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Abstract

Summary Our study proposed an automatic pipeline for opportunistic osteoporosis screening using 3D texture features and

regional vBMD using multi-detector CT images. A combination of different local and global texture features outperformed the

global vBMD and showed high discriminative power to identify patients with vertebral fractures.

Introduction Many patients at risk for osteoporosis undergo computed tomography (CT) scans, usable for opportunistic (non-

dedicated) screening. We compared the performance of global volumetric bone mineral density (vBMD) with a random forest

classifier based on regional vBMD and 3D texture features to separate patients with and without osteoporotic fractures.

Methods In total, 154 patients (mean age 64 ± 8.5, male; n = 103) were included in this retrospective single-center analysis, who

underwent contrast-enhanced CT for other reasons than osteoporosis screening. Patients were dichotomized regarding prevalent

vertebral osteoporotic fractures (noFX, n = 101; FX, n = 53). Vertebral bodies were automatically segmented, and trabecular

vBMDwas calculated with a dedicated phantom. For 3D texture analysis, we extracted gray-level co-occurrence matrix Haralick

features (HAR), histogram of gradients (HoG), local binary patterns (LBP), and wavelets (WL). Fractured vertebrae were

excluded for texture-feature and vBMD data extraction. The performance to identify patients with prevalent osteoporotic

vertebral fractures was evaluated in a fourfold cross-validation.

Results The random forest classifier showed a high discriminatory power (AUC = 0.88). Parameters of all vertebral levels

significantly contributed to this classification. Importantly, the AUC of the proposed algorithm was significantly higher than

that of volumetric global BMD alone (AUC = 0.64).

Highlights

• We present an automatic pipeline for opportunistic osteoporosis

screening using 3D texture features and regional vBMD.

• A combination of local texture and density features performed better

than global vBMD alone to distinguish between patients with and

without osteoporotic vertebral fractures.

• All vertebral levels were important to distinguish between patients with

and without osteoporotic vertebral fractures.
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Conclusion The presented classifier combining 3D texture features and regional vBMD including the complete thoracolumbar

spine showed high discriminatory power to identify patients with vertebral fractures and had a better diagnostic performance than

vBMD alone.

Keywords BMD . Machine learning . Opportunistic screening . Osteoporosis . Quantitative computed tomography . Random

forest model . Texture analysis . Vertebral fractures

Abbreviations

DXA dual-energy X-ray absorptiometry

MDCT Multi-detector computed tomography

vBMD Volumetric bone mineral density

HAR Haralick features

HOG Histogram of gradients

LBP Local binary pattern

WL Wavelets

RF Random forest

Introduction

Osteoporosis is a potentially devastating disease associated

with bone mineral loss and deterioration of the delicate bony

microstructure especially vertebral and hip fractures which are

associated with high mortality and morbidity [1]. As many

patients are often not diagnosed with osteoporosis prior to

osteoporotic fractures, routinely identifying patients at risk is

desirable [2]. Vertebral fractures are the second most common

osteoporotic fractures [3]. They are associated with low bone

mineral density (BMD), which is routinely assessed by dual-

energy X-ray absorptiometry (DXA) [4]. However, DXA

measures only areal BMD, which cannot distinguish between

degenerative changes, cortical and trabecular bone, cannot

assess the three-dimensional (3D) shape of each vertebra,

and may overestimate BMD in obese subjects. Thus, poor

accuracy to predict osteoporotic fractures has been reported

[5]. This implicates an urgent need to develop a clinically

feasible tool that can improve fracture risk assessment at the

spine. Quantitative computed tomography (qCT) is an

established alternative allowing for 3D assessment of bone

mineral density [6]. Based on such data, finite element analy-

sis and biomechanical features have already been used to im-

prove the performance in fracture risk assessment, differenti-

ating individuals with and without prevalent vertebral frac-

tures [7], and predicting incidental vertebral fractures [5].

