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Abstract—Opportunistic scheduling provides attractive sum-rate capaci-
ties in a multiuser network when the base-station has transmit-side channel

state information (CSI), which is often estimated at the mobiles and pro-
vided to the base station via a feedback channel. This correspondence in-

vestigates opportunistic methods in the presence of limited feedback. For
flat Rayleigh-fading channels, strategies with only one-bit feedback per
user are demonstrated that capture the double-logarithmic capacity growth

(with number of users) of full-CSI systems. Furthermore, for a given system
configuration, it is shown that if the one-bit feedback is chosen judiciously,

there is little to be gained by increasing the feedback rate. Our results pro-
vide optimal methods of calculating the one-bit feedback, as well as expres-

sions for the sum-rate capacity in the one-bit feedback regime. It is shown
that one may achieve proportional fairness of scheduling in this regime
with no loss of throughput. For OFDM multiuser systems, the motivation

for limited feedback is even more pronounced. An extension of the one-bit
technique is presented for subchannel/user selection under both correlated

and uncorrelated subchannel conditions, and optimal growth in capacity is
demonstrated.

Index Terms—Capacity, channel state information (CSI), fairness, lim-
ited feedback, opportunistic communication.

I. INTRODUCTION

In a multiuser environment it is highly probable that at least one link

has high quality at any given point in time. Taking advantage of this

opportunity leads to multiuser diversity. Obviously, multiuser diversity

requires the base station to know the channel coefficients for all users,

which are estimated at the mobiles and fed back to the base station. This

information consists of real- or complex-valued variables that may re-

quire significant feedback rate. In the context of frequency-selective

channels, multiple variables must be conveyed back to the transmitter,

thus further increasing the feedback rate. This work demonstrates that it

is possible to capture the multiuser diversity advantage even with a very

low-rate feedback, in fact as low as one bit per data stream. We calcu-

late the performance with limited feedback, and develop asymptotically

optimal scheduling algorithms in the presence of limited feedback. We

concentrate on single-beam opportunistic communication; extension to

multiple-beams is relatively straight forward.

The notion of multiuser diversity is due to Knopp and Humblet [1]

for the uplink, where they mentioned that the best strategy is to al-

ways transmit to the user with the best channel. Tse [2] provided a

similar result for the downlink. Bender et al. [3] examined practical

aspects of downlink multiuser diversity in the context of the IS-856

standard. Viswanath, Tse and Laroia [4] examined this problem for

the downlink and presented a method of opportunistic beamforming

via phase randomization. Hochwald, Marzetta, and Tarokh [5] investi-

gate the problem of scheduling and rate feedback in the case of mul-
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tiple-input–multiple-output (MIMO) channels. Sharif and Hassibi [6]

generalized the opportunistic beamforming of [4] to the case where

multiple beams are used simultaneously.

Some of works in the existing literature raise the question of the re-

quired feedback information, but to our knowledge, only [5]–[7] ex-

plicitly quantify the required feedback. In [7] the idea of thresholding

was proposed for reducing the feedback load for exploiting multiuser

diversity. Our method guarantees optimal growth rate with number of

users via one-bit fixed-rate feedback, while [7] requires a variable-rate

feedback of real-valued numbers and, to our understanding, it has not

been proved to guarantee optimal growth rates. Similarly, the work in

[5] does not consider capacity growth and does not minimize the feed-

back rate. The work in [6] reduces the number of real-valued variables

that must be conveyed to the transmitter, but does not directly address

the question of feedback rate (transmission of real-values requires in-

finite rate). In this correspondence we present a one-bit quantization

strategy and the associated scheduling algorithm that guarantees op-

timal capacity growth rate. We demonstrate the viability of this ap-

proach in flat fading as well as frequency-selective channels. We also

show that any additional feedback over and above one bit1 does not de-

liver any significant improvement in sum-rate capacity. We investigate

the fairness issues that are of concern in all opportunistic schemes. We

present analytical tools that can be used for asymptotic capacity anal-

ysis of various opportunistic systems with limited feedback.

We use the following notation: [ ] refers to the expected value of

a random variable,  � 0:577 is the Euler-Mascheroni constant. The

asymptotic equivalence of two sequences an and bn is denoted by an
bn, defined as limn!1

a

b
= 1. All capacities are in Nats/Sec/Hz.

II. SYSTEM MODEL

We consider a multiuser cellular network with n users, all receiving

data from the base station. We assume the block fading model for each

user’s channel. The channel state information of each user is assumed

to be fully known to that user, and it is constant over a coherence in-

terval of length T . The users and the base station are each equipped

with one antenna. Under the block-fading frequency nonselective as-

sumption, we have the following model for the received signal for each

user:

yi(t) =
p
�ihisi(t) + zi(t): (1)

In the above model, si(t) 2 T is the vector of transmitted symbols

of the ith user at time t with power constraint ksi(t)k2 = T , and

yi(t) 2 T is the received signal of the ith user at time t, zi(t) �
CN (0; IT ) is the independent and identically distributed (i.i.d.) com-

plex Gaussian noise, hi is the channel gain of the ith user, which is as-

sumed to be zero mean circularly symmetric complex Gaussian random

variable with unit variance per dimension. The users have mutually in-

dependent channel gains. Moreover we assume a homogeneous net-

work in which all users have the same SNR, i.e., �i = �. For each user

there exits a low-rate but reliable and delay-free feedback channel to

the base station.

