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The increasing adoption of mobile personal devices and Internet of Things devices is leveraging the emergence of a wide variety
of opportunistic sensing applications. However, the designers of this type of applications face a set of technical challenges related
to the limitations and heterogeneity of the hardware and software platforms and to the dynamics of the scenarios where they are
deployed. In this paper, we introduce a Semantic-Centric Fog-based framework aimed at effectively and efficiently supporting
this type of applications. The proposed framework is composed of local and distributed algorithms that support the establishment
and coordination of sensing tasks in the Fog. First, it performs ontology-driven in-network processing to locate the most adequate
devices to carry out a given sensing task and then, it establishes efficient multihop routes that are used to coordinate relevant devices
and to transport the collected sensory data to Fog sinks. We present a set of theorems that prove that the proposed algorithms are
correctand the results of a series of detailed simulation-based experiments in NS3 that characterize the performance of the proposed
platform. The results show that the proposed framework outperforms traditional sensing platforms that are based on centralized

services.

1. Introduction

Fog computing is a distributed paradigm for transporting,
storing, analyzing, and acting on data generated by a swarm
of heterogeneous networked devices such as Internet of
Things (IoT) [1] devices and personal mobile devices that are
located at the network edge [2-5].

Fog computing provides Cloud-like services imple-
mented close to where data is generated. The purpose is
manifold: (1) to provide stable resources to the swarm at
the network edge: this way, edge devices do not have to rely
solely on their limited resources; (2) to improve scalability
by oftloading data traffic from the core network [5, 6]: in the
Fog computing model, only selected or preprocessed data is
transported through the core network to the Cloud [4]; (3)
to reduce response time: by analyzing and acting on time-
sensitive data close to where it is generated, systems can

eliminate a network round-trip time, reducing the response
delay and jitter [7, 8]; (4) to improve privacy by storing
privacy-sensitive data at the local premises [3, 5, 7-9]; and
(5) to improve efliciency by distributing processing, storing,
and communication functions anywhere between the Cloud
and the swarm at the edge [7, 10].

The Fog computing paradigm provides an ideal platform
for implementing sensing applications because it enables
seamless integration between the unprecedented capabilities
to monitor the physical world [11] of dedicated sensor
networks, personal mobile, and IoT devices; and the scalable
storage and high-performance computing capabilities for
data analytics of the Cloud [8]. In fact, despite the large
diversity of Fog applications (e.g., smart grid, smart traffic,
and smart buildings [9]), all of them include a sensing
component involving IoT devices [4], mobile devices, and/or
sensor networks. However, the vast majority of current
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sensing applications typically address a single scenario on a
dedicated set of resources. While this approach provides per-
formance guarantees and reliability, it prevents the explosion
of possibilities that result from sharing data, hardware, and
software services across applications [11].

In this paper, we present a platform for opportunistic
sensing [12] in the Fog, where collections of heterogeneous
networked devices (e.g., IoT devices, dedicated sensor net-
works, and personal mobile devices) can self-organize to
collect relevant sensory data and to efficiently transport it
to Fog sinks. The result is an adaptive platform that is
able to opportunistically take advantage of the local sensing
devices to support a wide diversity of sensing applications
with optimized performance. Please note that opportunistic
sensing and the Fog share a common fundamental research
question, namely, how to distribute computational tasks
over a dynamic set of heterogeneous resource-constrained
wireless nodes [7].

Opportunistic sensing (OS) systems differ in impor-
tant ways from traditional sensor networks, introducing
new challenges but also opening new opportunities. While
sensor networks are typically deployed as a well-known
set of homogeneous devices, OS systems are usually com-
posed of highly heterogeneous devices with diverse hard-
ware characteristics [13]. Moreover, OS systems are much
more dynamic in the sense that completely new types of
networked sensors can come into play at any time during
the system operation, and OS platforms should be able to
seamlessly integrate them into the sensing tasks. Therefore,
identifying the right set of devices, those that can produce
the desired sensory data with the proper context and at
minimum network cost become one of the most important
and complex problems for the complete realization of an
opportunistic sensing platform [12, 14]. The context of a
sensor may include its current battery’s energy level and its
geographical location, but also, in the case of mobile devices
such as smartphones, the set of applications running on the
foreground, as well as instantaneous readings of their sensors
that may indicate, for instance, whether a device is inside of a
bag.

Another important difference between OS and traditional
sensor networks is the degree in which human users are
involved in the sensing tasks. In the opportunistic sensing
paradigm, sensing applications can run in the background
of mobile personal devices while opportunistically collecting
data. In this type of scenarios, personal devices cannot be
overloaded with continuous sensing tasks that may reduce
the user experience by disrupting applications or depleting
battery power because it may prevent users to participate in
future sensing tasks [15]. This has motivated the development
of collaborative sensing strategies, where two or more mobile
devices share the sensing, processing, or communication load
to save resources [16].

In a nutshell, the main advantage of opportunistic sensing
platforms is that they can harness the sensing and commu-
nication capabilities of the static sensor networks deployed
in a given environment, but also of mobile and IoT devices
that happen to also be located at the same environment. This
is all to provide sensing services to applications running on
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local devices but also to large-scale applications running on
the Cloud.

The proposed framework for opportunistic sensing is
based on Semantic-Centric Sensing Foglets (sensing Foglets
for short) which are dynamic collections of local heteroge-
neous networked devices such as smartphones, traditional
sensor networks, IoT devices, and mobile and desktop com-
puters. These devices organize themselves to collect and
deliver relevant sensory information to a designated local
Fog data sink. For a given sensing request, the proposed
framework locates and identifies the set of local sensing
devices that are most fit to perform the task. This selection
is based on the computation of a semantic distance function
between semantic labels describing the requested sensor and
the sensors installed on the local devices, the instantaneous
context of the sensing devices, and the communication cost.

The main contributions of this paper are as follows: (1) an
ontology-based semantic distance function, with an efficient
implementation, that can be computed without accessing the
whole ontology; (2) a semantic-driven distributed algorithm
that uses in-network processing to locate a set of sensing
devices that are able to perform a given sensing task at
minimum network cost. This way, sensing tasks can be oppor-
tunistically carried out by a combination of mobile devices,
IoT artifacts, traditional sensor networks and Fog devices;
and (3) an effective and efficient distributed algorithm that
instantiates sensing Foglets by establishing and maintaining
multihop paths connecting the best sensing devices in the
environment to Fog sinks and that implements collaborative
sensing schedules where multiple devices can share the load
of implementing a sensing task. These sensing schedules can
reduce local network contention and congestion by balancing
the network load. They can also be used to improve the
quality of the sensory data by providing redundant sources
of information.

The rest of this paper is organized as follows. In Section 2,
we describe existing mobile sensing platforms, emphasizing
the fact that most of these platforms are either based on
centralized architectures where mobile nodes communicate
directly to services on the Internet; or do not address the
problem of finding the best set of sensing and communication
nodes. In Section 3, we present the proposed opportunistic
sensing architecture and formulate the problem of instanti-
ating semantic-centric Foglets for sensing. In Section 4, we
establish the correctness of the proposed algorithms. Sec-
tion 5 presents the results of a series of detailed simulation-
based experiments that show that the Semantic-Centric Sens-
ing Foglets outperform traditional sensing platforms in terms
of efficiency and effectiveness. Lastly, in Section 6 we present
our concluding remarks and future research directions.

2. Mobile Sensing

Many sensing platforms have been proposed in recent years.
Here we present a small, but representative sample of that
body of work. Sensing platforms can be classified as either
centralized or distributed depending on the way the mobile
nodes interact among them. Representatives of centralized
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platforms are METIS [17], PRISM [18] Medusa [18], and
InCense [19], while representatives of distributed platforms
are COUPON [20] and the work by Ngai et-al [21].