Despite the availability of 3D data, only two-dimensional

(2D) texture analysis techniques have been applied to CT

images in an in vivo setting [8]. Data mining techniques such

as feature extraction (i.e., texture, shape, density, stiffness,

etc.) that utilizes the full available 3D information of the ver-

tebral composition, is expected to further enhance the diag-

nostic accuracy by combining machine learning and statistical

analysis intelligently. The combination of these techniques

may further enhance the discrimination of patients with and

without fractures. Compared to DXA, qCT is affiliated with a

substantially higher radiation dose, what limits the broad use

as a screening technique up to now [9]. On the other hand,

there are many abdominal CT scans available of patients at

risk obtained for other indications, which can be used for

Bopportunistic screening^, without additional exposure and

substantial costs. Recently, such computed tomography (CT)

scans, partly or completely covering the spine, were used to

identify patients with osteoporosis, detect, and predict verte-

bral compression fractures from reconstructed sagittal images

[6, 10, 11].

In this feasibility study, we evaluated an advanced automat-

ic algorithm for opportunistic osteoporosis screening in non-

dedicated CT images. In detail, we developed a quantitative

method for the identification of patients with prevalent osteo-

porotic vertebral fractures in existing CT images using a ran-

dom forest classifier that uses 3D texture features in combina-

tion with a global and local volumetric BMD.

Materials and methods

Human subjects and MDCT imaging

Ethics approval was obtained from the local ethics committee

(11/5022A1). Due to the retrospective nature of the study, the

need for informed consent was waived. Retrieved from our

local database, we reviewed consecutive patients who re-

ceived MDCT, in the time between February 2007 and

February 2008, for reasons of cancer staging, restaging, or

follow-up after surgical treatment or chemotherapy.

Inclusion criteria for the present study consisted of (1) pa-

tients older than 38, (2) a CT scan of the thoracolumbar spine

including sagittal reformations, (3) a bone mineral phantom

within the scan field, and (4) the absence of any diseases

affecting the spine such as bone metastases, hematological

disorders, or metabolic bone diseases other than osteoporosis.

To definitively exclude spinal metastasis, we included only

patients with available follow-up scans of the spine

confirming the absence of bone metastases. In total, 154 pa-

tients were included in the study (males; n = 103 and females;

n = 51). These oncologic patients had histologically proven

neoplasms of the gastrointestinal tract (102), lymphatic sys-

tem (20), urinary tract (8), respiratory tract (6), sarcoma (7), or
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other solid tumors (11). The majority of patients showed no

signs of distant metastasis (92); a minority were lymphoma

patients (20); in the remaining cases non-spinal, distant me-

tastases were present (42). Due to the fact that all subjects

underwent screening for cancer metastasis, intravenous con-

trast medium (Imeron 400; Bracco, Konstanz, Germany) was

administered using a high-pressure injector (Fresenius Pilot C;

Fresenius Kabi, Bad Homburg, Germany). Intravenous con-

trast medium injection was performed with a delay of 70 s, a

flow rate of 3 ml/s, and a body weight–dependent dose (80 ml

for body weight up to 80 kg, 90 ml for body weight up to

100 kg, and 100 ml for body weight over 100 kg).

Furthermore, all patients received 1000 ml oral contrast me-

dium (Barilux Scan; Sanochemia Diagnostics, Neuss,

Germany). All images were acquired with a Siemens CTscan-

ner (Somatom 128, Siemens Healthcare AG, Erlangen,

Germany) with calibration phantom with two rods (Osteo

Phantom, Siemens Healthcare AG, Erlangen, Germany).

A patient was diagnosed with established osteoporosis

(FX) if an osteoporotic vertebral fracture was detected in the

image (53 patients). According to the semiquantitative Genant

classification, vertebrae with a height loss of more than 20%

(grade 1) and the typical morphology of osteoporotic fractures

were considered as fractured [12]. A total of 101 patients had

no signs of osteoporotic vertebral fractures (noFX).

Bone mineral density

The calibration phantom values were used for Hounsfield

units (HU) to vBMD conversion. To account for the contrast

medium administered to all subjects, a linear conversion factor

for portal-venous (PV) was applied (BMDQCT = 1.02 ×

BMDMDCT − 18.72 mg/ml), as proposed in [13]. The

corrected vBMD value for each vertebra of each patient was

computed by sampling all voxels within the respective trabec-

ular compartment. Finally, the vBMD value of the thoracic,

lumbar, and thoracolumbar spine was determined by averag-

ing the mean vBMD values and standard deviation (SD) of

their respective vertebrae. Additional to the global mean for

each vertebral level, we extracted also skewness and kurtosis,

which we refer to as global density features (BMD) for

classification.

