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Abstract

Background: The essential roles of gut microbiome have been emphasized in modulating human health and

disease. Fusobacterium nucleatum (F. nucleatum), an obligate Gram-negative microorganism residing in oral cavity,

gastrointestinal tract and elsewhere, has been recently considered as a potential oncobacterium associated with

human cancers. However, the consequence of its enrichment was not extensively explored in terms of microbial

homeostasis and stability at the early stage of disease development.

Result: Our analysis on longitudinal metagenomic data generated by the Integrative Human Microbiome Project

(iHMP) showed that F. nucleatum was frequently found in inflammatory bowel diseases (IBD) subjects with reduced

microbial diversity. Using non-parametric logarithmic linear discriminant analysis (LDA) effect size (LEfSe) algorithm,

12 IBD- and 14 non-IBD-specific bacterial species were identified in the fecal metagenome and the IBD-specific

ones were over-represented in the F. nucleatum-experienced subjects during long-term surveillance. In addition, F.

nucleatum experience severely abrogated intra-personal stability of microbiome in IBD patients and induced highly

variable gut microbiome between subjects. From the longitudinal comparison between microbial distributions prior

and posterior to F. nucleatum detection, 41 species could be proposed as indicative “classifiers” for dysbiotic gut

state. By multiple logistic regression models established on these classifiers, the high probability of experiencing F.

nucleatum was significantly correlated with decreased alpha-diversity and increased number of biomarker species

for IBD and colorectal cancer (CRC). Finally, microbial clustering confirmed that biomarker species for IBD and non-

IBD conditions as well as CRC signature markers were well distinguishable and could be utilized for explaining gut

symbiosis and dysbiosis.

Conclusion: F. nucleatum opportunistically appeared under early dysbiotic condition in gut, and discriminative

classifier species associated with F. nucleatum were successfully applied to predict microbial alterations in both IBD

and non-IBD conditions. Our prediction model and microbial classifier biomarkers for estimating gut dysbiosis

should provide a novel aspect of microbial homeostasis/dynamics and useful information on non-invasive

biomarker screening.
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Background
The microbial communities in the gastrointestinal tract

play pivotal roles in maintaining many biological func-

tions such as food digestion, metabolism, and immuno-

logical regulations as well as developing diseases like

ulcers, bowel perforation, inflammatory bowel diseases,

irritable bowel syndrome, other inflammatory condi-

tions, metabolic syndromes, and even cancers.

F. nucleatum was initially identified as a non-motile

obligate anaerobe commonly residing on the tooth sur-

face of healthy individuals and bridging bacterial species

to form dental plaque [1, 2]. Many researches have re-

ported that F. nucleatum is ectopically colonized in dis-

tal organs and associated with several disorders such as

adverse pregnancy outcomes, IBD, Lemierre’s syndrome,

cardiovascular diseases, atherosclerosis, Alzheimer’s dis-

ease, and cancers [3–8]. IBD refers to as chronic condi-

tions describing a group of inflammatory disorders in

intestines. Patients with IBD tend to show a high level of

F. nucleatum in the colon and are at significantly high

risk of CRC. It has been demonstrated that F. nucleatum

is related with and promotes the growth of CRC [9–17].

CRC is the fourth most incident cancer in the world.

The rates of CRC incidence and mortality are still rising

in developing countries and in relatively young people in

the United State [18, 19]. Chronic inflammation at large

intestine is a significant risk factor of CRC [20, 21]. The

patients with IBD are six times more likely to develop

CRC when compared with control group. CRC accounts

for one out of seven deaths in IBD patients [22]. Fur-

thermore, the incidence of CRC after a negative colonos-

copy is three times higher in IBD patients than in

healthy controls, indicating that chronic inflammation

facilitates colorectal tumor promotion [23]. For early

detection of CRC, endoscopic surveillance is usually

recommended but people are reluctant to the uncom-

fortable test, resulting in late diagnosis and poor progno-

sis of CRC. Thus, there is a realistic need for

development of non-invasive and potent biomarkers for

the early CRC diagnosis [24]. Despite the differential

enrichment of F. nucleatum in CRC tissues, the effect-

iveness of fecal F. nucleatum as a potential non-invasive

biomarker is still underestimated due to its rare appear-

ance in stool [25–32].

The iHMP released extensive longitudinal datasets of

disease-specific cohorts to understand the interaction

between the microbiome and host using multi-omics

technologies. Among them, there are shotgun metage-

nomic sequencing data from IBD fecal samples of 130

people over 1 year [33]. Recently, a multi-institutional

group reported the comprehensive profiling of overall

metagenome using IBD databases from iHMP but the

establishment of cancer-associated microbiome in IBD

patients has not been investigated [34].

Here we examined whether F. nucleatum and its

associated pathobionts might be promising biomarker

species reflecting dysbiotic environment by analyzing the

longitudinal metagenomic data and predicted if the

occurrence of F. nucleatum could play a function as an

indicator of disease condition.

Results
Metagenomic profiling of IBD or non-IBD participants

As summarized in Fig. 1, the overall metagenomic

analysis includes filtering, profiling, longitudinal dissec-

tion, biomarker screening, modeling, and microbial

dynamics test. The fecal metagenome dataset used in

this study was downloaded from the Inflammatory

Bowel Disease Multi-'Omics Database (IBDMD) of

iHMP, which were longitudinally generated from 130

participants (103 IBD and 27 non-IBD subjects).

As described in Methods, the data quality was tested

and metagenomic samples from valid subjects satisfying

selection conditions were considered for further analysis

(Additional file 1: Table S1). Microbial taxonomy was

assessed at the species level using MetaPhlAn2, and the

quality of the compositional data were controlled ac-

cording to the three specific conditions mentioned in

Methods (Additional file 2: Table S2) [35]. The number

of filtered samples was 1526 samples from 106 partici-

pants (80 IBD and 26 non-IBD), and the metadata of

participants such as sex, age, and collection days were

comparable between IBD patients and non-IBD subjects

(Additional file 3: Table S3). The global distribution did

not show distinct tendency to sex, IBD-activity, subject,

and data generation sites (Additional file 4: Figure S1).

Consistent with the previous reports, two major phyla

in human gut, Firmicutes and Bacteroidetes showed a

complementary distribution in the plot of principal co-

ordinate analysis (PCoA) (Fig. 2a) [36]. The microbiomes

of IBD and non-IBD subjects were generally distinguish-

able. Samples of non-IBD subjects were mainly localized

in a left-lower quadrant and ones of IBD patients were

more widely distributed along PC1 axis (probability

value of IBD vs. non-IBD, PIBD-Non (PC1) < 2.2e-16, Fig.