METIS [17] is a sensing platform that offloads sensing
tasks to sensors embedded in the environment with the goal
of conserving energy. METIS assumes the presence of a cen-
tralized rendezvous point, which is used by smartphones to
query the infrastructure about the available sensing resources
and their capabilities. Offloading decisions are based on the
estimated energy cost when sensing is performed on the
phone and the prediction of the energy cost when sensing
is performed by sensors in the environment. Unlike the
proposed platform, METIS does not provide support to
generate sensing schedules where multiple devices can be
involved in a given sensing task. In [22], the authors present
a human-based data-muling system where smartphones are
used to collect data from sensor networks. Then, smartphones
use a 3G cellular link or 802.11 to upload their collected data
to a centralized server. EEMSS [23] and Jigsaw [24] are two
sensing platforms that focus on energy efficiency through the
optimized use of the smartphones’ sensors. These proposals,
however, consider neither the problem of sensor selection nor
collaboration among smartphones.

PRISM [25] is based on a client-server architecture where
a PRISM server accepts sensing jobs from application servers;
then, these jobs are deployed by pushing an application
into smartphones that comply with a set of predicates. The
PRISM runtime platform implements a software sandbox
where the sensing application is executed. This sandbox also
provides functionality for resource metering, for preventing
applications to retain sensed data, and for allowing users to
establish policies on the type of applications that they are
willing to run on their phones. Once data is collected, it
is transmitted back to the PRISM server through a wire-
less WAN link. AnonySense [26] also uses a client-server
architecture where users of smartphones can volunteer to
accept sensing tasks and send back anonymous reports. Tasks
are accepted based on the acceptance condition defined by
the task issuer and on the local policies of the phones.
The main focus of AnonySense is to preserve privacy in
opportunistic sensing environments. Medusa [18] provides
a high-level language for developing crowd-sensing tasks
which are specified as a sequence of steps that are exe-
cuted by the Medusa runtime system, which is structured
as a set of services that run on the Cloud and on the
phones. These services are in charge of coordinating the
execution of the sensing task between the smartphones
and a cluster on the Cloud. InCense [19] is a general pur-
pose mobile phone sensing platform for deploying sensing
campaigns through a visual programming paradigm. The
architecture of InCense is based on a centralized context-
aware server that coordinates smartphones in order to
improve the quality of the sensed data and reduce energy
consumption. Neither PRISM, AnonySense, Medusa, nor
InCense has support for direct peer-to-peer communication
between smartphones. These four proposals are comple-
mentary to the one presented here in the sense that they
tackle related but orthogonal aspects of mobile opportunistic
sensing.
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COUPON [20] is a cooperative sensing and data for-
warding framework that incorporates a cooperative sens-
ing scheme and two store-carry-and-forward forwarding
schemes with data fusion. In COUPON, the area of interest
is divided into grid cells whose size is defined by the
application requirements. Time is also divided into time slots
that are further divided into sampling periods. Cooperative
sensing consists of nodes reporting to their neighbors their
coverage tables that contain two-tuples consisting of grid cell
identifiers and the time that the grid cell has been covered
during a time period. Using this information, nodes may
decide not to sense and transmit redundant information
regarding a given cell in the current time period. The
authors implicitly assume that nodes are homogeneous and
capable of sensing the required variable with the appropriate
resolution at any time. Lastly, in [21] the authors propose a
context-aware sensing data dissemination framework where
smartphones are either used as sensors or as data mules
that opportunistically collect data from stationary sensors
through short-range communications.

3. Semantic Fog for Opportunistic Sensing

Figure 1 depicts the proposed Cloud/Fog-based opportunistic
sensing architecture that aims at integrating the storage and
processing power of the Cloud with the sensing capabilities of
any networked device that happens to be located in a region
that is of interest for a sensing application. In the proposed
architecture, sensing applications running either on a mobile
device (e.g., a personal health-care application) or on the
Cloud (e.g., a large-scale public-health sensing application)
can issue sensing tasks to Fog environments requesting to
monitor a given set of variables, during a specified period
of time and in a region of interest. As a response to such
request, the devices in the Fog environment will organize
themselves to create a Foglet composed of interconnected
devices that have the capabilities to fulfill the sensing task
by delivering the requested data to a designated Fog data
sink. This is at minimum network cost in terms of congestion
and contention. Under this paradigm, the sensing Foglets



are in charge of providing the sensing capabilities needed
to implement personal, community, and large-scale sensing
applications that run either on a mobile device or on the
Cloud. It is important to mention that, even though our
platform is specifically designed to instantiate Foglets for
sensing, the same architecture can be used to provide other
types of Fog services.

Figure 1 shows two examples of the way in which the
proposed opportunistic sensing Fog environments operate.
In the first example, Foglet A (composed of a smartphone
and a personal computer) is instantiated as a response to a
sensing task issued from the Cloud requesting to measure
the noise level at the local environment. In the example,
the smartphone is selected because it is equipped with an
adequate sensor (e.g., a microphone), has the right context
(e.g., it has enough energy in its battery, is not stored and
is located in the region of interest), and is located just one-
hop away from the designated Fog sink (the same personal
computer that received the request). In the second example,
Foglet B is instantiated as a response to a sensing task issued
by an application running on a mobile device located in the
local environment. This sensing task requests three devices
with video cameras to record a video for a designated time
period. The task of this example also designates a local
Fog storage service as a sink so that the mobile device can
move out of the environment without interrupting the data
collection process.

For the sake of completeness, Figure 1 also shows two
other Cloud services, which are relevant to opportunistic
sensing platforms, namely, a storage service and a data
analytics service.

In the following subsections, we present the system
model and formally formulate the problem of instantiating
an effective and efficient semantic-driven sensing Foglet.

3.1. System Model. We use a time varying graph G(t) =
(V(t), E(t)) to model the topology of a dynamic network
composed of a time varying set V(t) of heterogeneous nodes
(e.g., desktop computers, mobile and IoT devices, and sensor
nodes) that at time ¢ are located in a given Fog environment.
Nodes in the Fog environment interact with each other by
means of wireless links that are modeled by edges (u,v) €
E(t). Two nodes u,v € V() are connected by a link (u,v) €
E(t) at time t, ifand only ifdist(pt(u), pt(v)) < range. Where
range is the transmission radio range, p’ : V(t) — R x R
is a function that assigns to each node u € V(t) a position in
the (x, y)-plane at time ¢ and dist is the Euclidean distance
between two points. In practice, individual nodes know their
own instantaneous position only, usually through GPS or
from other positioning services.

Since nodes are heterogeneous, they can be equipped with
different types of sensors that provide them with a specific
set of capabilities. Such sensors are described by means of
a sensor ontology Og = (Cg, Rg) that contains concepts
¢ € Cg describing the different types of sensors and a set of
unidirectional relations (x, y) € Rg between concepts x, y €
Cg. For this work, we assume that the relations in Ry, as well as
the relations in the other ontologies, are is-a relations and that
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FIGURE 2: A small fraction of the sensor ontology.

the ontologies are organized as hierarchies. Figure 2 presents
a small portion of the sensor ontology Og = (Cg, Rg) that
shows the branch that describes the acoustic sensors. In the
figure, the relation (Microphone, Acoustic_sensor) indicates
that a Microphone is a type of Acoustic_sensor, and, for
instance, that a node equipped with a microphone is adequate
to fulfill a request for an Acoustic_sensor.

