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1. INTRODUCTION

There is a huge demand for radio spectrum due to the rapid growth in wireless

technology. Unfortunately the spectrum supply has not catered to this growing

demand. The shortage in spectrum supply has primarily been due to the inefficient,

inflexible, static nature of the existing spectrum allocation methods and definitely

not due to the scarcity of available spectrum [1]. This fact is well supported by

measurement-based studies [2, 3] which have shown that the average occupancy

of spectrum over all frequencies is a paltry 5.2% and that the occupancy of some

bands in the 30-300 MHz range is less than 1%. This measurement data confirms the

availability of many spectrum opportunities along time, frequency, and space that

wireless devices and networks can potentially utilize. Therefore, it is imperative to

develop mechanisms that enable effective and efficient exploitation of these spectrum

opportunities.

FCC’s long-term vision for solving the spectrum shortage problem is to evolve

towards more liberal, flexible spectrum allocation policies and usage rights, where

spectrum will be managed and controlled dynamically by network entities and end-

user devices themselves with little to no involvement of any centralized regulatory

bodies. As an initial step towards this liberal paradigm, FCC promotes the so-

called opportunistic spectrum access (OSA), which improves spectrum efficiency by

allowing unlicensed, secondary users (SUs) to exploit unused licensed spectrum,

but in a manner that limits interference to licensed, primary users (PUs). Indeed,

OSA is becoming a practical reality nowadays: As of November 4th, 2008, FCC [4]

established rules to allow unlicensed users to operate in TV-band spectrum on a
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secondary basis at locations where that spectrum is open. These TV-band spectrum

opportunities will be used by unlicensed fixed, portable, and mobile users to support

applications like wireless home networking and video services.

Now that we have the approval of regulatory bodies like FCC to promote OSA,

the question that comes naturally is whether we have the technology and the tech-

niques necessary to enable it or not? Fortunately, technological advances enabled

cognitive radios (CRs), built on software-defined radios [5], which have recently been

recognized as one of the key emerging technologies [6] that can potentially make

OSA a reality. CRs are viewed as intelligent wireless communication systems that

are capable of self-learning from their surrounding environment, and auto-adapting

their internal operating parameters in real-time to improve spectrum efficiency with

no intervention [7].

The apparent promise of OSA has indeed created significant research interests,

resulting in much research, ranging from protocol design [8, 9, 10] to performance

optimization [11, 12], and from market-oriented access strategies [13, 14] to new

management and architecture paradigms [15, 16, 17, 18]. More recently, some ef-

fort has also been given to the development of adaptive learning-based approaches

[19] - [30]. Zhao et al. [19] have developed a model for predicting the dynamics of

the OSA environment when periodic channel sensing is used. A simple two-state

Markovian model is assumed for the activities of PUs on each channel. Using this

model, Zhao et al. derive an optimal access policy that can be used to maximize

channel utilization while limiting interference to PUs. In [20], Unnikrishnan and

Veeravalli propose a cooperative channel selection and access policy for OSA sys-

tems under interference constraints. In this paper, the PUs activities are assumed

to be stationary Markovian, and the Markovian statistics are assumed to be known
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to all SUs. A centralized approach is considered, where all cooperating SUs report

their observations to a decision center, which makes the decision regarding when

and which channels to sense and access at each time slot. In [21], the authors de-

velop channel-decision policies for two SUs in a two-channel OSA system. The PUs

activities are modeled as discrete-time Markov chains. Liu and Zhao [22] consider

the case of multiple non-cooperative SUs in OSA systems where SUs are assumed

not to exchange information among themselves. The occupancy of primary chan-

nels is modeled as an independent and identically distributed Bernoulli process, and

OSA is formulated as a multiarmed bandit problem where agents are not coopera-

tive with each other. Chen et al. [30] develop a cross-layer optimal access strategy

for OSA that integrates the physical layers sensing with the medium access con-

trol (MAC) layers sensing and access policy. They establish a separation principle,

meaning that the physical layers sensing and the MAC layers access policy can be

decoupled from the MAC layers sensing without losing optimality. The developed

framework assumes that the spectrum occupancy of PUs also follows a discrete-time

ON/OFF Markov process.

In most of these works, the models developed to derive optimal channel-

selection policies assume that the PUs activities follow the Markovian process model.

Although analytically tractable, the Markovian process may not accurately model

the dynamics of the PUs activities. In fact, the OSA environment has very unique

characteristics that make it too difficult to construct models that predict its dynam-

ics, and it is therefore important to develop techniques that can achieve approxi-

mately optimal behaviors without requiring models of the environments dynamics.

Indeed, reinforcement learning (RL) [31], a sub-field of artificial intelligence

(AI), is a foundational idea built on the basis of learning from interaction without
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requiring models of the environment’s dynamics, yet can still achieve approximately

optimal behaviors. RL techniques require experience only, which can be acquired

from an online or a simulated interaction. While learning from an online interac-

tion requires no models of the environment’s dynamics, learning from a simulated

interaction requires a model that just generates samples of the behavior, not the

complete probability distribution. In OSA, for instance, it is easy to generate sam-

ples of the environment’s behavior according to the desired distribution, but it may

be too difficult, or even impossible, to obtain the explicit form of the distribution.

For example, a user can easily generate samples of the occupancy of a particular

spectrum band through periodic sensing, but it may be infeasible to derive the

explicit distribution of traffic behavior.