Global and local feature extraction

We extracted features on a global (i.e., vBMD) and local level

(i.e., regional). Global features were extracted for the com-

plete eroded vertebral body. Both density calculation and tex-

ture analysis were performed using the calibrated scans. Due

to the linear conversion used for calibration, internal micro-

architectures and morphological patterns described by the tex-

tural features remained independent from this calibration. To

fully utilize the advantage of texture analysis locally, we

defined 27 subregions as proposed by [14] of each vertebra

of our spine template (TLSSM16) generated in [15]. The cen-

ter of the largest sphere fitting in the vertebral mask was de-

fined as the center point of the vertebral body. Additionally,

we extracted surface points of the vertebral endplates (i.e.,

superior and inferior endplate points), which we projected to

the center point. The given set of 3D points was used to com-

pute the plane that best fits those points by minimizing the

sum of the quadratic distance (perpendicular to the plane)

between the plane and the points. The fit was performed by

computing the eigenvectors associated with the distribution of

the points. Using a combination of two eigenvectors as the

orthonormal basis of the planes, we extracted three distinct

planes: superior-inferior plane (i.e., fitted plane), anterior-

posterior plane, and medial-lateral plane. We divided the larg-

est fitted sphere into three parts to define superior (S), mid-

transverse (T), and inferior (I) regions using the fitted trans-

verse plane, and into lateral (L) and medial (M) regions using

the defined sagittal plane. Coronally, the vertebral bodies were

divided into thirds to define the anterior (A), mid-coronal (C),

and posterior (P) region using the anterior-posterior plane. The

posterior elements were separated from the vertebral body

using the anterior-posterior plane fitted to the posterior border

of the vertebral body, i.e., the anterior border of the spinal

canal. This intersection resulted in 27 subregions, which are

depicted in Fig. 1. We extracted density (regional volumetric

bone mineral density (BMDr)) and texture features for each

vertebra for all defined subregions using different texture anal-

ysis techniques.We computed simple statistical descriptors for

those features using the mean, standard deviation, skewness,

and kurtosis.

Pre-processing

Each vertebra of the thoracolumbar spine was localized and

segmented by an automated algorithm based on shape model

matching [16]. The corresponding vertebra of the spine tem-

plate (TLSSM16) was then aligned to the segmented vertebra

to define the vertebral subregions for texture analysis. More

specifically, we first estimated a rigid motion (i.e., rotation and

translation) which roughly aligned the TLSSM16 to the sam-

ple vertebra. Next, we fitted the vertebral body of the

TLSSM16 to the vertebral body of the sample via affine trans-

form, which adds anisotropic scaling. Once the registration

pipeline was concluded, we could easily warp the defined

subregions to the sample vertebra. To exclude the surrounding

cortical shell and limit the analysis to the trabecular compart-

ment, we eroded the resulting mask of the vertebral body by a

sphere with a radius of 4 voxels.

The implementation of the registration procedure was

based on the elastix framework [17]. Visual inspection has

been conducted on the results of both segmentation and reg-

istration to check the accuracy of the intermediate results. In
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total, 11 vertebrae had to be excluded from the procedure due

to incorrect segmentation (n = 9) or registration (n = 2). The

reason for this failure seemed to be high-grade fractures (n =

6) or severe degeneration in fractured vertebrae (n = 3) and

abnormalities of the posterior elements (n = 2).