The particular sensors of a given device (also referred as
node) u € V(t) are specified by a function  : V(t) —
P(Cs), where P(Cg) denotes the power set of the concepts
Cs in the ontology Og. This means that a node can have
any subset (e.g., a Pressure_sensor and an Acoustic_sensor) of
the sensor types described in the ontology Og = (Cg, Rg).
Please note that in practice, the information of function # is
distributed among the nodes in the environment, namely, that
each node only knows the information regarding their local
Sensors.

Similarly, a function «* Vi) — R x C, x
{inside, outside} defines the individual instantaneous node
context in terms of a 3-tuple (e,app,e.) € R x C, x
{inside, outside} where € € R" is the remaining node energy.
For the case of personal devices, app € C, is the type of
the application currently running on the foreground and e, €
{inside, outside} indicates whether the device is stored (e.g.,
in a pocket or a bag). As in the case of the types of sensors,
an application ontology O, = (C,, R,) is used to describe
the different types of applications that can be executed by
the devices. For instance, for a smartphone s that at time ¢
is stored in a bag, has 50% of remaining battery charge and is
not currently running an application on the foreground, we
would have «(s) = (0.5, —, inside).

A sensing task is implemented by means of a set of sensing
requests that are issued to the Fog by one or more devices.
A sensing request issued by node u at time ¢ is a 5-tuple
of the form (f;4,7,, R, n, sink), where f;; is the identifier of
the request, r, € Cjs is the requested type of sensor, R =
(P0s, d,yaxs Lyax> @) 1s a 4-tuple that defines the restrictions
that a node needs to fulfill in order to be considered a
feasible data source, n is the maximum number of devices
that will generate data, and sink is the identifier of the Fog
data sink. The restrictions R include the geographic area of
interest of the sensing request (a disk of radio d,,,, with
center at pos = p'(u)), the maximum number of hops (I,,,,.)
that the request will be propagated, and a context predicate
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(¢ = (e,app,e.) € R" x C, x {inside, outside}) that defines
the required device context, which includes the acceptable
remaining energy level ¢, the type app of application running
on the foreground of the sensing device and whether the
device can be stored. When n > 1, the requesting node will
be in charge of coordinating a collaborative sensing schedule
where the selected nodes will monitor the required variables
at intervals defined by a sensing schedule.

3.2. Semantic Distance. A semantic distance function between
two concepts of an ontology O = (C, R), denoted by sd, is a
function sdg, : CxC — R that assigns a positive real value
to any pair of concepts depending on how taxonomically
close the two concepts are in the ontology [27] (here we have
dropped the subindex S of Og = (Cg, R;) because we are not
referring to a particular ontology). We use such a function
to assess how appropriate is a given sensing hardware to
fulfill a sensing request. In particular, if the value of the
semantic distance between the requested type of sensor and
the sensing hardware installed on the device is small, we
say that the device is adequate to fulfill the sensing request.
From the example of Figure 2, a node equipped with either
a condenser_microphone or a carbon_microphone is adequate
to fulfill a request for a Microphone because both concepts
are more concrete instances of the more abstract concept
Microphone.

The definition of semantic distance between two concepts
can be extended in a number of ways to obtain a semantic
distance sDg, C x P(C) — R" between a concept
¢ € C and a set of concepts C; < C. In this work, we
propose (1) that simply returns the smallest semantic distance
between concept ¢ and any of the concepts j € C;. The
idea is that a device is adequate to fulfill a request if the
type of any of its hardware components is semantically close
to the requested type of sensor. To exemplify this, assume
that a node i is equipped with the set of sensors C; =
{Pressure_sensor, Acoustic_sensor}, and that a request for a
Pressure_sensor arrives to the Fog environment. Then, since
sDq(Pressure_sensor, { Pressure_sensor, Acoustic_sensor}) = 0
we can say that node i is adequate to fulfill the request.

Precise specifications of the way in which the proposed
semantic distance function is computed are presented in
Sections 3.5 and 3.6. Section 3.5 presents the formulation of
the semantic distance function when the ontology is codified
asagraph, and Section 3.5 presents an equivalent formulation
that uses prefix-based labels as parameters.

sDo (¢,C;) = minsdg (¢, j) 1)

3.3. Problem Formulation. From the previous definitions, we
can state the problem of instantiating a sensing Foglet as
follows.

Definition 1. Given an environment composed of a time
varying set of devices V (¢) located at positions designated by
function p’, a sensor ontology Og = (Cs, Ry) describing the
different types of sensing hardware, an application ontology
04 = (Cy4, Ry) describing the different types of applications

running on the devices, a function # that describes the
sensing hardware installed in the devices in V(¢), a node
context function x* that describes the instantaneous context
of each device, and a sensing request SRq = (fi;,7-R =
(P0Ss, d,yaxs Lnax> 9> 1) issued by node u € V(t) at time ¢; find
a set of devices S € V/(t), such that the following conditions
hold:

(1) The selected sensing nodes are located inside of the
region of interest: Vs € S, pt(s) is a point located
inside of the circumference of radio d,,,, with center

at pos = p'(u).

(2) Nodes in S have the required energy, are running
an adequate type of application on the foreground
(if any), and are not stored if it may interfere with
the sensing process: Vs € §, x'(s).e R.p.en,
sdg. (R.¢.app, k' (s).app) = 0 A (k'(s).e. = Re, Vv
Re, = *).

(3) Vs € Sthereisapath p = u,u,,..
Loy I G(1).

v

.u;, s of length I <

(4) |S| is as large as possible but |S| < n.

(5) Nodes in S are those equipped with the most adequate
sensing hardware, or more specifically, the nodes that
minimize

ZSD@S (Ts’ n (5)) (2)

seS

where, as defined in Section 3.1, x'(s).c denotes the
remaining energy in the battery of node s at time ¢, k' (s).app
is the application that node s is running on the foreground (if
any) at time ¢, and «'(s).e, indicates if node s is stored at time
t. Similarly, ¢ is a predicate that defines the required device
context which includes the acceptable remaining energy level
€, the type app of application running on the foreground, and
whether the device can be stored e, or if the latter is irrelevant
for the request (R.¢.e, = ).

This way, a solution to the problem of instantiating a
sensing Foglet is a set of nodes S currently in the environment,
located in the area of interest (Condition 1), with the adequate
context (Condition 2), equipped with the most suitable
sensing hardware (Condition 5) and, a set of devices that
connect the requesting node u with all the nodes in S through
paths in G(t) of length less than [,,,, (Condition 3). Other
criteria can be used to compute the paths connecting u with
the nodes in S, for instance, paths of Maximum-Minimum
residual energy, paths composed of nodes not currently in use
by their human users, or paths composed of nodes that have
not recently participated in a sensing task.

Please note that the problem formulated at Definition 1is
a search problem where a subset S € V/(¢) of feasible nodes
is selected to perform a sensing task. Feasibility is defined
by Conditions 1-4, whereas Condition 5 establishes that the
best devices to fulfill the request are those equipped with the
most adequate sensors for the request, namely, those with the
smallest semantic distance between the requested sensor 7,
and themselves.
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FIGURE 3: Semantic-driven Foglet formation. (a) A Fog ambient where a sensing task is received from the Cloud by a desktop Fog computer.
The Fog ambient is populated by desktop computers, mobile and IoT devices, and sensor nodes. (b) A sensing Foglet composed of sensor and
relay nodes, located inside of the region of interest, is instantiated on-demand as a response to the sensing request received by the desktop
computer. (c) A Fog ambient where a sensing task is issued by a local mobile device. (d) The Foglet transports the collected sensory data to a
desktop Fog computer. Dotted arrows indicate parent-child pointers that define BES spanning trees that are used to collect information about
the sensors in the environment. Solid arrows indicate wireless links used to transport sensory data from sensors to the designated sinks.

