q-I classifiers via experiments.

4.4 Applying the SVM Opinion Classifiers
When the SVM opinion classifier for a query is ready, it tests the
documents that are retrieved by the IR component of our system
in response to the query. Such a document is decomposed into
sentences. The classifier takes one sentence each time, outputs a
subjective label and a numeric score for this sentence. The score
represents the classifier’s confidence to its decision of the label.
The score is positive if the classifier considers the sentence to be
subjective, or negative if it considers the sentence to be objective.
A retrieved document is labeled as opinionative if it contains at
least one subjective sentence labeled by the classifier.

5. FINDING THE RELEVANT
OPINIONATIVE DOCUMENTS
5.1 Finding Query Relevant Opinions
The SVM classifier only determines if sentences in a documents
are opinionative or not, but does not know if the opinions are
about the query or not. We use a NEAR operator to classify an
opinionative sentence as either relevant or not relevant to the
query. This NEAR operator uses a text window to cover five
sentences: a subjective sentence labeled by the classifier, the two
adjacent sentences preceding it and the two after it. Then it
searches for the query terms in this text window:
(1) Search for at least two words of the original query words or

their synonyms in the text window, if the original query
contains at least one multi-word phrase. The two terms do
not have to be in the same phrase, because the document has
been retrieved by the query, and some references to the
query topic might be abbreviated. For example, a query
“California whale watching” contains a phrase “whale
watching”. A sentence “I really enjoyed following the
whales when I was in California” contains opinions about
the query. It contains two query terms but not the phrase.

(2) Search for the original query word or at least one of its
synonyms if the original query contains only one word.

(3) Search for at least one of the original query words or their
synonyms, and at least one expanded query words, so that
totally at least three words are found, if it is a multi-word
query but not containing any multi-word phrase.

The NEAR operator outputs true if any of these three cases
happens in the text window or false otherwise. We call the
subjective sentence in that text window a relevant opinionative
sentence (ROS) if NEAR outputs true. A document is considered
as a ROD of the query if it contains ROS. The intuition is that
people express opinions either directly or indirectly to a target.
They can express the opinion in the same sentence with the target,
or in a describe-and-then-comment way. We assume that this
NEAR operator covers various situations. In summary, a
document d is classified as a ROD of a query Q if (1) at least
one of d’s sentences is classified as a subjective sentence by the
SVM classifier of Q, and (2) at least one of d’s subjective
sentences is a ROS recognized by the NEAR operator. If d is
identified as a ROD, the sum of the classification scores of its
ROS, which are given by the SVM classifier, is set as d’s
opinion similarity score about the query.

835

5.2 Relevant Opinionative Documents
Ranking
We have identified some documents as the potential ROD of a
query. Now we present three opinion retrieval similarity functions
to rank these documents.

5.2.1 Rank by Topic Retrieval Similarity Score
The first similarity function simply uses the similarity scores from
the document topic retrieval step, as the opinion retrieval
similarity scores. The idea is to test if the opinion retrieval
similarity has a relationship with the intensity of the query terms
and the expanded query terms in the documents. Let d be a
document. Let D be the document set that are classified as ROD
of a query Q, by the NEAR operator. Let Sim(d, Q) be the
document topic retrieval similarity function defined in formula
3.1, this opinion retrieval similarity function is defined as

(5.1)
otherwise ,

Dd if),,(
),(

⎩
⎨
⎧ ∈

=
0

QdSim
QdirOSim

We call formula 5.1 the “ir similarity function” later on. When it
is applied, the documents classified as ROD are ranked in
descending order of OSimir scores.