III. SCHEDULING VIA ONE-BIT FEEDBACK

The base station sets a threshold � for all users. Each user com-

pares the absolute value of their channel gain to this threshold. The

eligible users, whose channel gains are above the threshold �, convey

the 1-bit information about the quality of their channel to the base-sta-

tion through a feedback channel. If the feedback channel is shared by

1Subject to a judicious choice of threshold and smart scheduling, to be dis-
cussed in the sequel.
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all users, a code division multiple access method can be used to convey

the feedback bits to the base-station. When a dedicated low bit-rate

feedback channels exits, each eligible user sends a “1” to indicate that

its own channel gain is above the threshold. In this case, the base sta-

tion recognizes the eligible users and then randomly picks an eligible

user for transmission.2 If the base station does not find any of the users

eligible for transmission, then no signal is transmitted in that interval.3

A. The Sum-Rate Capacity

Upon receipt of each set of feedback bits, the base station transmits to

users whose channel gain is above the threshold � (eligible users). Let

p = Pr jhij
2 > � = e��. Since the channel gains are all mutually

independent, the probability of having k eligible users is binomial, i.e.

pk =
n

k
p
k(1� p)n�k: (2)

The ergodic capacity upon receiving k ones by the base station is

Ck =

k

i=1

Pr[the ith best user is selected] Ci

=
1

k

k

i=1

Ci (3)

where Ci =
1

0
log(1 + �x)dFi(x) and Fi(x) is the CDF of the

ith highest absolute value of all channel gains. In other words if

fX1; . . . ; Xng is a permutation of jh1j
2; . . . ; jhnj

2 such that

0 � Xn � � � � � X1, then Fi(x) = Pr[Xi < x]. When the channel

gains are i.i.d., we have

Fi(x) =

i�1

l=0

n

l
(F (x))n�l (1� F (x))l (4)

where F (x) = 1 � e�x is the CDF of jhij
2 for i = 1; . . . ; n. Thus,

we can use the law of total probability to formulate the the sum-rate

capacity of the network with one-bit feedback as follows:

C1 bit =

n

k=1

pkCk = [log(1 + �X�)] (5)

where X� is a random variable with the following probability cumula-

tive distribution

F�(x) =

n

k=1

pkF k(x)

where

F k(x) =
1

k

k

i=1

Fi(x):

B. The Optimal Threshold

The sum-rate capacity is a function of �, p and n. On the other

hand the threshold � is uniquely determined by p from the following

formula:

� = F
�1(1� p): (6)

2The scheduling to users with favorable channels may also be implemented
via round robin. In the long run, both these strategies have the same average
throughput per user. However, the round-robin version may be more appealing
from a fairness point of view.

3In the absence of any users above threshold, the base station can also ran-
domly pick a user for data transmission, although for large number of users this
has vanishing advantage over no transmission.

For a Rayleigh-fading channel, the channel magnitude squared obeys

an exponential law

� = � log p: (7)

In order to find the optimal threshold we choose p such that the sum-

rate capacity C1 bit is maximized. The cost function C1 bit(p) is a

weighted sum of functions of the form pk(1 � p)n�k which are all

concave over the interval [0; 1], hence C1 bit is a concave function of

p and it has a unique maximum over the interval [0; 1]. To calculate

the value of p that maximizes the sum-rate capacity, we must solve
@C (p)

@p
= 0 for p, i.e.,

n

k=1

(k � np)pkCk = 0: (8)

A closed-form solution to this equation is in general not tractable. A

numerical solution is possible with O(n) complexity. We shall see that

for asymptotic analysis, the exact value of this threshold is not needed.

C. Asymptotic Analysis of Sum-Rate Capacity

When channel state information is fully available at the base station,

the base station only transmits to the user with the best channel, hence

the ergodic sum-rate capacity of the network can be calculated by the

following formula:

Cfull CSI =C1 =
1

0

log(1 + �x)dF1

=n
1

0

log(1 + �x)e�x(1� e
�x)n�1dx

log(1 + ��1)

log(logn) + log �: (9)

where indicates asymptotic equivalence, as defined earlier.

A natural question is: what is the loss in sum-rate due to a limited

channel knowledge at the base station? The gap between the sum rate

capacity of the fully informed network and the network with 1-bit CSI

feedback, in the asymptote of large number of users, is illuminated via

the following result.

