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ABSTRACT 
Opinion retrieval is a document retrieval process, which requires 
documents to be retrieved and ranked according to their opinions 
about a query topic. A relevant document must satisfy two 
criteria: relevant to the query topic, and contains opinions about 
the query, no matter if they are positive or negative. In this paper, 
we describe an opinion retrieval algorithm. It has a traditional 
information retrieval (IR) component to find topic relevant 
documents from a document set, an opinion classification 
component to find documents having opinions from the results of 
the IR step, and a component to rank the documents based on 
their relevance to the query, and their degrees of having opinions 
about the query. We implemented the algorithm as a working 
system and tested it using TREC 2006 Blog Track data in 
automatic title-only runs. Our result showed 28% to 32% 
improvements in MAP score over the best automatic runs in this 
2006 track. Our result is also 13% higher than a state-of-art 
opinion retrieval system, which is tested on the same data set. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – retrieval models, selection process. I.2.7 
[Artificial Intelligence]: Natural Language Processing – text 
analysis. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Opinion Retrieval, Blog Retrieval, Information Retrieval, TREC. 

1. INTRODUCTION 
The fast growth of blog (derived from “Web Blog”) web sites has 
created a highly active portion of the World Wide Web. People 
publish blogs, a kind of journal style web pages, which provide 
news, comments, and personal diary-like articles. Readers can 
leave feedbacks to the blogs. Major web search engines such as 

Google [7] have launched blog search services. But these blog 
search tools are just the applications of the traditional web search 
techniques in the blog domain, in that, given a query, they only 
search for fact-related information in the blogs. However, the 
opinions about various topics, which are very important feature of 
the blog documents, are not searched by these tools. In 2006, the 
Text REtrieval Conference (TREC) brought up a “Blog Track” 
for the first time focusing on information retrieval in the blog 
documents [17]. The major task of this track was the “opinion 
retrieval”. An opinion retrieval system is required to locate blog 
documents expressing opinions about a query in a large blog 
collection. Identification of the polarity of the query-relevant 
opinions in the documents is not required. A relevant document 
should satisfy two criteria: relevant to the query, and contains 
opinions or comments about the query, no matter if they are 
positive or negative. For example, given a query “Audi”, a 
relevant document must contain opinions about either Audi cars 
or the company itself. A document telling a driver’s feelings 
about his Audi A4 is relevant in opinion retrieval. However, a 
document only describing mechanic features of an Audi A4 is not 
relevant. Although the machine learning and natural language 
processing communities have worked on finding opinions about 
targets such as products [15], movie reviews [18] in documents, 
they usually assume that the documents have already contained 
the relevant opinions. They do not address the general problem of 
how to retrieve the opinionative documents from a collection. On 
the other hand, the traditional information retrieval (IR) 
community only focuses on the fact-oriented retrieval. It does not 
handle the subjective contents about the queries in the documents. 

In this paper, we present an opinion retrieval algorithm that 
retrieves blog documents according to the opinions and comments 
about a query that the blog documents contain. We first define 
some concepts for the opinion retrieval. 

• A query topic (query for short) is a list of words to be 
searched in a document collection. The queries are the inputs 
to an information retrieval system. 

• The subjective texts are the comments or opinions about a 
target in a document. In a blog document, the comments can 
come from the original post of the blog, or from the feedbacks 
added after the original post by other people. In our paper, 
“subjective texts”, “subjective contents” of a document, 
“comments” and “opinions” all have the same meaning. 

• The relevant opinions of a query are the comments or 
opinions that are about that query. For instance, in the Audi 
example introduced above, opinions about the Audi cars or 
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company are relevant opinions. Opinions about a gas station 
in the same document are not relevant opinions. 

• The opinionative documents are the documents containing any 
types of opinions, which are not necessarily related to a query. 

• The topic relevant documents (relevant documents for short) 
of a query are the ideal output of a document retrieval system. 
Such topic relevant documents may or may not contain 
opinions about the query. 

• The Relevant Opinionative Documents (ROD) of a query are 
documents that contain relevant opinions about the query. A 
list of ROD is the ideal output of an opinion retrieval system. 

We consider the ROD as a subset of the intersection of the topic 
relevant documents and the opinionative documents. Accordingly, 
our opinion retrieval algorithm has three components. (1) An IR 
component retrieving the topic relevant documents, no matter if 
they contain opinions or not. We utilize an IR system built for a 
past TREC task for this purpose. (2) An opinion identification 
component that retrieves the opinionative documents. We build 
support vector machine (SVM) classifiers to identify the 
opinionative documents. Two types of SVM classifiers are 
constructed. One is query-dependent and the other is query-
independent. (3) A ranking component. It has a NEAR operator to 
find the ROD by looking for the query-relevant opinions. Then 
the ranking component utilizes multiple strategies to rank the 
retrieved ROD by using the query-document similarities and the 
intensities of the query-relevant opinions in the documents. Our 
algorithm is tested on the TREC 2006 Blog Track data [17]. Our 
contributions are: 

1. Present a system for the new research field of opinion 
retrieval. 

2. Study the effects of the variations of the components in our 
system on retrieval effectiveness. 

3. Study the effects of having different sets of opinion features 
on retrieval effectiveness. 

4. Experiments show that the retrieval effectiveness of our 
system has significant improvements over the best results 
published in the recent TREC 2006 Blog Track by 28% to 
32%. Our result is also 13% better than a state-of-art opinion 
retrieval system tested on the same data set. 

The rest of this paper is organized as follows. Section 2 reviews 
the related works. Section 3 describes the IR component of our 
algorithm. Section 4 describes the SVM opinion finding 
component. Section 5 describes method of finding query-relevant 
opinions. Three document ranking strategies are also introduced 
in Section 5. Experimental results are reported in Section 6. 
Conclusions are given in Section 7. 

2. RELATED WORKS 
The opinion retrieval was the major task in the new TREC 2006 
Blog Track. 14 groups participated in this task. The groups with 
the top performances were [29][31][32][33]. 