5.2.2 Rank by Document Opinion Similarity Score
In Section 5.1 we set the sum of the classification scores of the
ROS of a document d as d’s opinion similarity score. We use this
score as our second function. Let d be a document. Let D be the
set of documents that are classified as ROD with respect to a
query Q by the NEAR operator. Let R(d) denote the set of relevant
opinionative sentences in a document d in D. Let s be a sentence,
and score(s) be the classification score of s given by the SVM
classifier. This similarity function is defined as

(5.2)
otherwise 0,

Dd if ,
)(

)(
),(

⎪
⎩

⎪
⎨

⎧ ∈
∈=
∑
dRs

sscore
QdstcsOSim

This function takes the scores of the relevant opinionative
sentences into consideration. We call it the “stcs similarity
function” where stcs stands for “sentence score”. When it is
applied, the documents classified as ROD are ranked in
descending order of OSimstcs scores.

5.2.3 Rank by Relevant Opinionative Sentence Count
Formula 5.2 uses the detailed classification scores of all the
relevant opinionative sentences. We think the size of the ROS set
could be another measure. Intuitively, the size of the ROS set
should also reflect the intensity of the relevant opinions in a
document. Let R(d) be the same R(d) as defined in Section 5.2.2.
The third similarity function is defined as

(5.3)
otherwise 0,

Dd if ,|)(|
),(

⎩
⎨
⎧ ∈

=
dR

QdstccOSim

We call this the “stcc similarity function” where “stcc” stands for
“sentence count”. When it is applied, the documents classified as
ROD are ranked in descending order of OSimstcc scores.

5.2.4 Combine the Similarity Functions
Formula 5.1 only utilizes the document retrieval score, while
formula 5.2 and 5.3 only use opinion related information. We

want to see if the combination of these two types of scores can
improve the opinion retrieval performance. So we create the
combined similarity functions in a general form of

(5.5))(_

(5.4))(_

stccOSimbirOSimbstccirOSim
stcsOSimairOSimastcsirOSim

×−+×=

×−+×=

1

1

In (5.4) and (5.5), all the OSimir, OSimstcs, and OSimstcc scores
have been normalized to be within the range of [0, 1]. Various
values of a and b between 0 and 1 will be tested, so that we can
have an empirical understanding of the optimization of these two
coefficients.

6. EXPERIMENTAL RESULTS
We have implemented our algorithm as an operational system. It
is tested on the TREC 2006 Blog Track query and document set
[17]. The query set contains 50 queries. They cover domains of
movies, TV programs, politicians, politics, sports, electronic
products, entertainment, health and food, celebrities, and
organizations. Each query has a title, a description and a narrative.
A query title resembles a typical query submitted to a web search
engine. Among the 50 query titles, there are 16 one-term queries,
23 two-term queries, 8 three-term queries, 2 four-term queries and
1 five-term query. The description is a sentence explaining the
meaning of the query in more detail. The narrative is a short
paragraph about what types of documents are relevant and what
are not. The document collection contains over 3.2 million blog
documents (88.8GB) collected from various blog web sites
between December 2005 and February 2006. The Track also
releases the official golden standard for each query. So the real
ROD set for each query is given. A retrieval system may return at
most 1000 ranked documents for each query from the blog
document set. Although our system is able to identify the opinions
relevant to a query at the sentence level, it needs to follow the
TREC requirements to rank and return whole documents as output.
We conduct the automatic, title-only experiments, which use only
the query titles as the original queries, and have no human
interaction involved. The experiments are designed so that the
performances of various parts of our algorithm are tested and
analyzed. The experimental results are evaluated by the golden
standard, and presented in Mean Average Precision (MAP) scores.

6.1 Performances of Individual Components
Our algorithm contains three components: IR, opinion
classification and similarity ranking. We first conduct
experiments testing how these components perform. We set seven
system configurations where configuration (3), (4) and (5) are the
full configurations using different opinion similarity functions:

(1) IR: a system only utilizes the IR component. The retrieved
documents from the IR component are considered as the
RODs, and are compared to the golden standard. This is to
test the relationship between topic relevance and the opinion
relevance: if higher topic relevance results in higher opinion
relevance in a blog document collection.