Theorem 1: Consider a broadcast network (multiuser downlink)

where the transmitter has one bit of CSI per user, indicating whether

each user’s channel magnitude is above or below a certain threshold

�. With appropriate choice of �, the sum-rate loss incurred due to the

1-bit feedback vanishes in the asymptote of large number of users n.

In other words

�C = (Cfull-CSI � C1�bit) �!
n!1

0:

Proof: Equation (8) can be rewritten as

C1 bit =
1

np

n

k=1

kpkCk: (10)

For a p satisfying (10) we have

C1 bit =
1

np

n

k=1

kpkCk

=
1

np

n

k=1

kpk
1

k

k

i=1

Ci

=
1

np

n

k=1

k

i=1

pkCi

=

n

i=1

1

np

n

k=i

pk Ci: (11)
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Notice that �i = 1

np

n

k=i
pk , i = 1; . . . ; n is a valid pmf because

n

i=1
�i = 1, hence

C1 bit =

n

i=1

�iCi

=

n

i=1

�i

1

0

log(1 + �X)dFi

=
1

0

log(1 + �x)d

n

i=1

�iFi

=
1

0

log(1 + �x)dF� (12)

where F� , under the optimality conditions mentioned above, can be

alternatively written as

F� =

n

i=1

�iFi (13)

is a mixture probability measure of all order statistics of the exponential

family. To proceed with the proof, we need to bound certain probabil-

ities for this distribution, which in turn requires the following Lemma.

Lemma 1: For the distribution F� mentioned above, we have
��

��
�!
n!1

0

where �� and �2� , are the mean and variance of F� , respectively.

Proof:

�� =

n

i=1

�i�i (14)

where �i =
1

0
xdFi(x) is the mean of the ith order statistics of the

exponential family, and

�
2

� =
1

0

(x� ��)
2
dF�(x)

=
1

0

x
2
dF�(x)� �

2

�

=

n

i=1

�i

1

0

x
2
dFi(x)� �

2

�

=

n

i=1

�i �
2

i + �
2

i � �
2

�

=

n

i=1

�i�
2

i +

n

i=1

�i�
2

i � �
2

� (15)

where �2i =
1

0
(x��i)

2dFi is the variance of the ith order statistics

of the exponential family. It is a known fact (e.g., [8, Sec. 4.6]) that the

mean and variance of the ordered exponential distributions F (x) =
1 � e�x are given as follows:

�i =

n

j=i

1

j
= Hn �Hi�1

�
2

i =

n

j=i

1

j2
= Sn � Si�1

where

Hk

k

j=1
1

j
; k > 0

0; k = 0
Sk

k

j=1
1

j
; k > 0

0; k = 0.

It follows that

�� =

n

i=1

�i�i =

n

i=1

�i(Hn �Hi�1)

=Hn �
n

i=1

�iHi�1 < Hn = �1: (16)

It is known [9] that for all k � 1

log k +  +
1

2(k+ 1)
< Hk < log k +  +

1

2k
(17)

using Jensen’s inequality we have

�� =Hn �
n

i=1

�iHi�1

>Hn �
n

i=1

�iHi

>Hn �  �
n

i=1

�i log i� 1

2

n

i=1

�i

i

>Hn �  � log

n

i=1

i�i � 1

2

n

i=1

�i

>Hn �  � 1

2
� log

n

i=1

i�i (18)

on the other hand
n

i=1

i�i =
1

np

n

i=1

i

n

k=i

pk

=
1

np

n

k=1

pk

k

i=1

i

=
1

np

n

k=1

pk
k(k + 1)

2

=
n

k=1
k2pk +

n

k=1
kpk

2np

=
(n� 1)p

2
+ 1 (19)

from (16), (18) and (19) we get

Hn � log (np+ 2� p)�  � log(2
p
e) < �� < Hn: (20)

By inspecting (8) we also notice that popt = O 1

n
, because in order to

have equality, the number of positive and negative terms in (8) should

be of the same order in the asymptote of large n. Equivalently, the

optimal threshold � scales logarithmically in the asymptote of large n

(this fact can also be seen in Fig. 1 in which theX-axis is in logarithmic

scale). Therefore, (20) suggests that

Hn � �� = O(1) (21)

or

�� �1 logn (22)

as n ! 1. On the other hand

�
2

� =

n

i=1

�i�
2

i +

n

i=1

�i�
2

i � �
2

�

<�
2

1 + �
2

1 � �
2

�

=�
2

1 + (�1 + ��)(�1 � ��)

<�
2

1 + 2�1(�1 � ��) (23)

we also notice that Sn < S1 = �

6
< 2 thus

�
2

� < 2 + 2�1(�1 � ��) (24)

hence from (21), (22) and (24) we have

0 � ��

��

2

<
2

�2�
+ 2

�1

��

�1

��
� 1 ! 0 (25)

as n!1. Thus (22) implies �

�
! 0 as n!1.
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Fig. 1. Optimal threshold versus number of users for different SNR values.