3.4. Semantic-Driven Foglet Formation. The proposed se-
mantic-driven distributed framework for the instantiation of
sensing Foglets is composed of a distributed semantic-driven
sensor selection algorithm, a sensor ontology, an application
ontology, a semantic distance function that can be computed
without accessing the whole ontology, a distributed protocol
for implementing collaborative sensing plans, and an interest-
driven [28, 29] routing algorithm.

During the first phase of the sensor selection algorithm,
a Foglet Request (FReq) is disseminated across the Fog
environment establishing a breadth-first search tree rooted
at the requesting device. The request is disseminated only
among devices located inside of the region of interest defined
by the request and up to the maximum number of hops (,,,,., ).
At the end of this phase, every node in the tree knows if it is
a feasible device, namely, if it complies with the restrictions
defined in the request.

During a second phase of the algorithm, starting at the
leaves and up to the root, nodes inform their parents in the

tree of the best feasible devices they have seen. A device is
considered better than another device if the semantic distance
between the requested type of sensor and any of the sensors
in the device is smaller, or if the semantic distance is the
same but the path connecting the root with the device is
better in terms of hop length. This way, the node issuing the
request receives only the information regarding the set of
best feasible devices available in the Fog environment. With
this information, the requesting node can determine if the
selected devices are in fact adequate to implement an effective
sensing Foglet.

Figures 3(a)-3(d) illustrate the previous idea. Figure 3(a)
shows a Fog environment composed of a heterogeneous
set of devices that are connected through wireless links. In
the figure, a sensing task is received by a Fog server from
the Cloud. As a response, the Fog server issues a series
of Foglet requests that are disseminated inside the region
of interest. If more than one device is selected to generate
sensory data, the requesting node will coordinate the selected
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devices to implement a collaborative sensing plan where
the selected devices and the nodes connecting them share
the computing and communication load. For instance, the
requesting node can compute and deliver sensing schedules
to the set of selected devices so that they can turn off
their radios or sensing hardware to preserve energy and
bandwidth. Alternatively, the sink can also request sensory
information from all the selected devices to improve the
quality of the information through the redundant sources.
Figures 3(b) and 3(d) show the BFS-trees established over the
nodes located inside of a circular region of interest of radio
dmax'

Figure 3(c) illustrates the case where a sensing request
is issued by an application running on a mobile device. The
request in this example designates a Fog server as the data
sink (Figure 3(d)) so that data can be collected even if the
mobile device is turned off or if it moves out of the Fog
environment. Once the best sensors have been identified,
interest-driven routing [28, 29] is used to transport the
sensory data to the designated sink (Figure 3(d)).

The following sections present detailed specifications of
the proposed algorithms and protocols.

3.5. Asymmetric Semantic Distance. We propose an asym-
metric semantic distance function sdg : C x C — R
defined over the concepts of an ontology O = (C, R) that can
be efficiently computed, even without the need of accessing
the whole ontology. The objective of this semantic distance
function is to serve as the key metric to identify the best
available sensor to fulfill a sensing request and, for the case
of personal devices, to determine if an adequate application is
running on the foreground. Equation (3) shows the definition
of the proposed sdg where we can observe that given a
pair of concepts i, j € C, the function sdg (i, j) equals 0 if
the requested concept i is an hypernymy (an ancestor) of
concept j. This is because j is-a more specific instance of i
and hence, it can be used to fulfill the request. Otherwise,
the value of sd (i, j) is computed as the length of the path
from i to the first common ancestor of i and j in the ontology,
which is denoted by d,,(i, j). This semantic distance function
is similar to the one proposed by Rada et-al [30] in the sense
that both functions are based on the hop distance between
concepts in the ontology. The proposed distance, however, is
an asymmetric version aimed at evaluating to what extent an
instance of concept j can be used as an instance of concept i.

sdo (i, j)
0 if i is an hypernymy of jori=j, (3)

d, (i, j) otherwise.

3.6. Asymmetric Semantic Distance over Prefix-Based Labels.
In order to make the computation of (3) more efficient, every
concept in O is mapped onto a prefix-based label that is
derived from a finite alphabet X. A prefix label L, for concept
¢ € Cisaword in X" such that L. = L, & I, where L,
is the prefix label of the parent concept of ¢ in O, @ is the
concatenation operator, and / € X is a suffix assigned to

© 00 0

Ocaa Ocab Ocba 0cbb

FIGURE 4: Example of a small ontology and its corresponding prefix-
based labeling.

¢, which is different to the suflixes assigned to its sibling
concepts. The root concept of O is assigned to label L that
can be equal to any symbol [ € £. We use function A : C —
2" to denote such a labeling. Please note that we can assign
prefix labels to all the concepts in linear time by performing
a level-order traversal of the ontology.

Now, we can reformulate (3) in terms of the prefix labels.
We use |L| to denote the length in symbols of label L and
L, @ L, to denote the label composed of the largest common
prefix between L, and L,. The new formulation is shown
in (4). Please note that (4) can be easily implemented using
simple string operations.

b (L) 0 if L;oL; =L, @)
S L~,L~ = 4
A (Li L IL;| - ' Lo Lj| otherwise.

As we have already mentioned, the main advantage of
this formulation is that devices do not need to access the
whole ontology in order to compute the semantic distance
between concepts. They only need to perform simple string
operations over the corresponding prefix-based labels. More-
over, devices can use (4) to correctly compute the semantic
distance between the labels of their sensors and a label of
a concept that was added to the ontology to accommodate
a new type of sensor. This discussion also applies to the
applications running on the devices.

Similar to the case of (1), we can define a semantic
distance function sD, g : A(O) x P(A(0)) — N* between
a prefix label L; € A(O) and a set of prefix labels L; <
P(A(0)), where P(A(O)) denotes the power set of prefix
labels in the labeling A. This is shown in (5).

sDpy (LiLy) = Lmei{l,sdl\(@) (Li’ Lj) (5)
J

Figure 4 shows a small ontology and its correspond-
ing prefix-based labeling derived from the alphabet £ =
{0,a,b, c}. From the figure we can see that SdA(@)(Lcs) LCQ) =
0 because Lo, @ Lo, = “0c” = Lg,. Similarly, that
SdA(O)(LC9>LC3) =2because [L¢ |- |Lg, @ L, | = |“Ocbb”| —
[“Oc”| = 2. Now, let us assume that the concepts located
inside of the dashed box (C,,, C,;, and C,,) were added to
accommodate new types of sensors. We can see that a device
equipped with a sensor of type C, can reply to a request



for a sensor of type C,, with a distance sdq)(L¢,,,Lc,) =
|“Oaab”| — [“0”| = 3 because it only needs the labels of the two
concepts.

Please note that for any ontology O = (C, R) with a tree
topology, the length |L;| of the prefix-based label of any i € C
is in O(h) where h is the height of the ontology tree. Therefore,
the space needed to store a prefix-based label and the number
of operations needed to compute Equation (4) are also in
O(h).

3.7 Semantic-Driven Sensor Selection Algorithm. As already
mentioned, a sensing task is implemented by means of a set of
sensing requests that are issued to the environment by one or
more devices. A sensing request is a 5-tuple of the form ( f;;, 7.,
R, n, sink), where f;; is the identifier of the request, r, € Cg
is the requested sensor type codified as a prefix label, R =
(P0Ss, d,yax> Lnax»> @) defines the restrictions that nodes need to
fulfill in order to be considered feasible data sources, # is the
maximum number of devices that will generate sensory data,
and sink is the identifier of the sink node.