(2) IR+OC: IR component plus the opinion classification
module. For each query, the corresponding query-dependent
opinion classifier checks the retrieved documents from IR
component. All the subjective sentences labeled by the
opinion classifier are considered as query-relevant. The
documents labeled as subjective are considered as the RODs.

836

This is to test if detecting any kind of opinions can improve
the opinion retrieval effectiveness.

(3) IR+OC+NEAR: configuration (2) plus the NEAR operator
of the ranking component. This is actually the full
configuration of our algorithm when using the OSimir(d,Q)
similarity function (formula 5.1), since ir function does not
re-rank the documents that pass the OC and NEAR filters.
This is to test how the distance between query terms and
opinionative terms in the same document, as a filter, affects
the retrieval effectiveness.

(4) IR+OC+NEAR+STCS: configuration (3) plus the stcs
opinion similarity function. This is to test if ranking the
retrieved documents by the density of their relevant opinions
can improve the retrieval effectiveness.

(5) IR+OC+NEAR+STCC: Identical to (4) but stcs is replaced
by stcc function.

(6) IR+OC+STCS: Configuration (2) plus the stcs opinion
similarity function. This is to test how the missing of NEAR
operation affects the similarity function.

(7) IR+OC+STCC: Identical to (6) but stcs is replaced by stcc
function.

In these configurations, the opinion classification module is built
as follows: the subjective documents for SVM training are from
rateitall.com. Google is used to obtain subjective documents only
when no subjective documents are obtained from rateitall.com. In
addition, only the first of the 5 "subjective indicator phrases" in
Section 4.1 is used (Section 6.2 will use all these 5 phrases). The
objective documents are from Wikipedia. Google is used to obtain
objective documents only when no objective documents are
obtained from Wikipedia. Each query-dependent SVM opinion
classifier has 2,661 features on the average. All the above
configurations are tested by using the 50 queries in automatic,
title-only runs. The overall MAP scores of the opinion retrieval
using these configurations are listed in Table 2.

Table 2. MAP scores from different system configurations

 Configuration MAP
1 IR 0.1826
2 IR+OC 0.1740
3 IR+OC+NEAR 0.1828
4 IR+OC+NEAR+STCS 0.1938
5 IR+OC+NEAR+STCC 0.2052
6 IR+OC+STCS 0.1399
7 IR+OC+STCC 0.1337

In line 1 of table 2, the performance of IR component alone is
strong (0.1826), comparing to the best multi-component
configuration (0.2052 of line 5). The reason is that in a subjective
information rich environment, such as the blog documents, the
topic-relevant factual content itself is a good indication of the
topic-relevant comments in the documents, having more query-
relevant factual contents means higher chance of having query-
relevant comments. In such a document collection, a traditional
IR system can still have a reasonable performance in term of
opinion retrieval effectiveness, even not considering subjective
information at all.
In line 2, adding the opinion classification component decreases
the MAP by about 4.9% with respect to line 1. This is because
that just identifying the subjective contents, but without