Let X� be the random variable associated with the probability mea-

sure F� , then using the Chebyshev’s inequality for all � > 0 we have

Pr
1 + �X�

1 + ���
� 1 > � =Pr

X� � ��
1=�+ ��

> �

�
[(X� � ��)

2]

�2(1=�+ ��)2

�
1

�2
��
��

2

hence 1+�X
1+��

i:p:
�! 1. Using the continuous mapping theorem [10], we

have

log
1 + �X�

1 + ���

i:p:
��! 0: (26)

Now to conclude the proof it is enough to show that the random variable

Yn = log
1 + �X�

1 + ���
(27)

is uniformly integrable. According to Lemma 2 (Appendix I) it is

enough to show that

lim
c!1

lim sup
n

1

c

Pr[jYnj > y]dy = 0:

We note that because Xn has exponential tail and well behaved at 0,

for all n, [jYnj] < 1. We have

1

c

Pr[jYnj > y]dy = I+ + I�

where

I+ =
1

c

Pr[Yn > y]dy;

I� =
1

c

Pr[Yn < �y]dy:

Using the Markov inequality we have

I+ =
1

c

Pr[(1 + �X�) > ey(1 + ���)]dy

�
[1 + �X� ]

1 + ���

1

c

e�ydy = e�c: (28)

On the other hand

I� =
1

c

Pr[(1 + �X�) < e�y(1 + ���)]dy

=
1

c

Pr X� <
e�y(1 + ���)� 1

�
dy

since almost surelyX� � 0, we have y � log(1+���) thus the upper

limit of integral can be replaced by log(1 + ���)

I� =
log(1+�� )

c

Pr X� <
e�y(1 + ���)� 1

�
dy

After change of variable u = e (1+�� )�1
�

we have

I� =
�

0

Pr[X� < u]

1=�+ u
du

where �n = e (1+�� )�1
�

. Using (17) and (20), we have �n < �n

where �n = a logn + b; a = e�c; and b = 1�e
�

+ e�c(1 + ).
Hence

I� �
�

0

Pr[X� < u]

1=�+ u
du

� Pr[X� < �n]
�

0

du

1=�+ u

= log(1 + ��n) � Pr[X� < �n]:
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It is sufficient to show that Pr[X� < �n] ! 0 faster than 1
log logn

.

From (4) we have

Fi(x) =

i�1

l=0

n

l
(1� e�x)n�le�lx

� (1� e�x)n�i+1
i�1

l=0

(ne�x)l

= (1� e�x)n�i+1
(ne�x)i � 1

ne�x � 1

< (1� e�x)n�i+1
(ne�x)i

ne�x � 1

=
(1� e�x)n+1

ne�x � 1

ne�x

1� e�x

i

where we have used n

l
� nl. It follows

F k(x) =
1

k

k

i=1

Fi(x) �
(1� e�x)n+1

ne�x � 1

1

k

k

i=1

ne�x

1� e�x

i

=
(1� e�x)n+1

ne�x � 1

1

k

ne�x

(n+ 1)e�x � 1

ne�x

1� e�x

k

� 1

<
(1� e�x)n+1

ne�x � 1
�

ne�x

1� e�x

k

:

Now we can bound the CDF of X�

F�(x) =

n

k=1

pkF k(x)

<
(1� e�x)n+1

ne�x � 1
�

n

k=1

pk
ne�x

1� e�x

k

<
(1� e�x)n+1

ne�x � 1
�

n

k=0

pk
ne�x

1� e�x

k

:

We know the moment generating function of the binomial distribution

is

[zk] =

n

k=0

pkz
k = (1� p+ pz)n:

Using the fact, we substitute z = ne

1�e
to arrive at

F�(x) <
(1� e�x)n+1

ne�x � 1
1� p+

np e�x

1� e�x

n

<
1

ne�x � 1
1� p+

np

ex � 1

n

:

Let x = �n = a logn+ b and p = �=n where � = n

k=1 kpk is the

average number of eligible users, we have4

I� < log(1 + ��n) � F�(�n)

<
log(�a logn+ �b+ 1)

ebn1�a � 1
1�

�

n
+

�

ebna � 1

n

:

Because a = e�c < 1

log(�a logn+ �b+ 1)

ebn1�a � 1
! 0

4We use the fact that F (�) is an exponential CDF. For the general
non-Rayleigh fading case, as long as F (�) has exponentially decaying tail (e.g.,
Rician or m-Nakagami), one can use the extreme value theory and a similar
argument to generalize our result to non-Rayleigh fading case. The details are
beyond the scsope of this correspondence.

and

1�
�

n
+

�

ebna � 1

n

! e��

as n ! 1 therefore, we can conclude I� ! 0 as n ! 1.