2b). The representative subtypes of IBD, ulcerative colitis

(UC) and Crohn’s diseases (CD), were not significantly

segregated by PC1 and PC2 axes (p-values of UC vs. CD,

PUC-CD (PC1) = 0.1726, PUC-CD (PC2) = 0.0988), implying

that the two idiopathic inflammatory disorders share

similar microbial community (Fig. 2b). Overall micro-

biome seemed to be distinct by subjects and largely

stable over time (Fig. 2c). As grouped by K-means clus-

tering, most of non-IBD samples belonged to cluster C3,

suggesting that microbiome from non-IBD subjects

should be relatively convergent relative to those from

UC or CD (Odd Ratio (OR)nonIBD-C3 = 4.42, ORUC-C3 =

2.30, ORCD-C2 = 2.15).
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Multiple alpha diversity indices like Shannon diversity,

Pielou’s evenness, and richness (the number of observed

species per sample) were lower in samples with IBD than

in those without IBD as expected. There were no signifi-

cant differences in alpha diversity indices between CD

and UC, but severe inflammation lowered Shannon di-

versity and richness (Fig. 2d, Additional file 5: Figure

S2a, b).

In addition, the fraction of human reads sequenced to-

gether with gut metagenomic data was high in IBD ra-

ther than in non-IBD and highest in active stage of IBD

among three stages of IBD, which means that a leakage

of host genome into gut lumen might mirror the severity

of disorders in gut (Fig. 2e). Accordingly, the human se-

quence read fraction was positively correlated with dis-

eases severity scores such as simple clinical colitis

activity index (SCCAI) for UC and Harvey-Bradshaw

index (HBI) for CD (Additional file 5: Figure S2c, d).

Detection of F. nucleatum and its longitudinal dissection

F. nucleatum is rarely found in gut microbiome. Among

1526 fecal samples from 106 participants, F. nucleatum

occurred 41 times in 19 subjects (15 IBD and 4 non-

IBD). The ratio of IBD to non-IBD subjects was not

significantly different in F. nucleatum-detected subjects

(Fisher’s one-sided test, p-value 0.4757), but the ratio of

IBD to non-IBD samples had marginal preference to

chronic inflammation due to the recurrent observation

of F. nucleatum in IBD patients (OR = 1.79, Fisher’s one-

sided Pdetect = 0.1062) (Fig. 3a). However, F. nucleatum

was relatively abundant within samples of IBD patients

experiencing F. nucleatum (Wilcoxon test Pdetect =

0.02891) (Fig. 3b).

Even though the low detection frequency of F. nuclea-

tum is not appropriate for early diagnosis of disease

state, it would be a constructive approach of overcoming

this constraint to examine the longitudinal metagenomes

before and after detection of a certain species along with

co-occurring species. Firstly, we tested whether the de-

tection frequency and abundance were consistent in 44

duplicated samples that were sequenced in both Human

microbiome project (HMP) and HMP pilot study indi-

vidually. Microbial abundance and the detection fre-

quency are positively correlated and the recovery rate is

usually high for abundant species. As expected, highly

abundant species were found in duplicates but less

abundant ones with abundance below 0.01%, were not.

About one-fourth of total species appeared only in one

sample of a given duplicated pair. F. nucleatum was a

relatively rare microbe observed only 4 times in three

Fig. 1 Schematic diagram of metagenome analysis. Longitudinal metagenome data from IBDMD were filtered by indicated criteria, and basic

characteristics of microbiome were profiled. Based on longitudinal experience of F. nucleatum and temporal distribution toward F. nucleatum-

detected samples, microbial characteristics was compared. Using LEfSe algorithms, microbial biomarkers of non-IBD or common IBD condition

were screened, and correlation of the marker species with F. nucleatum was assessed. After identifying classifier microbes, which significantly

differentiate F. nucleatum-observed point, probability of experiencing F. nucleatum was estimated in F. nucleatum-innocent subjects using

multiple logistic regression models. At last, microbes were classified into 9 clusters according to five longitudinal features associated with

inflammatory conditions and F. nucleatum experience. Particular clusters contained a significant number of disease-associated marker species or

well-known probiotics
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duplicates and its recovery rate was only 33.3% (Add-

itional file 6: Figure S3). To overcome the limitation of

snapshot-based approach, the samples collected from

each subject over 1 year were arranged in chronological

order relative to the detection point of F. nucleatum

(Fig. 3c). The subjects were categorized into F. nuclea-

tum-experienced or –innocent (non-experienced)

groups, and the samples from F. nucleatum-experienced

subjects were sub-divided into prior or posterior group

as well as proximal or distal group to the detection point

of F. nucleatum. The samples of F. nucleatum-experi-

enced subjects were highly dispersed in PCoA plot (Fig.

3d, g). Experiencing F. nucleatum led to lowering Shan-

non diversity and Pielou’s evenness. Particularly, the

samples either proximal or posterior to F. nucleatum de-

tection exhibited decreased alpha diversity and increased

Fig. 2 Characteristics of IBD and non-IBD microbiome data. a Reciprocal patterns of Firmicutes and Bacteroidetes on principal coordinate analysis

(PCoA) plot. b Distribution of IBD and non-IBD (ulcerative colitis (UC), and Crohn’s disease (CD) samples on PCoA plot. P-values indicate a

significance in pairwise comparison between two groups against principal coordinates. c Logarithmic abundance heatmap of 1526 samples.

Pseudo-abundance (1e-05) was added to avoid infinite value. Samples were ordered by participant and visit number information. d Shannon

diversity of samples. According to disease severity score, UC and CD samples were categorized into three stages (remission, border, and active). e

Logarithmic human read fraction of samples
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human read fraction (Fig. 3e, h, i, Additional file 5:

Figure S2e, f). Longitudinal tracking of F. nucleatum-ex-

perienced subjects revealed that the microbial diversity

was decreased in non-IBD subjects as well as in IBD pa-

tients (Fig. 3f). These results imply that F. nucleatum

might appear under gut microbiome perturbation to-

ward a low microbial diversity.