As shown in Algorithm 1, when a node receives a sensing
request from the upper layers, it creates a new element in the
set of Foglets (Flet, line (4)) that contains the fields and data
structures that are used during the process of establishing and
maintaining the sensing Foglet. All this information is soft
state. An element of the Foglet set contains

(i) a unique Foglet identifier ( f;;),
(ii) the identifier of the root node of the tree (root),
(iii) the identifier of the sink (sink),

(iv) the identifier of the parent of the current node in the
tree (parent), which in the case of the node issuing
the request is its own node identifier,

(v) a monotonically increasing sequence number (sn)
that is further used to maintain the routes from nodes
to the root node,

(vi) the requested sensor type (r;),

(vii) the maximum number of devices that will generate
sensory data (n),

(viii) the set of restrictions (R),

(ix) a subset of one-hop neighbors that are known to be
children of the current node in the tree (Child),

(x) a subset of one-hop neighbors that are known not to
be children of the current node in the tree (nChild),

(xi) the set of current one-hop neighbors (N,,,;),

(xii) a set containing the replies (Reps) received from the
children nodes in the tree,

(xiii) a flag that indicates if the node has already sent a
Foglet Reply back to its parent (replied) and,

(xiv) a routing table (RT) that contains pairs (nodeld,
nextHop), which are used to route packets from the
root to the selected nodes.

A reply r € Reps is a 3-tuple that contains the identity
of the node (nodeld) that originally issued the reply, the
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semantic distance (distS) between the requested sensor type
and the sensors in the node, and the hop distance (hdist) from
the root to that particular node.

Once the local state has been created, the root node
transmits to its neighbors a Foglet Request which is an 8-
tuple of the form FReq = (f;,root, sn, hdist,r, R, n, sink),
where f;; is the Foglet identifier, root is the identifier of the
root node, sn is the root’s sequence number, hdist is the
hop distance that the FReq has traversed so far, r, is the
requested sensor type, R is the set of restrictions, # is the
maximum number of devices that will be used to generate
sensory data, and sink is the identifier of the sink. Note
that the pair (f;4,root) uniquely identifies the Foglet that
will be instantiated in response to the sensing request. Upon
reception of a FReq from neighbor j, node i first checks if
it is the first time it has received a request with the same
(fig> root) pair (line (8)). If so, it creates a new element in the
set of Foglets and checks whether or not it has to relay the
FReq message by verifying if it is inside the region of interest
(by calling function inRofI(), line (11)) and, if the FReq has
not reached the maximum number of hops (R.,,,,). If node
i has already received another Foglet Request with the same
(fiq> root) pair, it checks if it is a leaf of the tree by comparing
its set of nonchild neighbors (nChild) against its one-hop
neighborhood at the time it received the FReq for the first
time (line (30)).

Nodes know their one-hop neighborhood, denoted N(u),
by periodically exchanging hello packets that contain the
identity of the nodes.

In order to ensure termination in the presence of packet
loss due to either channel effects or topological changes,
nodes start a timer (line (13)) after they have relayed a
Foglet Request. The value of the timer is proportional to the
difference between R.[,,,, and the node’s hop distance to the
root. When this timer expires, and if the node has not already
done so, the node sends its Foglet Reply back to its parent. This
way, in the worst case, the tree will be contracted from leaves
to root in a time proportional to R.J,,,,,..

The contraction phase of the sensor selection algorithm
starts when a FReq either reaches its maximum number of
hops or when it is received by a node located outside of
the region of interest. In the first case, the node considers
itself a leaf of the tree and sends a Foglet Reply message
back to its parent containing its own reply (line (19) of
Algorithm 1). When the node does not fulfill the context
restrictions defined in the Foglet Request (validaC(R.¢p) =
false), it sets the value of the semantic distance to co to
indicate that it does not have a feasible sensor (line (22)).
If the node is located outside of the region of interest
(inRofI(R.pos,R.d,,... p"*“(i)) = false), it also sends a
Foglet Reply containing a value of semantic distance equal
to oo (line (22)). A node can also detect that it is a leaf if
it receives FReq from all of its current neighbors indicating
other nodes as their parents (lines (27) and (30)).

As shown in Algorithm 2, when a node i receives a
Foglet Reply FRep = ( f,4, root, rep) from one of its children
(node j), it stores the replies rep contained in the message in
the Reps data structure and adds j’s identifier to the Child
data structure. Then, for each of the replies contained in
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(3) RT «— @;sn «— sn+1;

(6) end when

(46) end when

(1) when SR = (f;, 7,, R, n, sink) is received from upper layer do
(2) nChild «— @; Child «— 0; Reps «— @; N,,; «— N(i);

(4) Flet «— Flet U {{ i, sink, sn,i, ...,
(5) Broadcast(FReq = (f,;,1, 51,0, 1, R, n, sink));

(7) when FReq = ( f;;,root, sn, hdist, R, n) is received from j do
(8)  if (fi4,root, *,..., %) ¢ Foglet then

9) nChild «— {j}; Child «— @; Reps «— @; N,,; «<— N(i); RT «— 0;

(10) Flet «— Flet U {{ f;4, root, sink, j, ..., RT)}

(11) if hdist + 1 < R, A inRofI(R.pos,R.d,,,.. p"**(i)) then

(12) Broadcast(FReq = (f;;, root, j, hdist + 1,7, R, n));

(13) StartTimer(RepTOut = (f,;,root), (R, — hdist + 1)7);

(14) else

(15) if inRofI(R.pos, R.d,,,.. p"* (i)) A validaC(R.¢) then

(16) f «— Flet.getFoglet( f,;, root);

(17) freplied «— true;

(18) FRep = ( f;g, root, {sDq(r,, (i), i, hdist + 1});

(19) Unicast(parent)(FRep);

(20) else

(21) FRep = (f;4, root, {00, i, 00});

(22) Unicast(parent)(FRep);

(23) end if

(24) end if

(25) else

(26) f «— Flet.getFoglet(f,4, root);

(27) if parent # i then f.nChild «— fnChild U {j};

(28) end if

(29) Flet «— (Flet \ {f,4 root, *, ..., x}) U{f}

(30) if (f.N,,; " N()\(f.Child U fnChild) = @ then

(31) f.replied «— true;

(32) if inRofI(f.R.pos, f.R.d,,... p"** (i) A validaCxt(f.R.¢))
then

(33) if f.parent # i then

(34) FRep = (f;4,r00t, {sD (s, h(i), i, f.hdist + 1});

(35) Unicast(parent)(FRep);

(36) else SendUpperLayer(f;, sD, g (7, 7(i));

(37) end if

(38) else

(39) if f.parent # i then

(40) Unicast(parent)(FRep = ( f;;, root, {00, i,00}));

(41) elseSendUpperLayer( f;;, 00);

(42) end if

(43) end if

(44) end if

(45)  endif

N,,;» Reps, false, RT)}

ALGoRITHM l: FogletMessageHandler.

the message reporting a semantic distance different to oo, i
creates an entry in the routing table (RT) establishing that
node j can be used as a next-hop to reach the selected
node through a shortest path (line (8)). If the receiving node
has collected Foglet Replies from all of its children nodes
that remain in its one-hop neighborhood, it selects the best
received replies (line (14)) to create its own reply message
that will be forwarded to either its parent in the tree or
to upper layers if the current node is the root node. The
node also includes its own information in the reply if it has

a feasible sensor, namely, if validaC(f.R.¢) = true (line
(11)).