Combining this with the counterpart inequality (28) we have

lim sup
n

1

c

Pr[jYnj > y]dy = lim sup
n

(I+ + I�) � e�c

and finally we conclude

lim
c!1

lim sup
n

1

c

Pr[jYnj > y]dy = 0:

Hence, Yn is uniformly integrable and therefore by Theorem 2, we

conclude that limn!1 [Yn] = 0. This implies

C1 bit � log(1 + ���)! 0;

similarly, we can show that

Cfull-CSI � log(1 + ��1)! 0

as n ! 1: Because of (22), we have log 1+��

1+��
! 0, hence we

can conclude

�C = Cfull-CSI � C1 bit ! 0

as n!1.

Corollary 1: If p = �

n
for any fixed � � 1, the sum-rate difference

between 1-bit feedback and full CSI asymptotically vanishes.

This means that the capacity scaling laws of 1-bit feedback is as good

as the full-CSI system (with vanishing difference) as long as we choose

the threshold � to be an affine function of logn. In particular, we can

optimize the parameters of this affine function to maximize the rate

(c.f. (8) and Fig. 1). Also note that � (the average number of eligible

users) can be used as a design parameter for tradeoff between rate and

fairness.

D. Simulation Results

Fig. 2 shows the sum-rate capacity of a single-input–single-output

(SISO) network. As it can be seen in the figure, our proposed sched-

uling, with only 1-bit feedback, has the same double logarithmic

growth rate as the fully informed network. The capacity loss is min-

imal and is expected to vanish for very large n (number of users). For a

practical range of n, scheduling with 1-bit feedback also captures most

of the capacity of the fully informed network for a wide range of SNR

values. The gap between the two curves closes at very high values

of n, due to sublogarithmic convergence. Fig. 1 shows the optimal

threshold for various of SNR values. It can be seen that the optimal

threshold scales logarithmically with number of users (in Fig. 1 the

x-axis is in logarithmic scale).

IV. FAIRNESS

Opportunistic scheduling increases the overall throughput of the

system, but then the regularity of round-robin scheduling is relin-

quished. In general, there is no bound on the delay of a user while it

waits to be serviced, which has practical drawbacks. To address this

concern, the concept of proportional fairness has been introduced

[4], [11].

Proportionally fair (PF) scheduling provides to each user a share

of transmission time proportional to the achievable throughput of that

user. This achievable throughput is measured causally over a fixed
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Fig. 2. Comparison of sum-rate capacity for 1-bit and full CSI scheduling for different values of SNR.

window of observation. Assume that in time slot t, user k’s channel

can support rate Rk(t). Assuming that the feedback is instantaneous

and error-free, the scheduler assigns the time slot t to the user k� such

that

k
� = argmax

k

Rk(t)

Tk(t)

the rate Tk(t) is the kth user’s average throughput in a window of size

tc and it is calculated as follows [4]

Tk(t+ 1) =
1� 1

t
Tk(t) +

1

t
Rk(t); k = k�

1� 1

t
Tk(t); k 6= k�.

(29)

The window tc is usually chosen to be much greater than the average

small-scale fading coherence time of users, in IS-856, tc = 1:67
second.

The 1-bit scheduling method as proposed in Section III, with random

selection among eligible users, does not provide proportional fairness.

However, if we perform the proportionally fair algorithm mentioned

above by scheduling among eligible users, then proportional fairness

is achieved. In other words, we choose the user k� such that

k
� = argmax

k2E

Rk(t)

Tk(t)
(30)

where

E = k : jhkj2 > �

Fig. 3 shows the empirical CDF of the rate assigned to a user at SNR =
10 dB. As can be seen the distribution of the random selection sched-

uling and Max-SNR (always allocating the channel to the users with the

highest channel gain) have much higher spread compared to the pro-

portionally fair scheduling for both 1-bit and full-CSI cases. The plots

also indicates that, as the number of users increases, the difference be-

tween the PF scheduling with one-bit and full-CSI becomes negligible.

The capacity plots depicted in Fig. 4 show that we do not lose any

throughput by achieving proportional fairness.

V. OPPORTUNISTIC MULTIUSER OFDM WITH LIMITED FEEDBACK

One of the major challenges in employing an opportunistic scheme

in OFDM networks is the large amount of feedback required to the

base-station. For example in 802.11a each user has 64 subchannels and

a network of 100 users requires the base station to collect 6400 real

numbers from all the users. To address this issue, Svedman et al. [12]

proposed an opportunistic scheme in which adjacent subchannels are

clustered into groups and then only the average SNR value of each

cluster is fed back to the base station. But this still requires feeding back

several real numbers to the base station. In this section we consider an

extension of our results to OFDM multiuser networks, resulting in very

good asymptotic performance with much smaller feedback rates.