Identification of biomarkers in IBD/non-IBD and their

correlation with F. nucleatum

In order to clarify whether F. nucleatum was truly

associated with inflammatory environment, we tried to

screen biomarker species for IBD and non-IBD

conditions. Using a non-parametric Linear discriminant

analysis Effect Size (LEfSe) algorithm, 12 IBD- and 14

non-IBD-specific biomarkers were selected at the species

level (Fig. 4a, Additional file 7: Table S4). As expected,

these markers were differentially enriched in either IBD

or non-IBD samples (Fig. 4b). The ratio of IBD markers

to non-IBD markers was significantly increased in F.

nucleatum-experienced subjects, suggesting that more

IBD-specific biomarkers were associated with detection

of F. nucleatum whether or not IBD was developed (Fig.

4c). The prevalence of IBD markers over non-IBD

markers was also distinct in samples posterior to F.

nucleatum-detection (Fig. 4d).

Fig. 3 Transient colonization of F. nucleatum is a sign of intestinal disturbance. a IBD and non-IBD frequency by F. nucleatum observation. b

Logarithmic abundance of F. nucleatum upon observation by subjects. Wilcoxon rank-sum test was conducted. c Sample classification by F.

nucleatum experience, temporal proximity, and directionality. d Distribution of samples collected from F. nucleatum-experienced subjects. e

Shannon diversity by F. nucleatum-oriented classification. f Shannon diversity of samples from F. nucleatum-experienced subjects based on

temporal proximity to F. nucleatum-detected point. g Distribution of samples collected before or after the F. nucleatum-detected samples. h

Logarithmic human read fraction of samples by F. nucleatum-oriented classification. i Logarithmic human read fraction of samples from F.

nucleatum-experienced subjects based on temporal proximity to F. nucleatum-detected point
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As shown in Fig. 4e, the number of IBD-specific bio-

markers is an indicator for F. nucleatum occurrence at

later time. The number of IBD-specific biomarkers in F.

nucleatum-experienced subjects is significantly higher

than that in F. nucleatum-innocent subjects under non-

IBD condition (P < 2.2e-16). The number of IBD-specific

biomarkers was increased and that of non-IBD-specific

biomarkers was decreased at the detection point of F.

nucleatum and afterwards under non-IBD condition,

leading to an alteration of microbiome. Similarly, the

number of non-IBD-specific biomarkers in F. nuclea-

tum-experienced subjects is significantly lower than that

in F. nucleatum-innocent subjects (P = 3e-15). The num-

ber of IBD-specific biomarkers was not much changed

before and after the detection of F. nucleatum under

non-IBD condition (Fig. 4e). These results suggested that

experience of F. nucleatum should be tightly linked with

IBD development.

The association of biomarker species with F. nuclea-

tum was also assessed by calculating Spearman’s correl-

ation coefficients. All 14 non-IBD biomarkers were

negatively correlated with F. nucleatum, having very sig-

nificant enrichment p-values, and IBD biomarkers

showed mostly positive correlation with some exceptions

(Fig. 4f). Collectively, the absolute correlation coefficient

of a certain microbe with F. nucleatum had strong rela-

tionship with its enrichment p-values in either IBD or

non-IBD conditions (ρ = 0.33, P = 3.8e-15; Fig. 4f).

When the longitudinal abundance of the biomarker

species was examined, two representative marker species

of non-IBD condition, Alistipes shahii and Alistipes

putridinis, showed the decreasing patterns of abundance

along the X-axis standing for the proximal weeks to the

detection point of F. nucleatum. In contrast, the abun-

dance of IBD markers like Clostridium symbiosum and

Clostridium bolteae had opposite pattern, low at prior

Fig. 4 Microbial biomarkers for inflammatory conditions highly correlated with F. nucleatum. a Screening non-IBD or IBD marker species by LEfSe

algorithm. Y-axis indicated logarithmic linear discriminant analysis (LDA) score. b Number of detected marker species per sample by inflammatory

condition. c Logarithmic detection ratio of IBD/non-IBD marker species detected depending on the experience of F. nucleatum. Pseudo-count 1

was added to denominator and numerator to avoid infinite value. d Logarithmic detection ratio of IBD/non-IBD marker species by temporal

distribution toward F. nucleatum detection. e Distribution of IBD and non-IBD marker species along temporal proximity to F. nucleatum

observation in F. nucleatum-experienced subjects (solid lines). Dotted lines indicate the median number of detected marker species in F.

nucleatum-innocent subjects (red: IBD biomarkers, blue: non-IBD biomarker). Gray arrow shows the comparison of the number of detected IBD

biomarker in F. nucleatum-experienced and -innocent subjects. f Relationship between Spearman correlation coefficients of biomarker species

with F. nucleatum and differential enrichment p-value of the microbes in IBD or non-IBD condition. Circle size denotes the number of detection

(NOD) of the microbe across whole samples. g Logarithmic abundance of four representative IBD and non-IBD marker species along the

temporal axis centered at F. nucleatum-detection. Blue line indicates non-IBD and red line, IBD. Font color for microbes indicates marker classes

(blue for non-IBD; dark red for IBD). * indicates p-value < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001
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and high at posterior to F. nucleatum-detection along

the temporal axis (Fig. 4g). The abundance of these four

biomarkers was significantly changed only in IBD condi-

tion, which means that the perturbation in key microbes’

abundance should be accompanied by chronic inflam-

mation. Besides, two additional IBD markers, Flavoni-

fractor plautii and a unclassified species in Oscillibater

genus, and three non-IBD markers, Alistipes finegoldii,

Roseburia hominis, Roseburia inulinivorans, exhibited

similar patterns of abundance changes over time

(Additional file 8: Figure S4).

Microbial destabilization after F. nucleatum detection

Homeostasis of human gut microbiota is a sort of indi-

cators of human health and understanding of their be-

havior is important for diagnosis and prevention of

disease states. The microbial imbalance, called dysbiosis,

is believed to cause or be associated with several meta-

bolic and inflammatory diseases [37, 38]. To see whether

F. nucleatum experience is associated with long-term

stability of microbiome, we examined intra- and inter-

individual alterations of microbiome in chronological

order relative to the detection point of F. nucleatum.

Intra-individual dissimilarity of microbiome was mea-

sured by pairwise Bray-Curtis distance after random

sampling in a given participant (Fig. 5a). Consistent with

the previous findings, IBD subjects regardless of F. nuclea-

tum-experience, showed higher microbial dissimilarity

than non-IBD subjects at any given time intervals, sup-

porting that IBD is related with microbial destabilization

[34]. By calculating the microbial distance, the micro-

biomes of IBD patients who have experienced F. nuclea-

tum were verified to be more unstable than those of F.

nucleatum-nonexperienced group (Fig. 5b). The temporal

microbial stability was compared between before and after

detection of F. nucleatum (Fig. 5c). F. nucleatum-experi-

enced subjects showed significant dissimilarity between

earlier time and later time points in F. nucleatum-experi-

ence samples (P|x| < 20w = 3.5e-05), whereas F. nucleatum-

innocent control did not (P|x| < 20w = 0.1905) (Fig. 5d).