Mishne [29] adopts fact-oriented IR, dictionary-based opinion 
expression detection and spam filtering as three major 
components in his system. This system not only utilizes the blog 
documents being tested, but also the RSS seeds as additional 

training data. Mishne [30] recently reported an opinion retrieval 
system that utilizes the publishing dates of the documents as a 
feature in the retrieval. This system also compares the contents of 
actual blog posts and the RSS documents to calculate the 
proportion of the comments in a blog document. Query-dependent 
spam filters, which are in the form of support vector machine, are 
used to further remove spam documents. This system achieved a 
MAP score of 0.2411, which was higher than the best score in 
TREC 2006 Blog Track. In the experiment part, we show that the 
score of our system is about 13% higher than that of this system. 

Zhang and Yu [31] adopt concept-based IR [16], machine-
learning approach based opinion detection and two separate 
opinion similarity functions in their system. Their system, which 
was an earlier version of our system, obtained the best 
performance among the groups using the title-only queries [17]. 

Yang et al. [32] adopt IR components that utilizes proximity 
match and phrase match. Their opinion component adopts 
frequency-based heuristics, special pronoun patterns and 
adjective/adverb-based heuristics. Although this system reported 
the best performance among all the participating groups, it has a 
tuning module involving human-feedback, which makes it is not a 
purely automatic system. Furthermore, their best run was 
achieved by using the title-description-narrative queries, which 
provide more information than title-only queries [17]. 

Oard et al. [33] adopt passage retrieval; both dictionary-based and 
machine-learning based sentiment term selection methods; a 
passage sentiment score is calculated by using all the sentiment 
terms in that passage. 

Other related works come from the machine learning and the 
natural language processing communities, focusing on identifying 
the subjective texts in the documents and classifying the 
subjective/objective nature of such texts. 

The subjectivity orientations of words or phrases have been 
studied. Hatzivassiloglou and McKeown [5] studied the adjectives 
as evidence of subjective texts. Hatzivassiloglou and Wiebe [6] 
investigated sentence subjectivity classification. A method is 
proposed to find adjectives that are indicative of positive or 
negative opinions. Wiebe et al. [26] identified subjective language 
features, such as low-frequency words, word collocations, 
adjectives and verbs, from corpora and used them in the sentiment 
classification. Esuli and Sebastiani [4] classified the orientation of 
a term based on its dictionary glosses. Whitelaw, Garg, and 
Argamon [25] used short phrases called “appraisal groups” 
subjective language features for sentiment classification. 

In the opinion identification works, Liu, Hu and Chen [15] and 
Popescu and Etzioni [20] both extracted product features and their 
opinions from the Web. They use heuristic rules and supervised 
learning techniques to find product features and opinions. 
Recently, Jindal and Liu [10] also studied the opinions in 
comparative sentences using the support vector machine and the 
naïve Bayes classifiers with both manual and automatic rules. 
Other opinion identification works include [12][28][9]. 

In the document-level opinion classification, Das and Chen [2] 
use a manually crafted lexicon in conjunction with several scoring 
methods to extract investor sentiment from stock message boards. 
Tong [22] generates sentiment (positive and negative) timelines 
by tracking online discussions about movies over time. Pang et al. 
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[18] examines several supervised machine-learning methods for 
positive/negative sentiment classification of movie reviews. Pang 
and Lee [19] also studied the problems of multi-category 
classification of movie reviews by using supervised learning. 

Various types of machine-learning techniques have been applied 
to the opinion classification task. Turney [23] applies an 
unsupervised learning technique based on mutual information 
between document phrases and the words “excellent” and “poor” 
to find indicative words of opinions for classification. Dave et al. 
[3] also experiment with a number of learning methods for review 
classification. They show that the classifiers perform well on 
whole reviews, but poorly on sentences because a sentence 
contains much less information. 

Ku et al. [14] summarize blog documents by their major topics 
and the related opinions. 

3. TOPIC RETRIEVAL 
The IR component of our opinion retrieval algorithm is a 
traditional document retrieval procedure. It retrieves all of the 
query-relevant documents from a document collection. The idea is 
that, given a query, the relevant opinionative document (ROD) set 
is a subset of the query topic relevant document set. An ideal IR 
step should retrieve all the topic relevant documents; all of the 
ROD should be retrieved accordingly. The subjectivities of the 
documents are not the concern of this step, as they will be 
identified in the classification module. Theoretically, any 
document retrieval system fits here, such as the Okapi formula 
based systems or the systems based on various language models. 
In our implementation, we adopt a system derived from [16], 
which has reported the best GMAP (Geometric Mean Average 
Precision, the official measure used for TREC 2005 Robust Track) 
score using TREC 2005 Robust Track data. It has the 
characteristics of concept recognition and query expansion. It 
places more emphasis on concept matching than individual term 
matching. We only describe the key points of this system. The 
details can be found in [16]. 

3.1 Concept Identification 
A concept in a query is defined as either a multi-word phrase 
consisting of adjacent query words, or a single word that does not 
belong to any other concept [34]. Concept identification is a 
query pre-processing procedure, which partitions an original 
query to these concepts. Concept is introduced to improve 
retrieval effectiveness. For example, the words in a query “Happy 
Feet” (a movie title) can be recognized as a phrase. The query 
should be searched as a single phrase rather than as two individual 
words. We designed a phrase recognition algorithm, which 
involves dictionaries, statistics from document sets, Web and 
natural language processing tools, and integrate it into our opinion 
retrieval algorithm. The detail of this phrase recognition algorithm 
can be found in [34] 

3.2 Query Expansion 
We adopt three query expansion methods. One method is a 
dictionary-based method that utilizes Wikipedia [20] to find an 
entry page for a phrase or a single term in a query. If it has such 
an entry, all the titles of the entry page are expanded as synonyms 
of the query concept. For example, if we search “PC game” in 
Wikipedia, it is re-directed to an entry page titled “personal 

computer game”, which is then added as a synonym of “PC 
game” in the query. The synonyms are treated the same as the 
original query terms in the retrieval process. The content words in 
the entry page are ranked by their frequencies in the page. The top 
k terms are returned as potential expanded terms. 
We adopt the local context analysis [35] as the second query 
expansion method. Our method combines the global analysis and 
local feedback. The query in the form of concepts is used to 
retrieve a ranked document list from the given document 
collection. The terms in the top n (a threshold) documents are 
ranked according to the formula in [35]. The top k terms are 
returned as the potential expanded terms of this method. 
The last query expansion method is a web-based method. It is 
similar to the local pseudo feedback expansion but using web 
documents as the document collection. The query is submitted to 
a web search engine, such as Google, which returns a ranked list 
of documents. In the top m documents, the top k terms that are 
highly correlated to the query terms are returned. 
Each expansion method generates terms with weights to be added 
to the original query. All the expanded terms of all the concepts 
of a query are put together. If an expanded term is returned by 
more than one method, the sum of its weights from the different 
methods is its weight. The weights of the expanded terms are 
normalized to values in (0, 0.7). The idea is that the original query 
terms and concepts all have weights of 1, while the expanded 
terms should have lower weights. The 20 top weighted expanded 
terms are chosen as the final expanded terms for each query. 