For each user in the network, consider a frequency selective linear

time invariant model

yt;k =

�

i=0

hi;kxt�i;k + wt;k (31)

where xt;k and yt;k are the input and the output for the kth user (k 2
f1; . . . ; Kg) at time t, respectively, w is the additive white complex

Gaussian noise and uncorrelated among the users with zero mean and

variance �2w , hi;k is the ith channel tap for user k and is distributed as

CN (0; 1) which is assumed to be uncorrelated among different users,

although for each user, channel taps may or may not be correlated. �

is the memory of the channel and it is assumed to be the same for all

users. We assume that the base-station uses OFDM for data transmis-

sion to each user. By applying cyclic prefix and IDFT, user k’s channel

is divided into N different subchannels Hn;k such that

Hn;k =
1p
N

�

t=0

ht;ke
�j

: (32)

We also assume that the total transmission power in the network is

limited by Pmax.
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Fig. 3. Empirical distribution of rate at SNR = 10 dB for n = 20 and n = 500.

Fig. 4. Capacity at SNR = 10 dB.

When all users share the same bandwidth, and the base station has

full information about every user’s subchannels, then in order to max-

imize the sum-rate capacity of the network, the problem of subcarrier

and power allocation to different users in the network must be solved

jointly. However, this imposes a huge computational complexity at the

base station. Especially if the wireless channel varies quickly, the base-

station requires an enormous computational power to rapidly compute

the optimal solution for power and subchannel allocation among the

users. Moreover the optimal dynamic joint power and subchannel al-

location requires fast and reliable feed-forward and feedback channels

for exchanging information between the users and the base station. Es-

pecially with large number of users in the network, sending this infor-

mation back and forth between the users and the base station causes a

huge overhead for the network. This motivates a low-complexity sub-

optimum algorithm.

One may achieve economy of computation and communication

through separation of subchannel and power allocation. It is possible

to first select subchannels and then perform water-filling among all

selected subchannels, but this again requires the base station to send

back the optimal power allocation vector to all the users, together

with the indices of their selected subchannels. Yet another suboptimal

scheme is to equally allocated the total power among all subchannels

and then perform the subchannel allocation among all users [13]. We

adopt the latter approach in this correspondence.

Assuming full channel knowledge at the base station, maximizing the

sum-rate capacity of the network reduces to allocating subchannel to

users that have the best channel conditions. In order to avoid intercarrier

interference we allocate each frequency bin to a single user. Under

this condition, maximum sum-rate capacity with equal power splitting

among the subchannels is achieved when for each frequency bin we

choose the user whose corresponding subchannel gain is maximum

within that frequency band. The sum rate capacity in this case is given by

Cfull CSI =

N

n=1

log 1 + SNR � max
k

jHn;kj2 (33)
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where SNR = P

N�
is the SNR per subchannel. This subchannel selec-

tion scheme is in fact a generalization of the opportunistic scheduling

in flat-fading multiuser networks [1] over N different flat fading sub-

channels provided by OFDM.

A. Subchannel Allocation With Limited Feedback

The opportunistic scheme mentioned in the previous section and

most of the similar subchannel allocation schemes [13] require full

knowledge of the subchannel information to be available at the trans-

mitter. However, from a practical point of view this is not affordable

because it requires a sum total of KN positive real numbers to be re-

liably transmitted to the base station, which is not affordable in prac-

tice. Svedman et. al [12] propose to divide each user’s subchannels into

clusters. Then in each cluster, the maximum value of the cluster is fed

back to the base station. This reduces the number of real values to KL

assuming that there are L clusters. But this still requires feeding back

several real numbers to the base station without any error and delay

which is still not attractive from an implementation point of view.

We propose a simple scheme where, instead of feeding back the full

information of the subchannels, only one-bit of information per sub-

channel (or cluster) is fed back to the base station for subchannel al-

location. For user k, the nth subchannel gain jHn;kj2 is compared to

a threshold �n, if the subchannel gain is above the threshold a 1 is

transmitted back to the base station otherwise a 0 is transmitted.5 So at

most N bits per user is required in feedback.6 Upon receipt of all feed-

back bits from the users, the base station allocates each subchannel to

one of the users whose corresponding feedback bit is 1. This assign-

ment can be done via either random selection or round robin sched-

uling among eligible users. Our claim is that by judicious choice of

the threshold levels f�ng, most of the multiuser capacity gain is pre-

served. The choice of �n’s for each subchannel can be done according

to Section III-B.

When channel taps are uncorrelated, i.e., ht;kh
�
s;k = �t�s, we

can use the analytical framework developed in Section III for deter-

mining the optimal threshold value and the evaluation of the sum-rate

capacity. We notice that under the assumption of uncorrelated channel

taps, the subchannel gains fjHn;kj2g are identically distributed expo-

nential random variables. Hence the ergodic sum-rate capacity with full

CSI at the base station is

Cfull-CSI = N log 1 + SNR max
k
jHn;kj2 (34)

therefore we can apply Theorem 1 in each subchannel to show that

�C = Cfull-CSI � C1-bit �! 0

as n ! 1.