Individual alterations in microbiome were traced over the

time, resulting that four IBD subjects (C3009, H4015,

M2034, and P6009) among 16 F. nucleatum-experienced

IBD subjects showed dramatic microbial shift but four F.

nucleatum-experienced non-IBD subjects did not (Add-

itional file 9: Figure S5).

Two different participants under the same condition

were randomly selected to estimate inter-individual mi-

crobial distance (Fig. 5e). The dissimilarity between IBD

patients was higher than non-IBD subjects (dIBD =

0.5696, dnon-IBD = 0.5000, P = 1.9e-07; Fig. 5f), and that of

F. nucleatum-experienced subjects was also higher than

non-experienced ones (dexp = 0.5927, dnon-exp = 0.5401,

P = 7.5e-15; Fig. 5g). The microbial distance on the

temporal distribution was higher in samples posterior

than prior to F. nucleatum-detection (dposterior = 0.5816,

dprior = 0.5372 P = 2.3e-07; Fig. 5h). When one F. nuclea-

tum-detected sample was compared with samples of

different F. nucleatum-experienced subjects, the inter-

individual microbial distance was gradually elevated until

20 weeks after F. nucleatum detection (Fig. 5i, j).

Collectively, these results suggested that highly

variable microbiome might be pre-established in F.

nucleatum-colonizing environment, and potentiate

dysbiosis upon chronic inflammation. On the other

hand, a convergent microbiome before F. nucleatum

detection become unstable and divergent along with F.

nucleatum occurrence, possibly leading to the formation

of pathogenic microbiome.

Identification of classifier microbes for F. nucleatum

detection

To identify representative microbes for F. nucleatum detec-

tion, all 317 samples from F. nucleatum-experienced sub-

jects (16 IBD and 4 non-IBD participants) were partitioned

and 258 microbes were initially screened following the pro-

cedure described in Methods. Among them, 41 significant

species were predicted as “classifiers” for F. nucleatum by

multiple logistic regression analysis (False discovery rate

(FDR) < 0.001) (Fig. 6a). These classifier microbes were di-

vided into two groups, 15 and 26 species enriched in

samples prior and posterior to F. nucleatum-detection, re-

spectively (Fig. 6b, Additional file 10: Table S5). The

posterior-enriched classifiers, including 3 IBD marker spe-

cies, were favorably found in IBD samples, and the prior-

enriched classifier with 4 non-IBD marker species were

preferentially observed in non-IBD samples (Fig. 6b, c).

A recent fecal metagenome analysis suggested 29 core

signature bacteria enriched in CRC metagenomes in-

cluding three F. nucleatum strains [39]. Among them,

18 CRC signature species were also observed in our

dataset, and most of them (14 out of 17 signatures ex-

cept F. nucleatum) were positively correlated with F.

nucleatum (Additional file 11: Table S6). The five CRC

signature species including three Clostridium species (C.

symbiosum, C. bolteae, C. clostridioforme), F. nucleatum,

and Peptostreptococcus stomatis were overlapped with

potent F. nucleatum-posterior classifiers (Area under the

curve (AUC)C. sym. = 0.6574, AUCC. bolt. = 0.6427, AUCC.

clostri. = 0.6102, AUCF. nuc. = 0.6043, AUCP. sto. = 0.5406,

PCRC = 0.0164; Fig. 6b). Especially, C. symbiosum pro-

posed as a potent fecal biomarker for CRC was the top

F. nucleatum-posterior classifier in our study [40].

Considering discriminative property of microbial

markers detected more than 5 times in F. nucleatum-ex-

perienced subjects, all 11 CRC biomarkers could

successfully distinguish samples prior to F. nucleatum-

detection from ones posterior to F. nucleatum-detection
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(PCRC = 0.0009). Likewise, a majority of IBD and non-

IBD markers (9 out of 11 and 9 out of 14, respectively)

showed a discriminative power (PIBD = 0.0229, Pnon-IBD =

0.0732) (Fig. 6d). Most biomarkers identified in this

study exhibited significant discriminative power for F.

nucleatum detection and were differentially enriched in

samples either prior or posterior to F. nucleatum-detec-

tion, supporting that F. nucleatum-oriented approach

has an advantage to the effective identification of bio-

markers (Fig. 6e).

Estimation of F. nucleatum experience and dysbiosis level

in F. nucleatum-innocent subjects

A prediction model was constructed to estimate the

probability of experiencing F. nucleatum with top 13

potent classifiers satisfying average AUC > 0.6 and FDR <

1e-07 (Fig. 7a). The constructed generalized linear mod-

eling (GLM) was tested with 100 randomly partitioned

training datasets and the 10th GLM was chosen as the

best model for examining the level of dysbiosis by con-

sidering average ranks in AUC, Akaike information cri-

terion (AIC), accuracy, sensitivity, precision, and

specificity (Fig. 7b, Additional file 12: Figure S6a-f). The

10 species used for building the 10th GLM were Dorea

longicatena, Coprococcus comes, Lachnospiraceae bacter-

ium 3_1_46FAA, Clostridium symbiosum, Roseburia

hominis, Roseburia inulinivorans, Alistipes shahii,

Bacteroides stercoris, Clostridium bolteae, and Veillo-

nella parvula in descending order of mean AUC (Add-

itional file 10: Table S5). When applying this model to F.

Fig. 5 F. nucleatum experience is associated with microbial destabilization. a Analytic scheme for calculating intra-individual stability of

microbiome. b Intra-individual dissimilarity of microbiome with different time intervals facetted by F. nucleatum experience and inflammatory

conditions. Numbers of subjects and samples shown in parenthesis (# of subjects/ # of samples) c Analytic scheme for calculating intra-individual

stability of microbiome with fixed initial point. d Intra-individual dissimilarity of microbiome with fixed initial time point. e Analytic scheme for

calculating inter-individual dissimilarity of microbiome. f-h Inter-individual dissimilarity of microbiome by inflammatory conditions, F. nucleatum

experience, and temporal distribution toward F. nucleatum observation, respectively. i Analytic scheme for calculating inter-individual dissimilarity

of microbiome with fixed initial point. For F. nucleatum-innocent control, initial points were randomly selected. j Inter-individual dissimilarity of

microbiome by temporal proximity to F. nucleatum
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nucleatum-experienced subjects for validation, the prob-

ability of experiencing F. nucleatum, so called “posterior

probability”, was gradually increased and reached a deci-

sion threshold of 0.5 just before detection point of F.

nucleatum, which means that this model can successfully

predict the exact point of F. nucleatum detection (Fig. 7c).

