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Merge Element 

Purpose: merge independent requests 

Example: count the total number of requests 

Property: requests are never lost, I1 + I2 = O 

Requires arbitration  

• between requests 

• better outside the critical path 
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Opportunistic Merge Element 

Purpose: merge independent requests, bundling 

  closely arriving requests together 

Example: respond to an alarm (two sensors) 

Property: max(I1, I2) ≤ O ≤ I1 + I2 
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OMs in the real world 

Our motivation: 

on-chip power 
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Conceptual specification 

Merge 
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Conceptual specification 

OM 

Signal a closes 

the window of 

opportunity 
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The bundle 

transition has 

no formal 

semantics! 



Conceptual specification (unrolled) 

Merge 
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Conceptual specification (unrolled) 

OM 
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Decomposing the bundle 

OM with bundle Decomposition 
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Decomposing the bundle 

Decomposition 

Problem: decomposed 

specification cannot be 

synthesised due to 

irreducible state 

encoding (CSC) conflicts 

between s1 and s4, and 

between s2 and s3 
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Decomposing the bundle 

Decomposition 
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Problem: decomposed 

specification cannot be 

synthesised due to 

irreducible state 

encoding (CSC) conflicts 

between s1 and s4, and 

between s2 and s3 



Is this a dead end? 

Decomposing the bundle {a1,a2} is highly non-

trivial: 

• Output-determinacy violations 

• Non-commutativity of inputs 

• Irreducible CSC conflicts 

• … 
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…then a miracle occurs… 
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STG specification 
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STG specification 

Key idea:  

    Arbitrate between 

    {a+,r1+} and {a+,r2+} 
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CSC resolution (MPSAT) 
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CSC resolution (MPSAT) 
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Deadlock free 

No hazards 

Synthesisable 

Fast response: no metastability on the critical path 



Synthesised circuit (MPSAT) 
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Simplified (hacked up) circuit 
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New optimisation technique: fairness-based optimisation 



Simplified (hacked up) circuit 
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Simplified (hacked up) circuit 
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Simplified (hacked up) circuit 
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Simplified (hacked up) circuit 
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Simplified (hacked up) circuit 
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Simplified (hacked up) circuit 
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Simplified (hacked up) circuit 

Scenario 1: acknowledgement a wins the arbitration 
26 

’’ 

 

 

’ 

’ 



Simplified (hacked up) circuit 

Scenario 1: acknowledgement a wins the arbitration 
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Simplified (hacked up) circuit 

Scenario 1: acknowledgement a wins the arbitration 
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Simplified (hacked up) circuit 

Scenario 1: acknowledgement a wins the arbitration 
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Simplified (hacked up) circuit 

Scenario 1: acknowledgement a wins the arbitration 
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Simplified (hacked up) circuit 

Scenario 1: acknowledgement a wins the arbitration 
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Simplified (hacked up) circuit 

Scenario 1: acknowledgement a wins the arbitration 

        

            End of Scenario 1 
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Simplified (hacked up) circuit 

Scenario 2: request r2 wins the arbitration 
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Simplified (hacked up) circuit 

Scenario 2: request r2 wins the arbitration 
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Simplified (hacked up) circuit 

Scenario 2: request r2 wins the arbitration 
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Simplified (hacked up) circuit 

Scenario 2: request r2 wins the arbitration 
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Simplified (hacked up) circuit 

Scenario 2: request r2 wins the arbitration 
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Simplified (hacked up) circuit 

Scenario 2: request r2 wins the arbitration 
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Simplified (hacked up) circuit 

Scenario 2: request r2 wins the arbitration 
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Simplified (hacked up) circuit 

Scenario 2: request r2 wins the arbitration 
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            End of Scenario 2 

 



Simplified (hacked up) circuit 

Scenario 3: sequential bundling of requests 
41 

’’ 

 

’ 

 

 

’ 



Simplified (hacked up) circuit 

Scenario 3: sequential bundling of requests 
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Simplified (hacked up) circuit 

Scenario 3: sequential bundling of requests 
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Simplified (hacked up) circuit 

Scenario 3: sequential bundling of requests 
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Simplified (hacked up) circuit 

Fair mutexes do not permit sequential bundling 
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Scaling to more inputs 
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Scaling to more inputs 
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Can be 

decomposed 



Scaling to more inputs 
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Conclusion 

• New reusable asynchronous component – surprisingly 
difficult for just 3 handshakes! 

• Fast implementation – no metastability on critical path 

• Discovered fairness-based optimisation 

• Scalable 

• Formally verified using Workcraft and Versify 

• To be integrated into a real multiphase buck 

 

• Challenge for asynchronous community: 

Design OM in a non-monolithic way 

(how to design it without a miracle?) 
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Thank you! 

 Opportunistic bundling of questions is 

encouraged (fairness assumption on the 

session chair to prevent sequential bundling)  

50 