distinguishing the query-relevant opinions from query-irrelevant
opinions, is not enough for opinion retrieval. The query-irrelevant
opinions cause deterioration to the retrieval effectiveness.
The NEAR operator is designed to identify the query-relevant
opinions. Adding the NEAR operator into the system brings the
MAP back to 0.1828, slightly higher than that of line 1. This,
together with line 2, indicates that query-relevant opinions are the
actual subjective contents helping the opinion retrieval, but not
any opinions.
The stcs and stcc opinion similarity functions calculate the
similarity scores based on the amount of subjective information
found in a document. Their performances heavily depend on the
quality of the recognized subjective texts in the documents. In
line 4 and 5 of table 2, stcs and stcc functions increase the MAP
by 6.02% and 12.25% respectively, comparing to line 3. This
shows that the amount of the query-relevant opinions in a
document is a positive factor of the opinion similarity.
When comparing the score of line 4 to that of line 6, and the score
of line 5 to that of line 7 respectively, we observe sharp decrease
of MAP if the system does not capture query-relevant opinions.
Removing the NEAR operator causes 27.81% and 34.83% of
MAP decreases for stcs and stcc configurations respectively,
which are much more than the decrease from line 3 to line 2. The
reason is that in both lines 2 and 3, documents are ranked by
using their similarities from the IR component. The NEAR
operator filters out the documents that do not have query-relevant
opinions. But it does not add any similarity to the remaining
documents, and the ordering of the remaining documents in line 3
is the same as that in line 2. So the MAP decrease is relatively
small. However, the cases of lines 6 and 4 are different. In line 6,
after removing the NEAR operator, all the subjective sentences
become query-relevant. But in line 4, only the subjective
sentences qualified by the NEAR operator are considered as
query-relevant. So in line 6, the scores of those query-irrelevant
subjective sentences are also included into the opinion similarity
scores. This causes significant changes in the similarity scores
that are calculated by the stcs function, which results in big
changes of the document ranking and therefore the big MAP
decrease of line 6, compared to the MAP of line 4. Removing the
NEAR operator from line 5 causes the same thing to happen in
line 7. This again proves that the query-relevant opinions play a
very important role in the opinion retrieval, and the NEAR
operator is critical to the stcc/stcs similarity function.
The 0.2052 MAP from configuration 5 is higher than the highest
MAP (0.1885) of the automatic, title-only runs that were reported
in the TREC 2006 Blog Track [17]. This 0.2052 MAP equals to
the highest MAP of all the automatic runs (including systems
using title-description-narrative queries) reported in [17]. This
indicates that our algorithm works well for opinion retrieval.
Table 2 shows that the IR, OC, NEAR and opinion similarity
functions are all essential for our opinion retrieval system. Their
cooperation maximizes the retrieval effectiveness.

6.2 Experiments Using More Statistics
In this experiment, we study the role of the opinionative feature
sets in the opinion retrieval. We want to test whether larger
opinionative feature sets, which result from using more training
data, can be beneficial to the opinion retrieval. We use the
configurations of 3, 4 and 5 from section 6.1 as the baselines. The

837

opinion classifiers of the baselines are trained by using the
features selected from the training data of section 6.1. The
comparing systems use the identical configurations of 3, 4 and 5,
but the classifiers are trained with larger opinion feature sets,
which result from more training data. Comparing to the training
data collecting methods in section 6.1, the additional source
epinions.com is used to collect more subjective sentences. Google
is always used to collect both subjective and objective sentences.
In addition, all 5 “subjective indicator phrases” are used. The
SVM classifiers in the comparing systems get more training data
than those in the baselines, since the new configuration uses the
documents from more resources. Averagely each SVM classifier
in the baseline system has 2,661 features. Each SVM classifier in
the comparing system has 3,777 features on the average. We
name the baselines and the comparing systems as follows:

1. BL_ir: Configuration (3) in section 6.1, baseline.

2. BL_stcs: Configuration (4) in section 6.1, baseline.

3. BL_stcc: Configuration (5) in section 6.1, baseline.

4. NEW_ir: BL_ir with SVM classifiers trained by larger
feature sets, which are from larger training sets.

5. NEW_stcs: Identical to NEW_ir but use stcs function
instead of ir function.

6. NEW_stcc: Identical to NEW_ir but use stcc function
instead of ir function.

Table 3. Compare new configurations that use more features
to baselines

 Baseline MAP New MAP Increase
1 BL_ir 0.1828 NEW_ir 0.2013 10.12%
2 BL_stcs 0.1938 NEW_stcs 0.2392 23.43%
3 BL_stcc 0.2052 NEW_stcc 0.2457 19.74%
Table 3 shows the MAP scores from the six configurations. All
the “NEW” configurations that use larger feature sets get higher
MAP scores than the corresponding baselines, regardless of what
ranking strategies used. The increments are from 10% to 23%.
The reason is that all the features used in the classifiers have
biased distributions, which are either objective-oriented or
subjective-oriented. As having more features means more
characteristics of the objective language and subjective language
are captured, better retrieval effectiveness is achieved.