3.3 Relevant Document Retrieval and 
Ranking 
After the recognized phrases and the expanded terms are added to 
the queries, the queries are sent to document retrieval system to 
retrieve relevant documents. We adopt the IR system by Liu et al. 
[16]. It allows both phrases and single terms to be in the query. 
Let d be a document, Q be a query, C be the set of phrases of Q 
that are from the phrase recognition, E be the set of expanded 
terms of Q that are obtained from query expansion, W be the set 
of corresponding term weights of the terms in E, calculated in 
Section 3.2, idf(p) be the inverse document frequency weight of a 
concept p, Okapi(t, d) be the Okapi/BM-25 score [21] of a term t 
in d, the similarity between the query Q and a document d, Sim(d, 
Q), is defined as a pair of (phrase-similarity Sim_p(d, Q), term-
similarity Sim_t(d, Q)): 

( )

   ),( )(),( ),( _
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The phrase-similarity is defined as the sum of the idf (inverse 
document frequency) weights of the phrases in common between 
the document and the query. If a document does not have the 
recognized phrase, the Sim_p is 0. The term-similarity is the usual 
term similarity between the query and the document, which is 
computed by using Okapi formula. Each query term that appears 
in the document contributes to the term-similarity, no matter it is 
in a query phrase or not.  The Sim_p has a higher priority than 
Sim_t. The retrieved documents of a query are ranked in 
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descending order of their Sim_p values. When documents have 
the identical phrase similarity value, they are ranked in 
descending order of their term similarities. So given a query, two 
documents D1 and D2 have similarities (x1, y1) and (x2, y2), 
respectively. D1 will be ranked higher than D2 if (1) x1>x2, or 
(2) x1=x2 and y1>y2. 

4. OPINIONATIVE DOCUMENT 
RETRIEVAL 
This component is to identify the opinionative documents in a 
document set, regardless of what the opinions are about. The 
documents retrieved from topic retrieval can be separated into 
three sets: (1) no opinion, (2) opinionative but not relevant to the 
query, and (3) opinionative and relevant to the query (ROD). In 
this step, we distinguish the documents of (2) and (3) from those 
in (1). A statistical classifier is built to label the opinionative texts 
in a document. The document is decomposed into sentences. The 
classifier labels each of them as either subjective (opinionative) or 
objective (non-opinionative). The document is opinionative if at 
least one of its sentences is labeled as subjective by the classifier. 
We adopt a support vector machine (SVM) classifier that uses 
unigrams (single words) and bigrams (two adjacent words) as 
features. The vectors are presented in a presence-of-feature form, 
i.e. only the presence or absence of each feature is recorded in the 
vector. The number of occurrences of the feature is not recorded. 
This classifier-feature setup had been shown to be among the best 
configurations by Pang [18]. We use the SVM-Light [10] with its 
default setting, which is the linear kernel function, as the SVM 
implementation. 

4.1 Collecting Data for Classifier Training 
Given a query, we collect a subjective document set and an 
objective document set related to that query as the training data of 
the classifier. We expand the idea in [18], which only uses movie 
reviews as subjective texts and movie story narratives as objective 
texts: Query-dependent documents are collected for each query 
separately. The subjective documents of a query are gathered 
from reviews web sites such as rateitall.com and epinions.com. 
We use the concepts and single terms obtained in Section 3.1. For 
each such single term or concept, we search its related reviews via 
the review site’s search interface. There are two possible cases: 

Case 1. There is only one group of reviews available for this 
term/concept. Download the reviews in this group. Set the 
downloaded documents as the reviews of this term/concept. This 
refers to the case that the term/concept has only one sense. No 
sense disambiguation is needed. 

Case 2. There are more than one group of reviews available. It 
means that the query term/concept may have multiple senses. For 
example, “Chicago” can refer to a city, a music band, or a movie. 
We pick one review group by sense disambiguation. A word 
vector is formed using other original query terms and the 
expanded query terms to represent the meaning of the 
term/concept being searched. The descriptions of the review 
groups are available from the web site. The words in each 
description form a vector as the sense for the corresponding 
review group. Cosine similarities are calculated between the 
query sense vector and all the review sense vectors. The review 
group having the highest similarity score is downloaded as the 
subjective documents for the query term/concept. 

After we get the review documents for all the concepts of a query, 
these documents are put together to form a single document set 
for the whole query. We assume that the contents of these review 
documents are all subjective. Although this is not 100% true, as 
we collect a large amount of reviews, the subjective portion 
should be dominant so that the effect of the objective portion can 
be neglected. In order to get large amount of data, we also 
download additional reviews from the original reviews’ siblings 
in the review web sites. The siblings refer to the entities in the 
same category as a query term/concept. For example, if a query is 
“Toyota Camry”, in rateitall.com, reviews about “Ford Fusion” 
are also collected because they are both in the “Sedan” category. 
These sibling reviews are extracted by using the web site 
navigation tree among the entities: after the entry for a query 
term/concept is located and its reviews are downloaded, go to the 
parent node of this entity, get other child nodes of this parent, and 
download their reviews. For each query, we collect reviews from 
up to 60 of its siblings. Another way of collecting the subjective 
documents is to submit the original query plus some “opinion 
indicator phrases” such as “blogs OR reviews OR comments”, “I 
think”, “I don’t think”, “I like” or “I don’t like” to a search engine 
and get the returned documents. The intuition is that these phrases 
are indicative of opinions. If the documents contain both the 
query and one of these phrases, it is very likely that they contain 
opinions relevant to the query. So we assume that the contents of 
these documents are subjective too. Google is used as the search 
engine in our implementation. For each of the “query + indicator 
phrase” combination, we take the top 3 returned documents. The 
documents from the review web sites and the search engine form 
the subjective document set of a query. 