Based on the aforementioned facts, in this work, we formulate the OSA, using

an RL framework. In order to test the effectiveness of the Q-learning scheme in terms

of exploiting the spectrum opportunities, we evaluate the learning algorithm for a

single secondary-user group and compare the algorithm’s performance under differ-

ent environmental conditions with the random access method [32, 33]. Further, we

evaluate two multi-agent RL schemes, namely the non-cooperative and cooperative

Q-learning schemes, and compare their performances with the random scheme. Sim-

ulation results show that the partial and fully cooperative schemes perform better

than the non-cooperative and the random schemes in terms of achieved through-

put and balanced traffic loads. Depending on the communication overhead due to

the extra traffic in exchanging information between the cooperating users, different

levels of partial cooperation can be used. Overall, the proposed learning technique

achieves high throughput performance by learning through experience from interac-

tion with the environment and intelligently locating and exploiting spectrum oppor-
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tunities. Therefore, it obviates the need for prior knowledge of the environment’s

characteristics and dynamics.

This thesis is organized as follows. In Chapter 2., we state the OSA prob-

lem and discuss its requirements. In Chapter 3., we present our single-agent RL

framework for efficient OSA. In Chapter 4., we evaluate and compare the proposed

single-agent RL approach with random access approach. In Chapter 5., we present

the Multi-Agent RL framework for efficient OSA. We study the effect of having

multiple secondary-user groups and evaluate the three different access schemes in

Chapter 6. Finally, we conclude the thesis in Chapter 7.
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2. OPPORTUNISTIC SPECTRUM ACCESS (OSA)

The spectrum has traditionally been divided by FCC into frequency bands.

These spectrum bands are assigned to licensees (or primary users (PUs)) who have

exclusive and flexible rights to use these bands. PUs are also protected against

interference when using their assigned bands. Due to recent findings, showing that

large portions of the licensed bands are lightly used or unused at all, and in order to

address the spectrum scarcity problem, FCC opens up for the so-called opportunistic

spectrum access (OSA).

The basic idea behind OSA is to allow unlicensed users, also referred to as

secondary users (SUs), to exploit unused licensed spectrum on an instant-by-instant

basis, but in a manner that limits interference to PUs so as to maintain compatibility

with legacy systems. In OSA, an agent is a group of two or more secondary users

also known as secondary-user group (SUG) who want to communicate together. We

assume that all SUs are associated with a home band to which they have usage rights

at all time. In order to communicate with each other, all SUs in the group must be

tuned to the same band, being either their home band or another unused licensed

band. While communicating in the home band, the SUG may decide to seek for

spectrum opportunities in another band. This typically happens when, for example,

any of the SUs judge that the quality of their current band is no longer acceptable.

This can be done by continuously assessing and monitoring the quality of the band

via some quality metrics, such as signal-to-noise ratio (SNR), packet success rate,

achievable data rate, etc. That is, when the monitored quality metric drops below

a threshold that can be defined a priori, the SUG is triggered to start seeking for
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spectrum opportunities. When a new opportunity is discovered on another band,

the group switches to that band and starts communicating on it. Now suppose the

group is currently using a licensed band, not the home band. Then, upon the return

of PUs to their band and/or when the quality drops below the threshold, SUs must

vacate the licensed band by either switching back to their home band or by searching

for new opportunities. Hereafter, we say that an exploration event is triggered when

either (i) PUs return back to their licensed band, and/or (ii) the band’s quality is

degraded below the threshold. In the RL terminology, we therefore consider that

the agent and the environment interact at each of a sequence of discrete time steps,

each of which takes place at the occurrence of an exploration event.

Prior to using a licensed band, SUs must first sense the band to assess whether

it is vacant, and if it is, then they can switch to and use it for so long as no PUs

are present. Upon the detection of the return of PUs to their band, SUs must

immediately vacate the band. OSA has great potentials for improving spectrum

efficiency, but in order to enable it, SUs must be capable of sensing, the ability to

observe and locate spectrum opportunities; identifying, the ability to analyze and

characterize these opportunities; and switching, the ability to configure and tune to

the best available opportunities.

In this work, we propose an OSA scheme that self-learns from interaction with

the environment, and uses its acquired knowledge to locate the best spectrum op-

portunities (i.e., spectrum bands that are most likely to be available), thus achieving

efficient utilization of spectral resources.
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3. PROPOSED SINGLE-AGENT REINFORCEMENT
LEARNING (RL) FOR OSA

Reinforcement Learning (RL) is the concept of learning from past and present

experience to decide what to do best in the future. That is, the learner, also referred

to as agent, learns from experience by interacting with the environment, and uses its

acquired knowledge to select the action that maximizes a cumulative reward signal

(the total reward that the environment gives rise to in the long run). RL is well

suited for systems whose behaviors are, by nature, too complex to predict, but the

reward, or reinforcement, resulting from taking an action can easily be assessed or

observed. For example, in OSA, albeit it may be difficult to predict which spectrum

band will be available in the near future, the reward resulting from the use of a

spectrum band can easily be determined. The reward can, for example, be assessed

through the amount of obtained throughput, the experienced interference, the packet

success rate, etc. Thus, RL techniques are a natural choice for OSA where it is

difficult to precisely specify an explicit model of the environment, but it is easy to

provide a reward function.

RL is typically formalized in the context of Markov Decision Processes (MDPs).

An MDP represents a dynamic system, and is specified by giving a finite set of states

(S), representing the possible states of the system, a set of control actions (A), a

transition function (δ), and a reward function (r). The transition function specifies

the dynamics of the system, and gives the probability Pk
ij of transitioning to state

sj after taking action ak while in state si. The dynamics are Markovian in the

sense that the probability of the next state sj depends only on the current state
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si and action ak, and not on any previous history. The reward function assigns

real-numbers r(si, ak) to state-action pairs (si, ak) so as to represent the immediate

reward of being in state si and taking action ak.