Three-dimensional textures analysis

Haralick features of the 3D co-occurrence matrix (HAR)

The Haralick features (HAR) are a set of features computed on

the gray-level co-occurrence matrix (GLCM), a joint histo-

gram of which the elements describe the occurrence of two

intensity levels of being neighbors at a certain offset [18]. The

algorithm for the gray-level co-occurrence matrix used in this

work was set to the following parameters: 16 bins, offset of 1,

in 13 distinct directions which defined the GLCM. Thirteen

different HAR were used, which are reported in the supple-

mental material and described in [3, 19]. However, the vicinity

of 2 voxels is not uniquely defined. An element lying in the

3D space has six direct neighbors with whom it shares one

face and 20 semi-direct neighbors, which result in 13 unique

directions. To address such directional ambiguity, we compute

the mean and standard deviation of the Haralick features

(HAR) in each possible direction. These are called the angular

mean and angular standard deviation, respectively [19]. Both

the angular mean and standard deviation vectors were com-

puted as descriptors of the textures in a region.

3D histograms of oriented gradients

Histograms of oriented gradients (HOG) [20] describe textural

patterns based on the gradient information. The gradient of a

volume is defined at a voxel v as the change of intensity

between the neighbors of v in the axial, sagittal, and coronal

planes. The difference in intensity in each direction generates

a vector called gradient vector. Such a vector is computed for

each voxel v. To compute HOG features, the gradient vector is

projected on the 20 faces of an icosahedron (i.e., a 20-sided

dice) built around the voxel v [20]. Each normalized projec-

tion generates a vector, the magnitude of which is binned in a

histogram. The textural descriptor was estimated by summing

over the histograms in a certain region. Additionally, the same

procedure can be applied to the gradient itself, obtaining in

this way the descriptors of second-order gradients.

3D local binary patterns

Local binary patterns (LBP) were first introduced in 2D [21]

as a way to uniquely identify the specific displacement of

intensities around a pixel, with the main advantage of being

invariant to rotations. The original procedure comprised the

readout of the intensity values around a circle centered on the

pixel of interest in a binary fashion. If the surrounding pixel,

value is bigger than the central pixel, it gets the value of 1 and

otherwise 0. The extension to a 3D space required the devel-

opment of a more complex procedure to readout values from a

sphere surrounding a certain voxel and describe them in a

compact and unique fashion. Such a procedure is based on

spherical harmonics, a mathematical framework, which al-

lows the approximation of functions defined on a sphere

[22]. Additionally, to confer to the descriptor’s rotational in-

variance, as originally proposed in 2D, the kurtosis was com-

puted on the distribution of sampled voxels. This resulted in

feature maps for each voxel location to a higher dimensional

vector representing the particular 3D texture surrounding the

voxel. Two parameters were set for this descriptor: the radius

or the sampling sphere r = 2, 3, and 4 voxels and the number

of coefficients f = 3 used by the spherical harmonics. The

higher the number of coefficients, the more patterns and tex-

tures can be represented.

Fig. 1 Region definition process. (a) The biggest sphere, fitting in the

mask defined the center point of the vertebral body. Additionally, we

extracted surface points of the vertebral endplates, which we projected

to the center point. (b) The given set of 3D points was used to compute the

three orthogonal planes: superior-inferior plane (i.e., fitted plane),

anterior-posterior plane, and medial-lateral plane. (c) The intersections

resulted in 27 regions
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The most direct way to use LBP for the analysis of textures

in a region would be to look for the most common pattern in

that region. However, this approach is sensitive to noise,

which changes the coefficients of the higher frequencies. By

clustering these vectors according to their similarity, we were

less sensitive to noise [23]. More specifically, we clustered the

extracted 3D LBP features using k-means with k = 2, 3, and 4.

Each resulting cluster, represented by its respective mean, was

used as a descriptor, along with its cardinality.

3D wavelet decomposition

The term wavelet refers to a signal having a wave-like oscil-

lation with amplitude that increases from zero up to a certain

value and then decreases back to zero. Similar to sinusoidal

functions in classical Fourier analysis, wavelets can be used as

a basis function in the decomposition of a complex signal

[24]. Unlike Fourier analysis, however, the limited support

of wavelets easily allows the modeling of local frequency

variations (or textures, in the case of images).

More specifically, a discrete 3D signal (i.e., the CT image)

is decomposed into the weighted sum of a high-frequency

signal (H) and a lower one (L) in each direction. This proce-

dure generates eight sub-bands of one-eighth the size of the

original volume (HHH, HHL, HLH, HLL, LHH, LHL, LLH,

and LLL), one for each combination of the type of frequency

and dimension applied. High frequency coefficients capture

high-frequency signals such as edges and noise, whereas low

frequency coefficients give a smoother representation of the

signal. The combination of the high and low frequency high-

lights edges and ridges in specific directions as indicators of

textures.