3.8. Data Retrieval, Path Maintenance, and Collaborative
Sensing Plans. Once the root node has received Foglet
replies from all the nodes located inside the region of
interest, it sends a Data Control (DCtr = (nodeld, f,;, root,
sensor, command, parameters)) packet to the selected nodes
to initiate the sensory data flows. DCtr packets are routed
from the root to the intended nodes following the nextHop
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(4) endif
(5) f-Reps < f.Reps Urep;
(6) f.Child «— f.Child U {j};

(9) end for

ini

(17) end if
(18)  endif

(20) end when

(24) endif

(27)  endif

(31) endif
(32) end when

(1) when FRep = ( f,;, root, rep) is received from j do
(2)  f «— Flet.getFoglet(f,,, root);
(3)  if freplied = true then return;

(7) forallr € rep: r.distS < codo
(8) f.RT « f.RT U f.RT{(f.nodeld, j)};

(10)  if (f.N,,; " N()) \ (f.Child U f.nChild) = 0 then
(11) if validaC(f.R.¢) = true then

(12) f-Reps « f.Reps U {sD,q,(f.r,n(0)), i, f.hdist};
(13) end if
(14) Best «—getBest(f.Reps, f.n); f.replied «— true;

(15) if f.parent + i then Unicast(parent)(FRep = ( f,;, root, Best));
(16) else SendUpperLayer( f,;, Best);

(19)  Flet «— (Flet\{f4, root, =,.., *) U {f};

(21) when RepTOut = ( f,4, root) is received from itself do
(22)  f «— Flet.getFoglet( f,;, root);
(23)  if f.replied = true then return;

(25)  if validaC(f.R.¢) = true then
(26) f-Reps < f.Reps U {sDq,(f.r,n(0)), i, f-hdist};

(28)  f.replied «— true; Best «—getBest( f.Reps, f.n);
(29)  iff.parent # i then Unicast(parent)(FRep = ( f;;, root, Best));
(30)  else SendUpperLayer( f,;, Best);

ALGORITHM 2: FogletMessageHandler

pointers stored at the routing tables (RT) during the
contraction phase of the sensor selection algorithm. In a
DCtr packet, sensor is the prefix label of the selected
sensor, command € {startFlow, continueFlow, stopFlow}
instructs the sensor to start, continue, or end the data
flow, and parameters include flow and sensor specific
parameters such as data rate, sampling period, or resolu-
tion.

In the cases where the root node is also the sink, and for
as long as it requires data from any device, the root node
refreshes the routing structures used to connect it with those
particular devices by means of Sink Announcement messages.
These messages are periodically disseminated along the
regions of interest related to all the Foglets for which the node
acts as a sink. Sink Announcement messages establish an
ordering over the nodes based on monotonically increasing
sequence numbers, the hop distance to the root (sink) node,
and the identifiers of the nodes. A node selects a neighbor as
next-hop to the root if it reports the largest sequence number
or the same sequence number but a shorter distance to the
root.

In the cases where the designated sink is different from
the root node, interest-driven routing is used to transport the
sensory data and the data control messages.

cont...*

The collaborative sensing plans are implemented by the
sink nodes by means of Data Control packets. A sink can, for
instance, implement a round robin schedule where a single
node is selected at each time to sense a given variable in order
to save battery. Alternatively, a sink can instruct more than
one sensing device to sense the environment at the same time
in order to have redundancy for the sake of increased data
accuracy and resolution.

4. Analysis

In this section, we present a set of theorems and a corollary
that establish the correctness of the algorithms presented in
Section 3.7 and that (4) correctly computes the value of (3).

Theorem 2. Given an ontology O = (C, R) with a tree topology
and a prefix-based labeling A derived from a finite alphabet X.
Then, sdq(i, j) = sd ) (A(), A(j)) for any i, j € C.

Proof. We have three cases. (1) i is an ancestor (hypernymy)
of j. Since O is a tree, the only path connecting the root
concept r with j includes concept i, and by construction, label
A(i) is a prefix of label A(j). Therefore, A(i) @ A(j) = A(i)
and sd g, (A(i), A(j)) = sdg(i,j) = 0.(2) j is an ancestor
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(hypernymy) of i. We have that A(i) @ A(j) = A(j) # A()
and therefore sd ) (A(i), A(j)) = |A®)| = |A(j) @ A(j)|. Now,
since j is an ancestor of i, it is also the first common ancestor
of i and j and therefore d, (i, j) = |A(i)| — |A(j)| which is
the length in hops of the path from i to j in the ontology.
(3) Neither i nor j is an ancestor of the other. We also have
that A(i) @ A(j) # A(i). By construction of the prefix-based
labeling A, the difference in length between the label A(i) of
concept i and the label of any of its ancestors is equal to its
distance in the ontology; therefore, |A(i)| — |[A(i)) @ A(j)] is
equal tod,, (i, j), because, by definition, A({)@A(j) is the prefix
label of the first common ancestor between i and j. O

For the following theorems and corollary, we assume that
packets sent in unicast mode are reliably delivered to their
intended destinations and that every node i € V (¢) knows the
constituency of its one-hop neighborhood at time ¢, which is
denoted by N'(i). Wewill use T = (Vy, E7) to denote the BES-
three composed of active links at the end of the contraction
process that was induced by the parent pointers established
during the dissemination of the Foglet Request (FReq).

Theorem 3. When the algorithm described in Algorithms 1
and 2 terminates, the set Best sent to upper layers is composed
of a subset of the nodes of the BFS-tree T = (V, Er) that comply
with the five conditions of Definition 1.

Proof.

Condition 1. We have to show that Vi € Best, (FReq.R.pos.x —
pFReq(i).x)2 + (FReq.R.pos.y — pme‘f(i).y)2 <(d,,.)% where
pF Red(7) denotes the position of node i at the time it received
the FReq. From line (11) of Algorithm 1 we know that nodes
located outside of the region of interest do not propagate the
FReq and reply with a value of semantic distance equal to co
(lines (22) and (40) of Algorithm 1) to indicate that they are
not feasible nodes. Therefore, no node i € Best was located
outside of the region of interest at the time it received the
FRegq.

Condition 2. To show that the selected nodes have a feasible
context, we have to show that Vi € Best, «'*(i).e >
FReq.R.¢.€ A sd,q,)(FReq.R.¢.app, «™R(i).app) = 0 A
(k(i)e, = FReq.R.¢.e. V FReq.R.¢p.e, = #). Similar to
the previous case, nodes call to validaC(c.R.¢) to check if
their context xF*¢4(j) comply with the restrictions defined in
FReq.R.¢ at the time the FReq was received. If not, they reply
with a value of semantic distance equal to co to indicate that
they are not feasible nodes.

Condition 3. We have to show that at the time the Foglet
is established, Vi € Best, the length of the path root,...,i
connecting a node i to the root in the BFS-tree is less than
or equal to C.Req.R.l,,,,. Assume there is a path root,...,i
of length [root,...,i| > C.Req.Rl,,.. This is not possible
because FReq packets are propagated at most C.Req.R.l,,,..
hops away from the root, and the paths connecting the root
to the selected devices are reverse paths established using the
parent pointers defined during the propagation of the FReq.
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Condition 4. We have to show that | Best| is as large as possible
but |Best| < n. Assume |Best| < n and that at the time
the algorithm terminates, there is a node b that complies
with Conditions 1, 2, and 3 in the BFS-tree but that b ¢
Best. Since the algorithm terminates and unicast messages are
reliable, the branch of the BFS-tree containing b should have
completed its contraction process with the transmission of a
FRep message to the root node containing a set rep of feasible
nodes. Now, since at the root node |Best| < n, it should be the
case that the number of feasible nodes in rep is also smaller
than n. Otherwise, the extra nodes could be included in Best.
On the other hand, the information regarding b should have
been omitted, either by b itself or by one of its ancestors
in the BFS-tree. This means that at some point during the
contraction of the branch containing b, a node decided not
to include b in the replay. But this is only possible if that node
had information about other # feasible nodes which are better
than b. From this point on, all the FRep messages in that
branch would contain information of at least n feasible nodes
which is a contradiction.