In this chapter, we provide an RL formulation of the OSA problem, and pro-

pose an RL scheme as a possible solution.

3.1. Markov Decision Process (MDP)

We formulate OSA as a finite MDP, defined by its state set S, action set A,

transition function δ, and reward function r as follows:

State set. S consists of m + 1 states, {s0, s1, . . . , sm}. The SUG is said to be in

state si when it is using band bi at the current time step; i.e., no PUs are currently

using band bi. Note that state s0 corresponds to when the group is communicating

on its home band b0. Throughout this work, the terms agent and SUG will be used

interchangeably to mean the same thing. The same also applies to the terms state

and band.

Action set. At every time step (i.e., an exploration event), while in state si,

the agent can either choose to exploit by switching back to its home band b0, or

choose to explore by searching for new spectrum opportunities. If a decision is

made in favor of exploration, then the agent senses an ordered sequence of bands

{bk1 , bk2, . . . , bkn}, where n = 1, 2, . . . , m, on a one-by-one basis until it finds, if any,

the first available band. If there is one available, the agent switches to and starts

using it until the the next time step. If none are available, then the agent switches

back to b0 at the end of the search. At the next time step, the same exploration
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versus exploitation process repeats again. We will refer to n as the exploration

index as it balances between exploration and exploitation; i.e., the larger the n, the

more the exploration. Now by letting a0 denote the action of returning to the home

band b0, and ak = {bk1 , bk2, . . . , bkn , b0} the action of exploring new opportunities,

the set A of all actions is A = {a0, a1, . . . , ap}, where p = m!
(m−n)!

. The index n can

be viewed as a design parameter to be set a priori.

Transition function. δ : S×A → S is the transition function, specifying the next

state the system enters provided its current state and the action to be performed.

Given any state, sj, for action a0, the transition function δ(sj, a0) equals s0, and

for any action ak = {bk1, bk2 , . . . , bkn, b0}, k = 1, 2, . . . , p, the transition function

δ(sj, ak) equals

δ(sj , ak) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s0 w/ prob.
∏n

i=1 ηki

sk1 w/ prob. 1− ηk1

skl
w/ prob.

∏l−1
i=1 ηki

(1− ηkl
)

for l = 2, 3, . . . , n

For example, when n = 2, and the SU is in state sj. If action ak = {b2, b3, b0}
is taken, then the user ends up in state s2 (i.e., band b2) with probability 1−η2 (i.e.,

b2 is available), ends up in state s3 (i.e., band b3) with probability η2(1 − η3) (i.e.,

b2 is occupied and b3 is not), or ends up in state s0 (i.e., band b0) with probability

η2η3 (i.e., both bands are not available).

It is important to reiterate that this function is only provided to generate sam-

ples of the OSA environment so as to evaluate our RL algorithm. That is, although

in practice our RL technique will not need models to perform, we use models here
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to generate samples of the environment’s behavior to mimic an OSA environment.

For example, in the evaluation section, it is assumed that the PU traffic follows

a Poisson distribution, and hence, an ON/OFF renewal process model is used to

mimic such an environment.

Reward function. r : S ×A → R defines the reward function r(si, ak), specifying

the reward the agent earns when taking action ak ∈ A while in state si ∈ S. The

reward r(si, ak) also depends on the next state sj = δ(si, ak) the agent enters as

a result of taking ak while in state si. More specifically, the reward perceived by

the agent when entering state sj is a function of the quality level the SUG receives

when using the band it ends up selecting. We therefore assume that each band

bj is associated with a quality level qj, which can be determined via metrics like

SNR, packet success rate, data rates, etc, and let φ(qj) denote the reward (without

including the cost of exploration yet) resulting from receiving qj .

It is important to note that exploration also comes with a price. Recall that

SUs are allowed to use any licensed band only if the band is vacant (no PUs are

using it), and that discovery of opportunities is done through spectrum sensing.

That is, SUs periodically (or proactively) switch to and sense certain bands to

find out whether any of them is vacant or not. Unfortunately, during the sensing

process, the system incurs some ”sensing overhead”, which can be of multiple types:

energy consumed to perform sensing, delays resulting from switching across bands,

throughput reduced as a result of ceasing communication, etc. By letting cij denote

the cost incurred as a result of exploring band bj while in band bi, and sj denote



12

the next state, δ(si, ak), the reward function r(si, ak) can now be written as

r(si, ak) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(qk1)− cik1

w/ prob. 1− ηk1

φ(qkl
)− cik1 −

∑l−1
t=1 cktkt+1, l = 2, 3, . . . , n

w/ prob.
∏l−1

t=1 ηkt(1− ηkl
)

−cik1 −
∑n−1

t=1 cktkt+1 − ckn0

w/ prob.
∏n

t=1 ηkt

where ak = {bk1, bk2 , . . . , bkn , b0}, k = 1, 2, . . . , p.

Consider a special scenario where the PU traffic load is the same and equal

to η for all bands bj . Suppose that φ(qj) = q for all bands bj , and that the cost cij

incurred when switching from band bi to band bj is equal to c for all i, j. Let Ē

denote the expected value of the reward function r(si, ak) normalized with respect

to c (i.e., Ē = E[r(si, ak)]/c). One can now express Ē as

Ē = (
q

c
− 1)(1− η) +

q

c
(η − ηn) +

ηn+1 − 2η + η2

1− η
(3.1)

Using Eq. (3.1), one can easily see that the reward that the agent receives increases

monotonically with the exploration index n when q
c

> η
1−η

(or equivalently η < q
q+c

),

decreases monotonically with the index n when q
c

< η
1−η

(or equivalently η > q
q+c

),

and is independent of the index n when q
c

= η
1−η

(or equivalently η = q
q+c

). Therefore,

for a given PU traffic load, the optimal exploration index n that the agent should

use so as to maximize its reward depends on the ratio q/c (or equivalently q
q+c

).