B. Subchannel Correlation

Now we assume that for each user the channel taps are correlated,

but there is no dependence between different users’ channels. The cor-

relation model that we consider is an exponential decaying model de-

scribed by

ht;kh
�
s;k = �

jt�sj
: (35)

5For contention-based feedback channels, a slight variation can lead to better
channel utilization: When a subchannel is below the threshold level, instead of
sending a 0, no feedback is transmitted.

6One can also use the idea of clustering the subchannels to reduce the amount
of feedback to L bits per user.

Let �n;k be the power of the nth subchannel of the kth user which

can be calculated as

�n;k = jHn;kj2

=
1

N

N�1

t=0

ht;ke
�j

N�1

s=0

hs;ke
�j

�

=
1

N

N�1

t=0

N�1

s=0

ht;kh
�
s;ke

�j

=
1

N

N�1

t=0

N�1

s=0

�
jt�sj

e
�j (t�s)

by change of summing index to u = t � s we get

�n;k =

N�1

u=�(N�1)

1� juj
N

�
juj
e
�j u

=<f�ng � 1 (36)

where �n = 1p
N

N�1
m=1 bme

�j m is the discrete Fourier transform

(DFT) of the sequence bm =
p
N � mp

N
�m. Assuming �N � 1,

after some algebra we obtain the following expression for �n;k:

�n;k � 1� �2

1 + 2� cos �n + �2
+

2� cos �n + 4�2 + 2�3 cos �n
N(1 + 2� cos �n + �2)2

(37)

where �n = 2�n
N

. Notice that for a given n, fHn;kg’s are i.i.d. across

different users, hence �n;k does not depend on k. Thus correlation be-

tween taps leads to subchannels with different qualities. On the other

hand exact calculation of the optimal threshold for this case is not math-

ematically tractable. So we propose a suboptimal solution for quan-

tizing the subchannels with one bit. For the nth frequency bin, we di-

vide the subchannel gains by �n;k and then compare the normalized

channel gain by the optimal threshold calculated in Section III-B, if

jHn;kj2
�n;k

� �n

the feedback bit is set to 1, otherwise it is set to 0.

Fig. 5 is the simulation result based on the proposed algorithm for

SNR = 10 dB. As can be seen in the figure for both uncorrelated and

correlated cases, the sum-rate capacity of our scheme closely follows

the sum-rate capacity of the opportunistic subchannel selection. More-

over the capacity achieved by our scheme is much higher than TDMA

scheduling and only slightly lower than the full CSI sum-rate capacity.

VI. CONCLUSION

In this correspondence, we investigate the performance of oppor-

tunistic multiuser systems in the limited-feedback regime. The devel-

opments in this correspondence show that with only one-bit feedback,

most of the sum-rate capacity of the fully informed system can be

achieved. Thus if the feedback bit is chosen judiciously, there is little

to be gained by allocating any further feedback rate. We calculate the

optimal thresholds to generate the one-bit feedback, and calculate the

sum-rate capacity in this regime. It is possible to maintain proportional

fairness without any loss of throughput in this regime. We then extend

the results to frequency-selective channels via a simple joint user/sub-

channel selection strategy. Future work may address extension of these

methods to multiple antenna systems as well as investigation of the ro-

bustness of these methods in the presence of channel estimation errors

and feedback delay.
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Fig. 5. Sum-rate capacity (normalized by N ) versus number of users.

APPENDIX

Definition 1: The family of random variables fXng is said to be

uniformly integrable if

lim
c!1

lim sup
n

1

c

x dFjX j(x) = 0:

Uniform integrability is a sufficient condition for convergence in mean.

Theorem 2: If Xn is a uniformly integrable random variable and

[X] < 1, then convergence in distribution, implies convergence in

mean, i.e., if Xn
i:p:
��!X then [Xn] ! [X].

Proof: See [10].

The following lemma provides an alternative way to prove the uni-

form integrability.

Lemma 2: If [jXnj] <1 for all n, then Xn is uniformly inte-

grable if

lim
c!1

lim sup
n

1

c

Pr[jXnj > t]dt = 0:

Proof: For every n and c > 0 we have

c(1� FjX j(c)) �
1

c

x dFjX j(x) � [jXnj] <1

hence limc!1 c(1 � FjX j(c)) = 0. Using integration by parts, we

have

0 �
1

c

x dFjX j(x)

=�x(1� FjX j(x))

1

c

+
1

c

Pr[jXnj > x] dx

=�c(1� FjX j(c)) +
1

c

Pr[jXnj > x] dx

�
1

c

Pr[jXnj > x] dx

and this proves the lemma.