Condition 5. We have to show that VS € (V) such that every
node in S complies with Conditions 1, 2, 3, and 4, we have that
Y seBest sD gy (1 h(s)) = minSeVT{ZSES sD (g, (rs h(s))}.
Assume there is a feasible node b € V. but not in Best at
the root node, such that sDA(@S)(rS, h(b)) < sDA(@S)(rS, h(s)),
for some s € Best. Since the algorithm terminates and unicast
messages are reliable, the branch of the BFS-tree containing
b should have completed its contraction process with the
transmission of a FRep message to the root node containing
a set rep of feasible nodes. Since b ¢ Best at the root, it should
be the case that at some point during the contraction of the
branch containing b, a node decided not to include b in the
replay. But this is only possible if that node had information
about other n feasible nodes which are better than b. This
leads to a contradiction since from this point on, only better
nodes can be added to FReps sent towards the root. O

Theorem 4. All the branches of the BES-tree T = (V, Er) are
correctly contracted.

Proof. By contradiction, assume that there is at least one
branch of the BFS-tree T = (V, E;) that is not correctly
contracted up to the root. Let node s € V. be the first node
that did not send a FRep message to its parent in T"and let p €
Vi be its parent node. Note that s # p since we are assuming
the branch did not finish its contracting process. Now, by lines
(30) of Algorithm 1 and (10) of Algorithm 2, node s sends a
FRep message to p when NR(s) n N (s) = Seyuq U
S,.chita» Where N¥R44(s) is the one-hop neighborhood of s at
the time it received the first FReg, N“"""(s) is the current
one-hop neighborhood of s, S, is a set of nodes which are
known to be children nodes of s in T, and S, is a set of
nodes which are known not to be children nodes of s in T.
Since s adds nodes to S,;;; when it receives a FRep message
from them, the conditions of lines (30) of Algorithm 1 and
(10) of Algorithm 2 state that a node contracts itself when it
has collected FRep messages from all of his children nodes
which are still within radio range. Since FRep messages
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are transmitted using a reliable protocol, they always reach
their intended destinations (if within radio range); therefore,
the only way in which the contraction condition at s never
becomes true is when one or more FReq messages stating
a parent different to s are not correctly received at s. But,
since s is not actually waiting for information from those
nodes, it can send a FRep message when a timer expires
as described by lines (21) to (31) of Algorithm 2. Now, we
have to argue that the contraction timer at p expires after
the contraction timer at s. Let 7, be the time in which p
started its contraction timer and At the value of that timer,
with & > 1. Now, the time in which s started its own timer
equals T, + Touepioppelay and its corresponding value equals
(h = 1)7, where 7., .rjoppelay 1S the maximum one-hop delay
experienced by a message. Therefore, the expiration time of
s’ timer is T, + Toneroppelay + (M — 1)7 and this time can be
earlier than p’s expiration timer only if 7, oppetay > 7- S0, by
setting the value of 7 sufficiently large, the contraction timer
at p will expire after the time in which the contraction timer
at s expires. O

Corollary 5. The algorithm described in Algorithms 1 and 2
terminates.

Proof. This is a direct consequence of Theorem 4 because the
algorithm terminates when all the branches of the BFS-tree
complete their contraction process. O

5. Experimental Results

In this section, we present detailed simulation results com-
paring the performance of the Sensing Fog against that of
a traditional opportunistic sensing environment in which
sensing nodes periodically post their location, instanta-
neous context, and sensing capabilities to a well-known
local ambient server. In this centralized environment, when
a sensing request arrives at a node, that particular node
forwards the request to the ambient server that replies
back with a list of devices that can fulfill the require-
ments specified in the sensing request. Lastly, the requesting
node contacts the selected devices to instruct them to
generate sensory data. In this sensing environment, all the
communications are supported by the AODV [31] rout-
ing protocol. This implementation mimics the behavior of
many of the centralized environments described in Sec-
tion II. The algorithms and protocols that implement both
sensing environments were developed over the Network
Simulator 3 (ns-3) [32] that provides realistic models of
the whole protocol stack. In particular, ns-3 provides well-
tuned versions of AODV and of the underlying MAC pro-
tocol and physical layer. The source code can be down-
loaded from https://github.com/blunan/Stratos-Distributed
and https://github.com/blunan/Stratos-Centralized.

We use search success ratio, satisfied-request ratio, packet
delivery ratio, average reply delay, and overhead as our per-
formance metrics. The search success ratio is computed as the
ratio between the number of times the sensing environments
were able to locate the best set of devices (according to
Definition 1) and the total number of sensing requests
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TABLE 1: Simulation environment.

Total nodes 100 Node placement Random
Simulation area 1000 x 1000m*  Simulation time 100s
MAC Protocol 802.11b Tx. rate 2Mbps
Mobility model Random waypoint ~Min.-Max. Vel.  1-4m/s
Pause time 40s

received by any node in the environment. The average
satisfied-request ratio is computed as the ratio between the
number of times the sensing environments located a valid
set of devices (according to conditions 1 to 4 of Definition 1)
and the total number of sensing requests received by any
node in the environment. The average reply delay is the
average time between the arrival of a sensing request and the
reception, at the corresponding sink node, of the first data
packet containing sensory data. The overhead is computed
as the total number of bytes transmitted by the nodes in the
environment, divided by the number of bytes of sensory data
received at the sink nodes.

All the algorithms were tested with IEEE 802.11 DCF as
the underlying MAC protocol. Nodes move according to the
random waypoint mobility model and each simulation was
run for fifty different seed values. The confidence level for all
the results presented in this section is 95%. Table 1 lists the
details of the simulation environment.

The results are organized in two sets. In the first set (Sec-
tions 5.1-5.2) we evaluate the performance of the algorithms
when the sensing requests require a single source of sensory
data, whereas in Section 5.3 the sink nodes coordinate
sensing plans that are implemented by a set of devices. In
all the experiments, the value of the radio (d,,,,) of the
region of interest is selected uniformly at random from the
interval [400m, 600m], the maximum number of hops (1,,,,,)
that the request is propagated equals four, and nodes are
equipped with a set of sensors which are selected uniformly
at random from the set of sensors defined in the sensor
ontology. Nodes receiving sensing requests are also selected
uniformly at random from all the nodes in the environment
and the length of the data packets generated by the selected
sensors is of 256 bytes. Both, the sensor type and the context
included in the sensing request are also selected uniformly
at random from the sensor and application ontologies and
from all the possible values for node contexts, respectively.
For the centralized environment, a node is selected as the
ambient server uniformly at random at the beginning of
the simulation. The ambient server remains static during
the whole simulation time. All these values were selected to
model scenarios as described in Section 3.

5.1. Performance with Increasing Proportion of Mobile Devices.
In these experiments, we evaluate the performance of the
sensing environments as the percentage of mobile nodes is
increased from 25% to 100% of the nodes in the environment.
Every node is assigned with two different types of sensors,
there are four concurrent sensing requests, and selected
sensors generate data flows composed of 10 data packets.
The purpose of this scenario is to evaluate the ability of the
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sensing environments to cope with an increasing number of
topological changes.

From Figure 5(a) we can observe that the sensing Foglets
clearly outperform the centralized environment in terms of
both search success ratio and satisfied-request ratio. As shown
in Figure 5(c), the reduced performance attained by the
centralized environment is mainly due to the extra com-
munication overhead induced by the nodes while updating
its state at the centralized server. Under this situation, a
significant number of requests (or replies) are lost due to
contention and congestion, which is reflected as a reduced
number of successfully replied sensing requests. Moreover,
as the number of mobile nodes increases and more links
break, the control overhead induced by AODV’s route repair
mechanisms also increases, creating even more contention
and congestion. The net effect is a reduction in the number
of successfully replied sensing requests. This is consistent
with the fact that the values of the search success ratio
and the satisfied-request ratio attained by the centralized
environment are almost the same, which indicates that this
environment almost always identifies the best sensor, but
sometimes it is unable to deliver a reply back to the requesting
node.