Intuitively, when the network is lightly loaded (η is small), the chances of

finding available bands are high, and hence, it is rewarding to explore for more bands.
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FIGURE 3.1: Reward as a function of exploration index n: η = 0.75

This explains why for small η values (i.e., η < q
q+c

), the higher the exploration index,

the higher the reward. Now when the network is heavily loaded (η is large), the

chances of finding empty bands are low, and hence, it is not rewarding to explore

for more bands. This explains why for high values of η (i.e., η > q
q+c

), the lower

the exploration index, the higher the reward. That is, the expected reward is not

worth the exploration cost for high values of η. Note that as the cost c goes to zero,

q
q+c

goes to 1. Therefore, when the cost is negligible, η < q
q+c

holds for all η since

q
q+c
≈ 1, and thus, the reward increases monotonically with the exploration index n

regardless of the PU load η.

As an example, we plot in Fig. 3.1 the reward as a function of the index

n for different values of the q/c ratio. The PU traffic load η is set to 0.75 (i.e.,
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η
1−η

= 3). As expected, when q
c

= η
1−η

= 3, the index value has no effect on the

reward value. On the other hand, when q
c

> 3, the higher the index, the higher the

reward; whereas, when q
c

< 3, the higher the index, the lower the reward.

3.2. Learning-Based OSA Scheme

The goal of the agent is to learn a policy, π : S → A, for choosing the next

action ai based on its current state si that produces the greatest possible expected

cumulative reward. A cumulative reward R is typically defined through a discount

factor γ, 0 ≤ γ < 1, as
∑∞

t=0 γtr(si+t, ai+t). Because it is naturally desirable to

receive rewards sooner than later, the reward is expressed in a way that future

rewards are discounted with respect to immediate rewards.

A function, Q : S × A → R, is defined for each state-action (si, ak) pair as

the maximum discounted cumulative reward that can be achieved when starting

from state si and taking action ak according to the optimal policy. Hence, given

the Q-function, it is possible to optimally act by selecting actions that maximize

Q(si, ak)at each state. Q can be recursively constructed as follows. The Q-learning

algorithm learns an estimate Q̂ of the optimal Q-function by selecting actions and

observing their effects. In particular, each step in the environment involves taking

an action ak in state si and then observing the following state and the resulting

reward. Given this information, Q is updated via the following equation:

Q̂l(si, ak)← (1− αl)Q̂l−1(si, ak) + αl{r(si, ak) + γ maxk′ Q̂l−1(δ(si, ak), ak′)}

where αl = 1/(1 + visitsl(si, ak)) and visitsl(si, ak) is the total number of times

this state-action pair has been visited up to and including the lth iteration. This
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approximation algorithm is guaranteed to converge to the optimal Q-function in any

MDP, given the appropriate exploration during learning [31].
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4. EVALUATION OF SINGLE-AGENT RL

In this chapter, we study the proposed single-agent Q-learning scheme by

evaluating and comparing its performance to a random access scheme. The random

access scheme will be used here as a baseline for comparison, and is defined as

follows. Whenever an exploration event is triggered, the SUG, using the random

access approach, selects a spectrum band among all bands randomly. If the selected

band is idle, then the group uses it until the return of a PU. Otherwise, i.e., if the

selected band happens to be busy, then the group goes back to its home band. This

process repeats until an idle band is found.

4.1. Simulation Settings

We consider that the spectrum is divided into m non-overlapping bands, and

that each band is associated with a set of PUs. We model PUs’ activities on each

band as a renewal process alternating between ON and OFF periods, which represent

the time during which PUs are respectively present (ON) and absent (OFF). For

each spectrum band bj , we assume that ON and OFF periods are exponentially

distributed with rates λj and μj, respectively. Note that the primary traffic load ηj

on band bj can be expressed as μj/(μj + λj). Recall that the power of RL lies in its

capability to converge to approximately an optimal behavior without needing prior

knowledge of PUs’ traffic behavior. The exponential distributions will, however, be

used to generate samples in-order to evaluate our learning techniques using simulated

interaction. Throughout this section, we characterize the PU traffic system load by
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η̄ = 1
m

∑m
i=1 ηi (denoted as pbar in figures) and CoV = σ/η̄, which respectively

denote the average and the coefficient of variation of PU traffic loads across all

bands, where σ denotes the standard deviation of traffic loads.

At every exploration event, while in state si, the agent can either choose to

exploit by switching back to its home band b0, or choose to explore by searching for

new spectrum opportunities. If a decision is made in favor of exploration, then the

agent senses an ordered sequence of bands {bk1 , bk2, . . . , bkn}, where n = 1, 2, . . . , m,

on a one-by-one basis until it finds, if any, the first available band. If there is one

available, the agent switches to and uses it until the the next time step. If none are

available, then the agent switches back to b0 at the end of the search. At the next

time step, the same exploration vs. exploitation process repeats again. We will refer

to n as the exploration index as it balances between exploration and exploitation;

i.e., the larger the n, the more the exploration.