The objective training documents are collected from Wikipedia in 
a similar way. The dictionary entry pages are high-quality 
objective data source, since the definitions describe things without 
emotion. We submit each of the concepts and non-concept single 
terms of a query to Wikipedia to get the corresponding definition 
pages. All the contents of these pages are assumed to be objective. 
In order to have enough statistics, we also submit the original 
query, with a restriction of not containing any terms “reviews”, 
“comments”, “opinion”, “posts”, to a web search engine. The 
intuition of this is that a document is likely to be non-opinionative 
if none of these words are found. The top 2 documents returned 
from Google are collected. The documents from Wikipedia and 
Google form the objective document set of a query. 

4.2 Selecting Useful Features 
We do not use all of the unigrams and bigrams in the collected 
documents as the features of the SVM classifier. Only a subset of 
them is chosen via the Pearsons chi-square test[1]. Yang [27] 
reported that chi-square test was an effective feature selection 
approach. To find out how dependent a feature f is with respect to 
the subjective set or the objective set, we set up a null hypothesis 
that f is independent of the two categories with respect to its 
occurrences in the two sets. A Pearsons chi-square test compares 
observed frequencies of f to its expected frequencies to test this 
hypothesis by a contingency table. Table 1 shows the contents of 
a contingency table. To calculate the chi-square value of a feature 
f, all the subjective and objective documents are decomposed to 
sentences. All sentences in the subjective documents are labeled 
as subjective. All those in the objective documents are labeled as 
objective. The observation Oij in Table 1 is counted as the 
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number of sentences having/not-having f in the 
subjective/objective set respectively. For example, O12 is the 
number of sentences not having f in the subjective sentence set. 

Table 1. Contingency table for Pearsons chi-square 

 F ┐ f Row total 
Sub. set O11 O12 O11+O12 
Obj. set O21 O22 O21+O22 

Col. total O11+O21 O12+O22 Grand total O11+O12+ O21+O22 
The independence of f is tested by calculating its chi-square value 

( ) ( )
∑ ∑
= =

−

21 21, ,

2 
2

i j ijE
ijEijO=fχ  

where Eij is the expected frequency of case ij calculated by 

{ } 2 1,  j i,   ∈
×

,
totalgrand

jtotalcolumn
itotalrow

=ijE  

The larger the chi-square value, the more class-dependent f is with 
respect to the subjective set or the objective set. We keep a 
feature if it has a chi-square value no less than 5.02, which 
corresponds to the significance level of 0.025. We assume that it 
is class dependent, and thus is used as a feature in the SVM 
classifier. During the text processing, we only do Porter stemming 
but do not remove any stop words. After the features are selected, 
all the subjective and objective sentences are represented as 
feature-presence vectors, where the presence or absence of each 
feature is recorded [18]. These vectors are used to train the SVM 
classifier. The classifier is generated in a one-classifier-per-query 
way, as the subjective and objective documents are collected 
according to the query. So each query has its own features and its 
own customized classifier, because we think that the features 
could be query dependent. For example, “delicious” may appear 
in opinions about foods, but hardly appear in opinions about a car. 

4.3 Building the SVM Opinion Classifiers 
4.3.1 Query-Dependent Classifier 
Since people tend to use different words in different domains, for 
example, “tasty” in opinions about foods but hardly in opinions 
for automobile, and “dependable” vice versa, we want to build the 
query-dependent classifiers at first. It means that given a set of n 
queries, each query gets its subjective and objective training data 
sets in section 4.1, n queries result in n subjective/objective 
training sets. Each of these n training sets is used to select features 
and build a classifier only for the corresponding query. This 
results in n classifiers. 

4.3.2 Query-Independent Classifier 
A query-dependent (Q-D) classifier might be accurate but its 
efficiency could be a problem, if applied in practice. We construct 
another type of classifier, namely query-independent (Q-I) 
classifier. It is built as follows: given the same query set and the 
training data sets of section 4.3.1, the training data from all 
queries is used to build a classifier, so that the classifier is 
independent of the actual query. We will compare the 
performance of Q-D and Q-I classifiers via experiments. 

4.4 Applying the SVM Opinion Classifiers 
When the SVM opinion classifier for a query is ready, it tests the 
documents that are retrieved by the IR component of our system 
in response to the query. Such a document is decomposed into 
sentences. The classifier takes one sentence each time, outputs a 
subjective label and a numeric score for this sentence. The score 
represents the classifier’s confidence to its decision of the label. 
The score is positive if the classifier considers the sentence to be 
subjective, or negative if it considers the sentence to be objective. 
A retrieved document is labeled as opinionative if it contains at 
least one subjective sentence labeled by the classifier. 

5. FINDING THE RELEVANT 
OPINIONATIVE DOCUMENTS 
5.1 Finding Query Relevant Opinions 
The SVM classifier only determines if sentences in a documents 
are opinionative or not, but does not know if the opinions are 
about the query or not. We use a NEAR operator to classify an 
opinionative sentence as either relevant or not relevant to the 
query. This NEAR operator uses a text window to cover five 
sentences: a subjective sentence labeled by the classifier, the two 
adjacent sentences preceding it and the two after it. Then it 
searches for the query terms in this text window: 
(1) Search for at least two words of the original query words or 

their synonyms in the text window, if the original query 
contains at least one multi-word phrase. The two terms do 
not have to be in the same phrase, because the document has 
been retrieved by the query, and some references to the 
query topic might be abbreviated. For example, a query 
“California whale watching” contains a phrase “whale 
watching”. A sentence “I really enjoyed following the 
whales when I was in California” contains opinions about 
the query. It contains two query terms but not the phrase. 

(2) Search for the original query word or at least one of its 
synonyms if the original query contains only one word. 

(3) Search for at least one of the original query words or their 
synonyms, and at least one expanded query words, so that 
totally at least three words are found, if it is a multi-word 
query but not containing any multi-word phrase. 