In addition, wavelet decomposition implicitly offers a

multiresolution approach by recursively applying the decom-

position on the LLL sub-band.

We used simple statistical descriptors (i.e., mean, standard

deviation, skewness, and kurtosis) on each sub-band for two

subsequent resolution levels [25].

Classification

Among all classification algorithms presented in the literature,

we opted for random forests (RFs) [26]. Random forests are an

ensemble of different decision trees built on random subsets of

the input space. A decision tree is a multivariate classifier,

which splits multidimensional data recursively, one variable

at the time, to create homogeneous subsets of data. The clas-

sification of new samples is performed by assigning the class

of the subset the new samples falls into. Assembling multiple

decision trees together creates a random forest, which offers

higher robustness to noise and higher generalization compared

to a single decision tree. We used 2001 trees. To avoid

overfitting, our RFs implement decision trees were built on a

random subset of the input space [27]. Such RFs have been

shown to be efficient classifiers, able to handle complex and

non-linear classification problems and large and high-

dimensional datasets and provide high accuracy [28]. Its train-

ing is performed using a local optimal strategy which recur-

sively minimizes the probability of a random sample to be

misclassified, a.k.a. Gini index. A reduction of the Gini index

given by the selection of a certain feature, summed over all

decision trees in the forest, a.k.a. Gini importance (GI), pro-

vides a quantification of the importance of each feature during

the classification task [26].

At this point, we built the input space (i.e., feature vector)

used for the classification. Specifically, we extracted textural

features according to the section Three-dimensional Textures

Analysis from each vertebral body (global) and the BMD

mean, standard deviation, skewness, and kurtosis from a glob-

al and local level (i.e., the 27 regions). Subsequently, feature

vectors were concatenated for each vertebra in the

thoracolumbar spine. Seventy-nine vertebrae with existing

fractures (as well as 2 vertebrae with incorrect segmentations

without fracture) were excluded from the analysis to avoid

bias. These missing values were replaced by the sample mean.

Finally, since textures could be hampered by noise, but also

may be destroyed by smoothing, we computed each feature on

four increasing levels of Gaussian smoothing. Specifically, we

applied a Gaussian isotropic kernel sigma = 0, 1/3, 2/3, and

1—where 0 is no smoothing—and sized three times the

sigma.

Feature selection

Reducing the input space to the most relevant features, a.k.a.

feature selection, can improve the results significantly, espe-

cially in this case, where the information contained in one

vertebra could likely be correlated to adjacent vertebrae caus-

ing information redundancy. To identify the most important

features, we opted for an exponential search: from the training

procedure, we extracted the GI and ranked the features accord-

ingly. Then we re-ran the training using the first m features,

where m= 2, 4, 8, … 32,768 (in a 2n fashion). A quadratic

function was used tomodel the change in performance w.r.t. n.

The vertex of the parabola was used as optimal cut.

Statistical analysis

A significant level of 0.05 was used in all statistical analysis.

Descriptive statistics were given by means and standard devi-

ations (SD), after checking for normal distribution. To com-

pare the global density in patients with fractures (FX) and

patients without fractures (noFX), we used a Student’s t test.

We used a pairwise Pearson correlation coefficient (r) to in-

vestigate the relationship of vBMD against age.
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The fracture classification performance was computed on a

fourfold cross-validation, repeated 10 times with a random

forest of 2001 trees, classifying if the patient was in the FX

or noFX group (i.e., binary classification). More specifically,

the original dataset (i.e., sample) is randomly partitioned into

four equal size subsamples. Of the four subsamples, a single

subsample is retained as the validation data for testing the

model, and the remaining three subsamples are used as train-

ing data. This fourfold cross-validation was repeated 10 times

with different randomly chosen subsamples to account for

possible differences between subsequent trainings. To assess

the diagnostic capability of single features as well as the whole

model, receiver operator characteristic (ROC) curve analysis

was used. The AUC comparisons were statistically tested

using the McNiel method.