4.2. Effect of Primary-User Traffic Load

We begin by studying the effect of PU traffic load η̄ on the achievable through-

put. Figure 4.1 plots the total throughput, normalized with respect to the maximal

achievable throughput1, that the SUG achieves as a result of using our Q-learning

and the random access schemes for two different PU traffic loads: η̄ = 0.5 and

η̄ = 0.8. The measured throughput is based on what the SUG receives from the

1The maximal/ideal achievable throughput corresponds to when the agent knows exactly where
spectrum opportunities are; i.e., the agent always knows which bands are available, and thus, it
exploits them without any cost.
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FIGURE 4.1: Throughput behavior under two different primary-user traffic loads
pbar ≡ η̄ = 0.5 and 0.8: m = 7, CoV = 0.5

m licensed bands only; i.e., not accounting for the home band. In this simulation

scenario, CoV is set to 0.5, exploration index n is set to 3, and the total number of

bands m is set to 7. First, as expected, note that the higher the η̄, the lesser the

achievable throughput under both schemes. However, regardless of the PU load, the

Q-learning scheme always outperforms the random scheme. Also, note that the more

loaded the system is, the higher the difference between the throughput achievable

under Q-learning and that achievable under random access (e.g., the throughput

gain is higher when η̄ = 0.8).

To further illustrate the effect of η̄ on the performance of the proposed Q-

learning scheme, we plot in Fig. 4.2 the throughput gain as a function of η̄. Note

that the throughput gain increases as the PU traffic load increases. In other words,
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FIGURE 4.2: Throughput gain as a function of the primary-user average loads η̄:
m = 7, CoV = 0.5

the Q-learning scheme performs even better under heavily loaded systems. This

can be explained as follows. When η̄ is high; i.e., when spectrum opportunities are

scarce, the learning capability of the Q-learning scheme allows the OSA agent to

efficiently locate where the opportunities are, whereas the random access scheme

leads to a lesser throughput since it accesses the bands randomly. When η̄ is small,

on the other hand, the random access scheme is able to achieve high throughput

since spectrum opportunities are too many to miss even when bands are selected

unintelligently.

To summarize, these obtained results show that the proposed Q-learning scheme

is capable of achieving anywhere between 80% to 95% of the maximal achievable

throughput by learning from experience, and without requiring prior knowledge of
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the environment. The results also show that the scheme achieves high throughput

performance even under heavy traffic loads.

4.3. Effect of Primary-User Load Variability

Figure 4.3 plots the total throughput that the SUG achieves under our pro-

posed Q-learning and the random access schemes for two different PU load vari-

ations: CoV = 0 and CoV = 0.6. (Recall that CoV reflects the variation of

loads across different bands; i.e., the higher the CoV , the higher the variation.)

Note that when the CoV = 0.6, the Q-learning scheme achieves about 90% of the

maximal/ideal throughput by simply locating and exploiting unused opportunities

through learning from experience, whereas the random access scheme achieves only

about 60%. When CoV = 0 (i.e., all bands experience identical loads), the Q-

learning and the random access achieve approximately about 64% and 55%, respec-

tively. As expected, the throughput gain increases with the coefficient of variation.

As shown in Fig. 4.3, the gain is higher when CoV = 0.6 than when CoV = 0.

To further illustrate the effect of PU load variability on the achievable through-

put, we show in Fig. 4.4 the throughput gain for different values of CoV s. The CoV

is varied from 0 to 0.6. The average PU traffic load, η̄, is set to 0.8 (which implies

that only 20% of the spectrum is available for the SUG). The total number of bands

is set to m = 7 and the exploration index is taken to be n = 3. Observe that the

higher the variation of PU loads across different bands, the higher the throughput

gain; i.e., the higher the throughput the agent/group can achieve when compared

with that achievable under the random access scheme. This can be explained as

follows. When the average of PU traffic loads is maintained the same, a high vari-
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FIGURE 4.3: Achievable throughput under Q-learning and random access schemes:
η̄ = 0.8, m = 7, n = 3.

ation in the loads across different bands increases the likelihood of finding highly

available spectrum bands. This, on the other hand, also increases the likelihood of

finding spectrum bands with lesser opportunities. With experience, the Q-learning

scheme learns about, and starts exploiting, these more available bands, yielding then

more throughput. When the load variation is low, on the other hand, the learning

algorithm achieves less throughput because all bands are equally-loaded, and hence,

there is no special (i.e., more available) bands that the algorithm can learn about.

This explains why both the Q-learning and the random access achieve similar per-

formances when all bands have identical loads. The gain can, however, reach up to

50% when bands have different loads (e.g., CoV = 0.6), as shown in Fig. 4.4.
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FIGURE 4.4: Throughput gain as a function of primary-user load variability: m =
7, η̄ = 0.8.

1/8 1/6 1/4 1/2 1
0.8

0.85

0.9

0.95

1

Average ON Period Length

T
h
ro

u
g
h
p
u
t 
G

a
in

 (
%

)

FIGURE 4.5: Throughput gain as a function of ON/OFF period lengths: η̄ = 0.5,
CoV = 0.2, m = 7, n = 3.
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4.4. Effect of Primary-User Load ON/OFF Period

In this section, we study the effect of ON/OFF period lengths on the per-

formance of the Q-learning scheme. We vary the lengths of ON and OFF periods

while keeping the PU traffic loads ηi the same for all i. Since the PU load is kept

the same, an increase in OFF periods leads to an increase in ON periods as well,

and vice versa. The normalized throughput that the Q-learning scheme achieves is

shown in Fig. 4.5 for different values of ON period lengths. Here, CoV is set to 0.2,

η̄ is set to 0.5, n is set to 3, and m is set to 7.

Note that the higher the length of ON/OFF periods, the higher the throughput

gain. Note also that having short ON/OFF periods forces the agent to make fre-

quent transitions so as to find available spectrum bands. Whereas, when ON/OFF

periods are long, the transitions are not that often, thus leading to less switch-

ing overhead, which yields more achievable throughput. In other words, when the

length of ON/OFF periods increases, the SUG can possess the available spectrum

bands for longer periods of time. When the lengths of ON/OFF periods are low, the

SUG has the spectrum band available to it only for a short period of time, leading

to frequent transitions across different bands.