Strikingly, this model was still effective even when 86 F.

nucleatum-innocent subjects were separated by predicted

posterior probability and inflammation status. Samples

with predicted posterior probability above 0.5 showed de-

creased alpha-diversity, increased number of biomarkers

for IBD and CRC, and decreased number of non-IBD bio-

markers indicating clear manifestations of dysbiosis (Fig.

7d, Additional file 12: Figure S6g). The posterior probabil-

ity was correlated negatively with Shannon diversity and

positively with the ratio of IBD to non-IBD markers

(Spearman correlation, ρshannon = − 0.29, ρratio = 0.53; Fig.

7e). There was a negative correlation between microbial

diversity and the posterior probability when examined in

the most 12 “dynamic” subjects with high variance in

posterior probability (Fig. 7f, Additional file 13: Figure S7).

Especially, several IBD patients including E5009, H4015,

H4032, H4044, P6009, P6010, and P6025, displayed

dramatic microbial shift as the posterior probability

increased. Additionally, the negative correlation could be

further generalized to more subjects in 70th percentile

from the highest variance in posterior probability

(Additional file 14: Figure S8). The samples with low

posterior probability were located in the lower left side of

the plot but the samples with high probability were

scattered, indicating that our prediction model explained

microbial variance properly (Fig. 7g).

Fig. 6 F. nucleatum-oriented dynamics is informative of capturing biomarkers for IBD or CRC. a Schematic illustration of screening classifier

species in F. nucleatum-experienced subjects. b List of classifier microbes enriched in F. nucleatum-posterior or prior samples. Fisher’s exact test

was performed. Triangles are CRC signature species. c Number of detected posterior- or prior-enriched classifiers in IBD or non-IBD samples.

(Wilcoxon test. **** < 0.0001). d Classifying significance of microbes in F. nucleatum-experienced subjects. Red circle indicated CRC signature

species detected in F. nucleatum-experienced subject at least 5 times. Fisher’s exact test was performed. Gray dotted line indicated p-value = 0.05.

e Average AUC of microbes and their logarithmic p-value for differential enrichment in F. nucleatum-posterior (upper right) or -prior samples

(lower right)
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The validity of our prediction model was further

strengthened through its application with the independ-

ent metagenomic data from HMP phase I database

generated by analyzing fecal samples of healthy popula-

tion [41]. The best GLM model above was applied to 82

filtered samples out of 251 samples, where no samples

contained F. nucleatum as expected. Consistently with

the previous results, healthy microbiome showed a broad

range of F. nucleatum-posterior probability and the

posterior probability was negatively correlated with

Shannon diversity (Additional file 15: Figure S9a, b). The

samples predicted as F. nucleatum-posterior or -prior

group were examined and F. nucleatum-posterior group

was typically characterized by decreases in three indices

of microbial alpha diversity (richness, evenness, and

Shannon diversity), increase in the prevalence of IBD

and CRC biomarkers, and significant decrease of non-

IBD biomarker (Additional file 15: Figure S9c). These re-

sults strongly supported that the 10 classifier species

screened by their longitudinal dynamics to F. nucleatum

could predict gut dysbiosis even in healthy individuals.

Application of potential biomarkers to the evaluation of

fecal microbiome

To classify the microbial distribution, we considered 5

following criteria; 1) Spearman co-abundance correlation

with F. nucleatum, 2) enrichment in IBD condition, 3)

enrichment in F. nucleatum-experienced subjects, 4) en-

richment in samples posterior to F. nucleatum detection,

5) discriminative significance for F. nucleatum detection.

Fig. 7 Estimation of F. nucleatum-experience and dysbiosis level in F. nucleatum-innocent subjects. a Schematic illustration of constructing

multiple generalized linear regression model b Average rank of model performance. c Model validation using F. nucleatum-experienced subjects.

Line color indicates inflammatory condition of subjects. d Characterization of predicted F. nucleatum-posterior or -prior groups in F. nucleatum-

innocent subjects. Wilcoxon test. ns indicates non-significant (p-value> 0.5), ** p < 0.01, *** p < 0.001, **** p < 0.0001 e Correlation between

posterior probability and IBD/non-IBD marker ratio or Shannon diversity. Dot color indicates Shannon diversity. Spearman correlation between

two parameters and its significance was described at the top of scatter plot. f Intra-individual change of posterior probability of Shannon diversity

in the top 12 dynamic individuals. Pearson correlation coefficients between posterior probability and Shannon diversity were shown. g Posterior

probability of whole samples in PCoA plot
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The biomarker species for IBD and non-IBD conditions

were distinguishable in principal component analysis

(PCA) plot, and the CRC signature species were closely

related with IBD biomarkers (Fig. 8a, b).

The effectiveness of our IBD/non-IBD biomarkers as

well as CRC markers in the longitudinal analysis was val-

idated by K-means clustering of all microbes. Among 9

clusters, cluster 1 harbored most non-IBD biomarkers

(8/14) and cluster 6 had five CRC and six IBD bio-

markers, where C. symbiosum and C. bolteae belong to

both sides. Moreover, cluster 6 held many known oppor-

tunists such as Clostridium difficile, Enterococcus faeca-

lis, Enterococcus faecium, Escherichia coli, Haemophilus

haemolyticus, Saccharomyces cerevisiae, and F. nuclea-

tum (Additional file 16: Table S7). Cluster 4 had both

CRC and non-IBD markers. Cluster 8 and 9 contained

IBD markers (Fig. 8c). Notably, the cluster 1 and 6 were

separated far apart in PCA plot, and the cluster 8 and 9

were localized near cluster 6, which indicated that the

biomarker species with a similar character formed intim-

ate clusters (Fig. 8d).

The number of detected microbes along temporal

proximity to F. nucleatum was decreased in clusters 1, 4,

and 7 where non-IBD biomarkers were involved (Fig.