6.3 Combined Similarity Functions
We have defined two combined similarity functions in formulas
5.4 and 5.5. In this experiment, we still use the “NEW”
configurations of section 6.2, but using the formulas (5.4) and (5.5)
for similarity calculation. We test them using values of 0.1, 0.3,
0.5, 0.7 and 0.9 respectively for both a and b. The MAP scores of
these two configurations at various coefficient values are reported
in Table 4. The “Avg. single MAP” shows the average MAP of
the two single configurations used in a formula. For example, in
formula 5.5, the average MAP of the ir configuration (0.2013
when a=1) and the stcc configuration (0.2457 when a=0) is
0.2235. The “Avg. Comb MAP” shows the average MAP of the
five combined MAPs of a formula when the coefficient has values
in (0, 1). For example, formula 5.5 have an average of 0.2596.

Table 4. MAP scores of the combined configurations

Formula 5.4 Formula 5.5
Coefficient Combination Coefficient Combination

a NEW_ir_stcs b NEW_ir_stcc
0 0.2392 0 0.2457

0.1 0.2470 0.1 0.2582
0.3 0.2523 0.3 0.2605
0.5 0.2539 0.5 0.2643
0.7 0.2503 0.7 0.2593
0.9 0.2447 0.9 0.2559
1 0.2013 1 0.2013

Avg Single MAP 0.2203 Avg Single MAP 0.2235
Avg Comb. MAP 0.2496 Avg Comb. MAP 0.2596
In both formulas, all the combined MAPs are higher than the two
single MAPs. The average MAP increases are about 13% for
formula 5.4 and 16% for formula 5.5. The linear combination
significantly improves the opinion retrieval effectiveness of our
algorithm. The highest combined MAP for each formula appears
when the coefficient is 0.5. This indicates that a simple half-to-
half combination is good to maximize the power of the linear
combination. The reason for this MAP increase in combined
similarity functions is that the ir function uses the query-relevant
factual contents to rank the retrieved documents, while the
stcc/stcs functions use the query-relevant opinions to rank the
documents. They capture different aspects of the documents. Put
them together means more useful information is used in document
ranking, which results in improved MAP.

6.4 Query Dependent Classifiers Vs. Query
Independent Classifier
After we tested the query-dependent (Q-D) opinion classifiers in
section 4.3.1, we want to test if the query-independent (Q-I)
classifier has the same effect. The advantages of using a Q-I
classifier are that (1) the system can have a simpler structure. The
opinion classifier is constructed based on a set of training queries
in multiple domains. So there is no need to create a Q-D classifier
dynamically for each incoming query; and (2) the features in the
Q-I classifier are determined independent of the queries to be
processed, so that the documents can be indexed according to
these features before query processing. Both (1) and (2) increase
the query processing speed and reduce the retrieval response time,
so that the efficiency of the system can be improved.
We build our first Q-I opinion classifier by using a use-all-
training-data method. It utilizes the subjective and objective
training documents of all 50 queries to construct one set of
features, and build just one universal opinion classifier for the
system. The systems that use this universal classifier are called
the Q-I-50 systems. In practice, it is likely that an incoming query
is not among the training queries. In order to estimate the
performance of this situation, we build another type of Q-I
classifier by using a leave-one-out method. It means, for a query
Q, we merge the subjective (objective) documents of the other 49
queries to a single subjective (objective) set to build a SVM
classifier, which is only used in the system when testing Q. This
classifier is really independent of Q, because it does not use
training documents of Q. We call this classifier the Q-I-49
classifier. Although we still end up having 50 classifiers, they are
just for experimental purpose, to more accurately estimate the
effectiveness of the query-independent opinion classification. A

838

realistic system will still have just one classifier. We call the
systems using these classifiers the Q-I-49 systems.
All the previous “NEW” configurations in section 6.2 and 6.3
have their Q-D classifiers replaced by Q-I-49 and Q-I-50
classifiers. On the average, a Q-I-49/50 opinion classifier contains
more than 70,000 features, which is about 17 times bigger than
that of the Q-D classifiers (3,777 in section6.2). We repeat the
experiments in Section 6.2 and 6.3 using these Q-I-49/50
configurations, and compare the results to those in section 6.2 and
6.3. The results are shown in table 5.