4.5. Q-learning Optimality: Exploration Index n

In this section, we study the effect of the exploration index n on the behavior

of the Q-learning scheme. Recall that the index n is a design parameter to be chosen

and set a priori, which can take on any number less than or equal to the number
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FIGURE 4.6: Effect of index n on throughput: η̄ = 0.8, m = 7.

of available bands m. This parameter balances between two conflicting objectives:

the desire of increasing the chances of finding available bands (i.e., by increasing

n), and the desire to reduce the incurred overhead/cost due to scanning (i.e., by

decreasing n).

Figure 4.6 plots the normalized throughput as a function of n for different

values of CoV . Note that as the index n increases, the achievable throughput first

increases with n, then flattens out. This means that increasing the number of

scanned/searched bands beyond a certain threshold does not necessarily yield more

achievable throughput. For example, when CoV is above 0.6, the figure shows that

the SUG can no longer benefit from increasing its exploration index n when the

index reaches approximately 3. As explained in Section 4.3., note that the higher
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FIGURE 4.7: Index used as a function of index n: η̄ = 0.8, m = 7.

the CoV , the higher the throughput.

To further study this behavior, for each exploration index n scenario, we mea-

sured the average number of bands that are actually scanned before finding one

available band. We refer to this number as average index used. Figure 4.7 shows

the average index used for finding available bands as a function of the exploration

index n for different values of CoV . Note that as the exploration index n (i.e., the

number of allowable bands that can be scanned) increases, the average index used

to find an available band (i.e., the actual, measured number of scanned bands) first

increases then flattens out. This means that even when the SUG is allowed to scan

all bands, it ends up visiting only a few before finding an available one as a result

of using its learning capabilities. The figure also shows that the higher the CoV ,
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the smaller the actual index used to find an available band. Therefore, the learning

capabilities allow to find spectrum opportunities quickly, thus limiting the incurred

exploration overhead.

To summarize, we conclude that there exits an optimal index beyond which

throughput can no longer be increased even when the agent is allowed to scan

more bands. This optimal index is decided by the Q-learning by striking a balance

between the need to increase the chances of finding opportunities and the desire to

keep the searching overhead minimum. It is important to mention that setting the

exploration index n higher than the optimal index still allows the agent to achieve

the maximum throughput; i.e., the throughput that would also be achieved when

the exploration index is set to an optimal one. However, the lower the n, the lesser

the complexity of the Q-learning in terms of action set space and convergence time.

Therefore, it is very crucial that one determines the optimal (or near-optimal) index

so as to set the Q-learning scheme accordingly.

Let us now study how this optimal index varies under different PU traffic

loads. Figures. 4.8 and 4.9 plot the optimal index n as a function of CoV (variation

of primary-traffic loads) and η̄ (average of primary-traffic loads), respectively. Fig-

ure 4.8 shows that the optimal index decreases as the coefficient of variation CoV

increases. When the average of PU traffic loads is kept the same, high values of

CoV (i.e., high variations in the loads across different bands) increase the chances

of finding highly available spectrum bands. With experience, the Q-learning scheme

can quickly learn and locate where these more available bands are, requiring then

lesser number of scanned bands; i.e., a lower optimal index. Now when the load

variation is low, the Q-learning scheme needs to scan more bands to be able to find

one available since all of them are equally-loaded, and hence, there is no special
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(i.e., more available) bands that the algorithm can learn about. This explains why

the optimal used index is relatively high when bands have similar loads.

Figure 4.9 shows that the optimal index increases with the average η̄ of the

PU traffic loads, which can be explained as follows. When the system is highly-

loaded (i.e., η̄ is high), spectrum opportunities are scarce. Therefore, regardless

of how good the learning capabilities are, the SUG still needs to scan quite a few

bands before finding an available band. It is when the system is lightly-loaded that

learning can be effective as it can now quickly locate where these available bands

are, thus needing lesser bands to scan to find one available. This explains why the

optimal index is small under lightly loaded systems.
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5. PROPOSED MULTI-AGENT RL FOR OSA

In the previous chapters, we have tested the effectiveness of the Q-learning

scheme in terms of exploiting the spectrum opportunities. This is done by evaluating

the Q-learning scheme for a single secondary-user group and comparing the Q-

learning scheme’s performance under different environmental conditions with the

random access scheme. In this chapter we study the effect of multiple secondary-

user groups in the OSA environment and compare its performance under the three

different access schemes : Non-cooperative, Cooperative, and Random.

For this work, we formulate OSA as a finite MDP, defined by its state set S
consisting of one state s only (S = {s}), the action set A and the reward function

r described as follows.

Action set. At each time step, the agent chooses an action from the action set

A = {a1, a2, . . . , am}, where m is the number of bands. The number of actions is

equal to the number of spectrum bands in the system. Taking action ai while using

spectrum band bj makes an SUG enter and use spectrum band bi.

Reward function. The reward perceived by the agent when taking action ai and

entering spectrum band bi is a function of the quality level the SUG receives when

using the band. We assume that each band bi has its own bandwidth capacity Vi,

and when more than one SUG uses a spectrum band, the bandwidth is equally

divided among all the SUGs using the band. For example, if there are a total of 3

SUGs, A, B, and C, each taking action i, j, and k respectively, then the reward of

SUG A, denoted by raijk, can be calculated as
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raijk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vi/3 when i = j = k

Vi/2 when i = j �= k or i = k �= j

Vi when i �= j �= k

Non-cooperative Q-learning. The goal of the agent is to learn a policy, π :

S → A, for choosing the next action ai that produces the greatest possible expected

cumulative reward. A function, Q : S ×A → R, is defined so that its value for each

state-action (s, ai) pair corresponds to the maximum discounted cumulative reward

that can be achieved when starting from state s and taking action ai. Q can be

constructed recursively [31] as follows.