The NEAR operator outputs true if any of these three cases 
happens in the text window or false otherwise. We call the 
subjective sentence in that text window a relevant opinionative 
sentence (ROS) if NEAR outputs true. A document is considered 
as a ROD of the query if it contains ROS. The intuition is that 
people express opinions either directly or indirectly to a target. 
They can express the opinion in the same sentence with the target, 
or in a describe-and-then-comment way. We assume that this 
NEAR operator covers various situations. In summary, a 
document d is classified as a ROD of a query Q if (1) at least 
one of d’s sentences is classified as a subjective sentence by the 
SVM classifier of Q, and (2) at least one of d’s subjective 
sentences is a ROS recognized by the NEAR operator. If d is 
identified as a ROD, the sum of the classification scores of its 
ROS, which are given by the SVM classifier, is set as d’s 
opinion similarity score about the query. 
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5.2 Relevant Opinionative Documents 
Ranking 
We have identified some documents as the potential ROD of a 
query. Now we present three opinion retrieval similarity functions 
to rank these documents. 

5.2.1 Rank by Topic Retrieval Similarity Score 
The first similarity function simply uses the similarity scores from 
the document topic retrieval step, as the opinion retrieval 
similarity scores. The idea is to test if the opinion retrieval 
similarity has a relationship with the intensity of the query terms 
and the expanded query terms in the documents. Let d be a 
document. Let D be the document set that are classified as ROD 
of a query Q, by the NEAR operator. Let Sim(d, Q) be the 
document topic retrieval similarity function defined in formula 
3.1, this opinion retrieval similarity function is defined as 

(5.1)                           
otherwise   ,
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⎩
⎨
⎧ ∈

=
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We call formula 5.1 the “ir similarity function” later on. When it 
is applied, the documents classified as ROD are ranked in 
descending order of OSimir scores. 

5.2.2 Rank by Document Opinion Similarity Score 
In Section 5.1 we set the sum of the classification scores of the 
ROS of a document d as d’s opinion similarity score. We use this 
score as our second function. Let d be a document. Let D be the 
set of documents that are classified as ROD with respect to a 
query Q by the NEAR operator. Let R(d) denote the set of relevant 
opinionative sentences in a document d in D. Let s be a sentence, 
and score(s) be the classification score of s given by the SVM 
classifier. This similarity function is defined as 
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This function takes the scores of the relevant opinionative 
sentences into consideration. We call it the “stcs similarity 
function” where stcs stands for “sentence score”. When it is 
applied, the documents classified as ROD are ranked in 
descending order of OSimstcs scores. 

5.2.3 Rank by Relevant Opinionative Sentence Count 
Formula 5.2 uses the detailed classification scores of all the 
relevant opinionative sentences. We think the size of the ROS set 
could be another measure. Intuitively, the size of the ROS set 
should also reflect the intensity of the relevant opinions in a 
document. Let R(d) be the same R(d) as defined in Section 5.2.2. 
The third similarity function is defined as 

(5.3)                                    
otherwise   0, 
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We call this the “stcc similarity function” where “stcc” stands for 
“sentence count”. When it is applied, the documents classified as 
ROD are ranked in descending order of OSimstcc scores. 

5.2.4 Combine the Similarity Functions 
Formula 5.1 only utilizes the document retrieval score, while 
formula 5.2 and 5.3 only use opinion related information. We 

want to see if the combination of these two types of scores can 
improve the opinion retrieval performance. So we create the 
combined similarity functions in a general form of 

(5.5)                          )(_

(5.4)                          )(_

stccOSimbirOSimbstccirOSim
stcsOSimairOSimastcsirOSim

×−+×=

×−+×=

1
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In (5.4) and (5.5), all the OSimir, OSimstcs, and OSimstcc scores 
have been normalized to be within the range of [0, 1]. Various 
values of a and b between 0 and 1 will be tested, so that we can 
have an empirical understanding of the optimization of these two 
coefficients. 

6. EXPERIMENTAL RESULTS 
We have implemented our algorithm as an operational system. It 
is tested on the TREC 2006 Blog Track query and document set 
[17]. The query set contains 50 queries. They cover domains of 
movies, TV programs, politicians, politics, sports, electronic 
products, entertainment, health and food, celebrities, and 
organizations. Each query has a title, a description and a narrative. 
A query title resembles a typical query submitted to a web search 
engine. Among the 50 query titles, there are 16 one-term queries, 
23 two-term queries, 8 three-term queries, 2 four-term queries and 
1 five-term query. The description is a sentence explaining the 
meaning of the query in more detail. The narrative is a short 
paragraph about what types of documents are relevant and what 
are not. The document collection contains over 3.2 million blog 
documents (88.8GB) collected from various blog web sites 
between December 2005 and February 2006. The Track also 
releases the official golden standard for each query. So the real 
ROD set for each query is given. A retrieval system may return at 
most 1000 ranked documents for each query from the blog 
document set. Although our system is able to identify the opinions 
relevant to a query at the sentence level, it needs to follow the 
TREC requirements to rank and return whole documents as output. 
We conduct the automatic, title-only experiments, which use only 
the query titles as the original queries, and have no human 
interaction involved. The experiments are designed so that the 
performances of various parts of our algorithm are tested and 
analyzed. The experimental results are evaluated by the golden 
standard, and presented in Mean Average Precision (MAP) scores.  

6.1 Performances of Individual Components 
Our algorithm contains three components: IR, opinion 
classification and similarity ranking. We first conduct 
experiments testing how these components perform. We set seven 
system configurations where configuration (3), (4) and (5) are the 
full configurations using different opinion similarity functions: 

(1) IR: a system only utilizes the IR component. The retrieved 
documents from the IR component are considered as the 
RODs, and are compared to the golden standard. This is to 
test the relationship between topic relevance and the opinion 
relevance: if higher topic relevance results in higher opinion 
relevance in a blog document collection. 

(2) IR+OC: IR component plus the opinion classification 
module. For each query, the corresponding query-dependent 
opinion classifier checks the retrieved documents from IR 
component. All the subjective sentences labeled by the 
opinion classifier are considered as query-relevant. The 
documents labeled as subjective are considered as the RODs. 
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This is to test if detecting any kind of opinions can improve 
the opinion retrieval effectiveness. 