Table 5. Comparisons between configurations using Q-D and
Q-I-49/50 opinion classifiers

MAP
Q-D Q-I-49 Q-I-50

1 NEW_ir 0.2013 0.2160 0.2101
2 NEW_stcs 0.2392 0.2422 0.2540
3 NEW_stcc 0.2457 0.2528 0.2600

Table 5 shows that, all the Q-I-49 and Q-I-50 systems achieve
higher MAPs than those Q-D systems, The MAP increase for Q-I-
49 system ranges from 1.25% (0.2392 to 0.2422) to 7.30%
(0.2013 to 0.2160). Q-I-50 systems usually get higher MAP than
Q-I-49 systems, except at line 1. The reason for the “Q-I scores
higher than Q-D scores” is that more features tend to help in
gaining retrieval effectiveness, in spite of the fact that many of the
features are not relevant and not used for a specific query. We
note that some of the 49 queries used to get the training data are
in the same domain where the testing query belongs. For example,
query 891 “intel” and 856 “macbook pro” are both in the
“computer” domain. So even the training data is from “intel”, the
recognized features are still related to the computer domain.
These features are still suitable for “macbook pro”. So the domain,
in which the testing query and some of the training queries both
belong to, makes some of the features in an “independent training
set” still relevant to the testing query. Clearly, the most relevant
features for a query are obtained from the set of training
documents of the same query. If that set is left out, some
deterioration of retrieval effectiveness is expected. This is evident
by comparing Q-I-49 and Q-I-50.

Table 6. Comparisons between the combined configurations
using Q-D and Q-I-49/50 opinion classifiers

NEW_ir_stcs Q-D Q-I-49 Q-I-50
Avg. 0.2496 0.2522 0.2606
Max 0.2539 (a=0.5) 0.2566 (a=0.3) 0.2656 (a=0.3)

NEW_ir_stcc Q-D Q-I-49 Q-I-50
Avg. 0.2596 0.2649 0.2690
Max 0.2643 (b=0.5) 0.2687 (b=0.3) 0.2726 (b=0.5)

Table 6 compares the configurations that use combined similarity
functions, when they use Q-D and Q-I opinion classifiers. Similar
to the results of table 5, Q-I systems outperform the Q-D systems.
But both increased and decreased MAPs are observed at the
individual query level. Table 5 and 6 show that in our opinion
retrieval system, using Q-I opinion classifiers is at least
comparable to, or slightly better than using Q-D classifiers. The
questions of how to choose right training queries and how many
training queries to use are still worth further study.

6.5 Comparing to Related Works
In Table 7, we compare the best MAPs from our system to the
best MAPs from various run categories in TREC 2006 Blog Track,
and that from a state-of-art opinion retrieval system by Mishne
[30] in 2007. All these systems are tested on the same TREC Blog
data and query set. Our system and Mishne’s system belong to the
automatic, title-only run category (T). Other two automatic run
categories are the title-description run (TD) and the title-
description-narrative run (TDN). The title-only system uses only
the query title as an original query. The title-description system
uses terms in the query title and description as the original query.
The title-description-narrative system uses terms in the query title,
description and narrative as the original query.