Q(s, ai)(t + 1) = Q(s, ai)(t) + α× (r(s, ai)−Q(s, ai)(t))

where 0 < α < 1 is the learning rate. When using the non-cooperative Q-learning

scheme, each SUG calculates its Q table independently from other SUGs.

Action selection. The action selection mechanism plays a very important role in

Q-learning. During the learning process, this selection mechanism is what enables

the agent to choose its actions. We consider the ε-greedy exploration as the action

selection mechanism, where the action corresponding to the highest Q value in that

time step is chosen with a probability of (1−ε)+ε/m, and any other action from the

action set A is chosen with a probability of ε/m. The ε-greedy mechanism balances

between exploration and exploitation.

Probability vector. Based on the ε-greedy exploration, we define the probability

vector over the action set as follows. X = (x1, x2, . . . , xm), where xi is the probability



31

of taking action i

xi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1− ε) + ε/m if Qi is the highest value

ε/m otherwise

where again m is the number of actions.

Cooperative Q-learning. Our multi-agent cooperative scheme is based on the

multi-agent Q-learning approach derived in [34]. To illustrate, suppose that SUG A

with probability vector X is going to cooperate with two other SUGs, B and C, with

probability vectors Y and Z respectively. The Q table entry for SUG A choosing

action i can be calculated as [34]:

Q(s, ai)(t + 1) = Q(s, ai)(t) + xi(t)α[(
∑j=m

j=1 yj(t)
∑k=m

k=1 (raijk)(zk(t)))−Q(s, ai)(t)]

Similarly, each SUG can compute its Q table values based on the probability

vectors of the other SUGs.
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6. EVALUATION OF MULTI-AGENT RL

In this chapter, we evaluate the performance of the proposed schemes. We

show the importance of cooperation in multi-agent OSA systems by comparing the

per SUG average received throughput of the cooperative scheme with that of a

non-cooperative scheme. Specifically, we study the effect that cooperation has on

network load balancing by allowing SUGs to make better action decision, leading to

more effective exploitation of bandwidth opportunities. This also ensures fairness

among SUGs by making sure that all SUGs receive (approximately) equal through-

put shares.

6.1. Simulated Access Schemes

We consider that the spectrum is divided into m non-overlapping spectrum

bands with φ SUGs. We mimic the presence of PUs by considering different spec-

trum bands with different bandwidth capacities. Let Vj denote the bandwidth

capacity of band j. A spectrum band with a higher bandwidth capacity is meant

to have a lower PU activity, and vice versa. We consider a time-slotted system,

and assume that SUGs interact with the environment in accordance with these time

slots. That is, SUGs can only enter or leave a band at the beginning and at the end

of these time steps. We now summarize the three access schemes that are evaluated

in this section.

Random Access Scheme. At the end of each time slot/step, an SUG using

the random access scheme selects a spectrum band among the m available bands
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randomly, and uses it during the next time slot. If more than one SUG happen to

select the same spectrum band, they share the bandwidth of the band equally.

Non-cooperative Access Scheme. In the non-cooperative access scheme, each

SUG uses the non-cooperative Q-learning policy discussed in Chapter 5. to create

and update its own Q table. Each SUG enters the environment and takes actions

based on its own Q table without cooperating with any of the other SUGs. When

two or more SUGs choose the same band during the same time step, they share its

bandwidth equally. Although the SUGs are typically unaware of the other agent’s

actions and act independently, the effect of the other SUG’s actions are reflected in

the reward that the SUGs receive from the spectrum band.

Cooperative Access Scheme. In the cooperative access scheme, each SUG main-

tains its own Q table using the cooperative multi-agent Q-learning, discussed in

Chapter 5.. Here, an agent’s Q table is formulated by taking into account the prob-

abilities associated with the actions of the other SUGs with which it cooperates.

In this case, at each time step, the SUG is provided with the probability vector of

every other SUG with which it cooperates. The tradeoff here is between the com-

munication overhead caused by extra traffic needed for exchanging the probability

vectors among the cooperating SUGs and the performance gains due to improved

action selections because of cooperation.

6.2. Cooperation Vs. Non-cooperation

First, we consider a OSA system with m = 3 spectrum bands and φ = 6 SUGs.

Bandwidth capacities are set to Vj = [5 10 15]. In this scenario, an ideal balanced
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spectrum load is reached when each of the SUGs get a reward of 5 units, which

implies that the 1st band has 1 SUG, the 2nd has 2 SUGs, and the 3rd band has 3

SUGs. We simulate the three different access schemes for this scenario, and plot

the average number of SUGs (averaged over 10000 episodes) in each of the three

spectrum bands (i.e., the distribution of SUGs) in Fig. 6.1.
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FIGURE 6.1: SUG distribution: m = 3, φ = 6, Vj = [5 10 15].
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The figure shows the average number of SUGs that end up choosing each of

the three spectrum bands for each of the three studied schemes. It can be observed

that the fully cooperative access scheme leads to the ideal balanced system load. As

explained earlier, this is because in the fully cooperative method, each SUG accounts

for all the possible actions that could be taken by its counterparts when making a

decision. On the other hand, when SUGs do not cooperate, they may not select

the best available band, as they have no clue what other SUGs will select, leading

to a lesser balanced load distribution when compared with that of the cooperative

scheme. Clearly and as expected, the Random access scheme results in an equally

distributed SUGs among all bands, leading to the worst load balance when compared

with the other two schemes2.