8e). The number of detected microbes increased in IBD

condition of clusters 6 and 8, which had both CRC and

IBD biomarkers. Interestingly, although the cluster 2

and 3 showed significant decrease in detected microbe

number regardless of inflammatory conditions, they did

not contain any biomarkers. In accordance with Fig. 4e,

the number of dysbiosis-associated biomarkers changed

in IBD condition. Clusters 1, 4, and 7 were negatively

correlated with the posterior probability, but the clusters

6 and 8 were positively related (Fig. 8f). Furthermore,

the clusters 1 and 6 exhibited a complementary distribu-

tion each other in terms of microbial abundance and de-

tection frequency, which was confirmed in independent

healthy dataset (Fig. 8g, Additional file 15: Figure S9d).

Taken together, our work illuminated previously

unrecognized knowledge on the early gut dysbiosis in

the context of chronological dynamics of microbiome by

focusing on the opportunistic colonization of F.

Fig. 8 Clustering all detected microbes based on longitudinal distribution. a Distribution of IBD/non-IBD marker species on PCA plot. Euclidean

distances between species were measured. b Distribution of CRC marker species. c K-mean clustering of microbes and biomarkers. Blue star

marks for cluster 1 and red star for cluster 5 d Microbial distribution by clusters. Clusters 1 and 6 were encircled. e Detected number of cluster

component per sample along temporal proximity to F. nucleatum observation. Line color indicates sample condition. Spearman correlation and

its significance were calculated. f Correlation between posterior probability and the number of detected microbes by clusters. Spearman

correlation and its significance were calculated. g Distribution of clusters 1 and 6 in PCoA plot of samples. Logarithmic abundance and the

number of detected species were displayed
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nucleatum. It is noteworthy that even a rare microbial

species under a certain condition could be used as an in-

dicator for predicting a perturbation in the future event,

as shown with F. nucleatum-focused longitudinal model-

ing. Although further experiments were needed to verify

physiology of the classifier microbes, we expected that

analysis on chronological alteration of microbiome

would be greatly helpful for biomarker screening and

diagnosis of microbiota-associated diseases.

Discussion
Commensal microbiota in the healthy gut controls path-

ogens and pathobionts by direct interactions, stimulating

host immunity, preventing their colonization [42].

Changes in microbial abundance reflect healthy and dis-

ease states. Previously, metagenomic biomarker discov-

ery was performed by way of class comparison between

two or more microbial communities [43]. However, en-

richment or localization of microbiota in the intestine

could be explained more clearly by tracking a group of

prevalent and abundant species for the microbiota-

associated chronic gut disorders rather than a single or a

couple of rare opportunistic pathogens.

This study is the first trial to screen non-invasive bio-

markers at species level, responsible for the early gut

dysbiosis in a longitudinal view. Gut microbiota homeo-

stasis is maintained under normal condition but un-

favorable conditions may influence the microbial

diversity, leading to gut dysbiosis [44]. Metagenomic

profiling of IBD samples showed lower diversity than

non-IBD samples, as expected. F. nucleatum is rarely

found in gut microbiome and has been recently consid-

ered as a potential oncobacterium associated with

human cancers. The longitudinal tracking of F. nuclea-

tum-experienced subjects indicated that F. nucleatum

might appear under gut microbiome perturbation to-

ward a low microbial diversity. F. nucleatum was truly

associated with biomarker species for IBD. Indeed, C.

symbiosum, the top-ranked biomarker for F. nucleatum-

marked dysbiosis in our study, was proposed as a potent

fecal biomarker for CRC even superior to F. nucleatum

[40]. Furthermore, among 15 prior-enriched classifier

species, Dorea longicatena with the highest discrimin-

ation ability (AUC = 0.7224) was recently proposed as

one of potential probiotics for metabolic disorder and

also reported to be over-represented in remissive CD

patients after ileocolonic resection when compared to

recurrent cases [45, 46]. Coprococcus comes (AUC =

0.7143) was reported to show a down-regulation in CRC

patients, and three Roseburia species including R.

hominis, R. inulinivorans, and R. intestinalis (AUCR.hom.

= 0.6594, AUCR.inul. = 0.6576, AUCR.intest. = 0.6140),

were well-documented to shape beneficial gut microflora

by fermenting dietary polysaccharides [47–50]. Even if

Lloyd-Price et al. reported a group of microbes such as

Prevotella copri as a representative species for microbial

shift in non-IBD condition, the shift itself was not en-

hanced with chronic inflammation and the biomarkers

for the shift did not tell whether they represent favorable

alterations or not [34]. In our analysis, P. copri appeared

in F. nucleatum-experienced non-IBD subjects after F.

nucleatum detection with marginal significance, imply-

ing its pro-dysbiotic property. Certain microbes such as

Bacteroides uniformis, Bacteroides ovatus, and most

Veillonella species, characterized by their positive associ-

ation with gastrointestinal diseases, pre-colonize before

F. nucleatum appearance (Additional file 16: Table S7)

[47, 51–55]. In addition, many Streptococcus and

Bifidobacterium genus were differentially enriched be-

fore F. nucleatum, indicating that the particular commu-

nity of microbes might be required for F. nucleatum

colonization.

Our F. nucleatum-based model effectively identified

changes in gut microbiome when tested with an inde-

pendent dataset from healthy individuals, which suggests

that chronological dynamics of microbiome may be con-

served in human population. Further analysis should be

conducted to identify microbial pathways that favor pro-

dysbiotic gut, which would enable to understand biology

of gut homeostasis.

Conclusions
This study revealed that opportunistic appearance of F.

nucleatum in fecal metagenome reflected early establish-

ment of dysbiotic environment in the gut. Distribution

of IBD and non-IBD biomarkers was significantly altered

by F. nucleatum experience. Samples collected after F.

nucleatum appearance showed high intra- and inter-

individual dissimilarity, indicating that occurrence of F.

nucleatum might serve as a trigger for perturbation and

increased divergence of microbiome. The 41 classifier

species, predicted discriminators for F. nucleatum occur-

rence, were identified and their effectiveness was vali-

dated in F. nucleatum-innocent subjects. They included

known core signature species for CRC and marker mi-

crobes for health gut as well. The classifier-based predic-

tion model successfully estimated microbial dysbiotic

state and colonization of diseases-associated microbes.