Table 7. Comparisons between best MAPs from our algorithm
and those from TREC 2006 Blog Track

TREC 2006 Mishne (T) Q-D (T) Q-I-49 (T) Q-I-50 (T)
T 0.1885

TD 0.1887
TDN 0.2052

0.2411

0.2643

0.2687

0.2726

Table 7 shows that our algorithm, when using only the query titles
as queries, has MAPs that are 28% to 32% higher than the highest
TREC 2006 Blog Track MAP, even when those TREC systems
utilize the description and narrative information. In practice, the
title-only run is more realistic because users rarely provide the
descriptions and narratives when they submit queries.
As introduced in the related works, Mishne [30] recently reported
a state-of-art opinion retrieval system in 2007 that had a strong
performance. This system achieved a MAP of 0.2411 when tested
on TREC 2006 Blog data and the title-only queries. The best
MAP of our systems is 13.1% higher than that of his system.
In this paper, we mainly focus on improving the retrieval
effectiveness of our system, but have not addressed the efficiency
issue in detail. Opinion retrieval is more complex than the
traditional IR. Many opinion recognition processes are time
consuming, such as the training and using of the SVM classifiers.
It is expected that the opinion retrieval take more time. Improving
the retrieval efficiency can be achieved by using the Q-I classifier
instead of the Q-D, so that indexing the opinion features and the
opinion classification of the document sentences can be done
before query processing. Therefore, the IR step and the
recognition of the ROS can be carried out in parallel for
answering a query. Then the response time can be reduced.
In summary, our results show that: (1) Both query-relevant factual
information and query-relevant opinions are necessary for an
opinion retrieval system. (2) Generally more features in the
opinion classifiers help the system improve retrieval effectiveness.
(3) A linear combination of the ir similarity and the stcc/stcs
similarity yields better results than the individual functions. (4)
An universal query-independent opinion classifier is at least
comparable to, or slightly better than the query-dependent
classifiers in retrieval effectiveness. A Q-I classifier clearly can
simplify the system and increase the retrieval speed.

7. CONCLUSIONS
In this paper, we presented a three-component opinion retrieval
algorithm. The first component is an information retrieval module.
The second one classifies documents into opinionative and non-
opinionative documents, and keeps the former. The third

839

component ensures that the opinions are related to the query, and
ranks the documents in certain order. We studied the effects of
various parameters in our algorithm and empirically determined
the best parameter configuration. The best MAP of our system is
28% to 32% higher than those of the best TREC 2006 Blog Track
automatic runs, and is 13% higher than a state-of-art opinion
retrieval system. We comment on how the entire system can be
made efficient by utilizing query-independent features. In future
studies, we plan to study in more detail on the choice of features
and a better implementation of the NEAR operator.

8. ACKNOWLEDGMENTS
The authors thank the reviewers for their helpful comments. This
work is supported in part by AOL under a research grant. The
views of this paper are those of the authors, and do not represent
those of AOL.

9. REFERENCES
[1] H Chernoff and E Lehmann. The use of maximum likelihood

estimates in χ2 tests for goodness-of-fit. The Annals of
Mathematical Statistics. 1954.

[2] S Das, and M Chen. Yahoo! for Amazon: Extracting market
sentiment from stock message boards. APFA, 2001.

[3] K Dave, S Lawrence, and D Pennock. Mining the Peanut
Gallery: Opinion extraction and semantic classification of
product reviews. WWW’03, 2003.

[4] A Esuli and F Sebastiani. Determining the semantic
orientation of terms through gloss analysis. In Proc. of CIKM.
2005.

[5] V Hatzivassiloglou and K McKeown. Predicting the
semantic orientation of adjectives. In Proc. of ACL. 1997.

[6] V Hatzivassiloglou and J Wiebe. Effects of adjective
orientation and gradability on sentence subjectivity.
COLING’00. 2000.

[7] http://blogsearch.google.com
[8] http://en.wikipedia.org
[9] M Hu and B Liu. Mining and Summarizing Customer

Reviews. In Proceedings of SIGKDD. 2004.
[10] N Jindal and B Liu. Identifying Comparative Sentences in

Text Documents. In Proc. of the 29th SIGIR. 2006.
[11] T Joachims. Making large-scale SVM learning practical.

Advances in Kernel Methods: Support Vector Learning.
1999.