Fairness is another important metric that we also evaluate in this work. To

do this, we plot in Fig. 6.2 the coefficient of variation (CoV) of the received rewards

of all the SUGs as a function of time period (each time period corresponds to 500

epochs). Observe that the fully cooperative access scheme has the lowest CoV among

the three schemes. The lower the CoV, the closer the SUGs’ received rewards are

to one another, indicating a fairer access scheme. It can also be seen that the

CoV of the non-cooperative access scheme is approximately twice that of the fully

cooperative access scheme, and the CoV of the random access scheme is substantially

higher than the other two. Therefore, cooperation improves performances not only

in terms of network load balancing, but also in terms of ensuring fairness among all

SUGs.

2We want to mention that these above results do not account for the communication overhead
caused by message exchange needed to share the probability vectors among cooperative SUGs.
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FIGURE 6.2: Coefficient of variation of the rewards of all the SUGs at each time
period: m = 3, φ = 6, Vj = [5 10 15].
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6.3. Impact of Degree of Cooperation

Recall that cooperation increases the performance because it allows the SUGs

to make a better decision when selecting their next actions. This is because the

SUGs take into account what other SUGs will select when making their action

decisions. However, acquiring such information would necessitate the exchange of

messages among cooperative SUGs, which clearly incurs extra overhead. Therefore,

the challenge is to strike a good balance between the desire for a higher level of

cooperation that enables a better action selection and the need for a lower level

of cooperation so as to keep the cooperation overhead to a minimum. Cooperation

overhead comes from the extra traffic needed to exchange the probability vectors and

also from the computing delay/time resulting from solving the complex equations

involved in updating the Q table entries of the cooperative SUGs.

We now study the impact of degree of cooperation on the achievable perfor-

mances of a OSA system with m = 3 spectrum bands and φ = 12 SUGs. The

bandwidth capacities of the spectrum bands are set to Vj = [10 20 30]. In this

scenario, an ideal balanced load is reached when each of the SUGs earn a reward

of 5 units, corresponding to when the 1st band houses 2 SUGs, the 2nd band 4

SUGs, and the 3rd band 6 SUGs. For this simulation scenario, we evaluate and

compare the performances of the cooperative access scheme by considering three

degrees of cooperation: 2 (i.e, each SUG cooperates with 2 other SUGs), 4 (i.e, each

SUG cooperates with 4 other SUGs), and 6 (i.e, each SUG cooperates with 6 other

SUGs).

Fig. 6.3 shows the average number of SUGs that end up choosing each of

the three spectrum bands for the random scheme, non-cooperative scheme, and
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(e) Cooperation with 6 SUGs

FIGURE 6.3: SUG distribution: m = 3, φ = 12, Vj = [10 20 30].



39

2 4 6 8 10 12 14 16 18 20
0

5

10

15

Time Period (Avg over 500 epochs)

C
o

V
 o

f 
th

e
 R

e
w

a
rd

s
 o

f 
a

ll 
S

U
G

s

 

 

Random
Non−cooperation
Partial cooperation: 2 SUGs
Partial cooperation: 4 SUGs
Partial cooperation: 6 SUGs

FIGURE 6.4: Coefficient of variation of the rewards of all the SUGs at each time
period: m = 3, φ = 12, Vj = [10 20 30].

cooperative access scheme with 2, 4 and 6 degree of cooperation. Note that as the

degree of cooperation increases, the system load becomes more balanced. That is,

the cooperative access scheme with degree of cooperation equal to 6 leads to a better

balanced system load when compared with the other two degrees of cooperation.

We also study fairness achieved under each of the three cooperation degrees,

and plot the CoV of the received rewards of the SUGs in Fig. 6.4. Observe that

cooperation with a degree of 6 has the lowest CoV, followed by a degree of 4, and

then followed by a degree of 2. This indicates that a higher degree of cooperation

leads to a lower CoV, meaning that SUGs receive closer amounts of rewards, thus

ensuring fairness among SUGs. Therefore, cooperation improves performances not

only in terms of network load balancing, but also in terms of ensuring fairness among
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all SUGs. Note that each of the three degrees of cooperation has a lower CoV when

compared with the non-cooperative and random access schemes.

It is important to mention again that although higher degree of cooperation

results in improved action selection decisions, it also incurs more communication

overhead and execution times. Therefore, one must choose the degree of cooperation

that balances between good selection decision and minimum overhead so as to lead

to an increased overall system performance.



41

7. CONCLUSION

Technological advances enabled cognitive radios, which have recently been rec-

ognized as the key technology for realizing OSA. Cognitive radios are viewed as in-

telligent systems that can self-learn from their surrounding environments, and auto-

adapt their operating parameters in real-time to improve spectrum efficiency.In this

thesis, we have developed a reinforcement learning-based framework for OSA and

have evaluated and compared the performance of a single-agent RL algorithm with

the random scheme and in addition we have formulated and compared the through-

put performance of two multi-agent RL algorithms, namely the non-cooperative and

cooperative Q-learning scheme along with the random scheme. It is shown from sim-

ulations that partial and fully cooperative access schemes perform better than the

non-cooperative and the random schemes in terms of achieving higher throughput

and a better balanced traffic loads. We also showed that cooperation improves

performances not only in terms of network load balancing, but also in terms of en-

suring fairness among all users. The proposed learning techniques do not require

prior knowledge of the environment’s characteristics and dynamics, yet can still

achieve high performance by learning from interaction with the environment.
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