The potential probability of experiencing F. nucleatum

was significantly associated with the distribution of

biomarkers, microbial diversity and inter-personal diver-

gence. To suggest potential biomarkers for symbiosis

and dysbiosis, microbes were classified by their distribu-

tion characteristics. Our results highlight a novel layer of

information on microbial dynamics during early gut

dysbiosis and can be used to develop conditional

biomarkers focused on a specific microbe.
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Methods
Data curation and taxonomy assignment

A total of 1638 fecal metagenomic samples (1338 HMP

data and 300 HMP pilot data), longitudinally collected

from 130 participants were downloaded from IBDMD

(https://ibdmdb.org/) [33]. To certify longitudinal sam-

pling, the data from 106 participants (80 IBD patients

and 26 non-IBD participants) who provided fecal sam-

ples more than 5 times was considered. Technical repli-

cates were not used in this study. After filtering,

metagenomic analysis of 1560 fecal sample data (243

HMP pilot and 1317 HMP) from 106 participants was

performed at species-level resolution by MetaPhlAn2

[35]. To improve taxonomic resolution of metagenomic

data and to reduce outlier-driven statistical distortion,

the following three conditions for quality control were

applied: 1) Species level explains more than 90% of total

microbiome. 2) Total bacterial abundance accounts for

70% of whole metagenome. 3) Minimum number of bac-

terial species is greater than 17. A total of 1526 samples

were selected for the further analysis.

For model validation, cross-sectional metagenomic

data was obtained from HMP data portal (https://portal.

hmpdacc.org/). Among 251 fecal samples that were col-

lected from HMP phase I, one third of the samples (84

samples) were randomly selected and processed with

MetaPhlan2. After excluding two samples that failed to

satisfy quality criteria, the probability of F. nucleatum

experience for the remaining 82 samples were measured

using our prediction model. Simple manifest file, meta-

data, and microbial abundance matrix for the validation

dataset were included in Additional file 17: Table S8.

Sample classification based on the diseases severity

Simple complex colitis activity index (SCCAI) and

Harvey-Bradshaw index (HBI) were available in 413 UC-

derived samples and 650 CD-derived samples, respect-

ively (Additional file 17: Table S8). HBI is a simpler

version of the Crohn’s disease activity index (CDAI),

which enables patients to self-diagnose the diseases se-

verity. We classified samples based on the disease sever-

ity, considering the following guidelines: 1) Remission:

SCCAI ≤2, and HBI ≤3; 2) Border: 3 ≤ SCCAI ≤5, and

4 ≤HBI ≤7; 3) Active: SCCAI ≥6, and HBI ≥8 [56, 57].

Principal coordinate analysis

Microbial abundance data was log10-transformed after

adding 1e-05 pseudo-abundance, Then, integer 5 was

added to remove negative values and Bray-Curtis

dissimilarity was calculated between samples. Principal

coordinates analysis was conducted using vegdist func-

tion in vegan R package and cmdscale function in stat R

package. To examine whether samples are distinguished

by their metadata, we performed analysis of variance

(ANOVA) for comparing IBD vs. non-IBD, UC vs. CD,

and F. nucleatum-innocence vs. -experience. For

visualization of distributional variance of microbes, PCA

using Euclidean distance was performed using five

features as described below: 1) P-value for Spearman

abundance correlation coefficients with F. nucleatum, 2)

P-value for the differential enrichment in IBD condition,

3) P-value for the differential enrichment in samples

from F. nucleatum-experienced subjects, 4) P-value for

the differential enrichment in samples after F. nucleatum

detection, and 5) P-value for discriminating samples

posterior to F. nucleatum detection from those prior to

F. nucleatum detection in 100 random partitioned data-

sets. Because the significances for F. nucleatum-posterior

enrichment and classifying samples were measured only

for microbes detected in F. nucleatum-experienced

subjects at least 5 times, 258 microbes out of 533 total

species were analyzed and visualized in PCA plot.

K-means clustering

To test if three conditions of samples (non-IBD, UC,

and CD), were distinguishable by their microbial com-

position, we performed K-mean clustering using kmeans

function in stat R package Microbial abundance matrix

was added by 1e-05 pseudo-abundance and log10- trans-

formed. Then, all samples were grouped into 3 clusters

and tested whether each cluster was over-represented in

particular conditions. The ORs of each condition to

three clusters were calculated, and the highest values per

condition were described: ORnonIBD-C3 = 4.42, ORUC-C3 =

2.30, ORCD-C2 = 2.15. With fixed random condition using

set.seed (12345), 102 samples among 407 non-IBD sam-

ples, fell into the cluster 1, 56 samples into cluster 2,

and 249 samples into cluster 3. CD samples were

grouped by 309, 194, and 199 in each cluster, and UC

samples were divided by 254, 68, and 95. These numbers

were statistically compared by Fisher’s exact test and

ORs. To classify the microbes based on their distribu-

tional features, we clustered 258 species that were de-

tected at least 5 times in F. nucleatum-experienced

subjects using K-means clustering. The best number of

cluster was determined by vote using NbClust function

in R package. Features on microbial dynamics were the

same as previously described in PCoA method section

above.

Classification of samples based on F. nucleatum

experience

Once F. nucleatum was detected in one subject for

sample collection period, he/she was regarded as an

experienced individual. Among 106 participants, 20 sub-

jects (16 IBD patients and 4 non-IBD participants) have

experienced F. nucleatum for a year. Even though one F.

nucleatum-positive sample (sample ID: MSM9VZLZ;

Huh and Roh BMC Microbiology          (2020) 20:208 Page 13 of 17

https://ibdmdb.org/
https://portal.hmpdacc.org/
https://portal.hmpdacc.org/


participant ID: M2083) was excluded in the sample cur-

ation step due to low species number, this subject was

classified as F. nucleatum-experienced and included in

the later analyses. Among 1526 samples, 317 samples

(70 non-IBD and 247 IBD) were collected from F. nucle-

atum-experienced subjects, and 1209 samples (337 non-

IBD and 872 IBD) were from F. nucleatum-nonexper-

ienced (or –innocent) subjects. F. nucleatum-experi-

enced samples were also categorized by temporal

proximity toward F. nucleatum. If samples were col-

lected within 4-weeks from F. nucleatum-detected

points, they were classified as proximal ones and if not,

distal ones.

Screening microbial biomarker species for IBD and non-

IBD condition

To identify microbial biomarkers that were differentially

enriched in IBD or non-IBD conditions, we used a web-

based linear discriminant analysis effect size (LEfSe)

algorithm (http://huttenhower.sph.harvard.edu/galaxy/),

which estimates not only the differential abundance of

features among the classes but also the biological

consistency within a same class [43]. Here, by setting IBD

subtypes (UC and CD) as a sub-class of IBD, we could ob-

tain common inflammatory biomarkers that changed

similarly in both UC and CD conditions rather than

showed specific alteration in UC or CD, which allows us

to capture shared intestinal perturbation in two different

inflammatory diseases. Significance thresholds of 0.05

were applied to both between-classes Krustal-Wallis test

and pairwise within-classes Wilcoxon test. LDA score

threshold was 2.5. Detailed results were included in an

Additional file 7: Table S4.