The results (Figure 5(c)) also show that the on-demand
approach used by the Foglets is far less costly than the
proactive approach of the centralized server. While the
overhead induced by the Foglets is consistently less than
30, the overhead induced by the centralized environment
reaches 2417. The sensing Foglets attain this level of efficiency
because nodes can locally compute semantic distances using
the proposed algorithm that is based on labels. In this case,
however, there is a gap between the search success ratio
and the satisfied-request ratio attained by the Foglets that
indicates that they do not always locate the best sensor in
the environment. This usually happens when the best node
does not correctly receive a Foglet Request (sent in unreliable
broadcast mode) and hence, it is not included in the BFS-tree.

Figure 5(b) shows that the average delivery ratio attained
by the Foglets is consistently better than that of the cen-
tralized environment. Moreover, unlike the centralized envi-
ronment, the figure also shows that the Foglets are fairly
insensitive to the increase in the percentage of mobile nodes.
This indicates that the routes connecting sensors to sinks
computed and maintained by the Foglets are more effective
than those computed and maintained by AODV.

Lastly, from Figure 5(d) we can observe that the aver-
age reply delay attained by the centralized environment is
consistently better than that of the Foglets. This behavior
was expected and the reason is as follows. First of all, it
is important to recall that this metric considers the time
between the moment in which the sensing request arrives
at the environment and the time the first sensory data
packet is received at the designated sink. Therefore, in the
case of the sensing Foglets, this delay includes the time it
takes to propagate the request within the environment, the
time it takes to contract the BFS-tree established during the
dissemination of the Foglet Request and the time it takes
to transport the first data packet to the sink. Moreover,
as described in Section 3.7 and Theorem 4, due to the
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conservative way in which the BST-Tree is contracted (needed
to guarantee termination), the BFS-tree contraction delay is
proportional to the height of the BFS-tree and to the value of
7 which is a configuration parameter. On the other hand, due
to the proactive approach of the centralized environment, all
the information needed to locate a relevant sensor is already
stored at the ambient server and hence, it can immediately
reply back to an incoming request.

5.2. Performance with Increasing Number of Sensors per Node.
In these experiments, we increase the number of sensors per
node from 1 to 8, 50% of the nodes are mobile, there are four
concurrent sensing requests, and selected sensors generate
data flows composed of 10 data packets. The purpose of these
experiments is to evaluate the ability of the environments to
take advantage of having better-equipped devices.

Figure 6(a) shows the search success ratio and the satisfied-
request ratio attained by the two environments. From the
figure, we can observe that the Foglets are able to take
advantage of having more nodes equipped with the requested
sensors which is reflected in an increased search success ratio.
This is not the case for the centralized environment where less
than 50% of the requests are correctly fulfilled, even though
the centralized server almost always identify the best sensor
in the environment. As in the previous section, the main
reason for this poor performance is the extra communication
overhead induced by the proactive way in which the state
of the sensors is periodically updated at the ambient server
(Figure 6(c)) that tend to congest the network around the
server increasing the probability of losing request and reply
packets. In these experiments, the overhead induced by the
Foglets is always less than 30, while the overhead induced by
the centralized environment reaches 3002.

Figure 6(b) shows that the Foglets also outperform the
centralized environment in terms of packet delivery ratio
by delivering up to 30% more data packets at the sinks.
From Figure 6(d) we can observe that the average reply delay
attained by the centralized environment is consistently better
than that of the Foglets. Again, the extra delay experienced by
the Foglets is mainly due to the time it takes to contract the
BFS-tree.

5.3. Collaborative Sensing Plans. In this set of scenarios,
we evaluate the performance of the sensing environments
when the sensing requests ask for a set of three devices
that will collaborate in order to share the computation and
communication load. The three devices implement a sensing
plan where a single node is selected at a time to sense a
required variable and to send the collected data back to the
sink. In both sensing environments, data sinks are in charge
of coordinating the sensing nodes by instructing them to start
or stop sending sensory data. Every node is assigned with two
different types of sensors, there are four concurrent sensing
requests, and selected sensors generate data flows composed
of 20 data packets.

From Figures 7(a)-7(d) we can observe that the sensing
Foglets are capable of effectively and efficiently implementing
a collaborative sensing task that is carried out by more
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FIGURE 5: Performance with increasing proportion of mobile devices.

than one device. The results presented by these figures
are consistent with those presented in previous sections;
specifically, that the Foglets achieve higher search success
ratio, satisfied-request ratio, and packet delivery ratio than
the centralized environment. This is all while inducing two
orders of magnitude less overhead per sensory data byte
received at the designated sinks (up to 30 against up to 1408),
but with larger average reply delays.

6. Discussion and Future Research

In this paper, we presented a new distributed framework
for opportunistic sensing in the Fog, where collections of

potentially highly heterogeneous devices organize themselves
into sensing Foglets to fulfill a sensing request issued to the
Fog environment. The proposed framework uses semantic-
driven in-network processing to locate the devices that are
most fit to perform a given sensing task. It also establishes and
maintains multihop paths, connecting the selected sensors
to a designated data sink, which are used to deliver flows of
sensory data. The sensing Foglets are instantiated in response
to sensing requests generated either by an application run-
ning on a device currently in the Fog environment or by an
application running on the Cloud. In general, the sensing
Foglets can extend the sensing capabilities of any device by
taking advantage of other devices located at a relevant Fog
environment.
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FIGURE 6: Performance with increasing number of sensors per node.

The fitness of a node is computed in terms of its
instantaneous context and the semantic distance between
its sensing hardware and the hardware specified in the
sensing request. Semantic distances are computed locally at
the nodes by means of a very efficient algorithm that takes
prefix-based labels as input. The main advantage of this
algorithm is that a node does not need to store the whole
ontology in order to compute the semantic distance between
the requested sensor and its own sensors. It only needs to
store the prefix-based labels that codify the branches of the
ontology that contain the concepts describing its sensing
hardware. Moreover, the devices in the environment can
correctly compute the semantic distance between its sensors
and new types of sensors that are added to the ontology.

This is without the need of updating any information at the
devices.

We presented the results of a series of simulation-based
experiments that show that the proposed sensing Foglets
outperform traditional sensing platforms that are based on
centralized services by correctly answering to more sensing
request and at a lower communication cost. This is true in
scenarios where sensing Foglets incorporate a single sensing
device and in scenarios where each sensing Foglet includes
a set of nodes that implement collaborative sensing plans in
order to distribute the computation and communication load.

Future work includes the development of delay-tolerant
sensing Foglets and the use of heterogeneous networks
including vehicular ad hoc networks (VANETS).
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FIGURE 7: Collaborative sensing plans: performance with increasing proportion of mobile devices.

Lastly, it is important to highlight the fact that authen-
tication, access control, rogue node detection, intrusion
detection, privacy, and trust management are crucial aspects
that need to be fully addressed before opportunistic sensing
platforms are adopted by the general public. The good news
is that the Fog computing paradigm provides promising
solutions to address many of these security and privacy issues.
For instance, Fog nodes can provide cryptographic services to
devices that lack the processing power to perform complex
computations [33]. Relevant services such as authentica-
tion and reputation-based trust management are also good
candidates to be implemented by local Fog services run-
ning on stable and trusted computers [34]. Privacy policies
can also be enforced by Fog nodes that decide which

data can be transported outside of the local Fog environ-
ment.

Data Availability

The source code used to obtain the experimental results
reported in Section 5 can be downloaded from https://github
.com/blunan/Stratos-Distributed and https://github.com/
blunan/Stratos-Centralized.
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