
Opportunistic

Merge Element

Andrey Mokhov, Victor Khomenko,

Danil Sokolov, Alex Yakovlev

Merge Element

Purpose: merge independent requests

Example: count the total number of requests

Property: requests are never lost, I1 + I2 = O

Requires arbitration

• between requests

• better outside the critical path
2

Opportunistic Merge Element

Purpose: merge independent requests, bundling

 closely arriving requests together

Example: respond to an alarm (two sensors)

Property: max(I1, I2) ≤ O ≤ I1 + I2

3

OMs in the real world

Our motivation:

on-chip power

management 4

Conceptual specification

Merge
5

Conceptual specification

OM

Signal a closes

the window of

opportunity

6

The bundle

transition has

no formal

semantics!

Conceptual specification (unrolled)

Merge

7

Conceptual specification (unrolled)

OM

8

Decomposing the bundle

OM with bundle Decomposition
9

Decomposing the bundle

Decomposition

Problem: decomposed

specification cannot be

synthesised due to

irreducible state

encoding (CSC) conflicts

between s1 and s4, and

between s2 and s3

10

Decomposing the bundle

Decomposition
11

Problem: decomposed

specification cannot be

synthesised due to

irreducible state

encoding (CSC) conflicts

between s1 and s4, and

between s2 and s3

Is this a dead end?

Decomposing the bundle {a1,a2} is highly non-

trivial:

• Output-determinacy violations

• Non-commutativity of inputs

• Irreducible CSC conflicts

• …

12

…then a miracle occurs…

13

STG specification

14

STG specification

Key idea:

 Arbitrate between

 {a+,r1+} and {a+,r2+}

15

CSC resolution (MPSAT)

16

CSC resolution (MPSAT)

17

Deadlock free

No hazards

Synthesisable

Fast response: no metastability on the critical path

Synthesised circuit (MPSAT)

18

Simplified (hacked up) circuit

19

New optimisation technique: fairness-based optimisation

Simplified (hacked up) circuit

20



Simplified (hacked up) circuit

21

 

Simplified (hacked up) circuit

22



 

Simplified (hacked up) circuit

23





 

Simplified (hacked up) circuit

24

 



 

’

Simplified (hacked up) circuit

25



’



’

Simplified (hacked up) circuit

Scenario 1: acknowledgement a wins the arbitration
26

’’





’

’

Simplified (hacked up) circuit

Scenario 1: acknowledgement a wins the arbitration
27



’’



’

Simplified (hacked up) circuit

Scenario 1: acknowledgement a wins the arbitration
28



’



Simplified (hacked up) circuit

Scenario 1: acknowledgement a wins the arbitration
29



’ 

’



Simplified (hacked up) circuit

Scenario 1: acknowledgement a wins the arbitration
30



’ 

’





11

Simplified (hacked up) circuit

Scenario 1: acknowledgement a wins the arbitration
31

12

12'
13

 11

Simplified (hacked up) circuit

Scenario 1: acknowledgement a wins the arbitration

 End of Scenario 1

32

12

12'
13

 11

Simplified (hacked up) circuit

Scenario 2: request r2 wins the arbitration
33



’



’

Simplified (hacked up) circuit

Scenario 2: request r2 wins the arbitration
34

’’



’



’

Simplified (hacked up) circuit

Scenario 2: request r2 wins the arbitration
35

’’



’



 ’

Simplified (hacked up) circuit

Scenario 2: request r2 wins the arbitration
36

’’



’





’

Simplified (hacked up) circuit

Scenario 2: request r2 wins the arbitration
37



’



’

’’

’’’

Simplified (hacked up) circuit

Scenario 2: request r2 wins the arbitration
38

’



’’



’



’

’’

’’’

Simplified (hacked up) circuit

Scenario 2: request r2 wins the arbitration
39

12 11

’



’’



’



’

’’

’’’

Simplified (hacked up) circuit

Scenario 2: request r2 wins the arbitration
40

12 11

’



’’



’



’

’’

’’’

 End of Scenario 2

Simplified (hacked up) circuit

Scenario 3: sequential bundling of requests
41

’’



’





’

Simplified (hacked up) circuit

Scenario 3: sequential bundling of requests
42

’



’



Simplified (hacked up) circuit

Scenario 3: sequential bundling of requests
43



’

 

Simplified (hacked up) circuit

Scenario 3: sequential bundling of requests
44

 
11

Simplified (hacked up) circuit

Fair mutexes do not permit sequential bundling
45


11

Scaling to more inputs

46

Scaling to more inputs

47

Can be

decomposed

Scaling to more inputs

48

Conclusion

• New reusable asynchronous component – surprisingly
difficult for just 3 handshakes!

• Fast implementation – no metastability on critical path

• Discovered fairness-based optimisation

• Scalable

• Formally verified using Workcraft and Versify

• To be integrated into a real multiphase buck

• Challenge for asynchronous community:

Design OM in a non-monolithic way

(how to design it without a miracle?)

49

Thank you!

 Opportunistic bundling of questions is

encouraged (fairness assumption on the

session chair to prevent sequential bundling) 

50