Microbial dissimilarity analysis

Pairwise microbial distance was calculated by Bray-

Curtis dissimilarity equation. To calculate microbial

dissimilarity within-an-individual, one subject was

randomly selected for 10,000 times, from whom two

samples were chosen. Then, temporal distance and

microbial distance between the two samples were

measured. According to metadata of the chosen subject,

microbial distance was visualized by condition along

temporal distance. For inter-individual dissimilarity test,

the subjects were divided into three groups based on

their classification categories such as inflammatory con-

dition, F. nucleatum experience, or longitudinal distribu-

tion toward F. nucleatum observation, and each sample

was picked up from two random subjects. As a control

of inter-individual distance, two samples were randomly

selected regardless of categories. To examine microbial

composition by temporal proximity toward F. nuclea-

tum-detected point, the F. nucleatum-detected samples

was set as the initial point and the other random sample

was selected from the same subject. Two randomly

picked samples from a F. nucleatum-innocent subject

were served as control.

Screening classifier and construction of generalized linear

models for dysbiosis prediction

To construct a prediction model for F. nucleatum experi-

ence, we first screened “classifier” microbes that distin-

guish F. nucleatum-prior from F. nucleatum-posterior

samples. After partitioning 317 samples from F. nuclea-

tum-experienced subjects 1000 times using a createData-

Partition function in caret R package, a total of 258

microbes, identified at least 5 times across F. nucleatum-

experienced subjects, were tested for their discriminative

ability for samples prior or posterior to F. nucleatum-de-

tection. The values of area under the Receiver Operating

Character (ROC) curve (AUC) was calculated using roc

function in pROC R package, and 41 significant species

with average AUC value above 0.5 in multiple logistic re-

gression models (FDR < 0.001) were regarded as classifiers.

Here, to improve the number of samples, 41 F. nuclea-

tum-detected samples were considered as F. nucleatum-

posterior group. Detailed information for classifier species

were included in an Additional file 10: Table S5.

Among 41 classifiers, top-13 potent classifiers except

F. nucleatum (average AUC > 0.6 & classifying FDR < 1e-

07) and inflammatory condition of subjects were used to

construct a prediction model for the estimation of the

probability of experiencing F. nucleatum. To find out

the best set of classifiers, we added classifiers one by one

from the top to the 13th in a decreasing order of average

AUC, resulting in 13 different feature sets. In a similar

way of classifier screening, samples from F. nucleatum-

experienced subjects were divided into training and test

set for 100 times using createDataPartition function, and

multiple GLMs were generated (total 1300 models; one

model/training set with 100 training sets and 13 feature

combinations). The best performer was selected by aver-

aging performance ranks of cross-validation AUC with

training set, AUC with test set, Akaike information

criterion (AIC), and four prediction statistics with deci-

sion threshold at 0.5 (accuracy, sensitivity, specificity,

precision). The selected model number 10 was used for

subsequent analysis.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.

1186/s12866-020-01887-4.

Additional file 1. Table S1. Filtering step: removing replicated samples

or participants with insufficient number of collections.

Additional file 2. Table S2. Quality control: removing samples with poor

taxonomic assignment.

Additional file 3. Table S3. Basic information of participants.
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Additional file 4. Figure S1. Microbial variation by sample categories.

(a) Sex. (b) Disease severity. The severity was classified based on their

diseases scores. (c) Participant. (d) Institutes. Five different institutes have

collected fecal samples of IBD and non-IBD participants.

Additional file 5. Figure S2. Microbial diversity and human read fraction.

(a) Pielou’s evenness, (b) Richness, (c) simple clinical colitis activity index

(SCCAI) for UC, (d) Harvey-Bradshaw index (HBI) for CD, (e) Pielou’s even-

ness for F. nucleatum-experience, (f) Richness for F. nucleatum-experience.

Additional file 6. Figure S3. Low detection probability of opportunistic

microbes. (a) Microbial abundance and its detection frequency in 44

duplicated samples, (b) Proportion of half-recovered species among total

detected species, (c) Correlation between microbial abundance and de-

tection number. Dot color indicates recovery rate of a certain microbe in

pairs.

Additional file 7. Table S4. LEfSe biomarker screening results.

Additional file 8. Figure S4. Abundance changes for microbial

biomarkers. (a) non-IBD markers, (b) IBD markers. Line color indicates sam-

ple conditions (red line for IBD, blue line for non-IBD). * indicates p-value

< 0.05, ** p < 0.011, *** p < 0.001, **** p < 0.0001

Additional file 9. Figure S5. PCoA plot of 20 F. nucleatum-experienced

subjects. Line color indicates temporal proximity to F. nucleatum.

Additional file 10. Table S5. Classifier species enriched prior or posterior

to the detection point of F. nucleatum.

Additional file 11. Table S6. Correlation coefficients with F. nucleatum

and multiple enrichment tests for global biomarker species of colorectal

cancer (CRC).

Additional file 12. Figure S6. Model performance comparison and

application into F. nucleatum-innocent samples. (a) AUC, (b) AIC, (c)

accuracy, (d) sensitivity, (e) precision, (f) specificity, (g) The best model

number 10 was applied to sample from F. nucleatum-innocent subjects.

X-axis indicates participant ID. Blue indicates non-IBD and red indicates

IBD.

Additional file 13. Figure S7. Individual alteration of microbiome in 12

dynamic subjects by inflammatory conditions and posterior probability.

Line color indicates posterior probability.

Additional file 14. Figure S8. Intra-individual change of posterior prob-

ability and Shannon diversity in 70th percentile dynamic subjects. Pear-

son correlation coefficients were shown at the bottom of each

participant panel.

Additional file 15. Figure S9. Model validation on independent healthy

individuals. (a) Posterior probability of 82 fecal samples from healthy

individuals. (b) Spearman correlation between posterior probability of F.

nucleatum and Shannon diversity. (c) Microbial manifestations in putative

F. nucleatum-prior or posterior samples. Wilcoxon rank sum test was

performed. (d) prevalence of cluster 1 and 6 in validation dataset. *

indicates p-value < 0.05, ** p < 0.011, *** p < 0.001.

Additional file 16. Table S7 Summary of microbial correlation with F.

nucleatum and enrichment tests.

Additional file 17. Table S8. Metadata.
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