Results

Patient statistics

Patient characteristics are depicted in Table 1. There was no

statistically significant difference in age between the FX group

(66.6 ± 9.2 years) and the noFX group (63.5 ± 7.9 years;

p > 0.08). No significant difference was observed between

females and males in terms of age neither as a whole nor in

each subgroup. Overall, 79 fractures (Genant grade 1; n = 20,

grade 2; n = 40, grade 3; n = 19) were observed in 53 patients.

Seventeen patients had multiple fractures. The most common

fracture location was the transition between the thoracic and

lumbar spine (T11-L2), observed in 36 patients. The middle

thoracic spine (T6-T8) was also a common fracture location

site (31 patients).

In the studied cohort, the global bonemineral density of FX

patients (86.5 ± 19.8 mg/cm3) was significantly lower (p

< .001) than the mineral density of the noFX patients (103.8

± 23.8 mg/cm3). Furthermore, within the FX group, female

subjects presented with a trend towards a lower BMD in the

thoracic and lumbar spine as compared to males (p = 0.07).

Such a difference was also observed in the noFX group.

Only weak negative correlations were detected between

vBMD and age (r = − 0.26, p < 0.01). The distribution of

mean BMD of all vertebrae in the thoracic and lumbar

spine is displayed in Fig. 2.

Classification

The overall classification performance was 0.88 AUC on a

fourfold cross-validation via feature selection where the per-

formance function reached its global maximum at 27.8 ≈

28 = 256 features (Fig. 3a). The performance decreased to

AUC of 0.71 when using the entire input space. AUC com-

parison analysis showed that a combination of important fea-

tures significantly (p < 0.01) outperformed individual

features.

Figure 3b shows the mean GI of each feature class as

computed by the RF. LBP and regional BMD (BMDr)

are highlighted as the most relevant parameters, account-

ing for the highest cumulative GI (i.e., > 50%). Global

vBMD showed the least importance. On the other hand,

regional parameters were important in all vertebral

levels, i.e., there was no region with unimportant infor-

mation (Fig. 3c). Regional density (BMDr) was the most

discriminative factor within T3–5, whereas the whole

thoracolumbar spine was dominated by structural features

(texture) such as LBP and WL. The low importance of

global features like vBMD was reflected in an AUC of

only 0.64 (Table 2). The comparison of the receiver op-

erating characteristic (ROC) is depicted in Fig. 3d.

Figure 4 shows the computation of the most important

feature (LBP), representing the L1 of a FX patient com-

pared to the L1 of a noFX subject.

Finally, we did not observe a significant improvement in

performance (AUC) for any smoothing setting applied (data

not shown).

Table 1 Patient age (in years) and

volumetric bone mineral density

(vBMD, inmg/cm3) of the lumbar

and thoracic spine, presented as

minimum (min), maximum (max)

and mean ± standard deviation

(SD)

Age vBMD (thoracic) vBMD (lumbar)

n min max mean SD mean SD mean SD

FX 53 44 82 66.6 9.2 88.22 20.89 81.51 20.69

FX (M) 35 44 78 68.8 8.3 91.97 22.39 83.63 19.93

FX (F) 18 47 82 65.5 10.5 80.91 15.14 77.40 21.52

noFX 101 39 88 63.5 7.9 105.59 25.74 98.95 23.09

noFX (M) 68 42 88 62.2 7.1 104.25 28.11 98.32 24.12

noFX (F) 33 39 74 64.2 9.2 108.36 19.69 100.24 20.73

All 154 39 88 64.6 8.5 99.61 25.55 92.95 23.78

Values are given for all patients, the fracture (FX) and non-fracture subgroups (noFX), divided by gender (M:

male; F: female)
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Discussion

In this study, we developed a quantitative, automatic method

based on opportunistic CT data to differentiate between pa-

tients with and without osteoporotic vertebral fractures. The

results furnish evidence that regional vBMD and 3D texture

analysis can discriminate between patients with and without

vertebral fractures, without using data of fractured vertebrae.