Lemma 3: If Xn
i:p:
��! 0 and an ! 0, then, anXn

i:p:
��! 0

Proof: For every �; �1; �2 > 0, there exits N1 such that for all

for all n > N1 we have janj < �1. Also there exits N2 such that

for all n > N2, Pr jXnj >
�

�
< �2, thus for all n > N =

minfN1; N2g

Pr[janXnj > �] =Pr jXnj >
�

janj

�Pr jXnj >
�

�1
� �2

thus anXn
i:p:
��! 0.
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Abstract—Fountain codes are currently employed for reliable and effi-
cient transmission of information via erasure channels with unknown era-

sure rates. This correspondence introduces the notion of fountain capacity
for arbitrary channels. In contrast to the conventional definition of rate,

in the fountain setup the definition of rate penalizes the reception of sym-
bols by the receiver rather than their transmission. Fountain capacity mea-
sures the maximum rate compatible with reliable reception regardless of

the erasure pattern. We show that fountain capacity and Shannon capacity
are equal for stationary memoryless channels. In contrast, Shannon ca-

pacity may exceed fountain capacity if the channel has memory or is not
stationary.

Index Terms—Arbitrarily varying channels, channel capacity, content
distribution, erasure channels, fountain codes.

I. INTRODUCTION

Fountain codes are a class of sparse-graph codes that have received

considerable attention in the last few years. The first fountain codes

were the LT erasure-correcting codes introduced by Luby in [1]. The

LT codes are linear rateless codes that encode a vector of k symbols of

information with an infinite sequence of parity-check bits. The parity-

check equations (known to the decoder) are chosen equiprobably from

a random ensemble: The cardinality of the parity-check equations has a
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histogram given by the so-called robust soliton distribution and all k in-

formation symbols have identical probability to participate in any given

parity-check equation. The infinite sequence is transmitted through an

erasure channel. The decoder runs a belief propagation algorithm ob-

serving only as many channel outputs as necessary to recover the k

transmitted bits.

Better performance can be obtained with the fountain codes known

as raptor codes introduced by Shokrollahi in [2] for erasure correction.

Raptor codes have been applied to other channels such as binary chan-

nels in [3]–[5] and Gaussian channels [6].

A typical application of fountain codes is a system where the same

message is to be broadcast simultaneously to several receivers, served

by erasure channels with different erasure rates. The conventional

Shannon-theoretic approach to this scenario is the compound channel

(see, e.g., [7]), where the actual channel is unknown to the encoder and

chosen from a given uncertainty set. Ensuring reliable communication

for all receivers, the compound capacity is upper-bounded by the

smallest capacity among those channels in the uncertainty set. This

bound is tight in those cases, such as the compound erasure channel,

in which the mutual information of all channels in the uncertainty

class is maximized by the same input distribution. This setup not only

requires the transmitter to cater to the worst channel conditions but it

incurs a considerable waste of channel resources for those receivers

that enjoy better erasure rates than the worst. The use of fountain codes

enables receivers to stop listening to the channel once the information

is decoded reliably. Thus, receivers only need to obtain from the

channel a number of symbols that is a small multiple (close to 1) of

the number of information symbols. This happens sooner for those

receivers that experience favorable channel conditions. As customary

in the information theory of channels with nonprobabilistic description

of the uncertainty, we adopt a worst case approach in order to capture

the robustness of the fountain codes with respect to the patterns of

erasures.

Fountain codes have been adopted in the 3GPP wireless standard for

Multimedia Broadcast/Multicast [8], [9] and they have been used in

lossless data compression in [10].

In addition to their appealing conceptual structure, the commercial

success and excellent efficiency achieved by fountain codes are incen-

tives to investigate their Shannon-theoretic limits. The main difference

from the standard Shannon setup is in the definition of rate: a fountain

code is rateless (or zero-rate) in that it adds an infinite amount of redun-

dancy to the information vector. Instead of defining the rate from the

perspective of the encoder, in the fountain setup we define it from the

perspective of the decoder: ratio of information symbols transmitted

to channel symbols received. So while the classical definition of rate

penalizes the use of the channel by the transmitter (“pay-per-use”), in

the fountain setup the definition of rate penalizes the reception of (non-

erased) symbols by the receiver (“pay-per-view”). Independent of the

fountain code setting and within the context of broadcast channels, it

has been recognized in [11]–[13] that the classical definition of rate is

overly pessimistic for asynchronous broadcast where a common mes-

sage is transmitted to several receivers which are “turned on” at not

necessarily identical times. In [11]–[13], the individual rates in the ca-

pacity region are normalized by the time until the corresponding re-

ceiver is switched off. Recent works that deal with the conventional

Shannon capacity of the concatenation of noisy channels and erasure

channels include [14], [15].

This correspondence is organized as follows. In Section II, we give

the definition of fountain capacity for an arbitrary channel, along with

the associated notions of reliability and allowable encoding strategies.

We show that fountain capacity is upper-bounded by Shannon capacity.
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