(3) IR+OC+NEAR: configuration (2) plus the NEAR operator 
of the ranking component. This is actually the full 
configuration of our algorithm when using the OSimir(d,Q) 
similarity function (formula 5.1), since ir function does not 
re-rank the documents that pass the OC and NEAR filters. 
This is to test how the distance between query terms and 
opinionative terms in the same document, as a filter, affects 
the retrieval effectiveness.  

(4) IR+OC+NEAR+STCS: configuration (3) plus the stcs 
opinion similarity function. This is to test if ranking the 
retrieved documents by the density of their relevant opinions 
can improve the retrieval effectiveness. 

(5) IR+OC+NEAR+STCC: Identical to (4) but stcs is replaced 
by stcc function. 

(6) IR+OC+STCS: Configuration (2) plus the stcs opinion 
similarity function. This is to test how the missing of NEAR 
operation affects the similarity function. 

(7) IR+OC+STCC: Identical to (6) but stcs is replaced by stcc 
function. 

In these configurations, the opinion classification module is built 
as follows: the subjective documents for SVM training are from 
rateitall.com. Google is used to obtain subjective documents only 
when no subjective documents are obtained from rateitall.com. In 
addition, only the first of the 5 "subjective indicator phrases" in 
Section 4.1 is used (Section 6.2 will use all these 5 phrases). The 
objective documents are from Wikipedia. Google is used to obtain 
objective documents only when no objective documents are 
obtained from Wikipedia. Each query-dependent SVM opinion 
classifier has 2,661 features on the average.  All the above 
configurations are tested by using the 50 queries in automatic, 
title-only runs. The overall MAP scores of the opinion retrieval 
using these configurations are listed in Table 2. 

Table 2. MAP scores from different system configurations 

 Configuration MAP 
1 IR 0.1826 
2 IR+OC 0.1740 
3 IR+OC+NEAR 0.1828 
4 IR+OC+NEAR+STCS 0.1938 
5 IR+OC+NEAR+STCC 0.2052 
6 IR+OC+STCS 0.1399 
7 IR+OC+STCC 0.1337 

In line 1 of table 2, the performance of IR component alone is 
strong (0.1826), comparing to the best multi-component 
configuration (0.2052 of line 5). The reason is that in a subjective 
information rich environment, such as the blog documents, the 
topic-relevant factual content itself is a good indication of the 
topic-relevant comments in the documents, having more query-
relevant factual contents means higher chance of having query-
relevant comments. In such a document collection, a traditional 
IR system can still have a reasonable performance in term of 
opinion retrieval effectiveness, even not considering subjective 
information at all. 
In line 2, adding the opinion classification component decreases 
the MAP by about 4.9% with respect to line 1. This is because 
that just identifying the subjective contents, but without 

distinguishing the query-relevant opinions from query-irrelevant 
opinions, is not enough for opinion retrieval. The query-irrelevant 
opinions cause deterioration to the retrieval effectiveness. 
The NEAR operator is designed to identify the query-relevant 
opinions. Adding the NEAR operator into the system brings the 
MAP back to 0.1828, slightly higher than that of line 1. This, 
together with line 2, indicates that query-relevant opinions are the 
actual subjective contents helping the opinion retrieval, but not 
any opinions. 
The stcs and stcc opinion similarity functions calculate the 
similarity scores based on the amount of subjective information 
found in a document. Their performances heavily depend on the 
quality of the recognized subjective texts in the documents. In 
line 4 and 5 of table 2, stcs and stcc functions increase the MAP 
by 6.02% and 12.25% respectively, comparing to line 3. This 
shows that the amount of the query-relevant opinions in a 
document is a positive factor of the opinion similarity. 
When comparing the score of line 4 to that of line 6, and the score 
of line 5 to that of line 7 respectively, we observe sharp decrease 
of MAP if the system does not capture query-relevant opinions. 
Removing the NEAR operator causes 27.81% and 34.83% of 
MAP decreases for stcs and stcc configurations respectively, 
which are much more than the decrease from line 3 to line 2. The 
reason is that in both lines 2 and 3, documents are ranked by 
using their similarities from the IR component. The NEAR 
operator filters out the documents that do not have query-relevant 
opinions. But it does not add any similarity to the remaining 
documents, and the ordering of the remaining documents in line 3 
is the same as that in line 2. So the MAP decrease is relatively 
small. However, the cases of lines 6 and 4 are different. In line 6, 
after removing the NEAR operator, all the subjective sentences 
become query-relevant. But in line 4, only the subjective 
sentences qualified by the NEAR operator are considered as 
query-relevant. So in line 6, the scores of those query-irrelevant 
subjective sentences are also included into the opinion similarity 
scores. This causes significant changes in the similarity scores 
that are calculated by the stcs function, which results in big 
changes of the document ranking and therefore the big MAP 
decrease of line 6, compared to the MAP of line 4. Removing the 
NEAR operator from line 5 causes the same thing to happen in 
line 7. This again proves that the query-relevant opinions play a 
very important role in the opinion retrieval, and the NEAR 
operator is critical to the stcc/stcs similarity function. 
The 0.2052 MAP from configuration 5 is higher than the highest 
MAP (0.1885) of the automatic, title-only runs that were reported 
in the TREC 2006 Blog Track [17]. This 0.2052 MAP equals to 
the highest MAP of all the automatic runs (including systems 
using title-description-narrative queries) reported in [17]. This 
indicates that our algorithm works well for opinion retrieval. 
Table 2 shows that the IR, OC, NEAR and opinion similarity 
functions are all essential for our opinion retrieval system. Their 
cooperation maximizes the retrieval effectiveness. 