Parameters of all vertebral levels significantly contributed to

this differentiation. Importantly, a combination of global and

local BMD as well as 3D texture parameters outperformed

volumetric BMD alone.

The possibility of opportunistic osteoporosis screening by

assessing BMD in non-dedicated CT scans has widely been

demonstrated [6, 10, 11]. Plenty of non-dedicated CT scans

exist for this purpose, but widely vary regarding their acqui-

sition and image reconstruction protocols. It has recently been

pointed out that simple absorption measurements in

Hounsfield units (HU) vary largely (up to 70 HU for the

European Spine Phantom ESP 139) among scanners of differ-

ent vendors, mainly due to different image reconstruction al-

gorithms and radiation tubes with different voltage spectra [6].

Thus, HU values of different scanners or protocols should be

converted to BMD values. For this purpose, two major

methods have been proposed, namely phantomless (internal

tissue calibration) [29] and phantom-based (either synchro-

nous or asynchronous) [30–32] 1density calibrations, which

can compensate for such systematic variations. In this study,

we choose a direct, phantom-based calibration for the HU-

BMD conversion. All of the scans used in this study were

performed with intravenous contrast media. The effect of

contrast-enhanced CTon vBMDhas been studied for different

settings, and linear conversion equations successfully

corrected the systematic bias of this density variation [13].

In this study, we also corrected all vBMD values for contrast

media application. With such calibrations, a correct vBMD

was calculated that is comparable among different studies

and standard ACR thresholds for osteoporosis (i.e., ≤ 80 mg/

ccm in the lumbar spine) apply.

In dedicated BMD measurements, the complete spine usu-

ally is considered one single skeletal site. However, a large

variation of bone density and quality was demonstrated be-

tween different vertebral levels in elderly patients [33]. In an

opportunistic screening approach, features from the complete

thoracolumbar spine can be included to account for this vari-

ation. According to our analysis using the Gini index (i.e.,

importance of each feature for the classification), we demon-

strated that every level of the spine was important. This sug-

gests that as many vertebrae as possible should be included for

an optimal prediction of the individual fracture risk.

The key for reliable prediction (i.e., classification) of frac-

ture risk is the combination of BMD and other features of the

vertebrae [5]. Recently, also advanced methods like finite el-

ement analysis have been applied in an opportunistic screen-

ing setting [10]. With FEA, biomechanical properties can be

extracted to assess the bone strength by simulating loading

conditions seen in daily lives [34]. The AUC for fracture pre-

diction by vertebral strength was above 0.8 in a dedicated

scenario [5]. However, the method is computationally intense

and thus studies usually limited their evaluation on the lumbar

region. It is also dependent on spatial resolution, scanning,

and reconstruction parameters; consequently different acqui-

sition parameters and scanners can lead to changes in FEA

results [35].

Another technique to analyze bone properties is texture

analysis. It can extract features complementary to vBMD by

characterizing the distribution of voxel intensities. It is a well-

established technique that can quantify regional variations on

a global and local level [15]. 2D texture analysis is already

used clinically for fracture risk assessment on existing DEXA

Fig. 2 The mean volumetric density distribution (vBMD) of the thoracic and lumbar spine in comparison with the FX and noFX group
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images and named Btrabecular bone score^ (TBS) [36]. Our

method fully exploits the 3D nature of the underlying CT

datasets of the thoracolumbar spine. A 3D texture analysis

was successfully used ex vivo in micro CT [37] and in vivo

at the distal radius in high-resolution peripheral quantitative

CT (HR-pQCT) images to describe the different facets of bone

microarchitecture (texture patterns) in patients with and with-

out fractures (classification performance; 0.67) [38] and after

lung transplantation [39]. Like classical parameters of trabec-

ular bonemorphometry, LBPs describe distinct Bpatterns^ of a

texture and thus can discriminate between, e.g., plate-like and

rod-like structures, but have the advantage of not being thresh-

old-dependent. We demonstrated that clustered LBPs have the

best individual classification performance, which make them

quite robust and descriptive for opportunistic CT data, despite

the variation in image quality (i.e., contrast enhancement,

noise, and spatial resolution) [23].