[12] Soo-Min Kim and Eduard Hovy. Determining the Sentiment
of Opinions. In Proc. of COLING. 2004.

[13] N Kobayashi, R Iida, K Inui, and Y Matsumoto. Opinion
mining on the Web by extracting subject-attribute-value
relations. AAAI-CAAW'06, 2006.

[14] L-W Ku, L-Y Lee, T-H Wu, and H-H Chen. Major topic
detection and its application to opinion summarization. In
Proc. of SIGIR. 2005

[15] B Liu, M Hu and J Cheng. Opinion Observer: Analyzing and
Comparing Opinions on the Web. In Proceedings of the 14th
WWW Conference. 2005.

[16] S Liu, F Liu, C Yu, and W Meng. An Effective Approach to
Document Retrieval via Utilizing WordNet and Recognizing
Phrases. In Proceedings of the 27th SIGIR. 2004.

[17] I Ounis, M de Rijke, C Macdonald, G Mishne, and I
Soboroff. Overview of the TREC-2006 Blog Track. In
Proceedings of TREC. 2006.

[18] B Pang, L Lee and S Vaithyanathan. Thumbs up? Sentiment
Classification Using Machine Learning Techniques.
EMNLP’02, 2002.

[19] Bo Pang and Lillian Lee. Seeing stars: Exploiting class
relationships for sentiment categorization with respect to
rating scales. In Proceedings of ACL. 2005.

[20] A Popescu and Oren Etzioni. Extracting product features and
opinions from reviews. In Proc. of HLT/EMNLP. 2005.

[21] S. Robertson, S. Walker Okapi/Keenbow at TREC-8, 1999.
[22] R Tong. An operational system for detecting and tracking

opinions in on-line discussions. SIGIR 2001 Workshop on
Operational Text Classification, 2001.

[23] P Turney. Thumbs up or Thumbs down? Semantic
orientation applied to unsupervised classification of reviews.
ACL’02, 2002.

[24] Ellen M. Voorhees. Overview of the TREC 2005 Robust
Retrieval Track. In Proceedings of TREC-2005.

[25] C Whitelaw, N Garg, and S Argamon. Using appraisal
groups for sentiment analysis. In Proc. of CIKM. 2005

[26] J Wiebe, T Wilson, R Bruce, M Bell and M Martin. Learning
subjective language. Computational Linguistics. 2004.

[27] Y Yang and J Pederson. A comparative study on feature
selection in text categorization. In Proc. of ICML. 1997.

[28] H Yu and V Hatzivassiloglou. Towards answering opinion
questions: Separating facts from opinions and identifying the
polarity of opinion sentences. EMNLP’03, 2003.

[29] G. Mishne. Multiple ranking strategies for opinion retrieval
in blogs. In TREC 2006, 2006.

[30] Gilad Mishne. Using Blog Properties to Improve Retrieval.
In proceedings of ICWSM. 2007.

[31] Wei Zhang and Clement Yu. UIC at TREC 2006 Blog Track.
In proceedings of 15th TREC. 2006.

[32] K Yang, N Yu, A Valerio and H Zhang. WIDIT in TREC
2006 Blog Track. In proceedings of 15th TREC. 2006.

[33] Douglas Oard, Tamer Elsayed, Jianqiang Wang, Yejun Wu,
Pengyi Zhang, Eileen Abels, Jimmy Lin and Dagbert Soergel.
TREC-2006 at Maryland: Blog, Enterprise, Legal and QA
Tracks. In proceedings of 15th TREC. 2006.

[34] Wei Zhang, Shuang Liu, Clement Yu, Chaojing Sun, Fang
Liu and Weiyi Meng. Recognition and Classification of
Noun Phrases in Queries for Effective Retrieval. In
proceedings of CIKM. 2007.

[35] Jinxi Xu and W Croft. Query Expansion Using Local and
Global Document Analysis. In proceedings of SIGIR. 1996.

840