6.2 Experiments Using More Statistics 
In this experiment, we study the role of the opinionative feature 
sets in the opinion retrieval. We want to test whether larger 
opinionative feature sets, which result from using more training 
data, can be beneficial to the opinion retrieval. We use the 
configurations of 3, 4 and 5 from section 6.1 as the baselines. The 
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opinion classifiers of the baselines are trained by using the 
features selected from the training data of section 6.1. The 
comparing systems use the identical configurations of 3, 4 and 5, 
but the classifiers are trained with larger opinion feature sets, 
which result from more training data. Comparing to the training 
data collecting methods in section 6.1, the additional source 
epinions.com is used to collect more subjective sentences. Google 
is always used to collect both subjective and objective sentences. 
In addition, all 5 “subjective indicator phrases” are used. The 
SVM classifiers in the comparing systems get more training data 
than those in the baselines, since the new configuration uses the 
documents from more resources. Averagely each SVM classifier 
in the baseline system has 2,661 features. Each SVM classifier in 
the comparing system has 3,777 features on the average. We 
name the baselines and the comparing systems as follows: 

1. BL_ir: Configuration (3) in section 6.1, baseline. 

2. BL_stcs: Configuration (4) in section 6.1, baseline. 

3. BL_stcc: Configuration (5) in section 6.1, baseline. 

4. NEW_ir: BL_ir with SVM classifiers trained by larger 
feature sets, which are from larger training sets. 

5. NEW_stcs: Identical to NEW_ir but use stcs function 
instead of ir function. 

6. NEW_stcc: Identical to NEW_ir but use stcc function 
instead of ir function. 

Table 3. Compare new configurations that use more features 
to baselines 

 Baseline MAP New MAP Increase 
1 BL_ir 0.1828 NEW_ir 0.2013 10.12% 
2 BL_stcs 0.1938 NEW_stcs 0.2392 23.43% 
3 BL_stcc 0.2052 NEW_stcc 0.2457 19.74% 
Table 3 shows the MAP scores from the six configurations. All 
the “NEW” configurations that use larger feature sets get higher 
MAP scores than the corresponding baselines, regardless of what 
ranking strategies used. The increments are from 10% to 23%. 
The reason is that all the features used in the classifiers have 
biased distributions, which are either objective-oriented or 
subjective-oriented. As having more features means more 
characteristics of the objective language and subjective language 
are captured, better retrieval effectiveness is achieved. 

6.3 Combined Similarity Functions 
We have defined two combined similarity functions in formulas 
5.4 and 5.5. In this experiment, we still use the “NEW” 
configurations of section 6.2, but using the formulas (5.4) and (5.5) 
for similarity calculation. We test them using values of 0.1, 0.3, 
0.5, 0.7 and 0.9 respectively for both a and b. The MAP scores of 
these two configurations at various coefficient values are reported 
in Table 4. The “Avg. single MAP” shows the average MAP of 
the two single configurations used in a formula. For example, in 
formula 5.5, the average MAP of the ir configuration (0.2013 
when a=1) and the stcc configuration (0.2457 when a=0) is 
0.2235. The “Avg. Comb MAP” shows the average MAP of the 
five combined MAPs of a formula when the coefficient has values 
in (0, 1). For example, formula 5.5 have an average of 0.2596. 

Table 4. MAP scores of the combined configurations 

Formula 5.4 Formula 5.5 
Coefficient Combination Coefficient Combination

a NEW_ir_stcs b NEW_ir_stcc
0 0.2392 0 0.2457 

0.1 0.2470 0.1 0.2582 
0.3 0.2523 0.3 0.2605 
0.5 0.2539 0.5 0.2643 
0.7 0.2503 0.7 0.2593 
0.9 0.2447 0.9 0.2559 
1 0.2013 1 0.2013 

Avg Single MAP 0.2203 Avg Single MAP 0.2235 
Avg Comb. MAP 0.2496 Avg Comb. MAP 0.2596 
In both formulas, all the combined MAPs are higher than the two 
single MAPs. The average MAP increases are about 13% for 
formula 5.4 and 16% for formula 5.5. The linear combination 
significantly improves the opinion retrieval effectiveness of our 
algorithm. The highest combined MAP for each formula appears 
when the coefficient is 0.5. This indicates that a simple half-to-
half combination is good to maximize the power of the linear 
combination. The reason for this MAP increase in combined 
similarity functions is that the ir function uses the query-relevant 
factual contents to rank the retrieved documents, while the 
stcc/stcs functions use the query-relevant opinions to rank the 
documents. They capture different aspects of the documents. Put 
them together means more useful information is used in document 
ranking, which results in improved MAP. 

6.4 Query Dependent Classifiers Vs. Query 
Independent Classifier 
After we tested the query-dependent (Q-D) opinion classifiers in 
section 4.3.1, we want to test if the query-independent (Q-I) 
classifier has the same effect. The advantages of using a Q-I 
classifier are that (1) the system can have a simpler structure. The 
opinion classifier is constructed based on a set of training queries 
in multiple domains. So there is no need to create a Q-D classifier 
dynamically for each incoming query; and (2) the features in the 
Q-I classifier are determined independent of the queries to be 
processed, so that the documents can be indexed according to 
these features before query processing. Both (1) and (2) increase 
the query processing speed and reduce the retrieval response time, 
so that the efficiency of the system can be improved. 
We build our first Q-I opinion classifier by using a use-all-
training-data method. It utilizes the subjective and objective 
training documents of all 50 queries to construct one set of 
features, and build just one universal opinion classifier for the 
system. The systems that use this universal classifier are called 
the Q-I-50 systems. In practice, it is likely that an incoming query 
is not among the training queries. In order to estimate the 
performance of this situation, we build another type of Q-I 
classifier by using a leave-one-out method. It means, for a query 
Q, we merge the subjective (objective) documents of the other 49 
queries to a single subjective (objective) set to build a SVM 
classifier, which is only used in the system when testing Q. This 
classifier is really independent of Q, because it does not use 
training documents of Q. We call this classifier the Q-I-49 
classifier. Although we still end up having 50 classifiers, they are 
just for experimental purpose, to more accurately estimate the 
effectiveness of the query-independent opinion classification. A 
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realistic system will still have just one classifier. We call the 
systems using these classifiers the Q-I-49 systems. 
All the previous “NEW” configurations in section 6.2 and 6.3 
have their Q-D classifiers replaced by Q-I-49 and Q-I-50 
classifiers. On the average, a Q-I-49/50 opinion classifier contains 
more than 70,000 features, which is about 17 times bigger than 
that of the Q-D classifiers (3,777 in section6.2). We repeat the 
experiments in Section 6.2 and 6.3 using these Q-I-49/50 
configurations, and compare the results to those in section 6.2 and 
6.3. The results are shown in table 5. 