Recently, a number of machine learning approaches have

been developed, which are able to work with very high-

dimensional representations by unifying the feature selection

and supervising learning tasks [26]. Handling the Bsmall N

large p^ problem was one of the key features choosing the

random forest (RF) over other classifiers. This means in our

case it can handle few patients (i.e., few samples) with many

features. A recent benchmark study also showed that it

outperformed logistic regression [40]. Random forests are

not only used for prediction but can also assess feature impor-

tance. The selection of informative features in the training set,

a.k.a. feature selection, is a keystone in machine learning.

Feature reduction is important to reduce overfitting of the

Fig. 3 Feature selection and importance. a Classification performance

using feature selection. The ranked features according to the Gini

importance (GI) are selected a in a 2n fashion (i.e., 2, 4, 8, … .32768).

The performance (AUC) of a fourfold cross-validation has been plotted

for the increasing amount of selected features. The vertex (red dot) is used

as the optimal cut of the fitted quadratic function (i.e., parabola)

representing the overall performance of 0.88 AUC. b Composition of

the set of important features. The mean Gini importance for each feature

class of density and texture features is reported. Density features are split

into global (vertebral level (vBMD)) and local features (sub-region level

(BMDr)). cComposition of the set of important vertebrae. The mean Gini

importance for each vertebra level is reported. d Comparison of the re-

ceiver operating characteristic (ROC) curves of each individual feature

class and with the selected combined features.
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results. If all possible features are used in the input space (i.e.,

feature vector), the results are compromised with unimportant,

redundant features. This was evident also in our results, where

AUC values decreased, if more than 256 features were included.

There are several limitations due to the retrospective nature

of this study. First, we did not include any clinical scores such

as age, BMI, or other parameters of the FRAX system [41]

that might improve the performance; however, this was in

particular relevant when using areal BMD derived by DXA

[42]. Unfortunately, DXA was not available in this

Bopportunistic^ MDCT dataset; thus, a comparison with con-

ventional screening methods as DXA and FRAX was not

possible. We also limited our analyses to vBMD and texture

parameters, excluding cortical- or FEA-based biomechanical

parameters. An inclusion of such parameters may further im-

prove results [5, 43, 44]. However, we believe that the main

findings of this study (feasibility of opportunistic screening

using texture analysis; importance of all studied vertebra) are

still valid without this information.

Second, we used a cross-validation instead of completely

independent training and test sets due to the limited number of

patients. However, in each of the four cross-validation

datasets, results are only calculated for the test cases not

Fig. 4 Texture analysis using 3D local binary pattern (3D LBP). The

procedure comprised the read-out of the intensity values around a circle

centered on the pixel of interest in a binary fashion. If the surrounding

pixel value is bigger than the central pixel, it gets the value of 1 and

otherwise 0. Then clustering is used on the feature vector.

Representatives in visualizing the differences in local binary patterns of

L1 using 2 and 3 clusters (k) between a healthy 74-year-old female

(noFX) and 73-year-old female from the fracture cohort (FX)

Table 2 Individual classification performance of each individual

feature class (density and texture feature) using random forest (RF)

classifier

AUC Specificity Sensitivity

vBMD 0.64* 0.54 0.57

BMDr 0.74* 0.70 0.69

HAR 0.62* 0.59 0.59

HOG 0.53* 0.51 0.52

LBP 0.74* 0.68 0.71

WL 0.73* 0.68 0.69

Combined 0.88 0.78 0.77

*Statistical difference in AUC (p < 0.01) in comparison to combined

features
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included in the respective training set. Additionally, the four-

fold cross-validation was repeated ten times with stable results

indicating that this might generalize to larger numbers of cases

[45]. Third, we only separated patients with and without ver-

tebral fractures. A prospective approach, predicting incident

fractures, should be the aim of further studies.

In conclusion, the presented model based on a random

forest classifier using 3D texture features in combination with

trabecular bone mineral density features showed high poten-

tial for identifying patients with low bone quality susceptible

to vertebral fractures in an opportunistic screening for osteo-

porosis. Parameters of all vertebral levels significantly con-

tributed to this classification. Importantly, a combination of

global and local BMD as well as 3D texture parameters

outperformed volumetric BMD alone.
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