Table 5. Comparisons between configurations using Q-D and 
Q-I-49/50 opinion classifiers 

MAP  
Q-D Q-I-49 Q-I-50

1 NEW_ir 0.2013 0.2160 0.2101
2 NEW_stcs 0.2392 0.2422 0.2540
3 NEW_stcc 0.2457 0.2528 0.2600

Table 5 shows that, all the Q-I-49 and Q-I-50 systems achieve 
higher MAPs than those Q-D systems, The MAP increase for Q-I-
49 system ranges from 1.25% (0.2392 to 0.2422) to 7.30% 
(0.2013 to 0.2160). Q-I-50 systems usually get higher MAP than 
Q-I-49 systems, except at line 1. The reason for the “Q-I scores 
higher than Q-D scores” is that more features tend to help in 
gaining retrieval effectiveness, in spite of the fact that many of the 
features are not relevant and not used for a specific query. We 
note that some of the 49 queries used to get the training data are 
in the same domain where the testing query belongs. For example, 
query 891 “intel” and 856 “macbook pro” are both in the 
“computer” domain. So even the training data is from “intel”, the 
recognized features are still related to the computer domain. 
These features are still suitable for “macbook pro”. So the domain, 
in which the testing query and some of the training queries both 
belong to, makes some of the features in an “independent training 
set” still relevant to the testing query. Clearly, the most relevant 
features for a query are obtained from the set of training 
documents of the same query. If that set is left out, some 
deterioration of retrieval effectiveness is expected. This is evident 
by comparing Q-I-49 and Q-I-50. 

Table 6. Comparisons between the combined configurations 
using Q-D and Q-I-49/50 opinion classifiers 

NEW_ir_stcs Q-D Q-I-49 Q-I-50 
Avg. 0.2496 0.2522 0.2606 
Max 0.2539 (a=0.5) 0.2566 (a=0.3) 0.2656 (a=0.3) 

    

NEW_ir_stcc Q-D Q-I-49 Q-I-50 
Avg. 0.2596 0.2649 0.2690 
Max 0.2643 (b=0.5) 0.2687 (b=0.3) 0.2726 (b=0.5) 

Table 6 compares the configurations that use combined similarity 
functions, when they use Q-D and Q-I opinion classifiers. Similar 
to the results of table 5, Q-I systems outperform the Q-D systems. 
But both increased and decreased MAPs are observed at the 
individual query level. Table 5 and 6 show that in our opinion 
retrieval system, using Q-I opinion classifiers is at least 
comparable to, or slightly better than using Q-D classifiers. The 
questions of how to choose right training queries and how many 
training queries to use are still worth further study. 

6.5 Comparing to Related Works 
In Table 7, we compare the best MAPs from our system to the 
best MAPs from various run categories in TREC 2006 Blog Track, 
and that from a state-of-art opinion retrieval system by Mishne 
[30] in 2007. All these systems are tested on the same TREC Blog 
data and query set. Our system and Mishne’s system belong to the 
automatic, title-only run category (T). Other two automatic run 
categories are the title-description run (TD) and the title-
description-narrative run (TDN). The title-only system uses only 
the query title as an original query. The title-description system 
uses terms in the query title and description as the original query. 
The title-description-narrative system uses terms in the query title, 
description and narrative as the original query. 

Table 7. Comparisons between best MAPs from our algorithm 
and those from TREC 2006 Blog Track 

TREC 2006 Mishne (T) Q-D (T) Q-I-49 (T) Q-I-50 (T) 
T 0.1885

TD 0.1887
TDN 0.2052

 
0.2411 

 
0.2643 

 
0.2687 

 
0.2726 

Table 7 shows that our algorithm, when using only the query titles 
as queries, has MAPs that are 28% to 32% higher than the highest 
TREC 2006 Blog Track MAP, even when those TREC systems 
utilize the description and narrative information. In practice, the 
title-only run is more realistic because users rarely provide the 
descriptions and narratives when they submit queries. 
As introduced in the related works, Mishne [30] recently reported 
a state-of-art opinion retrieval system in 2007 that had a strong 
performance. This system achieved a MAP of 0.2411 when tested 
on TREC 2006 Blog data and the title-only queries. The best 
MAP of our systems is 13.1% higher than that of his system. 
In this paper, we mainly focus on improving the retrieval 
effectiveness of our system, but have not addressed the efficiency 
issue in detail. Opinion retrieval is more complex than the 
traditional IR. Many opinion recognition processes are time 
consuming, such as the training and using of the SVM classifiers. 
It is expected that the opinion retrieval take more time. Improving 
the retrieval efficiency can be achieved by using the Q-I classifier 
instead of the Q-D, so that indexing the opinion features and the 
opinion classification of the document sentences can be done 
before query processing. Therefore, the IR step and the 
recognition of the ROS can be carried out in parallel for 
answering a query. Then the response time can be reduced. 
In summary, our results show that: (1) Both query-relevant factual 
information and query-relevant opinions are necessary for an 
opinion retrieval system. (2) Generally more features in the 
opinion classifiers help the system improve retrieval effectiveness. 
(3) A linear combination of the ir similarity and the stcc/stcs 
similarity yields better results than the individual functions. (4) 
An universal query-independent opinion classifier is at least 
comparable to, or slightly better than the query-dependent 
classifiers in retrieval effectiveness. A Q-I classifier clearly can 
simplify the system and increase the retrieval speed. 

7. CONCLUSIONS 
In this paper, we presented a three-component opinion retrieval 
algorithm. The first component is an information retrieval module. 
The second one classifies documents into opinionative and non-
opinionative documents, and keeps the former. The third 
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component ensures that the opinions are related to the query, and 
ranks the documents in certain order. We studied the effects of 
various parameters in our algorithm and empirically determined 
the best parameter configuration. The best MAP of our system is 
28% to 32% higher than those of the best TREC 2006 Blog Track 
automatic runs, and is 13% higher than a state-of-art opinion 
retrieval system. We comment on how the entire system can be 
made efficient by utilizing query-independent features. In future 
studies, we plan to study in more detail on the choice of features 
and a better implementation of the NEAR operator. 
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